
XTREM: A Power Simulator for the Intel XScale r© Core

Gilberto Contreras, Margaret Martonosi
Department of Electrical Engineering

Princeton University

(gcontrer,mrm)@princeton.edu

Jinzhan Peng, Roy Ju, Guei-Yuan Lueh
Microprocessor Technology Lab

Intel Corp.

(paul.peng,roy.ju,guei-
yuan.lueh)@intel.com

ABSTRACT
Managing power concerns in microprocessors has become a
pressing research problem across the domains of computer
architecture, CAD, and compilers. As a result, several pa-
rameterized cycle-level power simulators have been intro-
duced. While these simulators can be quite useful for mi-
croarchitectural studies, their generality limits how accurate
they can be for any one chip family. Furthermore, their
hardware focus means that they do not explicitly enable
studying the interaction of different software layers, such
as Java applications and their underlying Runtime system
software.

This paper describes and evaluates XTREM, a power sim-
ulation tool tailored for the Intel XScale microarchitecture.
In building XTREM, our goals were to develop a microar-
chitecture simulator that, while still offering size parame-
terizations for cache, TLB, etc., more accurately reflected
a realistic processor pipeline. We present a detailed set of
validations based on multimeter power measurements and
hardware performance counter sampling. Based on these
validations across a wide range of stressmarks, Java bench-
marks, and non-Java benchmarks, XTREM has an average
performance error of only 6.5% and an even smaller average
power error: 4%. The paper goes on to present a selection of
application studies enabled by the simulator. For example,
presenting power behavior vs. time for selected embedded
C and Java CLDC benchmarks, we can make power dis-
tinctions between the two programming domains as well as
distinguishing Java application (JITted code) power from
Java Runtime system power. We also study how the Intel
XScale core’s power consumption varies for different data
activity factors, creating power swings as large as 50mW
for a 200Mhz core. We are planning to release XTREM for
wider use, and feel that it offers a useful step forward for
compiler and embedded software designers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’04, June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006 ...$5.00.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors — Run-
time environments; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems.

General Terms
Measurements, Performance, Experimentation, Languages.

Keywords
XScale, XORP, Power Measurements, Power Modeling, Java,
Hardware Performance Counters

1. INTRODUCTION
Recent years have seen a proliferation of embedded de-

vices in many aspects of life, from cell phones to automated
controllers. Each new generation of embedded devices in-
cludes new features and capabilities, which are made possi-
ble by the greater data processing speeds of embedded mi-
croprocessors and larger data storage capacities of RAM and
FLASH chips. For device designers and software engineers
however, these attractive features can mean more challeng-
ing power and thermal design issues, resulting in added com-
plexity and design/test time of target applications.

Under such constraints, understanding the power con-
sumption of running software during the first design stages
is of extreme importance. This is because knowing power
consumption can help realize early power/performance op-
timizations. This scenario, in reality, is difficult to achieve
since software performance and power consumption are very
dependent on implementation details of the processing de-
vice, which at early stages might not be fully defined. Fur-
thermore, with complex software platforms like Java Run-
time systems running on embedded devices, the task of un-
derstanding power and performance becomes even more chal-
lenging. This is where high-level design tools come into play.

Research in low-power architectures and energy-efficient
programming techniques has led to an extensive suite of
high-level tools with the purpose of estimating power and
performance characteristics of existing and theoretical mi-
croprocessor designs. Some of these tools have been used to
estimate power consumption of high-end superscalar proces-
sors while others have been used to investigate the effects of
software transformations on power consumption [2][13][17][20].
Existing power estimation tools generally offer great flex-
ibility in their usage and configuration since they do not
model a particular pipeline implementation. Furthermore,
they are mostly aimed at studying C and assembly-based

benchmarks; we are more interested in Java applications
and Java Runtime systems.

This paper introduces XTREM, a microarchitectural func-
tional power simulator for the Intel XScale core. XTREM
is a powerful infrastructure capable of providing power and
performance estimates of software applications designed to
run on Intel XScale technology-based platforms. XTREM
models the effective switching node capacitance of various
functional units inside the core, following a similar modeling
methodology to the one found in [2].

The entire XTREM infrastructure has been tailored for
the Intel XScale core and validated against real hardware
for improved accuracy, yet it has been kept flexible enough
to be used during the first design and exploration stages of
software and hardware design ideas. We were able to ob-
tain a 4% average error on power estimates and an error
of less than 7% on average performance (IPC) across a di-
verse set of nine different benchmarks composed of C-based
embedded benchmarks and Java CLDC applications.

Cycle-level simulation of Java applications by our base
simulator is made possible through added system calls and
soft-floating point support. This adds an extra dimension of
analysis to XTREM since it is possible to analyze separately
power and performance characteristics of the JVM and Java
application code (JITted code). In fact, detailed knowledge
of the JVM memory map allows performance/power analysis
of individual JVM phase components like the class loader,
the executing engine, the JIT compiler and/or the garbage
collector. (Due to space constrains however, the details of
this analysis are deferred to future work.) For tested CLDC
Java benchmarks, we observed that power usage between
JITted code and JVM code is quite varied, as our simulation
results show the JVM can consume as little as 14% and as
much as 70% of the total average power.

