
Power Prediction for Intel XScale r© Processors Using
Performance Monitoring Unit Events

Gilberto Contreras
Electrical Engineering Dept.

Princeton University
Princeton, NJ

gcontrer@princeton.edu

Margaret Martonosi
Electrical Engineering Dept.

Princeton University
Princeton, NJ

mrm@princeton.edu

ABSTRACT
This paper demonstrates a first-order, linear power esti-
mation model that uses performance counters to estimate
run-time CPU and memory power consumption of the Intel
PXA255 processor. Our model uses a set of power weights
that map hardware performance counter values to processor
and memory power consumption. Power weights are de-
rived offline once per processor voltage and frequency con-
figuration using parameter estimation techniques. They can
be applied in a dynamic voltage/frequency scaling environ-
ment by setting six descriptive parameters. We have tested
our model using a wide selection of benchmarks including
SPEC2000, Java CDC and Java CLDC programming envi-
ronments. The accuracy is quite good; average estimated
power consumption is within 4% of the measured average
CPU power consumption. We believe such power estima-
tion schemes can serve as a foundation for intelligent, power-
aware embedded systems that dynamically adapt to the de-
vice’s power consumption.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: processors — Run-time environments;
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms: Measurements, Performance

Keywords: XScale, Hardware Performance Counters, Power
Estimation, Power Modeling

1. INTRODUCTION
Embedded devices have sprung up in virtually all facets of

modern life. With different performance and power require-
ments than a typical desktop, most portable embedded sys-
tems require a very constrained energy profile and efficient
use of their energy source.

Efficiency in energy consumption not only comes from
the hardware, but also from the software. Software run-
ning on embedded devices needs to be designed with power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

consumption in mind since the processor’s power consump-
tion is greatly dependent on its executing workload. Even
within a given workload, program performance (and con-
sequently, power consumption) can vary widely, exhibiting
“phases” that serve as a signature of the executing workload
[1][2][3][4]. Much like performance variations can guide dy-
namic adaptation [5], knowledge of power behavior at run-
time can also be used to change the performance charac-
teristics of software. A fundamental requirement for such
adaptation is acquiring fast, low-overhead power consump-
tion estimates of the host system. This paper addresses this
requirement.

We present a first-order, linear power estimation model
that uses hardware performance counters (HPCs) to esti-
mate run-time CPU and memory power consumption of the
Intel PXA255 processor [6]. Our model is designed to take
advantage of existing performance monitoring hardware and
dominant performance events to allow running applications
to estimate their power consumption on-the-fly. Our model
links performance an power consumption through a set of
power weights which are derived only once per processor con-
figuration (voltage and frequency) using offline parameter
estimation techniques. We demonstrate how our power esti-
mation model, using a single set of power weights for a given
processor configuration, can be used to estimate power con-
sumption of benchmarks that span multiple programming
domains including Java CDC, Java CLDC and SPEC2000.

This paper makes the following important contributions:

• Linear parameterization of power consumption based
on performance events, with an average estimation er-
ror of only 4% across tested benchmarks.

• Parameterization of power at various voltage/frequency
settings for the Intel PXA255 processor.

• Lightweight implementation (negligible overhead when
sampling counters every 10ms) of our model in C that
allows quick estimation of CPU and external memory
power at three different core frequencies.

The rest of the paper is organized as follows: We begin in
Section 2 by describing related work and highlighting differ-
ences between our approach and previous research. Section
3 describes how we link the PXA255’s performance metrics
with CPU and memory power consumption and the mathe-
matical details of our proposed linear power model. Section
4 reviews our methodology for reading HPCs and obtaining

live power measurements. Section 5 describes power estima-
tion results for SPEC2000 and Java benchmarks. Section 6
describes some of the limitations to our approach and how
it affects power estimation. We present our conclusions in
Section 7.

2. RELATED WORK
Bellosa was one of the first proponents of using hardware

performance counters as links to processor power consump-
tion. In [10], Bellosa demonstrates how different perfor-
mance events such as memory references, floating point op-
erations and L2 cache references exhibit high correlation to
processor power consumption. Bellosa first proposed using
HPCs to estimate thread power requirements as part of an
energy-aware OS scheduler.

