
A Combinatorial Noise Model for Quantum Computer Simulation

Eric Chi, Stephen A. Lyon, Margaret Martonosi
Dept. of Electrical Engineering, Princeton University

{echi,lyon,mrm}@princeton.edu

May 18, 2007

Abstract

Quantum computers (QCs) have many potential hardware
implementations ranging from solid-state silicon-based
structures to electron-spin qubits on liquid helium. How-
ever, all QCs must contend with gate infidelity and qubit
state decoherence over time. Quantum error correcting
codes (QECCs) have been developed to protect program
qubit states from such noise. Previously, Monte Carlo
noise simulators have been developed to model the effec-
tiveness of QECCs in combating decoherence. The down-
side to this random sampling approach is that it may take
days or weeks to produce enough samples for an accurate
measurement.

We present an alternative noise modeling approach that
performs combinatorial analysis rather than random sam-
pling. This model tracks the progression of the most likely
error states of the quantum program through its course of
execution. This approach has the potential for enormous
speedups versus the previous Monte Carlo methodology.
We have found speedups with the combinatorial model on
the order of 100X-1,000X over the Monte Carlo approach
when analyzing applications utilizing the [[7,1,3]] QECC.
The combinatorial noise model has significant memory
requirements, and we analyze its scaling properties rel-
ative to the size of the quantum program. Due to its
speedup, this noise model is a valuable alternative to tra-
ditional Monte Carlo simulation.

1 Introduction

Quantum computing is a promising new computing
paradigm that leverages some unique properties of quan-
tum mechanics. Quantum algorithms such as Shor’s fac-
toring algorithm [9] offer an exponential speedup over the
best known classical approach and have important appli-
cations in defeating public-key cryptography. Quantum
computing hardware is only in early stages of develop-
ment, and many different implementation styles are being
pursued. These include ion-traps [5], the Kane model [4],

and electron-spins on helium (eSHe) [6]. Although these
hardware implementations differ vastly in terms of the
mobility and robustness of quantum bits (qubits), they all
must contend with noise and decoherence adversely af-
fecting the state of the program qubits.

Quantum error correction and fault-tolerant protocols
have been developed to combat decoherence in quantum
computers (QCs) [7, 8, 10, 11, 12]. These approaches
encode logical program qubits into code blocks and per-
form all program operations on encoded blocks so as to
correct random errors and prevent such errors from prop-
agating wildly. For example, the [[7,1,3]] quantum error
correction code (QECC) encodes one logical qubit into a
block of seven physical qubits. Every logical operation
is followed by an error recovery phase that extracts error
syndromes from a logical qubit code block and performs
corrective procedures if necessary.

Noise modeling is critical in the development of QC
architectures. When integrated into an architectural sim-
ulator, it permits evaluations of QECCs, error recovery
techniques, and microarchitecture noise tolerances. The
simplest noise model applies the Monte Carlo (MC) sim-
ulation approach, which randomly samples possible error
scenarios. This methodology has been applied to previous
studies including [1, 13]. The downside to MC simulation
is its long runtime. When used to measure the crash rate
of a quantum application, the MC simulator is attempt-
ing to measure the frequency of a failure event that occurs
very infrequently (on the order of 1 in 100,000) with ef-
fective error correction. The simulator must run on the
order of a billion iterations to obtain sufficiently many
samples for an accurate measurement. For example, a
small quantum program with only two logical qubits re-
quired nearly eight days of runtime on the MC simulator
to achieve three significant digits of accuracy.

We propose an alternative combinatorial noise model
that is deterministic and tracks the most probable error
scenarios during program execution. We have built and
evaluated this combinatorial noise model, and we will
show that this approach matches the MC model’s accu-
racy with much faster simulation times.

1

Qubits Ops

Microarchitecture &
transportation model

Merge
QubitSets

Extract noise model directives and noise events

Process noise
events

Split
QubitSets

Exec tasks

Figure 1: The operational flow of the combinatorial noise
simulator. The quantum program is defined as a set of
physical qubits and operations. This program informa-
tion is fed into a microarchitecture model that manages
resources and calculates timing. All of this information
is fed into the noise model. The noise model processes di-
rectives annotated in the operations to merge or split Qubit-
Sets and to calculate interesting event probabilities. It also
creates a set of noise events for every qubit and every op-
eration to model decoherence and operational errors.

This paper proceeds as follows: Section 2 describes our
combinatorial noise model; Section 3 describes our ex-
perimental methodology; Section 4 presents our results;
Section 5 presents related work; and Section 6 concludes.

