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Abstract

We describe o new power-performance modeling
toolkit, developed to aid in the evaluation and defini-
tion of future power-efficient, PowerPC™ processors.
The base performance models in use in this project are:
(a) a fast but cycle-accurate, parameterized research
simulator and (b) a slower, pre-RTL reference model
that models a specific high-end machine in full, latch-
accurate detail. Energy characterizations are derived
from real, circuit-level power simulation data. These
are then combined to form higher-level energy models
that are driven by microarchitecture-level parameters
of interest. The overall methodology allows us to con-
duct power-performance tradeoff studies in defining the
follow-on design points within a given product family.
We present a few experimental results to illustrate the
kinds of tradeoffs one can study using this tool.

1 Introduction

Power dissipation limits constitute a key new con-
straint in the design of high-end microprocessors.
These limits are becoming important for two main rea-
sons:

Chip-level cost/performance evolution:

At the chip-level, there has been an ever-increasing
growth in complexity, clock frequency and die size.
This is driven by advances in semiconductor tech-
nology and the quest to keep up with Moore’s
Law from a performance viewpoint. Power con-
sumed by the processor must be dissipated by
the use of appropriate packaging and cooling so-
lutions. These latter solutions get more sophisti-
cated and costly as power increases. As single-
threaded uniprocessor IPC performance slowed
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due to fundamental ILP limits, the added com-
plexities needed to meet net performance growth
targets caused power (and cost) budget over-
runs. The impact on verification cost and time-
to-market also started to affect the actual cost-
performance trends. Multithreading and multi-
processing at the chip-level have evolved in an at-
tempt to correct the cost-performance imbalance.
That is, through architectural paradigm shifts, the
hope is to boost the net performance significantly,
but with relatively small power, complexity and
die-size increments. However, packaging technol-
ogy limits within the “air-cooling” regime, have
forced designers to look for power-saving opportu-
nities at all levels of high-end design, irrespective
of the microarchitectural paradigm adopted.

System-level, volumetric cost/performance evolution:

At the very high-end, one can argue that the sys-
tem cost (with all the “box”, memory and pe-
ripheral chip/board and switch costs) is so much
higher than a single processor chip cost that wor-
rying about power/cost issues at the single chip
level is irrelevant. However, this is not a correct
perspective. Within the form factor limits of a
server “box”, if one is forced to increase the vol-
ume occupied by cooling hardware (e.g. through
the use of refrigeration or liquid cooling), then
that takes away from the number of processors
which could have been included. Also, there are
some basic upper limits on the amount of cur-
rent drawn by a server box to meet the overall
processing and cooling needs. Thus, the volumet-
ric cost/performance growth constraints translate
into a “per-chip” power limit for a particular sys-
tem product targeted for a given market.

Thus, early-stage microarchitecture definition and
trade-off analysis studies must now (more than ever
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Figure 1. Block Diagram of PowerTimer.

before) try to factor in considerations of power and
design complexity. Recently, there have been papers
from academia and industry [1, 3, 10, 11, 12, 13] that
address the issue of modeling and design of power-
and complexity-aware microarchitectures. In this pa-
per, we report ongoing work in this area within IBM
Research. The power-performance modeling method-
ology described in the prior work of Brooks et al. [1]
is adapted for use within the modeling framework of a
real, server-class processor development project. The
key new contributions in this power-performance mod-
eling tool are:

e Energy models that are derived from real, circuit-
level power simulation data, but are then driven
by microarchitecture-level parameters of interest.
These higher-level abstractions are suitable for
conducting power-performance tradeoff studies to
define the follow-on design points within a given
product family. Technology parameters and scal-
ing equations are additional inputs to the model.

e A web-based graphical user interface, which al-
lows one to quickly characterize the fundamental
tradeoffs between performance growth and power-
related cost, based on prior, one-time simulation
data collected in a spreadsheet database.

Using this new modeling toolkit, we evaluate a cur-
rent generation, high-end PowerPC processor design
point from the viewpoint of power-performance effi-
ciency. As part of this evaluation, we examine the
sensitivity of such efficiency metrics with respect to
individual (and combinations of) microarchitecture-
level parameters: cache size and geometry parameters,
queue/buffer sizes, number of ports to various storage
resources, various other bandwidth parameters, etc.

2 PowerTimer: an Energy-Aware Per-
formance Simulation Toolkit

Figure 1 shows the high-level block diagram of Pow-
erTimer, our energy-model-enabled performance simu-

lator. The basic methodology is similar to earlier mod-
els, like Wattch [1].

