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VERIFYING CORRECT
MICROARCHITECTURAL ENFORCEMENT
OF MEMORY CONSISTENCY MODELS

.................................................................................................................................................................................................................

MEMORY CONSISTENCY MODELS DEFINE THE RULES AND GUARANTEES ABOUT THE

ORDERING AND VISIBILITY OF MEMORY REFERENCES ON MULTITHREADED CPUS AND

SYSTEMS ON CHIP. PIPECHECK OFFERS A METHODOLOGY AND AUTOMATED TOOL FOR

VERIFYING THAT A PARTICULAR MICROARCHITECTURE CORRECTLY IMPLEMENTS THE

CONSISTENCY MODEL REQUIRED BY ITS ARCHITECTURAL SPECIFICATION.

......Memory consistency models
(MCMs) are notoriously difficult to work
with. Although they are central to correct sys-
tem operation, they are hard to build, verify,
and even define. Weak memory models were
originally developed in the 1980s to sacrifice
the intuitive simplicity of sequential consis-
tency in favor of a large performance boost.
Most architects and programmers now con-
sider this tradeoff to be worthwhile; few
modern processors implement sequential
consistency.

Unfortunately, architects have not con-
verged on any single point within the per-
formance versus simplicity spectrum, leaving
a wide variety of MCMs in use today. Models
such as total store ordering (TSO), used by
Sparc and x86(-64), are more conservative
but may leave some performance on the
table. Power and ARM processors reorder lib-
erally by default, but reasoning about how to
enforce ordering (for example, via fences) in
these models is difficult even by consistency
model standards.

MCMs’ complexity is exacerbated by the
modern trend toward architectural heteroge-
neity. Systems no longer comprise CPUs
sharing a single instruction set architecture
(ISA). Instead, there could be as many as a
half-dozen ISAs—and hence a half-dozen
consistency models—on a modern mobile
system on a chip (SoC), and this number is
likely only to increase. Furthermore, mem-
ory-accessing elements such as fixed-function
video decoders may not even have traditional
ISAs at all; these elements rely solely on the
memory consistency model to communicate.
Thus, MCMs have become a central form of
abstraction in an increasingly heterogeneous
landscape. All of these problems motivate the
need to pay increased attention to properly
specifying and verifying the correct consis-
tency model behaviors of the multitude of
computation elements on chip.

This article describes an analysis methodol-
ogy for verifying that a given microarchitecture
meets the specifications of a given architectural
consistency model, and it presents PipeCheck,
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an automated tool for implementing this tech-
nique. PipeCheck brings axiomatic memory
model analysis techniques to the microarchitec-
ture level, defining “microarchitectural-level
happens-before” graphs at the granularity of
instructions passing through particular pipe-
line stages. Using statements about the reor-
dering behavior of individual stages (such as
“the decode stage is an in-order stage”), Pipe-
Check verifies that each ordering edge that
must be preserved according to the architec-
tural consistency model (for example, each
Store!Store ordering for TSO) is in fact
provably maintained by the microarchitec-
ture. As a result, PipeCheck reduces the
problem of verifying global consistency
model implementation correctness to the
more tractable problem of verifying local
reordering properties at various points in the
microarchitecture.

Our hope is that architects will use our
open source PipeCheck tool (publicly avail-
able at github.com/daniellustig/pipecheck)
and its analysis techniques to design chips
with increased resilience against the kinds of
consistency and memory system bugs that
continue to haunt hardware even today.

PipeCheck: Microarchitecture-level
analysis

Architecture-level memory consistency
model specifications say nothing about the
behavior of any individual microarchitectural
implementation. On one hand, certain archi-
tecturally permitted behaviors might not be
observable on a given microarchitecture. For
example, a sequentially consistent (SC) pipe-
line is a valid implementation of the TSO
memory model, although many executions
that are legal under TSO will not be observ-
able in such a pipeline—the microarchitec-
tural memory model is stricter than the
architectural model MCM requires. On the
other hand, architecturally forbidden behav-
iors might be observable on a given micro-
architecture, and this would mean that the
implementation has a bug.

