
Tailoring Quantum Architectures to Implementation Style:
A Quantum Computer for Mobile and Persistent Qubits

Eric Chi, Stephen A. Lyon, Margaret Martonosi
Dept. of Electrical Engineering, Princeton University

{echi,lyon,mrm}@princeton.edu

ABSTRACT
In recent years, quantum computing (QC) research has moved from
the realm of theoretical physics and mathematics into real imple-
mentations [9]. With many different potential hardware implemen-
tations, quantum computer architecture is a rich field with an op-
portunity to solve interesting new problems and to revisit old ones.
This paper presents a QC architecture tailored to physical imple-
mentations with highly mobile and persistent quantum bits (qubits).
Implementations with qubit coherency times that are much longer
than operation times and qubit transportation times that are orders
of magnitude faster than operation times lend greater flexibility to
the architecture. This is particularly true in the placement and lo-
cality of individual qubits. For concreteness, we assume a phys-
ical device model based on electron-spin qubits on liquid helium
(eSHe) [15].

Like many conventional computer architectures, QCs focus on
the efficient exposure of parallelism. We present here a QC mi-
croarchitecture that enjoys increasing computational parallelism with
size and latency scaling only linearly with the number of opera-
tions. Although an efficient and high level of parallelism is ad-
mirable, quantum hardware is still expensive and difficult to build,
so we demonstrate how the software may be optimized to reduce an
application’s hardware requirements by 25% with no performance
loss. Because the majority of a QC’s time and resources are de-
voted to quantum error correction, we also present noise model-
ing results that evaluate error correction procedures. These results
demonstrate that idle qubits in memory need only be refreshed ap-
proximately once every one hundred operation cycles.

Categories and Subject Descriptors: C.1.3 [Processor Architec-
tures]: Other Architecture Styles; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design
General Terms: Design
Keywords: architecture, quantum

1. INTRODUCTION
Quantum computing is an exciting new computing paradigm that

offers the opportunity for exponential speedup over classical com-
putation. Physicists have proposed many different implementations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

for realizing quantum bits (qubits) and operations. Quantum com-
puter (QC) implementations share many common characteristics;
most notably, all physical implementations must contend with de-
coherence: the accumulation of noise-induced errors over time and
via imperfect operations. However, QC implementations vary sig-
nificantly in many parameters, including the susceptibility of qubits
to decoherence and the relative speeds of qubit communication and
operation. These varying parameters lead to QC architectures with
starkly different design emphases.

Meaningful quantum computation necessarily involves opera-
tions acting on multiple qubits, and quantum algorithms are de-
signed assuming the QC performs many of these operations in par-
allel. Because multiple-qubit operations require their operand qubits
to be physically proximate, QC architectures must be designed to
efficiently transport a large number of operand qubits in order to
maximize parallel execution.

Previously proposed QC architectures have been designed for
implementation technologies where communication costs are sig-
nificantly greater than computation costs [12, 13]. Such architec-
tures expend many resources to overlap communication with ex-
ecution time to emphasize locality in qubit operations. Quantum
teleportation has been proposed as the long-distance communi-
cation solution for such architectures [20]. Instead of physically
transporting an operand qubit, quantum teleportation moves two
specially prepared qubits (an EPR pair) to form the endpoints of
a single-use communication channel [2]. On-chip communication
via quantum teleportation is contingent on a chip-wide network that
prepares, purifies [3], and distributes EPR pairs to manage these
communication channels.

This paper examines an alternate implementation style for QCs.
Our architecture design approach is based on different technology
assumptions for implementations in which transportation times are
significantly faster than operation times. Memory errors due to de-
coherence are infrequent, particularly when the qubit is not par-
ticipating in an operation. QCs with highly mobile qubits and a
stable memory rely less heavily on on locality, leading to simpler
and more flexible architectures. When transportation time is much
faster than operation time, quantum teleportation is rarely worth-
while, and the QC architecture no longer requires an EPR network.
Our contributions are as follows:

• Building upon the electron-spins on helium (eSHe) QC im-
plementation [15], we present a simple architecture that is
capable of transporting a large number of operands in par-
allel to support a high level of execution parallelism. Our
strategy is notable in that its space and performance costs
scale only linearly with computation size.

• We present noise modeling results that evaluate error correc-
tion protocols and assess the robustness of our memory.

• We also present compiler strategies for optimizing perfor-
mance and hardware requirements.

Section 2 describes some of the basic mechanics required to un-
derstand architectural problems in quantum computing. We fo-
cus on a particular high-mobility QC implementation: the electron
spins on liquid helium (eSHe) technology described in Section 3.
Section 4 presents our computer architecture that builds upon the
advantages and requirements of this implementation. Section 5 de-
scribes our approach to efficiently transporting a large number of
operands in parallel that enables our architecture to perform well.
Section 6 analyzes error correction routines with our noise simu-
lator. Section 7 describes our compilation and optimization strate-
gies. We conclude with related work and discussion.

2. QUANTUM COMPUTING BASICS
Quantum computing is a new computing paradigm that takes ad-

vantage of distinctive properties in quantum mechanics. Quantum
superposition allows quantum bits (qubits) to represent multiple
states simultaneously. Whereas a classical n-bit string may possess
exactly one of 2n possible values, a string of n qubits can represent
a simultaneous superposition of all 2n states. Operations on qubits
affect all their superposition states simultaneously, and it is this
quantum parallelism that gives quantum computers the potential
for exponential speedup over classical computers. Integer factor-
ing is an example of a difficult problem with no known polynomial
solution on classical computers, but Shor’s algorithm shows that it
may be solved in polynomial time on a QC [26]. Factoring has an
enormous practical application in defeating public-key cryptosys-
tems.

Building and controlling quantum systems is extraordinarily dif-
ficult, however, and isolating qubits from the surrounding environ-
ment is a considerable challenge. The environment around a QC
may include random electromagnetic waves that introduce noise
into the qubit states. This decoherence of quantum state leads to
unreliability and requires a fault-tolerant approach to computing.
Quantum error correction has been developed to encode a logical
qubit state as a code block composed of multiple physical qubits
so that random errors affecting individual physical qubits may be
diagnosed and corrected to maintain the logical state. In this paper
we adopt Steane’s [[7,1,3]] quantum error correcting code (QECC)
[30] that employs a 7-bit code block to represent a single logical
qubit.

Fault-tolerant (FT) quantum computing protocols have been de-
veloped to interleave computation and error correction steps in a
manner that prevents random errors from propagating out of con-
trol [32] [22]. FT protocols execute a program’s logical operations
directly on an encoded logical qubit via multiple physical opera-
tions. This approach avoids faults during program operations; an
error on an non-encoded operation would be uncorrectable, but an
error during a logical operation may be remedied. After a logical
operation has effected its desired state change, an error correction
recovery process is applied to the operand qubit(s). This process is
described in further detail in Section 6.

QC implementations provide a limited number of physical oper-
ations at the hardware level. The common conceivable set of physi-
cal operations include arbitrary 1-qubit operations and a limited set
of 2-qubit operations, with controlled-Not (CNOT) and controlled-
Phase (CPHASE) gates being the most frequently used. 2-qubit
CNOTs and arbitrary 1-qubit operations form a universal set of
quantum operators [18]; their composition spans the set of all pos-
sible quantum operations. Physical operations may need to be per-
formed in special locations or operating zones (opzones), which ne-

cessitates transportation instructions in the hardware to control dat-
apath usage. Furthermore, 2-qubit operations require the operand
qubits to be adjacent to each other so that their quantum mechan-
ical states may interact; such operations always imply a need to
transport at least one operand qubit state.