Joseph et al. later proposed using HPCs as the basis
for entire processor and subcomponent power estimation
[11]. This work uses performance counter values as prox-
ies of functional unit usage, which they use in analytical
capacitance-based power models to construct a processor
power consumption figure. The approach followed by Joseph
et al. uses knowledge of circuit-level implementation details
(for capacitance models) for increased accuracy, but such
technological details might not be readily available for the
target processor.

Isci et al. [3] took an alternative approach when esti-
mating the power consumption of a Pentium 4 processor.
Isci avoids using circuit-level information by isolating pro-
cessor functional unit power consumption using a set of spe-
cialized micro-benchmarks, access heuristics and live power
measurements. Such power decomposition is possible since
the Pentium 4 processor has 18 performance counters that
can be programmed to monitor up to 59 event classes [12],
but it is not applicable for processors like the Intel PXA255
with a small number of available performance events.

Researchers have also investigated ways of estimating power
consumption of other parts of the systems using performance
counters. Such is the case of [13], where a power estima-
tion methodology for the memory sub-system is examined.
In [13] performance counters of the UltraSPARC CPU are
used to estimate energy consumption of caches, the memory
bus and memory pads. In [14], Li exploits high-correlation
between IPC and power consumption to estimate run-time
power consumption of OS routines using a power/IPC re-
gression model.

There is no doubt hardware performance counters offer
great insight into processor power consumption. While this
work shares the notion of leveraging existing processor hard-
ware for power estimation, there are three fundamental as-
pects that differentiate our work from previous research:

1. We present a power estimation model for the Intel
PXA255 processor, a processor with more stringent
power requirements and fewer available performance
events compared to mid and high-end processors.

2. We extend previous work by constructing a parame-
terized linear model that lends itself well to different
voltage/frequency core configurations.

3. Rather than using processor-specific technology and
layout specifications for power modeling, we use pa-
rameter estimation to derive a set of power weights
solely based on live power measurements and HPC

readings, making our methodology extendable for any
type of processor with HPCs.

3. POWER ESTIMATION USING HPCS

3.1 CPU Performance Event Selection
The 15 performance events monitored by the Intel PXA255

Processor are designed with CPU performance exploration
in mind. Consequently, not all of the events are relevant
to power estimation. For our work we have selected perfor-
mance events with high correlation to power consumption,
while avoiding redundancy. Performance events with high
correlation to power consumption are more likely to encap-
sulate power-hungry functional units. Selecting orthogonal
events aids in reducing the number of performance events
that we need to monitor.

We use five performance events in our linear power model:
Instructions Executed: When comparing performance
metrics and power consumption, the metric Instructions Per
Cycle (IPC) always shows a large positive correlation with
power consumption. For example, REX — a Java CLDC
benchmark — shows a correlation factor of 0.98. This high
correlation between IPC and actual power consumption is
expected since more functional units are “on” when execut-
ing an instruction as opposed when the processor is stalled
waiting for some resource to become available.

Data Dependencies: Another performance event with
strong (negative) correlation with power consumption is Data
Dependencies. For example, (DB — a CDC Java benchmark
— exhibits a correlation factor of -0.85. The number of data
dependency cycles provides a reasonable estimate of the to-
tal number of cycles that the processor is stalled resolving
data dependencies. This is true for relatively small appli-
cations since most of the non-IPC cycles will be created by
data dependencies.

Instruction Cache Miss: For applications with a large
instruction footprint, a significant percentage of stall cycles
might be attributed to instruction cache misses. For ex-
ample, over one quarter of VORTEXs cycles go to instruction
fetch stalls during the first 50 seconds of execution. The
event data dependencies does not account for this behavior.
In this case, Instruction cache miss count can be used to
cover fetch unit stall cycles.

TLB Misses: Stall cycles created by instruction and data
TLB misses are captured by data stall cycles and fetch stall
cycles. TLB misses by themselves, however, have further
impact on power consumption since the processor needs to
handle memory page table walks. For this reason, we take
instruction and data TLB misses into account.

Assuming a linear correlation between performance counter
values and power consumption, we can use the following ex-
pression for predicting CPU power consumption:

α1(IFetchmiss) + α2(DataDep) +

Powercpu = α3(DataTLBmiss) + α4(InstTLBmiss) +

α5(InstExec) + Kcpu (1)

Here, α1, α2, α3, α4 and α5 are linear parameters or power
weights and Kcpu is a constant representing idle processor
power consumption. In reality, some non-linear relationships
do exist. This work shows, however, the excellent accuracy
of a fully-linear model.