PipeCheck aims to formalize and auto-
mate this comparison of microarchitecture
versus architecture. It extends axiomatic
memory model analysis techniques to the
microarchitecture space, creating microarchi-

tecture-level happens-before graphs. Here,
we describe how these graphs are created and
used for verifying a microarchitecture’s cor-
rectness with respect to a given memory
model.

Microarchitecture-level happens-before graphs
Orderings between instructions are often

too complicated to be captured by a single
architecture-level happens-before edge. A sin-
gle pair of instructions may fetch in order,
issue out of order, execute in order, commit
in order, and reach memory out of order.
PipeCheck therefore defines microarchitec-
ture-level happens-before (lhb) edges in
terms of both instructions and particular
locations within the pipeline:

Definition 1. Microarchitectural-Level
Happens-Before: A lhb graph is a directed
graph (V, E) in which each vertex (inst@loc)
�V represents a memory instruction inst
passing through a particular location loc, and
each edge (insti@loca , instj@locb) represents
a guarantee that instruction insti passes
through location loca before instruction instj
passes through location locb.

We depict lhb graphs in a grid with
instructions along the x-axis and microarchi-
tectural locations along the y-axis. Not all
instructions pass through all locations (for
example, loads do not occupy the store buf-
fer), and so some entries in the grid are left
empty. Despite the grid depiction, only rela-
tionships depicted by arrows provide any
ordering guarantee.

Figure 1 shows the lhb graph for the mes-
sage passing (mp) litmus test (discussed in the
“Memory Model Analysis” sidebar) execut-
ing on a processor with standard five-stage
in-order pipelines. The four memory opera-
tions—i1, i2, i3, and i4—are depicted from
left to right, and various locations in the
microarchitecture are shown from top to bot-
tom. Each vertex represents an instruction at
a particular location within the microarchi-
tecture. Each row of vertices captures the
ordering of instructions at a particular loca-
tion within the pipeline, and each column of
vertices therefore corresponds to an instruc-
tion progressing through various locations in
the microarchitecture.
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Microarchitecture definition
In PipeCheck, a microarchitecture is

defined by

� a list of locations;
� legal path(s) per instruction type;
� performing locations within each path;
� a local ordering guarantee at each

location; and
� nonlocal edges, or edges that are both

interinstruction and interlocation.

We will define these terms in more detail
in this article.

Running example. Table 1 shows the Pipe-
Check definition of the classic five-stage pipe-
line depicted in Figure 2. The rows of the
table are microarchitectural locations. The
two middle columns define the possible paths
each class of instructions can take through
the pipeline. Note that, in general, instruc-
tions can have more than one choice of path
through the microarchitecture. The last col-
umn defines the local ordering guarantees at
each location. The footnotes specify the per-
forming locations for each type of instruction
as well as a set of nonlocal edges specific to
the store buffer.

Instruction paths. During execution, as instruc-
tions flow through the pipeline, they pass
through a specified set of locations along
some well-defined path. A memory instruc-
tion can have more than one legal path
through a pipeline. For example, a read can
take a different path depending on whether it
forwards from the store buffer, reads from
the cache via a cache hit, or reads from the
cache after a cache miss.

Performing locations. Each path also defines
the set of locations at which each instruction
can perform. Traditionally, a store has
performed when a (potentially hypothetical)
load may read the value, and a load has per-
formed when a (potentially hypothetical)
store may not change the value returned.1

The notion of performing is in turn used to
define the behavior of properties such as the
cumulativity of fences on some weak archi-
tectures. This classical definition of perform-
ing is fundamentally hypothetical and thus
difficult to work with, because happens-
before relationships are made to inherently
depend on loads and stores that do not
actually exist in a program and hence cannot
easily be referenced during analysis. This dif-
ficulty is reflected in the wide variety of defi-
nitions of cumulativity used in the literature.

PipeCheck defines the point at which an
instruction has performed in terms of loca-
tion rather than the traditional notion of
potential visibility:

Definition 2. Performing Location: A
location l is a performing location with
respect to core c if a load at location l can
read the value written by a store from core c,
and the data being written by a store at loca-
tion l is visible to core c. A location l is a
global performing location if it is a perform-
ing location with respect to all cores.

In PipeCheck, the transitivity of edges
makes it straightforward to check whether
one instruction performs before another.
One simply checks whether there are one or
more lhb edges that connect the performing
locations of the two instructions.