This paper makes the following contributions to the area
of embedded power estimation and performance analysis
tools:

• We have developed power models for the various func-
tional units of the Intel XScale core.

• Our tools enable one to run a JVM on top of a func-
tional simulator, which allows a much broader appli-
cation analysis of many important Java embedded ap-
plications.

• Our simulation framework is the first to support deeper
application-aware analysis — such as distinguishing
execution of Java JITted application code and Java
Runtime system procedures.

• Having developed a data acquisition methodology con-
sisting of physical multimeter measurements, Hard-
ware Performance Counter (HPC) statistics and simu-
lation results, we present a broad comprehensive anal-
ysis of Java and Non-Java systems.

This paper is organized as follows: Section 2 begins with
a brief description of the Intel XScale microarchitecture, de-
tailing some architectural features that make the Intel XS-
cale core unique. Section 3 describes the heart of XTREM:
Sim-XScale, a microarchitectural functional simulator that
models the pipeline structure of the Intel XScale core. Sec-
tion 4 describes various measuring techniques used in the
acquisition of necessary run-time information for the study

Figure 1: Block diagram of the Intel XScale microar-
chitecture pipeline.

of the Intel XScale core and validation of XTREM’s power
models. Section 5 and 6 describe in detail performance and
power modeling validation results for various Java and Non-
Java applications. Section 7 describes related work and
highlights existing differences between XTREM and other
power estimation tools. Future work is described in section
8. The summary for our work can be found in Section 9.

2. THE INTEL XSCALE CORE
The Intel XScale core is a high-performance, low-power

microarchitecture specifically targeted for embedded appli-
cations [9]. It is compatible with the ARMv5TE instruction
set and includes support for eight new DSP instructions that
take advantage of a fast DSP coprocessor.

The Intel XScale core is a seven to eight stage (depend-
ing on the type of executing instruction) single issue super-
pipelined microprocessor with many architectural features
that make it suitable for general purpose embedded appli-
cations. Figure 1 shows the Intel XScale microarchitecture
pipeline organization.

Among the most characteristic features of the Intel XS-
cale core we find a 32KB 32-way set associative instruction
cache and a 32KB 32-way set associative data cache. Ac-
cess to data and instruction caches is distributed between
two pipeline stages. The first access stage is dedicated for
address TAG comparison and verifying memory access per-
missions, which are stored in a 32-entry fully-associative
Translation Lookaside Buffer (TLB). The second stage is
spent retrieving data from the cache. This two-cycle cache
access distribution allows the Intel XScale core to be clocked
at faster rates than previous ARM cores.

As illustrated in Figure 1, instruction decoding and register
file data access are performed in separate stages, as opposed
to a unified decode-read stage commonly found in other
ARM devices [15]. The decoding engine of the Intel XScale
core supports 32-bit ARMv5 and 16-bit ARMv5T Thumb
instructions by including a special decoding unit that ex-
pands 16-bit instructions into 32-bit instructions. This as-
sists devices with a very limited amount of memory since
16-bit instructions can yield more compact program code. A
128-entry direct mapped Branch Target Buffer (BTB) with
a 2-bit branch predictor is included in the Intel XScale mi-
croarchitecture to improve performance.

High clock rates achieved by the Intel XScale core come
at the expense of increasing main memory access latency.
To alleviate this problem, the Intel XScale core includes
two specialized data buffers called the fill buffer and the
write buffer that sit between the processor’s core and main
memory. The 32-byte, four-entry fill buffer is responsible
for sending and receiving all external memory requests, al-
lowing up to four outstanding memory request before the
core needs to stall. The coalescing 16-byte, eight-entry write
buffer captures all data write operations from the core to ex-
ternal memory, storing data temporarily until the memory
bus becomes available.

The architects of the Intel XScale core have added sup-
port for demanding DSP applications by including a 40-bit
Multiply-Accumulate (MAC) unit. The MAC is a variable-
latency, high-speed, low-power multiply unit. It takes two
to five clock cycles to complete an operation depending on
instruction type and data width. Intel XScale technology
engineers have also extended memory page attributes of
the microprocessor memory management unit to enhance
memory-caching dynamics. Memory pages can be config-
ured to be non-cacheable, cacheable by the data cache or
cacheable by a 2KB 32-way set associative mini-data cache.

We have integrated many of the above architectural fea-
tures into Sim-XScale: Data and instruction cache accesses
have been split into two stages, buffers assimilating fill and
write buffers have been installed into our simulator and our
branch predictor has been modified to match the hardware’s
2-bit prediction algorithm. Thumb instructions and special
memory page attributes are not supported by our simula-
tor since none of our tested benchmarks make use of these
features. The addition of supported microarchitectural fea-
tures into Sim-XScale provided us with an accurate simula-
tor that reports an average performance error of less than
1% for micro-kernels and an average error of less than 7%
for our tested set of benchmarks as described in Section 5.