Overall, a quantum application is built in three stages. First,
quantum applications are programmed as a series of arbitrary oper-
ations acting on set of program qubits. Second, a translation layer
decomposes these arbitrary program operations into a finite set of
available fault-tolerant logical operations that act on encoded log-
ical qubits. This layer also implements error correction routines.
Third, the underlying hardware implements the FT logical opera-
tions and error recoveries via 1- and 2-qubit physical operations
plus transportation instructions to move operand qubits.

Many different schemes have been proposed to implement the
quantum bits and operations for a scalable quantum computer. For
example, the ion-trap QC [27][34][29] represents qubits using the
electronic or nuclear states of individual ions. These ions are sus-
pended in a 2D array of traps interconnected via a quantum charge-
coupled device (QCCD) [13]. The Kane quantum computer [12]
has immobile qubits in the form of a 2D array of phosphorous donor
ions precisely positioned in a silicon lattice.

Both of these implementations have transportation schemes that
are significantly slower than their operation times. The ion trap QC
has high transportation constant costs with its high splitting and
turning times (10-20 ms compared to 1-34 µs for operations [29]).
The Kane QC communicates its immobile qubits’ states via succes-
sive SWAP operations on adjacent qubits yielding transportation
time that is proportional to the number of hops travelled with every
hop taking time similar to a 2-qubit physical operation. Both im-
plementation technologies will likely rely on quantum teleportation
for qubit state communication. However, teleportation incurs a sub-
stantial hardware cost in the increased number of qubits and num-
ber of operations required to purify EPR pairs and requires an ex-
tensive networking infrastructure to distribute EPR pairs through-
out the chip. Purification has space costs that scale exponentially
with the communication distance, and the preparation of each tele-
portation channel may require hundreds of EPR qubits [11].

Instead of an implementation where transportation time domi-
nates operation time, this paper considers an architecture for an
eSHe implementation. This technology is characterized by highly
mobile qubits in which transportation time is expected to be much
smaller than operating time. Fast transportation frees us from rely-
ing on quantum teleportation for long-range communication. Fur-
thermore, eSHe architectures do not rely as heavily on spatial and
temporal locality to minimize transportation time between opera-
tions.

3. ESHE DETAILS AND DEVICE MODEL
The eSHe QC uses the spins of individual electrons as the basic

physical qubits. These electrons float in a vacuum above a layer of
liquid helium, which provides a relatively noise-free environment.
The eSHe approach is distinct from other electron qubits on helium
proposals [6, 8, 21] which use charge qubits rather than spin qubits.
The eSHe qubits will have a long memory time and are expected to
maintain coherence when idle with an exponential decay constant
of 100,000 seconds or nearly 28 hours [15]1.

1As with all QC technologies, eSHe characterizations of key noise
and latency parameters continue to be refined experimentally [24].
Nonetheless it is informative to consider the architectural implica-
tions of eSHe, which lies in a very different design space from other
promising QC schemes.

e-

vacuum

liquid helium

silicon
+

CCD motion control

+ +

voltage holds e- stationary

e-

(a)

e- e- e-

10 µm

e- e- e-

After left shift:

e- e- e- e-e-

e- e- e-e-

6-long 3-wide bus

e- e- e-e- e-

e- e- e-e-

(b)
Figure 1: (a) A side view of the eSHe system (not to scale). Electron
qubits float in a vacuum above a layer of liquid helium. Positively
charged metal gates underneath the liquid helium attract these elec-
trons and hold them stationary. The electrons can be moved via CCD
control of these gates. (b) An example of a qubit transportation bus.
Qubits move left or right along this bus akin to a shift register.

We can control the position of individual electrons by establish-
ing an attractive positive voltage under every electron (Figure 1a).
These positive potentials emanate from metal gates under the liq-
uid helium layer. Qubits have great mobility as we can use these
metal gates to shift the electrons’ positions in the same manner as
charged-coupled devices (CCD). Applying a voltage to an adjacent
gate while reducing the voltage in a current gate encourages the
electron to move and then hover over the adjacent gate. Unlike
the ion trap scheme, which also utilizes CCD-style transportation,
we do not expect eSHe qubits to have difficulty making turns be-
cause their motion is dampened by coupling with the surrounding
gate electrodes [15]. The minimum separation distance between
two qubits is 10 µm to avoid interacting their spin states. The CCD
transportation speed is estimated to be 100 m/s. The CCD charge
transfer efficiency has been measured to be at least 0.99999992 [23]
and indicates a transfer failure rate of only once for every 300 m
travelled.

In order to minimize control complexity, qubits travel along wire
segments, and all qubits on a wire travel as a group, moving the
same distance in the same direction. These wires are shift regis-
ters subject to the constraint that qubits may not be shifted past the
endpoints of the wire (Figure 1b). Multiple wires may be tied to-
gether sharing a single shift control signal to form a bus. This shift
register movement scheme is a SIMD-style transportation control
mechanism and enables the movement of a large number of qubits
with few control signals.

Operations are performed on the qubits via microwave pulses.
Once again, to manage control complexity, we envision a SIMD ap-
proach. During operation, the operand qubits are situated in SIMD
opzone columns, which is an array of execution units that operate in
parallel. The opzones require a buffer distance between themselves
and memory to avoid contaminating idle memory qubits with the
microwave pulses. We estimate that a buffer distance of 100 µm
will be sufficient (Figure 2). The opzones are designed to perform
arbitrary single-qubit operations (with some limit on precision) and
the CNOT and CPHASE 2-qubit operations.

e- e-

e- e-

e- e-

e-

e-

e-

100 µm

Figure 2: A 3-way opzone column performs SIMD operations. Idle
qubits are separated from the opzones by at least 100 µm to avoid
microwave contamination.

movement speed 100 µm/µs
1-bit op time 1 µs
2-bit op time 1 ms
separation distance 10 µm
buffer distance surrounding operations 100 µm

Table 1: Device parameters for eSHe QC.

Single-qubit operations and measurements are estimated to be
executed within 1 µs. Two-qubit operations are significantly more
difficult and will take about 1 ms because of the weak magnetic
dipole-dipole interaction. During the 2-qubit operation, the operand
qubits will share the same opzone and will be situated in close
proximity to one another to support the spin interaction needed for
quantum operation. During 2-qubit operations, the qubit state is
susceptible to significantly more decoherence, so their coherence
decay constant is expected to drop to about 5,000 s. The infidelity
of the 2-qubit operation itself is estimated at 10−4 due to preci-
sion timing requirements. We therefore anticipate 2-qubit opera-
tions to dominate the execution time and fidelity of any quantum
application. Traveling qubits are estimated to have a decay con-
stant of 25,000 s. With these parameters, a qubit may travel for
2.5 s (or 250 m) to accumulate the same decoherence as a single
CNOT operation. Tables 1 and 2 summarize the device parameters
for our assumed eSHe quantum computer. While the numbers are
still estimates, they represent a starting point from which to begin
envisioning architectures for this high-mobility, low-noise QC im-
plementation. The overall goal of this paper is to explore design
trade-offs and present a computer architecture built upon these de-
vice parameters.

Noise Parameter Value
memory decay constant 1×105 s
operation decay constant 5×103 s
transportation decay constant 2.5×104 s
1-qubit op error rate 1×10−6

2-qubit op error rate 1×10−4

measurement error rate 1×10−4

reset error rate 1×10−6

Table 2: Decoherence and gate noise parameters for the eSHe QC.
Decoherence is modeled as an exponential decay, and gate errors are
modeled as binomial probabilities.

Fetch

•Variable
time

Execute

• Fixed 1 ms

Store

•Variable
time

cycle 0

1 cycle

cycle 2

Fetch StoreExecute

Variable
time

Variable
time

Fixed 1 ms

Figure 3: The execution sequence of our computer architecture con-
sists of a sequence of variable-length cycles. Every cycle fetches, ex-
ecutes in a SIMD fashion, and stores a number of operand qubits. Al-
though the SIMD operation time remains constant, the operand trans-
portation times vary from cycle to cycle with the number of operands
to transfer.