2 A combinatorial approach to
noise simulation

2.1 Overview

The operational flow of our noise simulator is depicted in
Figure 1. The noise model works in conjunction with a
microarchitecture simulator that models the quantum pro-
cessor; it manages memory, transportation, and execution
resources and calculates timing through program simula-
tion. A quantum program consists of a set of operations
acting on a set of physical qubits. The operations are or-
ganized into a sequence of VLIW instruction bundles, so
a different set of independent operations are presented to
the processor every cycle. All this information is fed to
the noise model.

The error state of an individual qubit is associated with
a Pauli operator: I, X , Y , or Z. The I state indicates the
error-free state. The X , Z, and Y states indicate the pres-

ence of a bit-flip, phase-flip, or both bit- and phase-flip
errors, respectively. Each error state is associated with a
probability value, and a qubit may be in a superposition
of multiple error states.

The simulated physical qubits are partitioned into
QubitSets that track correlated errors among the qubits in
a set. Error states in a QubitSet are represented by Pauli
strings: sequences of Pauli operators that define the com-
bined error state of multiple qubits. The QubitSet maps
its Pauli strings to probability values in a hash table: the
QubitSet’s error map. All the noise model’s operations
interact with these QubitSets by manipulating their error
maps.

2.2 Processing noise events
As a quantum program is simulated, the qubits evolve to
carry errors with some probability. Errors may arise from
decoherence over time, from transporting qubits, or from
faulty operations. Every cycle, these potential error sce-
narios are quantized into noise events for processing by
the noise model. A cycle of execution involves process-
ing a VLIW bundle of operations. A noise event is created
for each operation in this bundle and represents the chance
of a faulty operation. One or more noise events are also
created each cycle for every physical qubit. Decoherence
is modeled as a noise event with the probability propor-
tional to the time length of the cycle and dependent on
whether the qubit was undergoing an operation or merely
sitting idly in memory. Transportation decoherence is also
modeled as a separate per-qubit noise event proportional
to time spent travelling.

A noise event targets either one or two qubits (to sup-
port two-qubit operations), and it affects the QubitSet
associated with the target qubit(s). In the case of two-
qubit noise events, both qubits should belong to the same
QubitSet to track correlated errors. The noise event is
stochastic; it leaves the QubitSet unchanged with prob-
ability 1− f , the probability that the event does not trig-
ger an error. The noise event generates new error states
with total probability f divided evenly into the three error
types (X , Y , and Z) for one-qubit events or into fifteen er-
ror types (IX , IY , IZ, XI, XX , XY , XZ, Y I, Y X , YY , Y Z,
ZI, ZX , ZY , and ZZ) for two-qubit events following the
example of [13]. The noise model implements the noise
event by creating a new error map and expanding every

III: 0.80 III: 0.575

IIX: 0.15

IIY: 0.095

IIZ: 0.095

IIX: 0.185

IXX: 0.05

IXX: 0.050

III: 0.56

IIY: 0.08

IIZ: 0.08

IIX: 0.08

III: 0.575

IIY: 0.095

IIZ: 0.095

IIX: 0.185

Original
error map

New error map

1 2 3

Figure 2: A noise event with probability 0.3 acts on bit 0
of a 3-bit QubitSet. Assume that the event branch thresh-
old is 0.1. The noise event creates a new error map and
(1) initially expands the error-free III state into four states.
(2) The IIX state is also expanded with new error scenar-
ios and added to the new error map. (3) The IXX state falls
below the event branch threshold so is appended to the new
error map without expansion.

error state in the original error map into four or sixteen
new error states for the new error map.

This noise event process would lead to exponential
growth in the number of entries in the error map. To avoid
this exponential growth, we only apply a noise event to
a particular error state if that state’s probability value is
greater than some specified event branch threshold. With
an appropriately selected threshold, this approach avoids
the creation of minute error states that are relatively in-
significant. The noise event process including the appli-
cation of the branch threshold is illustrated in Figure 2.

Two-qubit operations introduce an additional compli-
cation in that errors may propagate between the two
operand qubits. We follow the example set by [13] in
defining error propagation properties. Error propagations
are implemented in our noise model as simple transfor-
mations of error states. For example, given a 3-qubit state
XII, a CNot operation on the first two bits may propagate
the bit-flip error, transforming the state to XXI.