3.2 Main Memory Power Estimation
In addition to CPU power, we also want to track power

consumption of external RAM chips for a more comprehen-
sive view of system power requirements.

Detailed power estimation of external memory would re-
quire knowledge of SDRAM states and row/column pre-
charge characteristics—events that are not tracked with cur-
rent CPU performance events. It is possible, however, to es-
timate SDRAM power consumption by attributing a power
cost to every type of SDRAM chip access [9]. It is then a
matter of tracking performance events that monitor external
memory accesses to estimate SDRAM power consumption.
Unfortunately, the Intel XScale microarchitecture revision
found in the PXA255 processor does not include any perfor-
mance event that explicitly accounts for external SDRAM
memory accesses. This makes main memory power esti-
mation more difficult than CPU power estimation. There
are, however, some performance events that indicate how
memory-bound an application is: Instruction Cache Miss,
Data Cache Miss and Number of Data Dependencies.

The event Data Cache Misses is not a faithful measure of
external memory data accesses since memory requests can
hit coalescing data buffers that sit between data cache and
external memory. The performance event Instruction Cache
miss, however, generally is a good indicator of memory ref-
erences due to instruction cache misses. This is explained
by noting that the PXA255 processor is a single-issue core,
making it necessary to stall until the requested instruction
cache line arrives from memory. Since instructions tend to
exhibit high spatial locality, this creates a fairly linear rela-
tion between instruction cache misses and memory latency
(about 120 cycles per instruction cache miss at 400Mhz).
Thus, the event Fetch Unit Stall Cycles is nearly a linear
scaling of Instruction Cache Miss.

As mentioned previously, Data Dependencies is a perfor-
mance indicator of the number of cycles the core has to wait
for memory dependencies to resolve. Thus, based on the
discussion above and with the idea of re-using performance
events covered by CPU power estimation, we parameterized
memory power consumption using two performance events:
Instruction fetch miss and data dependencies.

Powermem = β1(IFetchmiss) + β2(DataDep)+ Kmem (2)

3.3 Parameter Estimation
Our next objective is to derive a set of power weights that

remain constant under a given CPU performance configura-
tion (frequency and voltage) and that can be used to pre-
dict power consumption of a variety of benchmarks and ap-
plications running on the PXA255 processor. We achieved
this by first deriving power weights for individual bench-
marks with the aid of multidimensional parameter estima-
tion. The initial set of weights is then compared with the
natural performance characteristics of the benchmark. In
other words, power weights that correspond to non-existent
or insignificant performance events are zeroed. Once this has
been done for a wide selection of benchmarks, corresponding
power weights are averaged and adjusted to minimize power
estimation errors.

3.3.1 Mathematical Details
A linear estimation of the physical reading ηn based on a

linear “weighting” of m parameters βn0, βn1, βn2, ..., βnm is
given by:

ηn = X0βn0 + X1βn1 + X2βn1 + ... + Xmβnm (3)

Which can be written in matrix form:

η = Xβ (4)

Using linear algebra, one can derive the expression for
minimizing the distance between estimation and actual read-
ing. Using an Ordinary Least Squares Estimator (OLS), the
expression to minimize is

SLS = (Y − Xβ)T(Y −Xβ) (5)

where β is a 6 × 1 column vector containing the 5 un-
known power weights plus a constant, X is a n × 6 matrix
comprised of performance readings and Y is an n×1 matrix
containing the actual power measurements. Minimizing the
above equation yields:

bLS = (XTX)−1XTY (6)

Here, bLS is the set of unique power weights that min-
imize the least squares error for Equation 3. Matrix Y is
formed by sampling power consumption at 100 samples per
second or one sample point every 10ms. To form Matrix
X, at least three performance sampling runs are needed be-
cause of the limited number of performance counters (2 con-
figurable counters plus one clock counter) available to the
PXA255 Processor. Multiple runs may introduce the pos-
sibility of time misalignment between samples due to slight
sampling variations. This problem was mitigated by intro-
ducing a common performance event for each sampling run
as described in Section 4.3.

3.4 Parameter Frequency Dependence
Power estimation at different voltage/frequency points is

possible by changing the model parameter power weights.
This is true since the above procedure will yield a set of
power weights that correspond to the particular CPU perfor-
mance configuration (core frequency and voltage) for which
parameters were obtained. Power weights at other perfor-
mance configurations can then be found by repeating pa-
rameter estimation at other processor frequency and voltage
settings.