The energy models are derived from circuit-level
power simulation data, collected on a detailed, macro-
by-macro basis. These models are controlled by two
sets of parameters: (a) technology/circuit parameters,
which allow appropriate scaling from one CMOS gen-
eration to the next; and (b) microarchitecture-level pa-
rameters: various queue/buffer sizes, pipe latencies and
bandwidth values. These latter parameters also drive
the base performance simulator in the usual manner.
The energy models can be used in two different modes.
First, the performance simulator can be used stan-
dalone, to produce detailed CPI and resource utiliza-
tion statistics. These can then be processed through
the energy models to generate average, unit-wise power
numbers. Second, the energy models can be embedded
in the actual simulation code, so that they are “looked
up” as needed on a cycle-by-cycle basis. This mode
allows one to view the cycle-by-cycle energy character-
istics in more detail; but the average statistics at the
end of the run would obviously be the same as in the
first mode.

2.1 Energy Model Construction

In the Wattch simulator [1], and in other similar
toolkits [12, 13], analytical capacitance models were
developed for various high-level block-types, such as
RAMs, CAMs and other array structures, latches,
buses, caches, and ALUs. While some of the charac-
terizing parameters are gross length and width values
which a logic-level designer or microarchitect could re-
late to, others were at a much lower (circuit or physical
design) level. In our current (PowerPC-specific) work,
the goal is to form unit-specific energy models con-
trolled by parameters familiar to a high-level designer
or microarchitect. Thus, for example, once a charac-
terizing equation has been formed for one of the issue
queues, one is able to play “what-if” games in Power-
Timer, by simply varying the queue size as normally
done in microarchitectural performance simulation.
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Figure 2. PowerTimer Energy Models.



Figure 2 below depicts the derivation of the energy
models in more detail. The energy models are based
on circuit-level power analysis that has been performed
on structures in a current, high performance PowerPC
processor. The power analysis has been performed at
the macro level; generally, multiple macros combine to
form one micro-architectural level structure which we
will call a sub-unit. For example, the fixed-point issue
queue (one sub-unit) might contain separate macros for
storage memory, comparison logic, and control. Power
analysis has been performed on each macro to deter-
mine the macro’s power as a function of the input
switching factor. The hold power, or power when no
switching is occurring, is also generated. These two
pieces of data allow us to form simple linear equations
for each macro’s power. The energy model for a sub-
unit is determined by summing the linear equations
for each macro within that sub-unit. We have gener-
ated these power models for all microarchitecture-level
structures (sub-units) modeled in our research simula-
tor [8, 9]. In addition to the models that specify the
power characteristics for particular sub-units (such as
the fixed-point issue queue), we can derive power mod-
els for more generalized structures; for example, a gen-
eralized issue queue model. These generalized models
are useful for estimating the power cost of additions to
the baseline microarchitecture. The generalized model
is derived by analyzing the power characteristics of
structures within the baseline microarchitecture. For
example, the fixed-point, floating-point, logical-op, and
branch-op queues have very similar functionality and
power characteristics and the energy analysis for these
queue structures has been used to derive a generalized
issue-queue power model based on parameters such as
the number of entries, storage bits, and comparison
operations.

Since we are interested in determining power-
performance tradeoff analysis for future microarchitec-
tures within a particular product family, we must de-
termine a method of scaling the power of microarchitec-
tural structures as the size of these sub-units increases.
The scaling factor depends on the particular structure;
for example, the power of a cache array will scale dif-
ferently than that of an issue queue. In addition, as
resources increase in size, they necessarily cause other
structures to become larger. For example, as the num-
ber of rename registers increases, the number of tag bits
within each entry of the issue queues increases. Gener-
ally, as we increase the number of entries in a structure,
there will be a proportional increase in the power. For
this reason, we use linear scaling as a basis for many of
the structures that we consider. In addition, we have
performed detailed analysis on the scaling of queue and

mapper structures. For these structures, we have de-
termined the average power per storage bit and per
comparison operation. As the queues and mappers in-
crease in size, we compute the number of storage bits
and comparisons that occur for the larger structures.
We also use previously published work on power scaling
within cache arrays which we discuss in Section 3.3.

2.2 Web-Based Interface and Power-Performance
Metrics

In order to thoroughly explore the modeled design
space, we selected 19 workloads (8 SPECint95, 10
SPECp95, and TPC-C) each of which was evaluated
for over 75 hardware configurations. Analyzing this
amount of data is difficult and a GUI makes the results
of our analysis useful to our colleagues within IBM Re-
search, as well as designers within the IBM Product
groups. We developed a web-based back-end analysis
tool which allows the user to select the benchmarks
of interest and the microarchitectural parameter(s) to
vary as well as the technology parameters such as fre-
quency, voltage, and feature size.