2.1 Performance Counters
The Intel XScale core includes two specialized 32-bit reg-

isters, CNT0 and CNT1, that can be configured to monitor
and count any of the 14 possible performance events shown
in Table 1. These performance counters are accessible in
privileged OS mode and only two events may be monitored
at a time. A third specialized 32-bit register, CLKCNT, is
triggered on every clock cycle and its value can be used in
conjunction with CNT0 and CNT1 to compute interesting
performance information that can reveal major performance
losses of running applications. Since performance monitor-
ing of software happens during runtime, performance coun-
ters are a reliable source of performance data. We use these
counters to validate our performance and power models.

Event Description
0x0 Instruction Cache miss count
0x1 Number of stall cycles for fetch unit
0x2 Data dependency duration count
0x3 Instruction TLB miss count
0x4 Data TLB miss count
0x5 Branch instruction executed
0x6 Misspredicted branch count
0x7 Number of instructions executed
0x8 Number of stall cycles due to buffers full
0x9 Number of times buffers are detected full
0xA Data cache access count
0xB Data cache miss count
0xC Number of write-back events
0xD Number of times software changed the PC

Table 1: Comprehensive list of performance events
for the Intel XScale core.

Figure 2: Processor block diagram. The Intel XS-
cale core is surrounded by support functional units
that contribute to the processor’s overall power con-
sumption. Not all peripheral units are shown in this
figure.

3. XTREM POWER AND PERFORMANCE
SIMULATOR

XTREM can be divided into two primary components:
an accurate microarchitectural functional simulator called
Sim-XScale and a set of power models used to obtain power
consumption estimates of various functional units of the In-
tel XScale core on a per-cycle basis.

The methodology for defining the granularity of power dis-
tribution (i.e. the number of functional units to model) is
not straightforward since the Intel XScale core is embedded
inside a complex processor composed of various peripherals
that interface to the external world. For example, Figure 2
shows a block diagram of the Intel XScale PXA255 proces-
sor showing the spatial placement of the main core within
the processor. This work focuses on power behavior of the
main processing core and less so on the energy usage of the
external components like UARTs, LCD drivers and PCM-
CIA drivers. It is, of course, to some extent impossible to
ignore the effects of these units when power sampling is done
on the processor in real time. We minimize these effects by
turning off as many unused peripherals as possible.

Figure 3: RAM array schematic. Transistor-level
schematics like the one shown here are used to create
mathematical equations that estimate internal node
switching capacitance.

The starting point in the construction of power models
is a detailed description of the Intel XScale technology and
microarchitecture as described in [4]. This paper describes
with great detail logic-level implementation of caches and
clock distribution logic, among other important functional
blocks. From this lower-level description and available Intel
XScale technology documentation, an initial set of power
models using Wattch [2] power models as templates were
created. Some of Wattch’s power models have been adapted
into XTREM with minor changes, while other power mod-
els were adjusted and revised to reflect more accurately the
Intel XScale microarchitecture and new technology imple-
mentations (in the case of memory arrays and caches).

Power models are mathematical equations that provide
node switching capacitance estimates. We constructed power
equations based on transistor-level schematics of functional
units and a high-level view of transistor gate and drain ca-
pacitances. A single equation does not describe an entire
functional unit, but rather basic sub-blocks that can be
reused. For example, the register file unit is sub-divided
into a row decoder, an SRAM array and pre-charge logic.

Equations 1 and 2 are mathematical model equations that
estimate the internal node capacitance of bitlines and word-
lines in an SRAM array. Figure 3 shows the RAM array
schematic model used to derive these equations. Equations
1 and 2 are given as an example of the analysis and modeling
detail used in the construction of power models for various
functional units.

Cbitline = Cdiff (PreCharge) + (1)

Cdiff (CellAccess) ∗ M + Cmetal ∗ BitLineLength

Cwordline = Cdiff (WordLineDriver) + (2)

Cgate(CellAccess) ∗ N + Cmetal ∗ WordLineLength

Not all necessary power models for the Intel XScale core
were found in Wattch. For example, the unique T-shaped
clock structure common in the Intel XScale core, for ex-
ample, had to be created based on [4] since Wattch power
models assume an H-tree clock distribution network.

3.1 The Sim-XScale Functional Simulator
Sim-XScale is in part derived from the ARM-SimpleScalar

simulator [18], a highly flexible microarchitectural-level sim-
ulator with a five-stage superscalar-like pipeline organiza-
tion. The ARM-SimpleScalar simulator provides reasonably
good accuracy for many applications, but for some stress-
marks with heavy emphasis on the memory subsystem, sig-
nificant differences can be observed between the IPC it pre-
dicts and that measured by the hardware performance coun-
ters of the Intel XScale core. This large performance error
is primarily caused by the pipeline and memory sub-system
differences between the general ARM-SimpleScalar microar-
chitecture and that of the Intel XScale microarchitecture.