2.3 Merging and splitting QubitSets

Two-qubit noise events require their qubits to belong to
the same QubitSet to enable tracking of correlated er-
rors between those qubits. This requires the ability for
QubitSets to merge during runtime. The merging proce-
dure is straightforward: first, a new error map is created
for the merged QubitSet. Every error state in the first er-

ror map is multiplied with every error state in the second
error map to create new error states for the merged er-
ror map. Again, to avoid an enormous expansion of the
state space, a merge branch threshold is applied during
the merge process so that a new merged state is created
only if its resultant probability is greater than the merge
branch threshold.

We have two approaches to handling merged error
states that fall below the merge branch threshold: the
preservation approach and the lossy approach. The
preservation approach takes the less probable of the two
states to be merged and converts that state to the error-free
state. This way, the error information in the more prob-
able error state is retained in the resultant merged state.
The lossy approach simply discards the low-probability
merged error states. These two approaches will yield
near-similar results when the merge threshold is set appro-
priately. If the merge threshold is too large, the preserva-
tion approach will overestimate the success rate while the
lossy approach will underestimate the success rate. This is
because the less probable an error state is, the more errors
it is likely to have (noise events are assumed to be improb-
able). The preservation approach converts low probability
states with higher error weights (the number of bits in a
Pauli string bearing errors) to lower error-weight states,
reinforcing their probabilities. These lower weight error
states are more likely to be correctable by QECCs, so the
resultant success rate is inflated. Conversely, the lossy
approach discards error states and may lead to an under-
counting of successful error states. Figure 3 illustrates
merging QubitSets with these two approaches.

After qubits have been measured, it is no longer nec-
essary to track their error states. A QubitSet may then
split to remove the measured qubits and reduce the size of
its state space. Splitting a QubitSet partitions a QubitSet
into two smaller QubitSets and is the inverse procedure of
merging. No thresholds are necessary for this procedure
as the state space never expands while splitting.

Directives to the noise model for merging and split-
ting QubitSets are manually embedded into the opera-
tions comprising the quantum program. The annotation
of these operations may be automated in the future as the
rules for merging and splitting are straightforward based
on dependency analysis. Two-qubit noise events or any
sort of analysis on multiple qubits require that the qubits
reside in the same QubitSet and implicitly requires merg-

III: 0.80

IIX: 0.15

IXX: 0.05

II: 0.90

YI: 0.10

IIIII: 0.720

IIIYI: 0.085

IIXII: 0.135

IIXYI: 0.015

IXXII: 0.045

III: 0.80

IIX: 0.15

IXX: 0.05

II: 0.90

YI: 0.10

IIIII: 0.720

IIIYI: 0.080

IIXII: 0.135

IIXYI: 0.015

IXXII: 0.045

Preservation merge Lossy merge

Figure 3: Two QubitSets merge with a merge threshold
of 0.01. The merged error state IXXY I has a probability
of 0.005, which is below the merge threshold. The preser-
vation approach converts this merged state to IIIY I and
avoids creating a new error state with minuscule probabil-
ity. On the other hand, the lossy approach simply discards
this error state.

ing QubitSets when necessary. Following the final mea-
surement of a subset of qubits in a QubitSet, the noise
model may split those qubits from the QubitSet to im-
prove performance on subsequent operations acting on
that QubitSet.

2.4 Special tasks

We have described how the noise model evolves through
program execution by processing noise events and ma-
nipulating error maps in QubitSets. This subsection de-
scribes the remaining functions of the noise model; these
include modeling error correction effects and measuring
event likelihoods.

During program execution, the noise model may be di-
rected to calculate interesting event probabilities such as
the success rate in preparing ancilla blocks without errors
or the probability of extracting a correct syndrome. These
probabilities are easily measured by iterating through the
QubitSet’s error map and summing the probabilities of
those error states that match the desired event. For ex-
ample, to measure the overall success rate of a program,
all the program qubits should be in the same QubitSet,
and the success rate is the sum of all error state probabili-
ties in which the program qubits are free of errors or have
sustained a correctable number of errors (this is a QECC-

movement speed 100 µm/µs
1-bit op time 1 µs
2-bit op time 1 ms
memory decay constant 1×105 s
operation decay constant 5×103 s
transportation decay constant 2.5×104 s
1-qubit op error rate 1×10−6

2-qubit op error rate 1×10−4

measurement error rate 1×10−4

reset error rate 1×10−6

Table 1: Timing and noise parameters for the eSHe archi-
tecture described in [2].

dependent value).
We have described noise events as the primary means

for modifying error states. However, the software error
correction operations also impact the qubits’ error states.
We implement the error correction effects as special noise
model tasks that are associated with specific operations.
These tasks include ancilla verification, syndrome extrac-
tion, and data correction. The overall correction routine
is described in [13]. These tasks work similarly to noise
events: a new error map is created; the simulator iterates
through the old error map entries from which new error
map entries are created with some appropriate transfor-
mation.