Table 1 shows parameters values for 3 different voltage
and frequency configurations of the Intel XScale processor:
200Mhz core at 1.0V, 300Mhz core at 1.1V and 400Mhz core
at 1.3V. Parameters displayed in Table 1 assume a PXBus
clock frequency and memory clock frequency of 100Mhz.
This table can be easily implemented in software or hard-
ware to allow running applications to estimate current pro-
cessor power consumption in an environment suitable for
dynamic voltage and frequency scaling (DVFS).

4. EXPERIMENTAL METHODOLOGY
Our technique uses Equation 1 and 2 to estimate power

consumption of the CPU and memory subsystem, respec-
tively. We now describe in detail how performance statistics
are collected and live power measurements taken.

4.1 Live Power Measurements
Our hardware testing board consists of the Intel DBPXA

255 Internet Client Development Board [15] running the
Linux OS with patched kernel 2.4.19.rmk7-pxa1. The DBPX-
A255 has two sets of jumpers that facilitate voltage and
current measurements of hardware. The first set allows the
user to tap into the main power supply of the processor.

Parameter Core Voltage/frequency
1.0V 1.1V 1.3V

200Mhz 300Mhz 400Mhz
α1 1.12 × 10−6 1.62 × 10−6 2.30 × 10−6

α2 1.11 × 10−8 1.50 × 10−8 2.53 × 10−8

α3 2.37 × 10−8 2.42 × 10−7 1.34 × 10−5

α4 4.78 × 10−7 8.98 × 10−7 2.11 × 10−6

α5 3.83 × 10−8 5.38 × 10−8 8.17 × 10−8

β1 2.21 × 10−6 1.72 × 10−6 2.14 × 10−6

β2 2.19 × 10−8 1.53 × 10−8 1.33 × 10−8

Kcpu 0.08 0.115 0.165
Kmem 0.055 0.055 0.055

Table 1: Power weight parameters used for CPU and
memory power consumption estimation at different
voltage/frequency CPU configurations.

The second set exposes the CPU’s memory voltage supply
pins. Thus, these two sets of jumpers allow us to separately
measure CPU and memory power.

We used the LeCroy WaveRunner 6030, a quad-channel
2.6G samples/sec oscilloscope for all of our live power mea-
surements. The oscilloscope was triggered into sampling
mode by means of a general purpose pin on the processor.
A low-to-high logic transition on this general purpose pin
initiated sampling of voltage and current consumption. All
unused processor units such as the LCD driver, USB unit
and the AC97 unit were disabled during live power measure-
ments to more faithfully capture power consumption of the
CPU core.

4.2 Accessing HPCs
HPCs are read at the beginning of the main timer inter-

rupt routine of our OS, which executes every 10ms in our
testing environment. Sampling code adds only 2% overhead
to the OS timer-handler. This overhead is negligible within
our sampling window. Counter values are kept in a mem-
ory buffer capable of holding up to 6000 samples, which are
then saved to a file at the end of the benchmark execu-
tion. Since counter values can only be read by privileged
instructions, we created an Application Programming Inter-
face (API) comprised of various systems calls which greatly
facilitated configuring, reading and writing to the perfor-
mance monitoring unit from within user space.

To investigate the effects of our added code on power
consumption, we performed power measurements of various
benchmarks with and without interrupt modifications. We
found no significant differences between the two measure-
ments (less than 1% average power consumption difference).

4.3 Run-time Power Estimation
We implemented the linear power models described by

Equations 1 and 2, along with our set of final power weights,
in a small C program. This C program takes a benchmark
application as a parameter and spawns a new thread for the
benchmark in order to sample HPCs at regular intervals.

The PXA255 processor can only sample two performance
events at any given time. Since Equation 1 requires five per-
formance events for a complete power estimation, multiple
runs of the code are needed. For data alignment purposes,
however, we run each benchmark four times: On each bench-

0%

20%

40%

60%

80%

100%

VORTEX GAP BZIP2 DB COMPRESS REX CRYPTO

Benchmark

%
 P

o
w

er
 in

fl
u

en
ce

InstMiss.
TLBMiss
IPC
DataDep
Const.