Sim-XScale includes architectural features not available
in ARM-SimpleScalar such as fill and write buffers, a 4-
entry pend buffer, a revised version of the well-known 2-
bit branch predictor algorithm and a read/write cache-line
allocation policy. Architectural features such as these make
Sim-XScale more closely-matched to the microprocessors we
target.

In the same way we implemented new units into Sim-
XScale we also removed microarchitectural units inherited
from ARM-SimpleScalar that have no parallel with a true
Intel XScale microarchitecture. For example, the Register
Update Unit common to many SimpleScalar simulations is
not present in our framework.

Sim-XScale allows monitoring of 14 different functional
units of the Intel XScale core: Instruction Decoder, BTB,
Fill Buffer, Write Buffer, Pend Buffer, Register File, In-
struction Cache, Data Cache, Arithmetic-Logic Unit, Shift
Unit, Multiplier Accumulator, Internal Memory Bus, Mem-
ory Control and Clock.

3.2 Sim-Xscale JVM Simulation Support
To support research on power and performance of Java

Runtime system for embedded devices, Sim-XScale gives
researchers the ability to run complex Java Runtime sys-
tems like Sun’s KVM reference CLDC design [11] or Intel’s
XORP1 JVM. It is required, however, that the JVM binary
be compiled using the -static linking flag, meaning no dy-
namic libraries can be used. We have used a statically linked
XORP JVM for all the experiments presented in this paper.

A dynamically linked XORP JVM (designed to run on
top of an OS) employs a one-to-one Java thread to na-
tive thread policy, which means that each Java thread is
mapped to a native thread. In order for us to be able
to run a statically linked XORP JVM directly on top of
our functional simulator without emulating an OS, we have
to remove multi-thread support and thread synchronization
from the JVM. The direct implication of this modification is
multi-threaded Java applications cannot run using our stat-
ically linked (modified) JVM. We hope to add multi-thread
support to our infrastructure in the near future by either
emulating an OS between our simulator and the JVM or by
mapping M Java threads into a single native thread.

Our “static” XORP should not affect the performance of
the running Java application significantly. This was verified
by comparing hardware performance counter statistics from
various Java applications using a modified “static” link and

1The XORP JVM is a clean-room Runtime system designed
specifically for high performance and small memory foot-
print. At current development stage, XORP has full-fledged
support for J2ME CLDC/CDC on XScale platforms.

an unmodified “dynamic” link of the XORP. For four CLDC
Java benchmarks, our experiments showed an average differ-
ence of 1.78% between hardware performance counter val-
ues. Physical power measurements between the two XORP
configurations are also very similar, with an average dif-
ference of 0.21% across the same set of four CLDC Java
benchmarks.

4. MEASURING TECHNIQUES FOR XTREM
VALIDATION

4.1 The DBPXA255 Development Board
Our testing equipment consists of the DBPXA255 de-

velopment board [10] powered by the PXA255 processor
running the Linux 2.4.19-rmk7-pxa1 patched kernel. The
DBPXA255 is a multi-purpose development board that in-
cludes many of the device features commonly found in em-
bedded devices such as SRAM and FLASH memory banks,
a LCD touch screen, ethernet adapter and keyboard.

The DBPXA255 development board does not include a
tertiary storage device like a hard disk or a CD-ROM. Since
it is infeasible to store all benchmarks and their associated
data sets on the board’s limited flash memory, a network
connection was set up between the development board and
a host PC.

The DBPXA255 board has two sets of jumpers that facil-
itate voltage and current measurements of hardware. The
first set allows the user to tap into the main power supply of
the processor. The second set exposes the CPU’s memory
bus voltage pins. We use the Agilent 34401A digital multi-
meter to sample current consumption of the PXA255 pro-
cessor while running our selected set of benchmarks. Voltage
can be measured in a similar way, but in all measurements
the voltage remained nearly constant throughout our exper-
iments, so we performed our calculations assuming using a
constant voltage of 1.5V. Since voltage is assumed to remain
constant, we only sample current, which is then multiplied
by voltage to get a power figure as defined by the well-known
equation P = V · I.

We set our development board to use a core frequency
of 200Mhz, a bus clock frequency of 100MHz and memory
frequency of 100Mhz. The microprocessor core’s voltage was
adjusted to 1.5V and all I/O pins were driven by a 3.3V
power supply.

4.2 Runtime Power Sampling
We performed power sampling at runtime of various test

benchmarks also using the Agilent 34401A digital multime-
ter. The digital multimeter interfaces via a GPIB cable to
a PC. A GPIB interface allows us to obtain sampling rates
of up to 1000 samples per second. Figure 4 shows the the
physical measurements setup. In order to better focus on
the microarchitectural core, we turned off various unused
peripherals like the LCD clock driver, UART clock drivers
and the AC97 clock driver. Turning these components off
reduced idle power consumption by as much as 7 to 8mW
(out of a total of roughly 300mW) for the 200Mhz and 1.5V
processor setup.