Local ordering guarantees. To more precisely
define in-order and out-of-order, we define a

(ppo)

(ppo)
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popo

rf

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

MemoryHierarchy

(i1) (i2) (i3) (i4)

Arrow Edge type
Intrainstruction
Intralocation

Nonlocal
po

enforces ppo
rf,fr,ws

Figure 1. PipeCheck microarchitecture-level happens-before (lhb) graph.

The depicted execution of the message passing litmus test (see the

“Memory Model Analysis” sidebar) has a cycle and hence is not observable

on this pipeline.
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local ordering guarantee at each location.
This specifies the reorderings that location
does or does not permit on instructions pass-
ing through it. At one extreme, a first-in,
first-out (FIFO) local ordering specifies that
all interinstruction orderings guaranteed at
entry into a location will also be guaranteed
leaving that location. At the other extreme, a
NoGuarantees local ordering specifies that no
orderings are guaranteed for instructions
leaving the location. Other guarantees may

lie in between. The specific guarantees of
each pipeline stage will vary from processor
to processor.

Nonlocal edges. Nonlocal lhb edges model
any ordering guarantees implemented by
the pipeline across multiple instructions
and locations. Such nonlocal lhb edges are
relatively rare; they correspond to nonlocal
wires and/or communication across a chip,
making them expensive in practice.

..............................................................................................................................................................................................

Memory Model Analysis
Axiomatic memory models represent programs as graphs. Vertices

represent instructions; an edge from a node s to another node d indi-

cates that s happens before d in a formal sense defined by the model.

A cycle in an axiomatic memory model graph indicates that a pro-

posed execution is disallowed, with important exceptions made to

account for certain weak memory behavior.1 This reflects the intuition

that an instruction cannot happen before itself. Acyclic graphs corre-

spond to permitted executions.

Figure A depicts the standard axiomatic analysis of the message

passing (mp) litmus test, a program written specifically to test a con-

sistency model. This particular test asks whether some execution of

the two threads produces the result r1 ¼ 1 and r2 ¼ 0 on a processor

implementing the total store ordering (TSO) consistency model (see

Table A), used by SPARC and x86(-64). All memory locations are

assumed to hold the value 0 originally. Working backwards, since r 1

receives the value 1, i 2 must have happened before i 3. Similarly, i 4

must have happened before i 1, because otherwise i 4 would also

have returned the value 1. As Table A indicates, TSO itself guarantees

the Load!Load and Store!Store orderings within each thread;

these constraints are called the preserved program order (ppo). As

Figure B shows, these four edges form a cycle, indicating that the out-

come is forbidden under TSO.

Reference
1. J. Alglave, L. Maranget, and M. Tautschnig, “Herding Cats:

Modelling, Simulation, Testing, and Data Mining for Weak

Memory,” ACM Trans. Programming Languages and Sys-

tems (TOPLAS), vol. 36, no. 2, 2014, article 7.

Table A. Preserved program order (ppo) in the total

store ordering (TSO) memory model. Must an

access of the type in the row heading maintain its

ordering with respect to a subsequent instruction

of the type in the column heading?

Load Store

Load � �
Store – (mfence) �........................................................

*�: enforced by default. –: not enforced by default.
(mfence): enforced by mfence.

Core 0 Core 1 

(i1) [x] <-- 1 (i3) r1 <-- [y] 

(i2) [y] <-- 1 (i4) r2 <-- [x] 

Proposed outcome at core 1: r1 = 1, r2 = 0. 

Outcome forbidden under TSO 

Figure A. Code for message passing (mp) litmus test.

(i1) (i2) (i3) (i4)

po & ppo reads from (rf) po & ppo

from-reads (fr)
a.k.a. reads before

Figure B. Architecture-level analysis of Load!Load and

Store!Store ordering litmus test iwp2.1/amd1/mp.

The cycle indicates that this execution is forbidden under

the rules of TSO.
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However, they often serve to enforce critical
ordering guarantees. An example of such a
nonlocal edge is a store buffer that enforces
that “after issuing a request to memory, the
store buffer must await an acknowledgment
from memory before issuing a subsequent
request”—a property that is often critical to
the enforcement of Store!Store orderings
in TSO.