The tool also allows the selection of various power-
savings features such as the style of conditional clock-
ing within the microarchitecture. Finally, the tool pro-
vides the choice of five power-performance metrics: Av-
erage CPI, average power dissipation, CPI x power,
(CPI? % power, and (CPI)® x power. The latter
three metrics correspond to energy, energy-delay prod-
uct [5, 2], and energy * delay®. Since power is pro-
portional to the square of supply voltage (Vdd) mul-
tiplied by clock frequency, and clock frequency is pro-
portional to Vdd, power is proportional to the cube
of Vdd. Thus delay cubed multiplied by power pro-
vides a voltage-invariant power-performance character-
ization metric which we feel is most appropriate for
server-class microprocessors. In the remainder of the
paper we will present our power-performance results as
(CPI)? x power.

3 Power-Performance Evaluation Ex-
amples

In this section, we first provide a high-level descrip-
tion of the processor model assumed in our simulation
toolkit. Then, we present some example experimen-
tal results with analysis and discussion. The results
were obtained using our current version of PowerTimer,
which works with pre-silicon performance models used
in defining future PowerPC structures.



3.1 Base Microarchitecture Model
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Figure 3. Processor Organization Modeled by
the Turandot Simulator.

For the purposes of this paper, we assume a
generic, parameterized, out-of-order superscalar pro-
cessor model adopted in a research simulator called
Turandot [8, 9]. The overall pipeline structure (as
reported in [8]), is repeated here in Figure 3. The
modeled microarchitecture is similar in complexity to
a current generation microprocessor (e.g. [4, 7] ). As
described in [8], this research simulator was calibrated
against a pre-RTL, detailed, latch-accurate processor
model (referred to as R-model in [8]). The R-model is a
custom simulator, written in C++ (with mixed VHDL
“interconnect code”). There is a 1-to-1 correspondence
of signal names between the R-model and the actual
VHDL (RTL) model. However, the R-model is about
two orders of magnitude faster than the RTL model
and is considerably more flexible. Many microarchitec-
ture parameters can be varied, albeit within restricted
ranges. Turandot, on the other hand is a classical
trace/execution-driven simulator, written in C, which
is 1-2 orders of magnitude faster than R-model. It sup-
ports a much greater number and range of parameter
values.

In this paper, we report power-performance results
using the same version of R-model that was used in [8].
That is, we first used our energy models in conjunction
with the R-model: this ensured accurate measurement
of the resource utilization statistics within the machine.

To circumvent the simulator speed limitations, we used
a parallel workstation cluster; also, we post-processed
the performance simulation output and fed the aver-
age resource utilization statistics to the energy mod-
els to get the average power numbers. This is faster
than the alternative of looking up the energy mod-
els on every cycle. While it would have been possible
to get instantaneous, cycle-by-cycle energy consump-
tion profiles through such a method, it would not have
changed the average power numbers for entire program
runs. Having used the detailed, latch-accurate refer-
ence model for our initial energy characterization, we
were able to look at the unit- and queue-level power
numbers in detail in order to understand, test and re-
fine the various energy models. Currently, we have
reverted to using an energy-model-enabled Turandot
model, for fast CPI vs. Power tradeoff studies with
full benchmark traces. Turandot allows us to experi-
ment with a wider range and combination of machine
parameters. In future publications and talks based on
PowerTimer, we plan to report these results in detail.

3.2 Workloads Used in the Study

In this paper, we report experimental results based
on the SPEC95 benchmark suite and a commercial
TPC-C trace. All workload traces are PowerP C-based.
The SPEC95 traces were generated using the tracing
facility called Arie within the MET toolkit [9]. The
particular SPEC trace repository used in this study
was created by using the full reference input set. How-
ever, sampling was used to reduce the total trace length
to 100 million instructions per benchmark program. A
systematic validation study to compare the sampled
traces against the full traces was done, in finalizing the
choice of exact sampling parameters. The TPC-C trace
used is a contiguous (i.e. unsampled) trace collected
and validated by the processor performance team at
IBM Austin. It is about 180 million instructions long.

In the following three sections we present examples
of the use of the PowerTimer simulation infrastruc-
ture. The results show the average CPI and average
(CPI)? x power for the traces described above. Each
SPEC data point was obtained by averaging across the
benchmark suite. Note, however, that we have ex-
cluded apsi from the SPECfp results due to a problem
with these simulation runs.

3.3 Data Cache Size and the Effect of Scaling
Techniques

In this section we evaluate the relationship between
performance, power, and L1 data cache size. We vary
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Figure 4. Variation of Performance and Power-Performance with Cache Size.

the cache size by increasing the number of cache lines
per set while leaving the linesize and cache associa-
tivity constant. Figure 4a and 4b show the results of
increasing the cache size from the baseline architecture
(points labeled 1x on the x-axes). Figure 4a illustrates
the relation between the cache size in the first-level
data cache and the relative CPI for the workloads that
we studied. The CPI value for each cache size is com-
puted as a ratio, relative to the base 1x CPI for that
workload. Figure 4b shows the relation when we con-
sider the metric (CPI)? * power. From Figure 4a, it
is clear that the small CPI benefits of increasing the
data cache are outweighed by the increases in power
dissipation due to larger caches.