4.3 Runtime Performance Sampling
In addition to power sampling via multimeter, we also

used hardware performance counters for simulator valida-
tion. We interfaced to the hardware performance counters

Figure 4: Physical measurements setup. The Agi-
lent 34401A Digital Multimeter (DMM) is used to
sample current consumption of the Intel PXA255
CPU. High sampling speeds are achieved through a
GPIB connection between the DMM and a host PC.

using a Loadable Kernel Module (LKM) that adds system
calls to the Linux OS kernel. These additional system calls
are used to configure and read hardware performance coun-
ters. Each call is no more than three assembly instructions
long, keeping performance overhead low. Overflow of perfor-
mance counters is detected by a special bit location on the
performance’s counters configuration register. Our LKM is
based on a similar performance counter reader previously
designed for Pentium 4 systems [3].

Performance sampling is done by avgsample, a C program
that creates two working threads. The first thread runs
the target program that we wish to measure. The second
thread is the main sampling thread. The sampling thread is
in charge of clearing and activating hardware performance
counters before the target program thread runs. Once the
target application thread is running, the sampling thread
waits until the application thread exits and immediately
reports results to the user. Counter overflow is automati-
cally detected by an interrupt service routine, which adjusts
counter values beyond 32-bit accuracy when needed.

5. XTREM PERFORMANCE VALIDATION
Performance counters are very helpful in analyzing run-

time performance of applications as well as for exposing dif-
ferent memory system and pipeline latencies of the intel XS-
cale core. Their versatility and accuracy have proven invalu-
able in validating Sim-XScale. To this end we compared per-
formance counter results and equivalent performance met-
rics reported by Sim-XScale for several stressmark programs.
Stressmark are highly predictable programs written to vali-
date the pipeline structure of our simulator. We wrote nine
stressmarks as described below.
Dcache is a small kernel that works with a data set that

fits entirely in the data cache, thus minimizing data cache
misses. Dcache trash works with a data set that extends
beyond the capacity of the data cache. This stressmark
has been designed to have a very large number data cache
misses, ideally a cache miss for every loop iteration. Dcache -

write stresses data throughput to main memory. The main
loop writes consecutive integers into memory. The purpose
of this kernel is to stress the memory coalescing feature of
the Intel XScale core. Dcache writeline is very similar to
dcache write, except that Dcache writeline writes one in-

teger in every memory address location corresponding to the
beginning of one cache line so that memory address coalesc-
ing is not possible. Dcache twriteline and dcachet twrite

are similar to dcache writeline and dcache twrite except
that the working data set does not fit entirely in the cache.
Mult dep and mult nodep are two kernels that exercise and
measure the latency of the multiplier when data depen-
dencies exist and when they are absent, respectively. ADD

stresses the arithmetic unit of the Intel XScale core. The
ALU benchmark has a very high IPC since no data dependen-
cies exist. The BTB stressmark has been designed to stress
the Branch Target Buffer by implementing two mutually
exclusive inner branches that miss on every loop iteration.
Matrix is a small benchmark that multiplies an n by n ar-
ray. It has been constructed to measure the overall quality
of our simulator.

Figure 5 shows our stressmark validation results by com-
paring the IPC reported by Sim-XScale and the IPC com-
puted from hardware performance counter readings. The
average IPC difference for the nine stressmarks is less than
1%.

A 1% average performance error in stressmark testing is
great news for our microarchitectural simulator, but in order
to further quantify the accuracy of Sim-Xscale we need to
employ more realistic, complex benchmarks. For this end we
have selected five benchmarks from Mibench[8], an embed-
ded benchmark suite developed by the University of Michi-
gan. The benchmarks are: JPEG compress, Bitcount, CRC,
SHA and Dijkstra. These benchmarks were chosen based on
their large percentage of CPU time and work done in user
space. We also wanted to test how well our simulator is able
to track hardware performance for Java applications. Jzlib

[12], Crypto [14], GIF [7] and REX [1] are the four open Java
CLDC benchmarks selected for this task. These four Java
benchmarks are similar to the set of Java CLDC benchmarks
created by EEMBC [5]. Jzlib is a ZLIB implementation in
pure Java, Crypto is a Java implementation of the crypto-
graphic algorithms, GIF is a GIF-format picture decoder and
REX is a Java implementation for regular expressions.

Figure 6 shows performance results for Mibench and Java
CLDC benchmarks in the form of an IPC comparison graph.
The white bar in Figure 6 corresponds to the IPC reported
by Sim-XScale; the gray bar corresponds to IPC derived
from hardware performance counters. As seen from the fig-
ure, Sim-XScale provides reasonable performance accuracy
for complex benchmarks, reporting a maximum IPC differ-
ence for CRC of 14.2% with respect to hardware-measured
IPC. This relatively large error is caused by differences be-
tween our simulator and real hardware when it comes to
decomposing complex instructions (such as the LDMIA and
STMIA instructions) into uops. CJPEG has the lowest IPC
error with less than 1% difference. Average IPC difference
for all nine tested benchmarks is 6.5%.

6. XTREM POWER VALIDATION
Validation of XTREM power models is a necessary step

in the development of a trustworthy power estimation tool.
Good performance accuracy is of little importance if we
cannot guarantee a tool that also provides power estimates
within a tolerable error.