Generating lhb graphs
Given a microarchitecture definition and

a program, PipeCheck automatically enu-
merates the set of all lhb graphs represent-
ing all possible executions of the program.
This process is broken into two steps: enu-
meration of static edges, or those which are
true in every execution of a program, and
enumeration of observed edges, or those
inferred during a particular execution of that
program.

Static edges. We begin by adding a set of
intrainstruction lhb edges between consecu-
tive locations along the path for that instruc-
tion. For example, an instruction being in the
fetch stage will “microarchitecturally happen
before” the point when that same instruction
is in the decode stage. These are represented
by the solid vertical arrows in Figure 1.

Next, each location observes instructions
passing through in some order. We assume
program order to be the ordering of instruc-

tions at the fetch stage of the pipeline. Some
subsequent pipeline stages also guarantee to
maintain intralocation ordering guarantees
propagated from previous stages. We add
intralocation lhb edges to represent these
per-location guarantees. These are repre-
sented by the dashed horizontal arrows in
Figure 1.

Finally, we add the nonlocal edges defined
by the pipeline specification. For example,
the definition of the five-stage pipeline (see
Table 1) contains a nonlocal edge to describe
the store buffer’s behavior. This is drawn as
the diagonal dashed edge from (i1@Memory-
Hierarchy) to (i2@StoreBuffer) in Figure 1.

Observed edges. PipeCheck enumerates three
types of observed edges. The “Memory
Model Analysis” sidebar discusses two exam-
ples: “reads from” (rf) and “from reads”
(fr). The third type is “write serialization”
(ws), also known as “coherence,” which pla-
ces a total order on all stores made to each
address.

PipeCheck defines the endpoints of
observed edges to be at the performing loca-
tion(s) of each instruction’s path. When there
is more than one possibility (for example, a
load can read from either the store buffer or
memory), PipeCheck analyzes each inde-
pendently. The cross product of the set of
rf, ws, and path choices forms the set of
graphs that need to be evaluated.

Table 1. PipeCheck definition of a classic five-stage pipeline

#

Access type Local ordering guarantee

Loads Stores

0 Fetch Fetch FIFO

1 Decode Decode FIFO

2 Execute Execute FIFO

3 Memory Memory FIFO

4 Writeback Writeback FIFO

5 Store Buffer FIFO

6 Memory Hierarchy NoGuarantees..............................................................................................
*Loads perform globally at the memory stage. Stores perform locally (that is, enter the
store buffer) at the memory stage, and they perform remotely when reaching the memory
hierarchy. Only one store can be outstanding from the store buffer at a time: for all stores
s, for the immediately subsequent store s0, (s@MemHierarchy)!(s0@StoreBuffer).
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Properties of lhb graphs
PipeCheck lhb graphs have a number of

properties that make them particularly suit-
able for use in verification. We discuss these
below.

Transitivity of lhb edges. Axiomatic memory
models capture the complexity of weak
ordering behavior in one of two ways. Many
models place the complexity into the edges.
In such models, graphs are smaller, but exe-
cution-forbidding cycles can be found only
within carefully chosen subsets of edges, and
the transitive closure of happens-before edges
is itself not always a happens-before edge.2

Other models, including PipeCheck, define
larger graphs in which each node represents an
instruction plus metadata (that is, in Pipe-
Check, a pipeline location). The extra infor-
mation in nodes (and hence also in edges)
means that edges can be transitively composed
and that any cycle serves to forbid an execu-
tion. This simplifies the analysis and restores
the intuitive one-to-one correspondence
between cycles and forbidden executions.

Graph size and tractability. Although Pipe-
Check lhb graphs are larger than those cre-
ated by many other axiomatic models, they
nevertheless remain very tractable to analyze.
Each graph’s size is roughly proportional to
the number of instructions being analyzed
times the depth of the pipeline. As such, lhb
graphs typically have no more than a
hundred nodes. Furthermore, although each
analysis generally produces more than one
graph, these graphs can be analyzed entirely
independently in parallel. Nevertheless, our
results show that even naive sequential analy-
sis remains tractable, generally running to
completion within just a few minutes.