4. ARCHITECTURE AND
ORGANIZATIONAL OVERVIEW
OF ESHE COMPUTERS

We present a computer architecture for the eSHe QC that reflects
its requirements and advantages. An eSHe QC performs 1- and
2-qubit operations in operating zones that are physically separated
from memory to avoid microwave contamination. Qubit transporta-
tion is very fast relative to operation speed, which lends flexibility
to microarchitecture design considerations. However, quantum al-
gorithms are currently designed with the assumed availability of
infinite parallelism, and this may still challenge the transportation
network between memory and opzones if hundreds or thousands of
operand qubits must be simultaneously transported for execution
every cycle.

4.1 Instructions & operations
Because compiled quantum programs contain abundant data par-

allelism and because eSHe opzones are inherently SIMD in nature,
architecture-level quantum operations should be grouped together
into instruction bundles that may be executed simultaneously (inde-
pendent operations execute on separate operands). The long coher-
ence times of the eSHe qubits permits our hardware to assume a ro-
bust memory such that the qubits are expected to remain error-free
for a time frame of many sequential physical operations. This al-
lows our architecture to relegate all error correction concerns to the
software level and permits a simple hardware-software interface.
Section 6.4 tests the robustness of eSHe memory with a simulation-
based noise model.

With this approach, software is presented a view of hardware
that provides basic 1-qubit physical operations and the CNOT and
CPHASE 2-qubit physical operations among arbitrary qubits. Be-
cause 2-qubit operations will dominate execution time, we will fo-
cus our attention on performing these operations efficiently. Single-
qubit operations may be merged negligibly into the 2-qubit opera-
tion time with minimal overhead and, thus, we do not discuss them
separately in our analysis.

The transportation of hundreds or even thousands of operands
between memory and opzones is challenging and requires its own
schedule in order to reduce transportation time and to avoid poten-
tial deadlock scenarios in the CCD network. Therefore, for every
instruction bundle, a corresponding transportation schedule is con-
structed to direct the CCD network.

4.2 Execution sequence
Figure 3 illustrates the execution sequence of a cycle of oper-

ation. A transportation schedule and instruction bundle are pro-
cessed every cycle leading to the following execution sequence:
(1) Fetch operands from memory to execution units; (2) Operate
all execution units simultaneously, and (3) Store all operands to
memory.

Inter-PU communication path

PU0

PU1

PU2

PU3

Memory region Transportation region Execution region

Tiled
QC:

memory cells opzones

transportation bus

column wires

opzone
column

opzone row wire

Figure 4: The Quantum Processing Unit is composed of a memory
region and an execution region coupled by a transportation region.
This diagram is not drawn to scale. The actual transportation region
contains 9 columns, and the opzone columns are separated from each
other by 100 µm. The double-headed arrows indicate CCD control.
A single transportation bus signal controls all left-right movement in
the memory and transportation regions. The memory and execution
regions may be scaled by adding rows or columns to increase memory
and execution capacity.

The operation execution time itself is constant from cycle to cy-
cle (essentially equal to the 1 ms latency of a 2-qubit operation),
but the operand transportation time may vary with the number of
operands. Therefore the total execution time of the computer is a
sum of the 2-qubit operation periods plus the cumulative operand
transportation time. The transportation scheduler may reduce trans-
portation costs by not storing and re-fetching operands that will be
operated on during consecutive cycles.

4.3 Resulting microarchitecture
Memory, opzone, and transportation networks will be coupled

together into Quantum Processing Units (QPUs) that will execute
instruction bundles and their transportation schedules. For reliabil-
ity and/or feasibility reasons, we anticipate that a QC might dis-
tribute its computational resources among multiple QPUs rather
than a single monolithic QPU. Figure 4 shows the internal struc-
ture of one QPU. A QPU consists of a memory region where idle
qubits reside, an execution region with SIMD opzone columns, and
a transportation region that interconnects the memory and execu-
tion regions.

The memory region contains rows of memory cells, each sep-
arated by 10 µm distance. The memory cells are connected by
individually controlled wires to east-west memory transportation
rows that lead to the transportation region. The transportation re-
gion consists of a set of globally controlled east-west routes in-
terspersed with individually controlled north-south columns. The
execution region contains opzone columns with individually con-
trolled opzone transportation rows to feed operand qubits from the
transportation region. The transportation region is 100 µm wide
and acts as a buffer space between the memory and execution re-
gions, and the opzone columns are also separated from one another
by 100 µm.

QPUs’ execution resources (memory and opzone capacities) are
likely to be varied to match application requirements. The mem-
ory capacity must accommodate the maximum number of physical
qubits at any point of program execution. Likewise, the opzone
capacity should match or exceed the maximum instruction bundle
size in a program. The QPU’s network topology design is discussed
further in the following section. There, we will discuss how the
QPU layout should scale with increasing execution parallelism.

5. OPERAND QUBIT TRANSPORTATION
This section presents a network construction and transportation

scheduling algorithm for the Quantum Processing Unit defined in
Section 4. We will show that our transportation methodology al-
lows parallel execution capabilities (i.e., the number of opzones) to
scale with only a linear increase in operand transportation time and
QPU size to accommodate the higher operand traffic. Our network
topology design is guided by a desire to minimize control complex-
ity for the CCD transportation network so as to reduce the number
of control signals and pins leading to the eSHe system.

5.1 QPU network topology
As described in the previous section, eSHe opzones should be

distant from memory to avoid inadvertent operations on memory
qubits. This constraint rules out topologies that embed opzones
directly inside memory regions. The organization of the QPU net-
work (depicted in Figure 4) has three main regions: memory, trans-
portation, and execution. We adopt a simple two-dimensional mesh
network for our QPU. The qubits are "stored" on vertices in the
mesh and may travel along available links between vertices2.

For simplicity, we have all qubits in the QPU start and end ev-
ery cycle inside their memory cells. The memory region consists
of rows of memory cells interlaced with memory transportation
rows; each memory cell has a single, individually controlled link
south to its memory transportation row. The memory transportation
rows flow east/west into the transportation region, and together, the
memory and transportation regions’ row wires form a transporta-
tion bus that moves east or west simultaneously as described in Sec-
tion 3. The purpose of the transportation region is to carry operand
qubits from their memory transportation rows to their designated
opzone transportation rows in the execution region. The column
wires in the transportation region are individually controlled, so
that qubits in each column may shift north and south independently
of each other. The basic transportation operations are defined in the
following subsection. Each opzone is linked to its transportation
row in the same manner as the memory cells. The opzone columns
and opzone transportation rows compose the execution region.

The number of rows in the QPU is exactly double the opzone
column capacity so as to accommodate the opzones and their trans-
portation rows. The memory capacity is then scaled by varying
the number of columns in the memory region. The QPU’s opera-
tional capacity is the product of the opzone column capacity times
the number of opzone columns. Varying these two parameters for
a given operational capacity adjusts the shape of the network: in-
creasing the number of opzone columns reduces the opzone column
capacity and, correspondingly, the number of rows in the network,
making it both shorter and wider. We examine the impact of net-
work shape on performance later in this section.

The goal for our transportation design methodology is to effi-
ciently transport a large number of operand qubits from arbitrary
memory cells to arbitrary opzones while minimizing CCD control
complexity. Random assignment of qubits to memory cells and
opzones enables simple compilation strategies, and so long as the
transportation is fast, spatial locality in the QPU is unimportant.
Although it is theoretically possible to individually control every
single hop in the QPU network, it is desirable to reduce control
complexity and minimize the number of CCD control signals. Our
topology accomplishes this goal by organizing the transportation
routes into wires and buses that each require only a single CCD
control signal independent of the number of hops.
2While we refer to qubits travelling on wires and links for sim-
plicity, recall that the qubits are actually electrons hovering over a
mesh network of control wires.