Figure 2: Power breakdown for tested benchmarks.

mark run, a pair of performance events is sampled every
10ms, forming a two-column vector of performance read-
ings (Ei, Ej). Each performance pair (Ei, Ej) has a per-
formance event Ec that is common to all pairs. To align a
pair of performance vectors (E1, Ec1) and (E2, Ec2), we shift
vector (E2, Ec2) until the correlation factor between events
Ec1 and Ec2 (the common events) is maximum (at least
0.9 correlation factor). At this point, the two vectors are
aligned. We selected the performance event Instructions Ex-
ecuted as the common performance event, forming the four
performance pairs (EImiss, EInstEx), (EDataDep, EInstEx),
(EDTLB, EInstEx) and (EITLB , EInstEx).

5. ESTIMATION RESULTS

5.1 CPU Power Prediction
We tested our linear power estimation model to the test

using SPEC2000 (VORTEX, GAP and BZIP2), Java CDC (DB
and COMPRESS) [7] and Java CLDC (REX [17] and CRYPTO [17])
benchmark. We selected C, Java CLDC and CDC since they
represent the common programming domains found in mod-
ern embedded systems [8]. For each tested benchmark, we
took 50 seconds worth of performance points (5000 samples)
or until completion of the benchmark, whichever occurred
first.

Figure 1 compares measured and estimated power con-
sumption for DB, VORTEX and REX. From these graphs it is
easy to see that our proposed HPC-based power estimation
model is able to track CPU power consumption fairly well
across time. Average error for these benchmarks is 2%, 1%
and 6.5%, respectively. Benchmarks that better expose their
characteristics through HPCs tend to have lower estimation
errors. We tested our model using other benchmarks from
MiBench [16] with very similar results. Average error for all
our tested benchmarks is within 4%. Table 2 summarizes
the results of our CPU power estimation approach.

The nature of our power model allows decomposition of
power consumption among the various measured performance
events plus a constant idle CPU power consumption. This
is done in Figure 2, where we have decomposed average es-
timated power consumption of our benchmarks into 5 power
contributors. Idle power consumption is responsible for about
40% of the total average estimated power across our tested
set of benchmarks. Data Dependencies contribute a signif-

Measured Estimated Error

D
B

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1 unit=10ms]

Po
we

r (
W

)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1 unit=10ms]

Po
we

r (
W

)

0 500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

10

20

30

%
 E

rro
r

Time (1 unit=10ms)

V
O

R
T

E
X

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1 unit=10ms]

Po
we

r (
W

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1 unit=10ms]

Po
we

r (
W

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−30

−20

−10

0

10

20

30

%
 E

rro
r

Time (1 unit=10ms)

R
E

X

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1 unit=10ms]

Po
we

r (
W

)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1 unit=10ms]

Po
we

r (
W

)

0 50 100 150 200 250 300
−30

−20

−10

0

10

20

30

%
 E

rro
r

Time (1 unit=10ms)

Figure 1: Comparison between measured (left) and estimated (center) power consumption for three bench-
marks: DB, VORTEX and REX. Slight misalignment between performance counter readings causes power estima-
tion spikes as seen in DB. The rightmost column shows percent error between estimated and measured power
consumption.

icant percentage of power consumption for SPEC2000 and
Java CDC benchmarks, which is not the case for Java CLDC
applications. Java CLDC applications are small enough for
their data set to fit in the data caches, which explains the
small quantity of data dependency occurrences. The next
big event contributor is Instructions Executed, responsible
for an average of 24% of the power for SPEC2000 bench-
marks, 28% for Java CDC and 54% for Java CLDC. TLB
miss power consumption occurs in almost all of our tested
benchmarks. Our measurements show that SPEC2000 and
Java CDC benchmarks suffer mostly from data TLB misses,
which account for about 5% of the average power consump-
tions for this set of benchmarks. REX, on the other hand,
has no power consumption due to data TLB misses, but
instruction TLB misses account for 5% of the total aver-
age estimated power. Power usage due to instruction fetch
misses seem to be visible only for VORTEX and REX, with a
5% and 6% power contribution, respectively.

5.2 Memory Power Prediction
Power estimation for external memory was done following

the same parameter estimation procedure outlined in Sec-
tion 3.3. We computed power parameters α1 and α2 from
Equation 2 under the same performance points described
therein. Parameter values are shown in Table 1. Bottom
portion of Table 2 shows our memory power estimation re-
sults.