Verification methodology
Here, we describe the high-level verifica-

tion approach, as well as the design and usage
of our PipeCheck tool, which automates the
process.

Verification types
PipeCheck verifies pipeline correctness

using two techniques: direct satisfaction tests
and litmus tests.

Direct satisfaction tests. The first approach is
to directly check whether each required
architecture-level happens-before (hb) edge
requirement is enforced by one or more lhb
edges. A given architectural memory model
can therefore generate direct satisfaction tests
to check preserved program order (ppo),
program order accesses to the same address
(po-addr), dependency orderings, fence
orderings, and so on. PipeCheck ensures that
the microarchitectural interpretation of each
hb edge is in fact present in the transitive clo-
sure of each lhb graph. As an example, the
highlighted edges in Figure 1 represent lhb
edges found to enforce the hb requirements
of ppo for TSO.

Litmus tests. PipeCheck also evaluates each
microarchitecture using a suite of litmus tests
built up from existing repositories.3 Architec-
tural analysis determines whether the outcome
specified by each litmus test is permitted or
forbidden; PipeCheck calculates whether the
outcome for each test is observable or not on
the given microarchitecture. A permitted but
unobserved outcome means that the pipeline
is stronger than strictly necessary. A forbidden
but observed outcome, however, indicates
either a pipeline bug or an incorrect micro-
architecture specification.

PipeCheck automated tool
Figure 3 shows the PipeCheck tool flow.

PipeCheck is written using Coq,4 an interactive

0 Fetch

Store
buffer

5

6

Loads

Memory hierarchy
(unordered)

Decode

Execute

Memory

Writeback

1

2

3

4

Figure 2. Graphical representation of a classic five-stage pipeline plus a store

buffer and an unordered memory system. We use this relatively simple

pipeline as a running example throughout the article.
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theorem prover, to make the code amenable to
formal analysis and integration with existing
open source frameworks also using Coq.5 To
speed up the analysis, we use built-in function-
ality within Coq to export the code into
OCaml and then compile this extracted code
into a stand-alone binary. We then measured
the runtime of this binary’s execution on an
Intel Xeon E3-1230v2 processor.

We evaluated PipeCheck by verifying pro-
cessors implementing the TSO consistency
model. TSO imposes nontrivial ppo order-
ing requirements on all memory operations
and is in widespread use. Both facts make it a
particularly interesting target.

We analyzed four pipelines. The first two
are the five-stage pipeline in Figure 2, both
without and with a store buffer. The former is
effectively sequentially consistent, meaning that
some litmus test outcomes permitted under
TSO might (legally) not be observable. These
two microarchitectures reflect pipelines that
might be used in classrooms or as embedded
cores. The third is the O3 (out-of-order) pipe-
line from the gem5 simulator.6 This represents
a medium-sized core and demonstrates how
simulated cores are also amenable to analysis.
Finally, we describe the OpenSPARC T2 pipe-
line, representing a well-documented industry-
strength microarchitecture.7

We analyzed each litmus test on a four-
core version of each pipeline. We also ana-

lyzed the set of ppo and po-addr direct
satisfaction tests for each pipeline.

Results across litmus tests
Table 2 shows the results of verifying the

suite of litmus tests on each modeled pipeline.
Individual litmus tests are depicted as rows.
For each row, the table shows whether TSO
forbids or permits the outcome proposed by
the test, and then shows its observability on
the four microarchitectures. The microarchi-
tecturally observable behaviors correspond
with the architecturally specified behaviors in
almost all cases. For the five-stage pipeline
without a store buffer, six of the proposed
results require non-SC behavior, and these
results are confirmed as not being observable
on the SC pipeline. On the other hand, test
results for the gem5 pipeline indicate the pres-
ence of a bug.

Figure 4 shows the time taken to complete
the verification process for each pipeline. The
entire suite completes in just 10 minutes for
each pipeline, demonstrating that even with
code optimized for verifiability rather than per-
formance, PipeCheck analysis is very practical.

Advanced microarchitectural optimizations
Many processors deliver improved per-

formance through microarchitectural optimi-
zations such as out-of-order execution,
speculative load reordering, and value predic-
tion. The desire to include such optimizations
was the key motivation for building weak
memory models at all. However, optimiza-
tions must make sure to follow the rules of the
architectural memory model within which
they are implemented. PipeCheck now pro-
vides a rigorous framework within which such
verification can take place.