5.2 Transportation instructions
Having defined the QPU network topology, it remains to be seen

how to efficiently transport a large number of qubits. Because
movement along these eSHe wires affects all qubits on that wire,
each basic 1-hop movement along a wire can be viewed as a SIMD
transport operation (TransportOp). Multiple TransportOps may be
performed simultaneously so long as their wires do not intersect
(because qubits on intersecting wires may not travel along both
wires simultaneously). Here, we present the construction method-
ology of operand transportation schedules that are composed of
bundles of parallel TransportOps. We will focus solely on the
schedule that transports operands from memory to opzones; the
reverse trip may be accomplished by performing this schedule in
reverse. The TransportOps available to our network topology are
as follows:

East: Activates the transportation bus: all rows in the memory and
transportation regions shift their qubits one step to the right.

North(col): All qubits on the specified column in the transporta-
tion region shift one step upwards.

South(col): All qubits on the specified column in the transporta-
tion region shift one step downwards.

Unload(memoryCell): The qubit in the specified memory cell is
shifted south into the transportation row.

Load(opZoneRow): A qubit on the easternmost transportation col-
umn is shifted right into the opzone transportation row, and
all qubits in that opzone row wire are shifted right as well.

Load(opZone): A qubit is shifted north from opzone row into an
opzone.

The East operation cannot be paired with any other TransportOp
(except the Load(opZone)) as the transportation row bus intersects
with every other wire. All the other TransportOps may be bundled
together so that loading and unloading qubits can be parallelized
with independent north and south movements along the transporta-
tion columns.

The selection of TransportOps is limited in order to reduce the
transportation control complexity. With this selection, there is an
individual link control for every memory cell and every opzone row
and cell. There is a single control signal per transportation column,
but the number of columns is always fixed to 9 columns (accommo-
dating the separation distance between memory and opzones), and
there is only a single remaining transportation signal that controls
lateral movement for the transportation bus.

5.3 Constructing a transportation schedule
An instruction bundle specifies qubits that are operands and re-

quire transportation to their designated opzones. Given this set of
operands, the transportation scheduler then organizes these operand
qubits into a set of packs. A pack is a set of qubits that travel east-
wards together out of the memory region and are always situated
in the same column of the transportation region. Once a pack has
reached the rightmost transportation column, it is simple to shift the
pack North and South along that column wire so that its operands
may be loaded into the execution region. Thus, a transportation
schedule can easily be built or proven infeasible following pack as-
signment of the operands. The scheduling challenge is transformed
into finding a successful allocation of packs that will result in a
short transportation schedule. A pack assignment may result in
deadlock if there is not enough slack in a pack column to permit

loading qubits into their target opzone rows. (recall that an eSHe
wire may not shift a qubit beyond its endpoints)

We use a greedy search algorithm to organize the qubits into
packs, and we present results for this in the next subsection. The
schedule length is easily computed for each pack from its qubit
elements. For each unassigned operand qubit, the algorithm finds
the pack for which adding this qubit increases transportation time
the least. If the desired pack already contains a qubit in that row,
the algorithm finds the best alternate and conflict-free packs for
these two conflicting qubits and assigns the two qubits to the packs
with the lowest resulting combined transportation times. A qubit’s
memory cell location affects its pack schedule length, because the
pack may have to delay its first Unload operation relative to other
packs to avoid interfering with the composition of preceding packs.
The pack search algorithm is described in Figure 5.

PACK ASSIGNMENT ALGORITHM
Sort all operands by shortest hopcount to their assigned opzones
For each operand qubit q

find the pack p with the shortest schedule length for q
if p already contains a qubit r with the same row as q then

find alternate available packs for qubits q and r
place q and r into those packs that minimize combined time

else
insert q into p

end if
next q

Figure 5: Algorithm for assigning qubits to transportation packs.

5.4 Transportation design trade-offs and
results

Here, we analyze how well this transportation scheduler and net-
work approach handles increasing load. Every TransportOp in-
volves a one-hop movement in the network and consumes 0.1 µs.
Our experiments in this section construct transportation schedules
for randomly generated CNOT instruction bundles and average out
results from a thousand such schedules for each data point. We
vary parameters including the number of opzones in the QPU, the
fraction of available opzones that are used per instruction bundle,
and the shape of the network.

Figure 6a shows the result of an experiment that varies the par-
allel execution capability (number of opzones) of a Quantum Pro-
cessing Unit from 8 to 2048 opzones. For each data point, the
QPU is tasked with an instruction bundle that uses all of the op-
zones available. The operand transportation time grows linearly
as we simultaneously increase both the number of operations and
the number of opzones in the QPU. Adding an operation to an in-
struction bundle adds about 0.5 µs for each direction of operand
transport. The memory size of the QPU remains constant at 4096
bits throughout this experiment. Figure 6b shows that the size of
the Processing Unit also grows linearly in this experiment. Adding
opzones to a QPU results in a linear expansion of the execution
region area, and the other areas of the chip may remain unchanged.

Figure 7 shows the results of a similar experiment except we
keep the QPU configuration constant with 128 opzones and only
vary the number of opzones in use. We again observe that the trans-
portation time scales linearly with the number of operations. We
may conclude from these experiments that for any cycle of execu-
tion, the cycle’s operand transportation time is linearly proportional
to the number of operations in that cycle’s instruction bundle. The
size of the QPU and the transportation time both scale linearly with
parallel execution requirements, so neither is an immediate lim-
itation to building larger QPUs for larger applications. Because
transportation time is so much faster than operation time, we may

y = 0.548x + 25.17
R² = 0.999

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

tr
an

sp
o

rt
at

io
n

 t
im

e
 (
μ

s)

parallel operation count

(a)

y = 0.002x + 0.832
R² = 0.999

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

ar
e

a
(m

m
2

)

parallel operation count

(b)
Figure 6: (a) Increasing the execution parallelism (size of instruction
bundle and number of opzones in the QPU) results in linear increases
in the operand transportation time. (b) The area of the QPU network
increases linearly with parallelism.

transport 3554 operand qubits from memory to opzones in the time
it takes to perform a single physical CNOT operation (1 ms).

The shape of the QPU network plays an important role in the
operand transport time. By reducing the opzone column capacity,
we may proportionally reduce the number of rows in the network
making the network shorter and wider. In the previous experiments,
we matched the number of opzones in the QPU with the optimal
QPU shape. We now illustrate the importance of the network shape
on transportation time for a specific QPU example consisting of
512 memory cells and 128 opzones under full utilization in Figure
8a. We constrained the row count to powers of 2 in order to limit
the size of the search space. Figure 8b shows that as we increase the
instruction bundle size beyond 128 operations, the optimal number
of rows in the network remains constant at 16 rows or 8 opzones
per column.

y = 0.500x + 6.164

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

tr
a

n
sp

o
rt

at
io

n
 ti

m
e

(u
s)

instruction bundle operation count

Figure 7: Varying the operation count in the instruction bundles for
a fixed QPU hardware size results in transportation time linearly pro-
portional to the number of operations.

0

50

100

150

200

250

300

1 10 100 1000

tr
an

sp
o

rt
at

io
n

 t
im

e
 (µ

s)

QPU row count

(a)

0

8

16

24

32

40

48

56

64

72

0 500 1000 1500 2000 2500

n
u

m
b

e
r o

f
ro

w
s

in
 Q

P
U

 n
e

tw
o

rk

parallel operation count

(b)
Figure 8: (a) For any given opzone capacity, the shape of the QPU
network impacts the transportation time. Increasing the opzone col-
umn capacity increases the row count of the QPU. This example with
128 opzones has an optimal network shape with 16 rows. (b) We vary
the number of rows in the QPU network to vary its shape and min-
imize the transportation time for various levels of parallelism. The
optimum row count levels off to a constant size of 16 rows as the
parallelism increases past 128 total opzones.