3 Simulation methodology
This section describes our experimental setup. We pro-
grammed both our proposed combinatorial noise model
and a simple MC noise model in Java. For concreteness,
we adopted the eSHe QC architecture [2] for noise and
timing parameters (Table 1), but the modeling approach
is applicable to any architecture.

The MC noise model that we compare our approach to
is simple and follows the methodology defined in [13].
We use the Mersenne Twister pseudo-random number
generator (RNG) that is bundled with RngPack 1.1a [3].
This RNG has an exceptionally long period of 219937−1.

Our simulated quantum applications focus on the error
recovery procedures that dominate every program. We
adopt the [[7,1,3]] QECC for this paper. Error recov-
ery consists of two phases: one to detect and correct bit-

flip errors, and the other, phase-flip errors. Each of these
phases consists of three syndrome extractions using spe-
cially prepared and verified ancilla blocks. If a majority
syndrome exists and indicates an error, correction proce-
dures are applied. The [[7,1,3]] QECC is only capable of
correcting general errors of weight one per code block. If
more than one qubit in a block has an error, then the block
is considered to be uncorrectable, and the QC is consid-
ered to have crashed. The combinatorial noise simulator
tallies up all the error states that do not crash, and the MC
simulator tallies the number of iterations that do not crash.

We do not focus on higher-level program behavior for
this paper. Logical qubits are entangled with each other
through logical CNots, and every logical operation is fol-
lowed by error recovery. The final cycle of program ex-
ecution is concluded with measurement of the program
qubits.

4 Results

4.1 Threshold parameter exploration

We begin our results section by highlighting the impact
of the threshold parameters for the combinatorial noise
model. This first application is particularly simple and
involves two logical qubits. Following an initial logical
CNot, error recovery is performed on both logical qubits.
A second logical CNot is performed, followed by mea-
surement. We perform a parameter analysis by varying
the event branch threshold from 10−5 to 10−7 and the
merge threshold from 10−10 to 10−16. The results are il-
lustrated in Figure 4.

We find that an event threshold of 10−6 or smaller
leads to accurate results for this application. The merge
threshold then dominates accuracy with a threshold of
10−12 yielding good results; smaller merge thresholds
yield subtly better accuracy. We default to the preser-
vation merge approach when the error states fall below
the merge threshold. However, we illustrate the results
of lossy merges for the 10−6 event threshold. As the gap
between the preservation and lossy merge results dimin-
ishes, the user may have greater confidence that the merge
threshold is not impacting the final result.

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

1E-5 1E-6 1E-6 lossy 1E-7

cr
as

h
 r

at
e

event branch threshold

1E-10 1E-12 1E-14 1E-16merge threshold:

Figure 4: A parameter analysis of the combinatorial noise
model. We measure the crash rate of a simple, 2-logical
qubit application with various threshold parameters. Un-
less otherwise noted, merges take the preservation ap-
proach (rather than lossy approach) when error states fall
below the merge threshold. Larger thresholds lead to
an underreporting (or over-reporting for lossy merges) of
crash probabilities. Preservation merges are more accu-
rate than lossy merges, but the distinction dissipates as the
merge threshold is reduced.

4.2 Scalability with program size

While the combinatorial model is faster than the MC
model, scalability is a concern. The basic two-logical
qubit program used in the last subsection consumed sev-
eral gigabytes of memory for the combinatorial model
compared to hundreds of megabytes for the MC simula-
tor. This subsection analyzes how the program runtime
and error map sizes scale with program size.

We extend our basic quantum program to support an ar-
bitrary number of logical qubits. Given N logical qubits,
our scalability program applies N− 1 logical CNots and
recoveries spread over log2 N phases. All the logical
qubits merge into the same QubitSet by the end of the
program, so this should give us an indication of how the
error map scales with larger programs.

Figure 5 plots how the combinatorial model’s runtime
scales with the program size. The event and merge thresh-
old parameters are kept constant here at 10−6 and 10−12.
The runtime appears to scale polynomially with the pro-
gram size. Garbage collection overhead increases as
memory becomes more scarce for a program size greater
than 7 logical qubits. We ran these tests with a Java virtual
machine (VM) heap size of 11 GB.