An interesting complication arises with
microarchitectural optimizations that main-
tain the appearance of following the rules
even while technically violating them. Much
as pipelines are permitted to perform out-of-
order execution as long as in-order semantics
are maintained, pipelines can (and do) imple-
ment features, such as speculative load reor-
dering, which violate the letter of the
memory model specification but which
nevertheless maintain the external appearance
of correct behavior. PipeCheck supports

Enumeration of
possible static
edge scenarios

Direct satisfaction tests Litmus tests

Ld (x) St (x)
Ld (y)

St (y)
Ld (x)Ld (y)

FRFR

RFRF

FR

RF

FR

RF
PPO)P P P PPPO) PPO) PPO)

Enumeration of
possible observed

edge scenarios

Cycle
detection Cyclic

All cyclic: not observable
(PPO maintained)

Not all cyclic: observable
Under TSO: permitted

Cyclic Cyclic Cyclic Cyclic Cyclic CyclicAcyclic

Ld (x) St (x)
Ld (y)

St (y)
Ld (x)Ld (y)

FRFR

RFFFFRF

FR

RFF

FR

RFFFF
PPPPPO)PPPPPPPPPPPPPPPP PPPPPPPPP PPPPPPPPP PPPPPPPPPPO)P PPPPPPO) PPPPPO)PP

Cyclic

All cyclic: not observable
(PPO maintained)

Not all cyclic: observable
Under TSO: permitted

Cyclic Cyclic Cyclic Cyclic Cyclic CyclicAcyclic

Figure 3. PipeCheck verification flow. The enumeration of graphs and the

process of checking graphs for cycles are entirely automated.
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verification of these features as well. In such
cases, a literal interpretation of architecture-
level requirements such as Load!Load
ordering might not be verifiable, but in these
cases correctness should nevertheless be
enforced by replacement lhb edges.

Case study: Speculative load reordering
The key principle behind speculative load

reordering is that two loads l1 and l2 in pro-
gram order can be speculatively reordered

(that is, l2 can perform before l1) as long as
the value read speculatively by l2 is the same
as it would have been had l2 in fact per-
formed nonspeculatively (that is, after l1).8

The implementation used by the gem5 O3
pipeline snoops for cache line invalidations.
Specifically, if a cache line has not been over-
written or invalidated (due to cache replace-
ment or external request) since an earlier
speculative read of that line, the core can
safely assert that a subsequent read of that

Table 2. Summary of litmus test results.

Litmus test

Total store

ordering

(expected)

Modeled pipelines

5-stage

(no store

buffer)

5-stage (with

store buffer) gem5 O3 OpenSPARC

iwp2.1/amd1/mp F ¼ ¼ O2 ¼
iwp2.2/amd2/lb F ¼ ¼ ¼ ¼
iwp2.3a/amd4/sb P N1 ¼ ¼ ¼
iwp2.3b P ¼ ¼ ¼ ¼
iwp2.4/amd9 P N1 ¼ ¼ ¼
iwp2.5/amd8/wrc F ¼ ¼ O2 ¼
iwp2.6 F ¼ ¼ ¼ ¼
amd3 P N1 ¼ ¼ ¼
amd6/iriw F ¼ ¼ O2 ¼
n1 P N1 ¼ ¼ ¼
n2 F ¼ ¼ O2 ¼
n4 F ¼ ¼ ¼ ¼
n5 F ¼ ¼ ¼ ¼
n6 P ¼ ¼ ¼ ¼
n7 P N1 ¼ ¼ ¼
rwc P N1 ¼ ¼ ¼...................................................................................................................................

*“F”: Forbid. “P”: Permit. “¼”: Matches expected TSO outcome. “O”: Observable. “N”: Not observable. 1: Implementation
more restrictive than TSO requires. 2: Indicates the presence of a bug.
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Figure 4. Verification time results (computed using extracted OCaml). Even in the worst case, the analysis is fast, making

verification very tractable in practice.
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line would return the same value. On the
other hand, if the cache line is modified or
invalidated, the core is conservative and
assumes that the invalidation indicates a
failed speculation.