In Figure 4b, we show the results with two differ-
ent scaling techniques. The first technique assumes
that power scales linearly with the cache size. As the
number of lines is doubled, the power of the cache is
also doubled. The second scaling technique is based
on data from [6] which studied energy optimizations
within multi-level cache architectures. In [6], data is
presented for cache power dissipation for conventional
caches with sizes ranging from 1KB to 64KB.

In the second scaling technique, which we call “non-
lin” in Figure 4b, the cache power is scaled with the
ratios presented in [6]. The increase in cache power
by doubling cache size using this technique is roughly
1.46x, as opposed to the 2x with the simple linear scal-
ing method. Obviously the choice of scaling technique
can greatly impact the results. It is clear, however, that
with either scaling choice, conventional performance-
focused cache organizations will not scale in a power-
efficient manner. (Note that the curves shown in Figure
4b assume a fixed circuit/technology generation; they

are intended to show the effect of adding more cache
to the current design.)

3.4 Number of Completion Buffers

In the target microarchitecture, the number of com-
pletion buffers determines the total number of instruc-
tions that can be active within the machine. The
completion table is very similar to a re-order buffer
in that it tracks instructions as they dispatch, issue,
execute, wait for exceptions, and complete. Figures
5a and 5b show the effects of varying the number
of completion buffers on performance and the power-
performance metric. From Figure 5a, it is evident that
little additional performance is gained by increasing the
number of buffers past the current design point (1x).
When considering (C'PI)? x power in Figure 5b, we see
that power-efficiency is slightly degraded by increasing
the number of entries due to a roughly 3% increase in
the core’s power dissipation.

3.5 Ganged Sizing

Out-of-order superscalar processors of the class con-
sidered, rely on queues and buffers to efficiently decou-
ple instruction execution to increase performance. The
depth of the pipeline and the sizes of the resources re-
quired to support decoupled execution (queues, rename
registers, completion table) combine to determine the
performance of the machine. Because of this decou-
pled execution style, increasing the size of one resource
without regard to the other resources in the machine
may quickly create a performance bottleneck. Thus, in
this section we consider the effects of varying multiple
parameters rather than just a single parameter.
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Figure 6a and 6b show the effects of varying all of the
resource sizes within the processor core. This includes
issue queues, rename registers, branch predictor tables,
memory disambiguation hardware, and the completion
table. For the buffers and queues, the number of en-
tries in each resource is scaled by the values specified
in the charts (0.6x, 0.8x, 1.2x, and 1.4x). For the in-
struction cache, data cache, and branch prediction ta-
bles, the size of the structures are doubled or halved
at each data point. From Figure 6a, we can see that
performance is increased by 5.5% for SPECfp, 9.6%
for SPECint, and 11.2% for TPC-C as the size of the
resources within the core is increased by 40% (except
for the caches which are 4x larger). The configuration
had a power dissipation of 52%-55% higher than the
baseline core. Figure 6b, shows that the most power

efficient core microarchitecture is somewhere between
the 1x and 1.2x cores.

4 Conclusion

We have described PowerTimer: a research power-
performance simulator designed to help with the defi-
nition and evaluation of follow-on products within the
high-end PowerPC microprocessor family. Based on
this model, we have evaluated power and performance
tradeoffs using SPEC95 workloads and a TPC-C trace.
We have presented a few selected experimental results
from our analysis repository to illustrate the kinds of
tradeoffs that one may be able to study using this
toolkit. A web-based interface allows users to view spe-
cific power-performance tradeoff curves of their choice.



This allows users to evaluate the worth and wisdom of
making specific microarchitecture-level enhancements
to an existing design point. The tool allows one to
evaluate whether a certain aspect of the design is in-
herently power-efficient or not. For example, in an ini-
tial, voltage-invariant “technology remap” scenario, we
may like to know whether simply increasing the cache
sizes, without perturbing the core engine would buy
us enough performance to counterbalance any power
increase.

PowerTimer allows one to experiment with a large
number of design parameters and there are multi-
ple choices available in terms of selecting a power-
performance efficiency metric. We have presented just
a few examples in this paper. For example, one can
study the effectiveness of various flavors of conditional
clocking to see how the sensitivity curves are affected.
Also, the use of technology scaling parameters, allows
the user to explore the future design space in a realistic
manner.
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