To estimate the memory requirements for the simula-

y = 0.769x3 - 8.339x2 + 36.50x - 44.22
R² = 0.999

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10

si
m

u
la

ti
o

n
 t

im
e

 (
m

in
)

logical qubits

Figure 5: Simulation time for the combinatorial noise
model scales at a cubic rate with respect to the number
of logical qubits in the program. Memory scarcity impacts
runtimes as the program size increases beyond seven logi-
cal qubits.

tor, we experimented with restricting the Java VM heap
size until insufficient memory was available to complete
simulation. We estimate that about 1 kB of memory is
required for every entry in the error map. This 1 kB foot-
print includes memory for the Pauli string describing the
error state and the double for its probability, as well as
the duplicate entry in a shadow map. Because the error
map is rebuilt for every noise event, a shadow map is uti-
lized to avoid constantly reallocating hash table memory.
We have profiled the runtime memory usage of the noise
simulator and found the Pauli strings to be consuming the
largest memory footprint. Packing the Pauli strings to two
bits per qubit would lead to better memory efficiency with
the error map entry footprint dropping to 64-128 bytes.

Figure 6 plots how the error map size scales with in-
creasing program size. This scaling appears to be roughly
linear, so improving the memory efficiency of our Pauli
strings would likely increase the capacity of the noise
model by a factor of ten. Figure 7 plots how the error
map size scales with various merge thresholds. This gives
an indication of the cost associated with greater accuracy,
which may be necessary for larger applications.

Because of the hefty memory requirements, the com-
binatorial noise model is best suited to analyzing smaller
software routines from which larger application behavior
may be derived. We expect this model to be able to han-
dle applications with QubitSets as large as 100-200 phys-
ical qubits with our memory capacity of 12 GB. To give
some perspective on the number of physical qubits, the

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

2 3 4 5 6 7 8 9 10

m
ax

 #
 e

n
tr

ie
s

in
 e

rr
o

r
m

ap

logical qubits

Figure 6: The maximum error map size scales more or
less linearly as we scale the number of logical qubits in the
application.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1E-10 1E-12 1E-14 1E-16

m
ax

 #
 e

n
tr

ie
s

in
 e

rr
o

r
m

ap

merge threshold

Figure 7: Maximum error map size vs merge branch
threshold. There is a large jump between 10−12 and 10−14.
These numbers are from the basic quantum program with
two logical qubits.

program with nine logical qubits has a maximum Qubit-
Set size of 105 physical qubits. Greater memory capacity
will, of course, increase the program size capability, and
distributing the simulator across multiple computers may
be an effective method to accomplish that.

4.3 Comparison with Monte Carlo simula-
tion

Figure 8 plots the measured crash rate using the MC
model with varying numbers of iterations. As expected,
the accuracy increases with increased sampling, and the
longest MC run measured a crash rate of 1.56× 10−5,
which is only 0.22% off from the combinatorial model’s
result. However, this level of accuracy for the MC model
comes at a great time cost: that simulation took 7.9 days

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

1.6E-05

1.8E-05

1M 10M 100M 1B comb

cr
as

h
 r

at
e

iterations

Figure 8: Increasing the number of iterations for MC
simulation increases the accuracy of the predicted crash
rate. With one billion iterations, the MC model mea-
sures 1.56× 10−5, just 0.22% off from the combinatorial
model’s result.

to execute. Figure 9 plots the simulation times for both the
combinatorial and MC noise models. The combinatorial
model was executed on a 12 GB, 1.8 GHz Opteron com-
puter, and the MC model was executed on 4 GB, 2 GHz
Athlon 64 X2 computers. The combinatorial model with
the 10−6 and 10−12 event and merge thresholds has a
speedup of over 3,400X compared to the one billion it-
eration MC run with a similar level of accuracy.

We tested the noise models on a variety of other ap-
plications and found similar agreement on crash rates be-
tween the two noise models but varying speedups. If we
evaluate the [[7,1,3]] code using only a single syndrome
extraction (rather than the three syndromes normally em-
ployed), the crash rate grows to 2.1%. For a given level of
precision, the MC model requires a number of iterations
proportional to the crash rate of the program. In other
words, the MC model’s runtime is largely proportional to
the effectiveness of the QECC. When the [[7,1,3]] code
is rendered ineffective with only a single syndrome ex-
traction, the MC model completes in 55 minutes. The
combinatorial model completes in 2.7 minutes, which is
a speedup of 20x over the MC model. We are primarily
interested in evaluating effective QECCs, and the combi-
natorial model will likely have much greater speedups for
such applications.