Our transportation strategy encourages growing the number of
columns because lateral movement is performed in parallel and
shared by all operands. A relatively small number of rows is de-
sired, because vertical movement is harder to parallelize. A portion
of a pack’s North/South movement is dependent on first offload-
ing some members of the pack into the execution region. These
vertical TransportOps cannot be executed beforehand in the pack’s
transportation schedule, so the easternmost pack in the transporta-
tion region is likely to require more North, South, and Loads than
other packs making those TransportOps harder to parallelize. By
focusing on the sharing and parallelization of the eSHe wires, our
transportation strategy is able to sustain linear time and area scaling
with respect to load.

6. ERROR CORRECTION AND NOISE
MODEL RESULTS

A quantum computer devotes most of its computational resources
(physical qubits and operations) to performing quantum error cor-
rection and protecting its encoded logical qubits from noise and
decoherence. This section explores the memory longevity of eSHe
qubits and evaluates the noise tolerance in the context of error re-
covery processes. We apply a simulation-based noise model to jus-
tify our architectural assumption of a robust memory.

6.1 Overview of the error recovery process
Logical program qubits are encoded into data code blocks so that

they tolerate errors introduced by noisy gates and decoherence. Ta-
ble 2 lists the best estimates for the eSHe noise parameters from
Lyon [15]. Decoherence errors are modeled as an exponential de-

Ancilla[7]: prepare
verify

Verification bits[3]:

measure

Data[7]:

extract
syndrome

ancilla OK

correct errors

measure

3 cycles 4 cycles 1 cycle

Figure 9: The simplest error recovery process: prepare the ancilla
block to a specific encoded state; verify that the state is free of X er-
rors; and extract a syndrome by interacting the ancilla with the data
block. The ancilla is then measured and decoded via classical pro-
cessing to determine a syndrome and the proper corrective procedure
for the data block. The times listed are in terms of 2-qubit operation
cycles, which are roughly 1 ms each for the eSHe QC.

cay function with the decay constant varying with the qubit’s ac-
tivity: idling in memory, undergoing an operation, or moving. The
basic physical gate operations may also introduce errors due to pre-
cision issues. 2-qubit operations are likely to dominate as a source
of errors with an estimated error rate of 1 in 10,000.

The error recovery process identifies and corrects errors that ac-
cumulate in an encoded data block [31]. It performs this function
with the aid of helper ancilla qubits that are also encoded into a
code block. The ancilla block is prepared to a specific state and
verified to make sure that the preparation was successful and free
of errors that may propagate into the data block. A verified ancilla
is interacted with the data block and then measured. This measured
result is a classical bit string and is classically decoded to derive a
syndrome indicating which, if any, bits of the data block contain an
error. The error recovery process uses this syndrome to determine
the proper corrective procedure, which is a simple 1-bit operation
to the affected bits. Qubit errors may be quantized into two types:
bit-flips (X errors) and phase-flips (Z errors) [16]; a qubit with both
errors has a Y error. It is necessary to correct for both types of
errors, so error recovery is performed twice consecutively: typi-
cally to identify and correct X and Z errors. Figure 9 illustrates the
recovery procedure for the [[7,1,3]] QECC.

6.2 A simulation-based combinatorial noise
model

Previous noise models used Monte Carlo simulations that sta-
tistically explore many possibilities by randomly assigning errors
to qubits with a random number generator [1, 33]. The simulator
measures a success if the encoded data blocks sustain fewer errors
than the QECC’s correction capability. This procedure is typically
repeated millions of times to measure the success rate of the er-
ror recovery process. The obvious disadvantage to this approach is
the time required to obtain enough samples. For example, Steane’s
Monte Carlo simulator [33] took days to compute data points where
the recovery failure rate was only 10−4. The number of samples
required increases as noise rates decrease or as the error recovery
process improves.

In that same paper Steane developed an alternative approach to
estimate the error recovery failure rate [33]. He applied combina-
torial analysis to derive formulas estimating the crash probabilities
of QECCs. Our approach in this paper to modeling errors is similar
but with simulation-based combinatorial analysis. The advantage
of a simulation-based approach is speed and the ease of applying
the noise model to different scenarios.

For each qubit, our noise model tracks the probability that it
has an X, Y, or Z error. Operations and the progression of time
(whether the qubit is idling, moving, or operating) increase these
error probabilities. Operations also propagate errors as described
in [33]. Measurements associated with verification and recovery

syndromes 1 1 3 3
anc verif X X+Z X X+Z

crash rate 2.33×10−3 1.47×10−3 1.55×10−5 1.54×10−5

op count 28 40 84 120

Table 3: Different recovery methods yield varying crash rates and
with different overheads. Crash rates (smaller is better) are shown
for different recovery methods varying the number of syndromes ex-
tracted and the verification applied to the ancilla. Operational over-
heads for these different methods are quantified in terms of the num-
ber of 2-qubit operations involved.

processes reduce these error probabilities. We have validated our
approach against a Monte Carlo simulator and have found good
agreement.

6.3 Error recovery analysis
Repeating measurements is one of Preskill’s laws of fault-tolerant

computation [22]. This is especially important when applied to
syndrome measurements in the syndrome extraction process. De-
termining the correct syndrome is essential for a successful error re-
covery; corrective measures based on an erroneous syndrome will
introduce errors into the data block. One approach to improving
the accuracy of the syndrome is to perform multiple syndrome ex-
tractions. By extracting three syndromes and requiring at least two
of them to be consistent, the error recovery process has a higher
likelihood of implementing the proper corrective procedure.

A wrong syndrome may be measured as a result of an error in
one of three subprocesses: (1) the ancilla preparation procedure;
(2) the ancilla verification procedure; and (3) the ancilla-data in-
teraction (syndrome extraction). The syndrome extraction process
is the least likely source of error because it involves only a sin-
gle CPHASE or CNOT gate between each pair of ancilla and data
qubits. The ancilla preparation procedure is relatively prone to er-
rors because it involves 2-qubit operations among the constituent
block qubits, leading to the possibility of a single gate error propa-
gating to multiple bits. The ancilla verification procedure is meant
to identify and reject ancilla blocks that contain errors. However,
the verification typically only targets X errors in the ancilla, be-
cause these would be propagated into the data block [33]. This
X verification is a source of possible Z errors, and these Z errors
(whether from the preparation or verification steps) are the primary
source of erroneous syndromes. We analyze the effectiveness of Z
verification as a supplement to X verification.

Table 3 demonstrates the importance of repeated syndrome mea-
surement for the [[7,1,3]] QECC and our assumed noise param-
eters. We measured the effectiveness of these error recovery ap-
proaches when applied following a logical CNOT operation be-
tween two initially error-free logical qubits. When only a sin-
gle syndrome is extracted with X verification, the crash rate is
2.33× 10−3, which is worse than our assumed gate failure rate,
indicating that error correction may not even be worthwhile with
this approach. By utilizing three syndromes to guide error recov-
ery, the crash rate falls substantially to 1.55× 10−5. If one of the
three syndromes is wrong, recovery will still succeed if the other
two syndromes do not share the same syndrome error. Although
performing Z verification in addition to X verification yields a re-
spectable improvement to the crash rate for the single-syndrome
recovery process, error recovery is still not beneficial with only one
syndrome extracted.