We can model this implementation of
speculative load reordering in PipeCheck by
including cache line invalidation as an extra
location within the instruction path. Figure
5a shows an example within the gem5 O3
pipeline model for the mp litmus test. Extra
vertices represent the invalidations of the
cache lines that i3 and i4 read from, and the
observed edges in the graph have been
adjusted to account for these new vertices. In
particular, the cache line that i4 reads from
must have been invalidated before i1 wrote
to memory to observe the proposed result.

Case study: gem5 pipeline bug
For the gem5 O3 pipeline, our ppo direct

satisfaction tests indicated that Load!Load
ppo ordering was not guaranteed, and four
litmus tests that relied on such ordering failed
validation. As an example of a failed test, Fig-
ure 5b shows the lhb graph for mp executing
on this pipeline. To analyze further, we wrote

a microbenchmark to execute mp in a tight
loop. With this test, software observed the
forbidden result, confirming the presence of
the bug as well as its cause. This bug was fixed
by a third party in revision 10149.

Case study: WeeFence
WeeFence is a recent optimization pro-

posal that allows post-fence loads to perform
and retire before stores prior to the fence.9

WeeFence buffers or bounces invalidation
requests to cache lines relevant to a pending
fence, thereby allowing post-fence reads to
safely retire nonspeculatively even before pre-
fence stores have written back to memory.
Although this violates the letter of the fence
semantics, it maintains the appearance of cor-
rect execution.

Figure 5c demonstrates the use of Pipe-
Check to validate the WeeFence optimization
(within the corrected gem5 O3 pipeline).
Both the baseline (non-WeeFence) and the
WeeFence approaches enforce the (i1@Mem-
oryHierarchy)!(i3@CacheLineInvalidate)
ordering, but WeeFence does so without the
slow intermediate step of (i2@Commit-
Stage), thereby saving latency over the

po po

(ppoarch)

pposlr

FetchStage

DecodeStage

RenameStage

IssueStage

ExecuteStage

Cache Line
Invalidated

WritebackStage

CommitStage

Store Buffer

Memory Hierarchy

(a) (b) (c)

po po po po

baseline

ppo

WeeFence

(i1) (i2) (i3) (i4) (i1) (i2) (i3) (i4) (i1) (i2) (i3)

Figure 5. Case studies on the gem5 O3 pipeline. (a) Speculative load reordering. Although ppoarch is not enforced, a legal

replacement pposlr is enforced, and it completes the cycle. (b) Pipeline bug shown via the iwp2.1/amd1/mp litmus

test. The lack of a cycle indicates that the behavior is (erroneously) observable. (c) WeeFence eliminates the slow baseline

dependency while maintaining the necessary ordering.9
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baseline. This analysis demonstrates how
PipeCheck can be used to specify and dem-
onstrate the correctness of a new microarchi-
tectural optimization proposal.

W e hope that techniques such as Pipe-
Check can help bring attention to

both the need and the opportunity to verify
new microarchitectural optimization pro-
posals. Although performance is the primary
motivation for most such proposals, per-
formance results should only be considered
meaningful once correctness has been estab-
lished. Incorrect (or even nearly correct)
microarchitectures may (even unintention-
ally) benefit from artificially inflated per-
formance, thereby placing correct proposals
at an unfair disadvantage. Litmus tests such
as iriw arose after long discussions in the
community about the performance costs of
implementing strong ordering semantics for
programming idioms that are widely consid-
ered esoteric. Nevertheless, models such as
TSO require strong semantics despite their
cost. Proposals that claim to implement TSO
should be expected to demonstrate the cor-
rectness of iriw before presenting perform-
ance numbers. The time has come for
microarchitects to accept the burden of estab-
lishing correctness in a rigorous manner.

Fortunately, analysis techniques and tools
are quickly approaching a point at which
automated, systematic verification is possible.
Precise formal models of many architectures
now exist, as do large, well-established suites
of litmus tests for popular ISAs, including
x86(-64), Power, and ARM. We hope that
PipeCheck is useful in extending rigorous
analysis techniques into the microarchitec-
ture space, thereby providing researchers
with a straightforward and reliable way to
demonstrate their proposals’ correctness.
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