The first step taken toward validation of our power mod-
els was to isolate power consumption of individual functional
units. Decomposing power usage into various utilized func-

0

0.2

0.4

0.6

0.8

1

dc
ac

he

dc
ac

he
_t

ra
sh

dc
ac

he
_w

rit
e

dc
ac

he
_w

rit
eli

ne

dc
ac

he
_t

writ
e

dc
ac

he
_t

writ
eli

ne

m
ult

_d
ep

m
ult

_n
od

ep ad
d

bt
b

m
at

rix

Micro-Kernel

IP
C

sim-xscale
HPC

Figure 5: IPC comparison for stressmarks as re-
ported by Sim-Xscale and Hardware Performance
Counters (HPC). Sim-XScale simulates adequately
many aspects of the Intel XScale microarchitecture.

0

0.2

0.4

0.6

0.8

1

cjpeg bitcount crc sha dijkstra rex gif jzlib crypto

Benchmark

IP
C

sim-xscale
HPC

Figure 6: Comparison between simulated and
hardware-measured IPC performance for a set of
MiBench and open CLDC benchmarks.

tional units provides the most comprehensive way of vali-
dating XTREM power models since model accuracy can be
traced to a single functional unit, thus giving us the op-
portunity to pinpoint individual power models that do not
follow the expected power behavior. This, of course, may
be difficult or even impossible to accomplish for every func-
tional unit since some units are always used independently
of the instruction being executed; functional units like in-
struction decoder, TLBs and instruction cache are difficult
to isolate under normal execution conditions. On the other
hand, some functional units can be orchestrated in very pre-
dictable ways. These include the register file, ALU, MAC,
Data Cache, Fill and Write buffers.

As described in Section 5, our stressmarks have been de-
signed to make specific use of various functional units within
the core. Serving once again as validating agents, small
stressmarks were used to dissect the processor’s power uti-
lization into functional unit power consumption. This method-
ology assumes that no power is consumed by units that
have been turned off or are not being used. This assump-

0

50

100

150

200

250

300

350

0 880 1760 2640 3520 4400 5280 6160

Time (sec)

P
o

w
er

 (
m

W
)

1 sec. idle power�

CRC� -BITCNT� -

JPEGC

�
���

SHA

A
AU

DIJKSTRA

?

0 4 8 12 16 20 24 28

Figure 7: Hardware power sampling results for five
MiBench benchmarks. Benchmarks are separated
by a 1 second delay seen as 80mW idle time.

tion seems plausible since the Intel XScale core is a highly
power-efficient core that makes use of multiple levels of clock
gating, allowing entire units to be disabled when not in use
[4].

Our power-isolation methodology does not guarantee the
exact per-functional unit power consumption of the entire
core, but rather helps understand how power is distributed
across various functional units and how software affects over-
all power consumption. The second step in power model
validation included a second revision of power models to re-
duce estimation errors discovered during the first validation
step.

A third and last step in power model validation involves
simulating Mibench and Java CLDC benchmarks. Instead of
simply comparing “average estimated power” and “average
measure power” as a validation approach, we believe power
behavior in the time domain better describes how accurately
XTREM tracks real-hardware power behavior.

We start by describing Figure 7, which shows a power
vs. time plot for five Mibench benchmarks running on real
hardware. The benchmark ordering from left to right is:
JPEG Compress, Bitcount, CRC, SHA and Dijkstra. Bench-
marks are separated from each other by a one-second delay,
visible on the graph in the form of 82mW idle power con-
sumption.

Figure 8 shows XTREM’s simulated power results assum-
ing the same benchmark ordering as Figure 7. The sim-
ilarities between Figure 7 and Figure 8 are encouraging:
XTREM is able to capture not only power behavior within
a benchmark, but also the power relationship among the set
of tested benchmarks.

Simulating CLDC Java benchmarks not only helped vali-
date XTREM’s CLDC power estimation capability, but also
helped revealed many interesting characteristics of Java ap-
plications. Figure 9 is a power vs time plot of REX Java
benchmark running on real hardware. From the graph we
can observe that Java applications are characterized by an
initialization process where the JVM is allocating the heap
and initializing the Runtime system. This JVM initializa-
tion phase is visible in the figure in the form of a random-like
distribution of points at the start of the plot.

0

50

100

150

200

250

300

350

0 880 1760 2640 3520 4400 5280 6160

Time (sec)

P
o

w
er

 (
m

W
)

1 sec. idle power�

CRC� -BITCNT� -

JPEGC

�
��

SHA

AAU
DIJKSTRA

?

0 4 8 12 16 20 24 28

Figure 8: Simulated power traces for five Mibench
benchmarks. The maximum error of 11% for JPEG

and a minimum of 3.66% for Bitcount was calculated
for average benchmark power consumption.

0

50

100

150

200

250

300

0 230 460 690 920 1150 1380

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3 4 5 6

Figure 9: REX live power measurements. The start of
the benchmark is characterized by very varied power
behavior corresponding to JVM initialization.