6.4 Evaluating memory robustness
A stable memory is one of our architectural assumptions based

on the longevity of the eSHe qubits. In typical QC implementa-

1.E-05

1.E-04

1.E-03

1 10 100 1,000 10,000 100,000

cr
as

h
 r

at
e

idle time between ancilla verification and syndrome extraction (ms)

(a)

1.E-05

1.E-04

1.E-03

1 10 100 1,000 10,000 100,000

cr
as

h
 r

at
e

data qubit idle time before recovery (ms)

(b)
Figure 10: (a) Verified ancilla qubits may idle in memory for up to
100 ms (roughly 100 2-qubit physical operation cycles) without sig-
nificantly impacting the crash rate. (b) Likewise, data qubits may idle
in memory for 100-1,000 ms between successive error recoveries.

tions, qubits accumulate enough memory noise during a single re-
covery process to warrant correcting every data block in the com-
puter every recovery cycle [33]. The advantage of a stable memory
is the option of not performing error recovery on idle data blocks
sitting in memory; this saves precious computational resources and
avoids wasting error recoveries on idle data blocks. We evaluate
the robustness of the idle eSHe qubits with our noise model by in-
troducing variable idle time into the error recovery process.

Because there is a small chance that an ancilla will fail the ver-
ification procedure (a 0.137% chance according to our model), the
QECC manager is likely to produce extra ancilla blocks so that no
recovery process will be starved for verified ancilla blocks. This
pooling of ancilla blocks is called the ancilla factory approach to
error correction [28]. Since qubit states decohere over time, it is
important to prevent ancilla blocks in this pool from going stale.
The experiment in Figure 10a introduces idle time between ancilla
verification and consumption in the 3-syndrome extraction process.
It shows that ancilla may idle in memory for approximately 100 ms
(about 100 CNOT cycles) without significantly impacting the re-
covery success rate. Ancilla blocks that age for longer than 100
ms should be reverified. Figure 10b shows a similar experiment
evaluating the robustness of data blocks idling in memory. Like-
wise, it shows that data blocks may idle in memory for 100-1,000
ms before they should undergo error recovery. These results justify
our architectural assumption of a relatively stable memory that per-
mits inactive qubits to remain idle in memory instead of undergoing
constant error correction.

7. COMPILATION STRATEGIES
In this section we present compilation strategies that reduce the

execution time and size requirements for an eSHe QC based on the
QPU architecture that we have described. We take advantage of the
QPU’s support of arbitrary operations between arbitrary qubits to

Fault-tolerant
compiler

Optimize,
reorder,

bundle ops

Simulate
execution

Transport
scheduler

Stats
output

Program

Noise and timing
parameters

Figure 11: A flow chart of our compilation and simulation toolchain.
The logical program is compiled using a fault-tolerant library incor-
porating a QECC and expands the program to define all the physical
qubits and operations. An optimization and bundle allocation stage
follows that bundles physical ops into a sequence of parallel operation
bundles. The transportation scheduler builds a sequence of transport
ops for every bundle. The simulator processes the compiled program
and computes noise and timing results.

enable global optimizations across logical operations. We present
a staggered scheduling approach that minimizes the number of cy-
cles for any given quantum program. We also describe how a quan-
tum program may be optimized to reduce the number of opzones
required without compromising performance.

7.1 Staggering logical operations to minimize
program length

Section 2 described how a quantum application is first written in
terms of arbitrary quantum operations, then decomposed into fault-
tolerant logical operations, and then finally translated into physical
operations understood by the hardware. The goal of a compiler is
to perform this software translation into hardware instructions in
a manner that minimizes the execution runtime and the requisite
hardware costs. Figure 11 illustrates our compilation and simula-
tion toolchain.

Quantum programs contain data dependencies between opera-
tions just like classical programs. Because quantum operations al-
ter their operands, operands are both sources and destinations when
evaluating data dependencies. If we assume that our hardware can
provide sufficient operating zones, then the program length is pri-
marily dependent on the data dependencies forming the longest
chain of operations in the program.

Quantum programs are written in terms of logical operations,
and each logical operation must be expanded by the compiler to
implement the appropriate encoded operation and error recovery
for the selected QECC. Compilers can take advantage of libraries
of optimized logical operation implementations for this purpose.
We follow the fault-tolerant logical operation construction method-
ology defined by [22] and [32]. In this methodology, most of the
physical operations are involved in the task of ancilla preparation.
Ancillae are used to extract syndromes in the error recovery process
as discussed in Section 6.1. A logical operation is implemented by
first performing the desired encoded operation and then perform-
ing two error recoveries to cover bit- and phase-flip errors in the
operands. Each recovery process uses three ancilla blocks for re-
dundant syndrome extraction. Besides their use in syndrome ex-
traction, ancilla qubits are also used in state preparation as part of
the logical Toffoli gate.

This work focuses on two logical operations: the logical CNOT
and the logical Toffoli gates. Ancilla preparation procedures dom-
inate all logical operations. A logical CNOT operation consumes
18 cycles of execution time, and only 7 of those 18 cycles involve
physical operations on the logical operand qubits. Likewise, only

CNOT(A,B)

CNOT(B,C)

Toffoli(A,B,C)

CNOT(A,B)

CNOT(A,B)

Toffoli(A,B,C)

(a) (b)

Figure 12: A sample sequence of 3 dependent logical operations.(a)
A high-level compiler scheduling unstructured logical operations will
not be able to overlap these operations for fear of violating data de-
pendencies. (b) By isolating the critical physical operations (those
involving the operand qubits) to the tail ends of the logical opera-
tions, logical operations may be staggered so that only their critical
regions (shaded) proceed sequentially.

10 out of 36 cycles of the logical Toffoli gate involve the operand
qubits.

A naive approach to maintaining data dependencies may require
that logical operations with data dependencies execute sequentially
without overlap. Instead, we structure our logical operations in a
way that enables maximal execution overlap between dependent
logical operations. We sequester those few physical operations that
involve the logical operand qubits to the tail end of the logical op-
eration and designate these physical operations the critical region
of the logical operation. These critical regions are depicted as the
shaded regions in Figure 12 and contain the actual computational
and recovery operations. The ancilla preparation operations pre-
cede the critical region and are independent of and may be exe-
cuted concurrently with any other logical operation. A compiler
may then optimally schedule a quantum program to minimize cycle
time by staggering dependent logical operations so that their critical
regions execute sequentially. Figure 12 illustrates the usefulness of
this instruction staggering approach by completely overlapping the
execution of two preceding logical CNOTs with a logical Toffoli
operation.

We evaluated the effectiveness of our staggered scheduling ap-
proach versus sequential scheduling of dependent logical opera-
tions. Our sample application is a 10-bit quantum carry-lookahead
adder (CLA) [7] compiled into logical CNOT and Toffoli gates us-
ing the [[7,1,3]] QECC. The CLA application is of interest because
modular exponentiation, which makes repeated use of addition, is
the primary runtime component of Shor’s factoring algorithm. The
CLA scales logarithmically with input size and is one of the most
efficient addition algorithms. We find that compiling the CLA with
the staggered scheduling approach yields a substantial 62% reduc-
tion in cycle time (from 342 down to 127 cycles). This speedup
results from overlapping the ancilla preparation portion of each
logical operation with critical computation from preceding logical
operations.

7.2 Optimizing programs to reduce execution
resource requirements

Although we have shown in Section 5 that our microarchitec-
ture can provide a high level of execution parallelism, hardware
resources like opzones are still expensive. Here, we present an op-
timization process that reduces the peak levels of execution par-
allelism without increasing program length. This approach sub-
stantially reduces hardware opzone requirements without hindering
performance.

We framed this optimization problem as an integer linear pro-
gramming (ILP) problem and used the CPLEX software to solve it
[10]. Our benchmark application is the same CLA application de-
scribed in the last subsection. Our optimization process is two-fold:
(1) we optimize individual logical CNOT and Toffoli operations by
rescheduling their constituent physical operations; and (2) we opti-
mize the entire program by rescheduling these blocks of optimized

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ex
e

cu
ti

o
n

 w
id

th

cycle #

default optimized

(a)

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

e
xe

cu
ti

o
n

 w
id

th

cycle #

default optimized

(b)
Figure 13: (a) Optimizing the logical CNOT reduced the peak exe-
cution width from 30 ops to 19 ops. (b) Optimizing the logical Toffoli
reduced the peak execution width from 49 ops to 21 ops.