Power estimation for external memory using performance
events is not as precise as power estimation for the CPU
(CRYPTO reports up to 70% average error). The foremost

reason for this discrepancy is the lack of performance events
that track memory transactions executed by the memory
management unit. Unlike CPU power estimation parame-
ters, SDRAM power weights increase in magnitude at lower
CPU performance points. This is because data dependen-
cies are ”more costly” at lower performance points. That is,
the processor core stalls for more cycles at 400Mhz than at
200Mhz given approximately the same SDRAM power con-
sumption and same time interval. Power consumption of the
SDRAM chips does not vary as significantly as CPU power
consumption between different performance points. Since
the SDRAM voltage and frequency are maintained at 3.3V
and 100Mhz respectively, power variations within perfor-
mance points are primarily caused by variations in memory
access rates.

6. DISCUSSION
This paper has shown how performance counters can be

used to recreate faithful depiction of CPU and memory power
consumption. There are, nevertheless, steps one could take
to further improve this approach.

Dynamic power consumption is one of the major power
contributors of the PXA255 processor. This paper has in-
troduced a linear power consumption model that depends
on the number of times certain performance events have
occurred in the processors core, which assumes, via power
weights, a constant activity factor for covered functional
units. Variations in dynamic power consumption can poten-
tially be created by sharp variations in data activity factors
that are characteristic of certain data sets or instruction se-

Benchmark 200Mhz, 1.0V 300Mhz, 1.1V 400Mhz, 1.3V
Measured Estimated Measured Estimated Measured Estimated

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev
DB 0.118 0.004 0.118 0.004 0.194 0.007 0.193 0.008 0.317 0.013 0.313 0.014

COMPRESS 0.114 0.006 0.116 0.006 0.184 0.012 0.188 0.013 0.309 0.018 0.307 0.020
GAP 0.109 0.006 0.113 0.005 0.168 0.010 0.174 0.009 0.303 0.018 0.291 0.018

VORTEX 0.109 0.002 0.111 0.002 0.171 0.004 0.173 0.005 0.280 0.006 0.282 0.008
BZIP2 0.117 0.012 0.126 0.018 0.189 0.023 0.193 0.036 0.313 0.041 0.287 0.072
REX 0.119 0.008 0.121 0.008 0.190 0.015 0.200 0.023 0.312 0.028 0.320 0.041

CRYPTO 0.122 0.004 0.138 0.007 0.212 0.007 0.242 0.018 0.357 0.014 0.396 0.033
DB 0.074 0.008 0.076 0.006 0.071 0.008 0.073 0.007 0.087 0.008 0.087 0.007

COMPRESS 0.082 0.009 0.081 0.008 0.088 0.010 0.084 .009 0.093 0.009 0.091 0.010
GAP 0.074 0.011 0.078 0.006 0.072 0.011 0.080 0.007 0.076 0.011 0.086 0.007

VORTEX 0.063 0.010 0.060 0.008 0.093 0.010 0.084 0.004 0.086 0.007 0.092 0.004
BZIP2 0.075 0.018 0.075 0.008 0.080 0.018 0.078 0.009 0.077 0.018 0.083 0.011
REX 0.058 0.019 0.070 0.009 0.058 0.022 0.071 0.009 0.063 0.023 0.077 0.012

CRYPTO 0.044 0.010 0.063 0.005 0.037 .009 0.063 0.004 0.038 0.010 0.065 0.005

Table 2: Comparison between measured average and estimated average power consumption for CPU (top)
and memory (bottom) for three different frequency settings of the Intel PXA255 processor. Units are watts.

quences. The PXA255 processor’s power consumption has
been shown to be heavily dependent on activity factors when
extreme data sets are used to force worse-case activity fac-
tors within the microprocessor [17]. Worse-case activity fac-
tors, however, rarely occur in real-life applications.

The Intel PXA255 Processor is a single-issue machine.
Its relatively simple architecture combined with aggressive
clock gating allows one unit’s power consumption to be quite
independent from other components. Furthermore, since
performance events and functional unit usage have a one-
to-one relation, tracking performance events is an indirect
way of measuring functional unit usage. This is true when
we know the pipeline structure of the processor and the type
of instruction that is being executed. The pipeline organiza-
tion of the PXA255 processor is readily available. However,
the type of instruction being executed at any given cycle
is much harder to know during runtime, particularly since
the PXA255 processor has no performance event that helps
us distinguish between an “ADD” and “MUL” instruction,
for example. This inability to distinguish the precise instruc-
tion being executed as well as its causing effects (cache miss,
branch miss, etc) makes it difficult to decompose power con-
sumption to fine-grained architectural functional units. Our
approach allows power estimation by assigning “power cost”
to the various available performance events rather than to
the various microarchitectural functional units. This ap-
proach thus places power weights on groups of functional
units rather than individual ones, making power estimation
on the PXA255 possible.