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3 4 5 6

Figure 10: REX simulated power measurements.

0

50

100

150

200

250

300

350

0 115 230 345 460 575 690 805

Time (ms)

P
o

w
er

 (
m

W
)

0 500 1000 1500 2000 2500 3000 3500

Figure 11: GIF hardware-measured power behavior.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500

Time (ms)

P
o

w
er

 (
m

W
)

Figure 12: GIF simulated power measurements. A
call to garbage collection creates a slight power spike
at around 2600 ms.

Figure 10 displays simulated power vs time for REX. This
figure was constructed by reporting average power every
200,000 instructions — 4x faster than physical power sam-
pling. Higher sampling rates allow XTREM to capture many
low-latency events not visible by the power sampling hard-
ware. An example of this is shown towards the end of Figure
10 in the form of a small power spike. This power spike is a
consequence of garbage collection.

Figure 11 and 12 show physical power sampling and sim-
ulated sampling results for GIF, respectively. Both plots are
described by a JVM initialization phase followed by an al-
most flat power consumption trace with snowfall-like traces
on the bottom. This snowfall-like behavior is more visible in
simulation traces as a consequence of higher sampling rates.
As with Figure 10, Figure 12 shows the effects of calling the
garbage collector, which creates a characteristic power spike
two-thirds into the benchmark.

As a summary to our Java CLDC and C benchmark vali-
dation experiments, Figure 13 gives a graphical comparison
between simulated average power and hardware-measured
average power consumption for five Mibench and four Java
CLDC benchmarks. Table 2 shows our results in tabular
form.

0

50

100

150

200

250

300

350

cjpeg bitcount crc sha dijkstra rex gif jzlib crypto average

Benchmark

A
vg

. P
o

w
er

 (
m

W
)

Measured Avg. Power
Simulated Avg. Power

Figure 13: Average power consumption for MiBench
and open CLDC Java benchmarks. 12 percent error
bars are shown.

Measured Simulated
Benchmark Avg. mW Std. Dev. Avg. mW Std. Dev.

JPEGC 261.01 28.43 290.37 26.78
Bitcount 265.02 15.25 255.02 16.13

CRC 277.44 5.88 290.37 1.20
SHA 273.26 24.59 295.03 5.16

Dijkstra 269.06 11.85 251.06 17.80
Rex 236.41 39.90 234.33 32.41
GIF 259.49 42.30 292.33 38.13
Jzlib 261.34 19.79 257.05 16.40

Crypto 268.54 22.44 297.03 27.78

Table 2: Average power and standard devia-
tion comparison between hardware-measured power
traces and simulated power consumption traces.

XTREM goes a step beyond power estimation. It pro-
vides researchers with the ability to dissect Java applica-
tion power consumption into JVM and non-JVM power, a
skill not yet available to conventional power measuring tech-
niques. With the capability of discriminating between JVM
and non-JVM power consumption at hand, software design-
ers and architects can better understand how to increase
power and performance efficiency of Java Runtime systems
during early development stages.

Figures 14 and 15 show the simulated JVM power con-
sumption and the simulated non-JVM power behavior for
the REX benchmark, respectively. We previously mentioned
the initialization stage of Java benchmarks is characterized
by almost pure JVM activity. This is demonstrated in the
first 500ms of Figure 15, where non-JVM or “Java applica-
tion” involvement is minimum during the 500ms time frame.
After JVM initialization, JVM power for REX drops to an av-
erage of about 75mW and Java application power rises to
an average of about 160mW. Division of JVM and non-JVM
power introduces an extra dimension in the analysis of “in-
teresting” events. For example, Figure 14 makes it clear that
the power spike seen from Figure 10 originates within the
JVM Runtime system. For REX, the average power required
by the JVM represents 37% of the total average power. The
GIF benchmark has 52mW of average power assigned for the

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3 4 5 6

Figure 14: Power consumption of the JVM system
while running the REX benchmark.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3 4 5 6

Figure 15: Simulated application (JITted code)
power traces for the benchmark REX.

JVM, or 18% of the total average. Crypto’s JVM consumes
44mW of average power, equivalent to 15% of the total av-
erage power. Jzlib, on the other and, has more of its total
average power consumed by the JVM, with 181mW or 70%
of its total average consumed power.

For Jzlib, the high percentage of power dedicated to JVM
execution is caused by support functions. Support functions,
such as integer remainder and integer divide functions, are
called within JITted code to perform a specific task, but
the actual function execution occurs within the JVM, thus
increasing its average power requirement.

Last but not least is XTREM’s ability to provide a break-
down of power consumption among various microarchitec-
tural components. When experimenting with novel low-
power architectures, it is often necessary to quantify power
distribution among the various functional units of the mi-
croprocessor. By combining accurate runtime power estima-
tion of benchmarks with functional unit power breakdown,
XTREM promises to be a versatile tool in early system de-
sign exploration.