0

100

200

300

400

500

600

700

800

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127

ex
ec

u
ti

o
n

 w
id

th

cycle #

default

optimized logical ops

globally optimized logical ops

Figure 14: The 10-bit CLA program uses logical CNOT and Tof-
foli operations. Utilizing the optimized logical operators reduced the
peak execution width from the default 726 ops to 622 ops. Globally
optimizing the scheduling of these improved logical operators further
reduced the peak execution width to 546 ops.

logical operations. The ILP objective in both these cases is to min-
imize the peak execution parallelism over all cycles. We used the
LOCI (LOgical Cplex Interpreter) tool [36] to formulate the peak
parallelism function: maximum instruction bundle size over a set
of cycles. We defined additional ILP constraints following the ex-
ample from [37] to constrain operations to a fixed window of cycles
and to maintain data dependencies. Optimizing the logical opera-
tions required additional constraints to maintain the trailing critical
operation regions as described in the previous subsection.

Reducing the peak execution width of a program is useful be-
cause it allows a proportional reduction in the opzone capacity and
hardware size. Figures 13a and 13b show the execution width over
time for the logical CNOT and Toffoli operations. With the opti-
mized schedule, the peak execution widths of these logical opera-
tors are reduced by 37% and 57%, respectively. Figure 14 shows
the execution width over time for the CLA application. Apply-
ing the optimized logical CNOT and Toffoli gates reduces the peak
execution width of the CLA application by 17%. Additionally op-
timizing the global schedule of these logical operations within the

CLA application reduces the peak execution width 25% from the
default schedule.

This optimization problem further highlights the advantage in
building programs out of library routines of logical operations. In-
dividual library operations are small enough to be optimized as ILP
problems scheduling their physical operations, but even a modest-
sized program as our 10-bit CLA becomes infeasibly large to op-
timize in terms of low-level physical operations. Table 4 indicates
the relative sizes of these optimization problems. The CLA pro-
gram in terms of physical operations yields an ILP optimization
problem file size of 126 MB. When the CLA program is expressed
in terms of logical operations, the optimization problem falls down
to an easier 2.75 MB, which is manageable for our computational
tool set.

We have introduced compilation methods that structure logical
operation blocks for simple minimization of program length as well
as optimization results for reducing hardware size by reducing peak
execution parallelism. These methods are applicable to any QC
technology. To put transportation and operation times in context
to one another for eSHe technology, we found that for the CLA
application, the cumulative transportation time was roughly 37 ms
compared to 127 ms of operation time.

8. RELATED WORK
Much of the previous quantum architecture work has focused on

ion-trap-based QCs, and ion-trap architecture simulators have been
developed for evaluating microarchitecture designs, communica-
tion schemes, and reliability [1, 17] . Balensiefer, et al. presented
a software toolchain for the fault-tolerant compilation of quantum
programs atop ion-trap hardware [1]. Their simulation framework
enables the evaluation of performance and reliability, and the paper
presented some initial findings on microarchitecture design and the
dominant factors in reliability. Metodi et al. also presented a sim-
ulator framework and focused on a scalable ion-trap microarchi-
tecture design called the Quantum Logic Array (QLA) [17]. Like
our own work presented here, both of these previous works have
developed software toolchains that fault-tolerantly compile quan-
tum programs to their respective architectures and physical device
models. Our work differentiates itself in several respects. Most
obviously, the underlying physical implementation varies as de-
scribed in Sections 2 and 3. The ion-trap QC has relatively slow
mobility, whereas eSHe qubits move very quickly compared to ex-
ecution time. This difference in qubit mobility has led to different
architecture design decisions. For example, fine-grained tiling is
an integral aspect of the ion-trap computer. The QLA’s basic tiling
block contains only a single logical qubit [17], and other work sug-
gested that tiles should optimally contain only 2 ion-traps per tile
[1]. By contrast, our QPUs may contain hundreds or thousands of
qubits.

Communication costs are a major focus for QC implementations
with less mobile qubits. Oskin et al. proposed the use of quantum
teleportation as a long-range on-chip communication mechanism
[20], and it has since become a fundamental component of many
QC architecture proposals including ion-trap [17] and solid-state
QCs [5]. Isailovic et al. detailed and evaluated an interconnec-
tion network based on quantum teleportation for ion-trap QCs [11].
They found that EPR pair distribution dominates bandwidth and
network design. The availability of highly mobile qubits eliminates
the need for quantum teleportation in almost all cases. Our trans-
portation results are unique in that they focus on efficient, simulta-
neous transportation of a large number of operand qubits. Previous
work has focused primarily on the distribution of EPR pair qubits
to enable quantum teleportation.

qubits # ops # data dependencies cycle length LP file size
CNOT (physical) 110 307 504 18 477 KB
Toffoli (physical) 216 738 1251 36 2.37 MB

CLA (physical) 9,762 34,302 58,535 127 126 MB
CLA (logical) 36 64 126 127 2.61 MB

Table 4: The size of the optimization problem is a function primarily of the number of operations times the cycle length plus the number of data
dependencies. The problem LP file is a text file defining the objective, constraints, and variable bounds and declarations for the ILP optimizer. Individual
logical operations may be optimized in terms of physical operations, but the CLA program becomes too large for LOCI to process if expressed in terms
of physical operations. When expressed in terms of logical operations, however, the CLA problem collapses to reasonable size for LOCI and CPLEX to
handle.

Previous work has put forth the idea of dividing the QC into dif-
ferent regions, using a different QECC specialized for each region
[4, 19, 35]. Thaker et al. [35] proposed implementing a memory
hierarchy by providing a QC with a high-speed (albeit using a less
reliable QECC) execution region fed by a cache of similarly en-
coded memory backed by a main memory region that uses a higher
density, slower, and more reliable QECC. They found that this ap-
proach resulted in significant speedups and area reductions com-
pared to their original QLA approach [17]. The spatial organization
of logical qubits is crucial to ion-trap QCs because of their expen-
sive qubit movement costs. However, the eSHe QC is relatively
free of these locality concerns and may adopt these specializations
in software rather than hardware. The eSHe QPU hardware focuses
on performing physical operations and is oblivious of higher level
QECC details. The eSHe software may then experiment with vari-
ous QECC schemes without hardware reorganization.

Our error model assumes that noise affects each qubit randomly
and independently. Traditional QECC and FT protocols handle ran-
dom errors well but may not be able to defend against correlated
errors that affect multiple qubits in a code block. Decoherence-
free subspaces (DFS) have been proposed as an encoding layer that
passively defends against correlated errors [14]. Because our phys-
ical qubits are randomly assigned memory cell and opzone loca-
tions, our code blocks (which are software data structures) are less
susceptible to correlated noise than other architectures’, that are
more dependent on the physical locality of the constituent qubits.
Nonetheless, DFS can also be applied to our architecture as an ad-
ditional software layer just like QECC.

Schuchman and Vijaykumar presented a compilation technique
that extracts high-level parallelism from quantum algorithms and
analyzed its effectiveness in distributing coarse-grained parallel tasks
to a multi-core QC [25]. They were able to obtain an approxi-
mate 2x speedup by overlapping the computation and uncompu-
tation phases of adjacent functions in the program. Being a fairly
high-level compilation technique, it may well complement our own
compiler approaches as we analyze the execution of larger applica-
tions on multi-QPU eSHe QCs.