1

10

100

1,000

10,000

100,000

C 1E-10 C 1E-12 C 1E-14 C 1E-16 MC 1M MC 10M MC
100M

MC 1B

si
m

u
la

ti
o

n
 t

im
e

 (
m

in
)

Figure 9: Simulation times for the combinatorial and MC
noise models. The combinatorial model uses an event
branch threshold of 10−6 and varies the merge threshold.
The MC model varies the number of iterations. Comparing
the combinatorial 10−12 merge threshold (smaller merge
thresholds yield only subtle increases in accuracy) to the
MC run with one billion iterations results in a speedup of
over 3,400x in favor of the combinatorial model.

5 Related work
Steane’s work evaluating various QECCs [13] is most rel-
evant to this one. In that work, Steane applied a MC
simulator to evaluate the [[7,1,3]] and [[23,1,7]] QECCs.
He also created a numerical analysis model to evaluate
a larger set of QECCs and used his MC model to verify
and calibrate his numerical model. His numerical model
is similar to our combinatorial model in that he employs
a branching probability tree to enumerate possible crash
states and their probabilities. Our model differentiates
itself by being implemented in a simulator framework
that enables flexibility in analyzing a variety of programs
rather than a single recovery methodology. Furthermore,
our model evaluates a wider range of noise sources, in-
cluding decoherence due to transportation of qubits.

Balensiefer et al. included a Monte Carlo noise
model in their evaluation framework for ion-trap QCs [1].
Like our work, their noise model is integrated into a
microarchitecture-level simulator. They applied their
noise model to predict error rate thresholds: the maxi-
mum per-qubit failure rate that would be correctable via
fault-tolerant error correction procedures. They found
that when all architecture and current technology limita-
tions are accounted for, the threshold lies around 10−9,
which is several orders of magnitude lower than the ideal
threshold of 10−4.

6 Conclusion
We have presented a new combinatorial noise model for
QC simulation that offers the potential for speedups of the
order of 100X to 1,000X compared to Monte Carlo sim-
ulation. Like MC simulation, our model has runtime pa-
rameters that offers the user trade-offs between accuracy
and simulation speed enabling its use for a wide range
of applications. While the scalability of our noise model
is memory-limited, we estimate that it is capable of ana-
lyzing interesting problems involving hundreds of physi-
cal qubits when simulated on a computer with 12 GB of
memory.

For future work, we are interested in quantifying
speedups for a greater range of situations. We are also
interested in applying the noise model to compare dif-
ferent QECCs, different approaches to applying QECCs,
and methods for implementing fault-tolerant logical oper-
ations. Finally, a practical noise model such as the combi-
natorial model is a crucial simulation component for com-
paring different QC implementations.

References
[1] S. Balensiefer, L. Kregor-Stickles, and M. Oskin. An evaluation frame-

work and instruction set architecture for ion-trap based quantum micro-
architectures. In ISCA ’05: Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 186–196, Washington, DC,
USA, 2005. IEEE Computer Society.

[2] E. Chi, S. A. Lyon, and M. Martonosi. Tailoring quantum architectures to
implementation style: A quantum computer for mobile and persistent qubits.
In ISCA ’07, 2007.

[3] P. Houle. Rngpack: High-quality random numbers for java. http://www.
honeylocust.com/RngPack/, Nov. 2003.

[4] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature,
393(6681):133–137, May 1998.

[5] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale
ion-trap quantum computer. Nature, 417:709–711, June 2002.

[6] S. A. Lyon. Spin-based quantum computing using electrons on liquid helium.
Phys. Rev. A, 74:052338, 2006.

[7] J. Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond., A454:385–
410, 1998.

[8] P. W. Shor. Fault-tolerant quantum computation. In IEEE Symposium on
Foundations of Computer Science, pages 56–65, 1996.

[9] P. W. Shor. Polynomial time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Sci. Statist. Comput., 26:1484,
1997.

[10] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett.,
77(5):793–797, Jul 1996.

[11] A. M. Steane. Active stabilisation, quantum computation and quantum state
synthesis. Phys. Rev. Lett., 78:2252–2255, 1997.

[12] A. M. Steane. Efficient fault-tolerant quantum computing. quant-
ph/9809054, 1998.

[13] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error
correction. Phys. Rev. A 68, 042322, 2002.