In spite of the limitations mentioned above, our power
prediction model provides a reasonably good estimate of the
real CPU power consumption as they capture common per-
formance cases. We feel this model can be used by software
designers to get a quick power estimate of applications with-
out the need of special hardware for power measurements.

7. CONCLUSIONS
We have shown how existing hardware performance coun-

ters in the PXA255 processor can be used to estimate CPU
and memory power consumption in embedded systems. Fur-
thermore, we exploit the Intel PXA255 processor’s support

for different core voltage/frequency configuration to con-
struct a parameterized power model that allows us to es-
timate power consumption at various performance points.
We demonstrated how five performance events can be used
to estimate power consumption within 4% of the average
measured power consumption. Implementation of our pa-
rameterized power models on the Linux OS provided us with
a lightweight power estimation infrastructure, which can be
used to obtain quick and accurate power consumption esti-
mates.

8. REFERENCES
[1] E. Duesterwald, C. Cascaval, S. Dwarkadas, Characterizing and

Predicting Program Behavior and its Variability Proceedings of the 12th
International Conference on Parallel Architectures and Compilation Techniques
(PACT’03) October 2003

[2] P. Nagpurkar and C. Krintz, Visualization and Analysis of Phased
Behavior in Java Programs. ACM International Conference on the Principles
and Practice of Programming in Java (PPPJ) June 2004

[3] C. Isci and M. Martonosi, Runtime Power Monitoring using High-End
Processors: Methodology and Empirical Data, 2003. MICRO’36.

[4] P. F. Sweeney et al., Using Hardware Performance Monitors to
Understand the Behavior of Java Applications. USENIX 3rd Virtual Machine
Research and Technology Symposium (VM’04) May, 2004

[5] A. S. Dhodapkar and J. E. Smith, Managing Multi-Configuration
Hardware via Dynamic Working Set Analysis Proceedings of the 29th annual
International Symposium on Computer Architecture (ISCA’02) May 2002

[6] Intel XScale Microarchitecture for the PXA255 Processor: User’s Manual
Intel Corporation, March 2003. Order No. 278796.

[7] SPEC JVM98 Benchmarks, Standard Performance Evaluation
Corporation. http://www.spec.org/osg/jvm98/.

[8] Ulrik Pagh Schultz et al. Compiling Java for Low-end Embedded Systems.
Language, Compiler and Tool Support for Embedded Systems (LCTES03) June 2003

[9] W. Shiue and C. Chakrabarti, Memory Exploration for Low Power,
Embedded Systems. Proceedings of the 36th ACM/IEEE conference on Design
automation 1999

[10] F. Bellosa, The Benefits of Event-Driven Energy Accounting in
Power-Sensitive Systems Proceedings of the 9th workshop on ACM SIGOPS
European workshop 2002.

[11] R. Joseph and M. Martonosi, Run-time Power Estimation in High
Performance Microprocessors Proceedings of the 2001 international symposium
on Low power electronics and Design (ISLPED’01) 2001.

[12] Intel Corp, Intel Pentium 4 and Intel Xeon Processor Opt. Ref. Man.,
2002. developer.intel.com/design/Pentium4/manuals/248966.htm.

[13] I. Kadayif, T Chinoda, M. Kandemir, N. Vijaykrishnan, M. J. Irwin and
A. Sivasubramaniam, vEC: Virtual Energy Counters. Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering. 2001.

[14] T. Li and L. Kurian John, Run-time Modeling and Estimation of
Operating System Power Consumption. ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems 2003

[15] Intel DBPXA255 Development Platform for the Intel Personal Internet
Client Architecture, Intel Corporation, February 2003. Order No.
278701-001.

[16] M. R. Guthaus et al. MiBench: A free, Commercially Representative
Embedded Benchmark Suite. July 2001. IEEE 4th Annual Workshop on
Workload Characterization.

[17] G. Contreras, M. Martonosi, J. Peng, R. Ju and G. Lueh, XTREM: A
Power Simulator for the Intel XScale Core. The 2004 Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’04) June 2004