9. CONCLUSION
The eSHe QC is characterized by qubits that possess both re-

markably high mobility (a range of roughly 300 m) and longevity
(a memory decay constant of 100,000 s). These properties make lo-
cality unimportant and encourage the development of a new style of
QC architecture. Previously proposed ion-trap and Kane QCs orga-
nize physical qubits into localized logical qubit blocks and restrict
operations to local qubits in each block. These architectures rely
on quantum teleportation to operate on qubits in distinct logical
blocks. Our eSHe-based QPU architecture stores all the physical
qubits into a single sea-of-qubits memory organization and pos-
sesses greater operational flexibility by supporting physical opera-
tions on arbitrary sets of qubits in the QPU.

We have designed a transportation infrastructure for the QPU

that applies simple CCD hardware and SIMD transportation in-
structions to handle the qubit operand traffic necessary to feed hun-
dreds of opzones every cycle. Our greedy transportation scheduling
algorithm executes quickly and yields good communication laten-
cies and area costs that scale linearly with load.

Memory longevity is one of the key characteristics of eSHe qubits,
and it implies that idle qubits need not be error corrected every cy-
cle. To help quantify the error recovery frequency for idle qubits,
we developed a simulation-based noise model and evaluated the ef-
fectiveness of error correction protocols for qubits idling in mem-
ory. We found that the eSHe qubits may idle in memory for 100-
1,000 ms without hampering the effectiveness of error correction.
This result justifies the array memory architecture because qubits
residing in memory are stable and require only infrequent error re-
coveries.

The flexibility of the QPU architecture to perform operations on
arbitrary qubits translates into greater ease for the compiler in per-
forming global optimizations between logical operations. Qubit
placement within a QPU is unimportant as the transportation re-
sults have demonstrated good results with random placement. In-
teractions between distinct logical qubits need not be prefaced with
teleportation operations. We presented compilation strategies tak-
ing advantage of these freedoms to schedule and optimize appli-
cations to minimize execution time and reduce hardware resource
requirements.

In summary, the unique benefits of the eSHe QC translates into
greater ease and flexibility for the hardware architecture and the
software compiler. We have tested the validity and feasibility of
these core characteristics by constructing a noise model and an ef-
ficient qubit transportation infrastructure.

Acknowledgements
This work was supported in part by the NSF under grant CCF-
0323472, and by the ARO and DTO under contract W911NF-04-
1-0398.

10. REFERENCES
[1] S. Balensiefer, L. Kregor-Stickles, and M. Oskin. An evaluation framework and

instruction set architecture for ion-trap based quantum micro-architectures. In
ISCA ’05: Proceedings of the 32nd Annual International Symposium on
Computer Architecture, pages 186–196, Washington, DC, USA, 2005. IEEE
Computer Society.

[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.
Teleporting an unknown quantum state via dual classical and EPR channels.
Phys. Rev. Lett., 70(13):1895–1899, Mar 1993.

[3] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and
W. K. Wootters. Purification of noisy entanglement and faithful teleportation
via noisy channels. Physical Review Letters, 76:722, 1996.

[4] D. Copsey, M. Oskin, F. T. Chong, I. Chuang, and K. Abdel-Ghaffar. Memory
hierarchies for quantum data. Non-Silicon Computing Workshop, 2002.

[5] D. Copsey, M. Oskin, T. Metodiev, F. T. Chong, I. Chuang, and J. Kubiatowicz.
The effect of communication costs in solid-state quantum architectures. In
Symposium on Parallel Architectures and Applications (SPAA) 2003, pages
65–74, June 2003.

[6] A. J. Dahm, J. M. Goodkind, I. Karakurt, and S. Pilla. Using Electrons on
Liquid Helium for Quantum Computing. Journal of Low Temperature Physics,
126(1-2):709–718, Jan. 2002.

[7] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore. A logarithmic-depth
quantum carry-lookahead adder. http://arxiv.org/quant-ph/0406142,
2004.

[8] M. I. Dykman, P. M. Platzman, and P. Seddighrad. Qubits with electrons on
liquid helium. Phys. Rev. B, 67(15):155402, Apr 2003.

[9] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner,
F. Schmidt-Kaler, I. L. Chuang, and R. Blatt. Implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature, 421:48–50,
Jan. 2003.

[10] ILOG. Cplex 9.1.
[11] N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz. Interconnection

networks for scalable quantum computers. In ISCA ’06: Proceedings of the
33rd International Symposium on Computer Architecture, pages 366–377,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature,
393(6681):133–137, May 1998.

[13] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale
ion-trap quantum computer. Nature, 417:709–711, June 2002.

[14] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-free subspaces for
quantum computation. Phys. Rev. Lett., 81(12):2594–2597, Sep 1998.

[15] S. A. Lyon. Spin-based quantum computing using electrons on liquid helium.
Phys. Rev. A, 74:052338, 2006.

[16] T. S. Metodi and F. T. Chong. Quantum Computing for Computer Architects.
Morgan & Claypool, 2006.

[17] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang. A
quantum logic array microarchitecture: Scalable quantum data movement and
computation. In International Symposium on Microarchitecture (MICRO-38),
Barcelona, Spain, Nov. 2005.

[18] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum
information. Cambridge University Press, New York, NY, USA, 2000.

[19] M. Oskin, F. T. Chong, and I. L. Chuang. A practical architecture for reliable
quantum computers. Computer, 35(1):79–87, 2002.

[20] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz. Building quantum
wires: the long and the short of it. In ISCA ’03: Proceedings of the 30th annual
international symposium on Computer architecture, pages 374–387, New York,
NY, USA, 2003. ACM Press.

[21] P. M. Platzman and M. I. Dykman. Quantum computing with electrons floating
on liquid helium. Science, 284:1967–1969, 1999.

[22] J. Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond., A454:385–410,
1998.

[23] G. Sabouret. Towards Spin-based Quantum Computing on Liquid Helium. PhD
thesis, Princeton University, Princeton, NJ, Jan. 2007.

[24] G. Sabouret and S. A. Lyon. Measurement of the charge transfer efficiency of
electrons clocked on superfluid helium. Appl. Phys. Lett., 88:254105, 2006.

[25] E. Schuchman and T. N. Vijaykumar. A program transformation and
architecture support for quantum uncomputation. In ASPLOS-XII: Proceedings
of the 12th international conference on Architectural support for programming
languages and operating systems, pages 252–263, New York, NY, USA, 2006.
ACM Press.

[26] P. W. Shor. Polynomial time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Sci. Statist. Comput., 26:1484,
1997.

[27] A. Steane. The ion trap quantum information processor. Applied Physics B:
Lasers and Optics, 64(6):623–643, June 1997.

[28] A. Steane. Space, time, parallelism and noise requirements for reliable quantum
computing. Fortsch. Phys., 46:443–458, 1998.

[29] A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler,
and R. Blatt. Speed of ion-trap quantum-information processors. Phys. Rev. A,
62(4):042305, Sep 2000.

[30] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett.,
77(5):793–797, Jul 1996.

[31] A. M. Steane. Active stabilisation, quantum computation and quantum state
synthesis. Phys. Rev. Lett., 78:2252–2255, 1997.

[32] A. M. Steane. Efficient fault-tolerant quantum computing. quant-ph/9809054,
1998.

[33] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error
correction. Phys. Rev. A 68, 042322, 2002.

[34] A. M. Steane. How to build a 300 bit, 1 Gop quantum computer. ArXiv
Quantum Physics e-prints, Dec. 2004.

[35] D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong.
Quantum memory hierarchies: Efficient designs to match available parallelism
in quantum computing. In ISCA ’06: Proceedings of the 33rd International
Symposium on Computer Architecture, pages 378–390, Washington, DC, USA,
2006. IEEE Computer Society.

[36] S.-A.-A. Touati and L. Benmouffok. Logical linear programming tool for
optimizing compilation. http://www.prism.uvsq.fr/~touati/sw/loci/,
2005.

[37] K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using
integer programming. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, pages
121–133, New York, NY, USA, 2000. ACM Press.