Figure 16 is a unit-by-unit power breakdown for crypto.
Out of the fourteen functional units that XTREM models,
only nine units are shown in this figure. These nine units

0

50

100

150

200

250

300

350

1 101 201 301 401 501 601 701 801 901 1001

Time (sec)

P
o

w
er

 (
m

W
)

CLK

MM

MEM

WB

D$

I$

REG

ALU

DEC

0 5 10 15 20 25

Figure 16: Crypto’s functional unit power distribu-
tion across time. Nine out of fourteen simulated
functional units are responsible for more than 95%
of total average power consumption.

account for 94% of the total average power: Memory con-
troller unit (24% total average power), Instruction Decoder
(19%), Clock Structure (17%), the Instruction Cache (11%)
Memory Bus (10%), ALU (8%) and Data Cache (6%). The
rest of the power (6%) is distributed among the rest of the
modeled functional units.

6.1 Activity Factor influence on Power
Consumption

Power consumption of functional units can be very de-
pendent on input/output data. This power consumption
dependency on activity factors is expected since dynamic
power, a consequence of charging and discharging of capaci-
tive nodes, encompasses a large percentage of overall power
consumption. Knowledge of power dependency on activity
factors is of great importance for small portable embedded
processors where there is a limited amount of energy avail-
able. System designers can, for example, strategically place
high access memory regions in such a way that the activity
factors for memory address pins, and consequently internal
address bus, is reduced, thus saving power and extending
battery life.

We once again made use of specific stressmarks to study
power consumption’s dependence on input data. Activity
factor stressmarks expose activity factor dependency of var-
ious functional units by performing the same operation on
a predetermined input data set. Using known input values
allows the functional unit to work with a known data input
activity factor, which is defined as the variability of ones
and zeros in the binary representation of an input data vec-
tor when it transitions from data A to data B. Among the
various functional units for which this experiment was real-
ized, the MAC, Data Cache, Shift Unit and ALU, the ALU
datapath unit showed the largest activity factor influence on
power consumption.

Figure 17 is a power vs time plot of the ALU-datapath ac-
tivity factor stressmark running on the PXA255 microcon-
troller. The experiment, as seen from the plot, is divided in
two parts. During the first part of the experiment, the A in-
put varies in the vertical direction by increasing the number
of ’1’ of the datum while B changes in the horizontal direc-

0

50

100

150

200

250

300

0 460 920 1380 1840 2300

Time (sec)

P
o

w
er

 (
m

W
)

0 2 4 6 8 10

Figure 17: Power dependence on input Activity Fac-
tors for the “ADD” operation.

tion in a similar way. For the second part of the experiment
the roles of A and B are interchanged. The lower-left corner
of the first half of the experiment corresponds to adding 0
+ 0. The upper-right corner corresponds to adding two reg-
isters with all ones (binary negative one). In between each
addition operation of the stressmark, input values are reset
to null values in order to increase one-to-zero transitions. It
is interesting to observe how interchanging the roles of the A

and B inputs changes the power behavior of the experiment.
Figure 17 demonstrates it is possible to create power swings

as large as 50mW in the Intel XScale core by carefully ad-
justing the data activity factor of the ALU datapath. Power
swings of double this magnitude are possible in a 400Mhz
Intel XScale core.

7. RELATED WORK
Previous research in the area of power consumption for

Java systems has been done by Farkas et al. [6]. These au-
thors use a hardware-based approach in the study of power
behavior for Java applications. This work analyzes power
consumption of Itsy, a pocket computer developed by Com-
paq based on the StrongARM SA-1100 processor. The study
performs live measurements of power consumption for vari-
ous applications running on the Itsy pocket computer. They
also present initial data on Java features such as preloading
Java classes, JIT vs non-JIT compilation and multi-JVM
support.

A substantial number of studies have focused on simula-
tion techniques for power estimation. Wattch [2] and Sim-
plePower [19] are two infrastructures used to study energy
and performance efficiency of microprocessors. Wattch uses
mathematical equations to model the effective capacitance
of functional units. This flexible tool has been used to esti-
mate power consumption of high-performance microproces-
sors such as the Pentium Pro, the MIPS R10K and the Alpha
21264. SimplePower is another high-level tool used in the
study of system-energy estimation and compiler optimiza-
tions effects on the processor’s power consumption. Power
models for this work are based on analytical power models
and energy tables that capture data switching activity.

Research studies using hardware-based measuring tech-
niques have proven to be very efficient in modeling com-

plex architectures. Isci et al. [3] used real-hardware power
measurements along with functional unit utilization heuris-
tics derived from hardware performance counters to con-
struct analytical power models for a Pentium 4 processor.
Chang et al. [16] performs cycle-accurate energy charac-
terization using the ARM7TDMI microprocessor. For this
work, fast energy characterization of hardware is possible
using hardware measurement techniques involving charge-
transfer measurements. A multidimensional energy charac-
terization is done on the ARM7TDMI processor based on
seven energy-sensitive microprocessor factors.

Accurate power modeling for the Intel XScale core re-
quires a more specific hardware description than the ap-
proach employed by previous simulation-based tools. XTREM
differs from previous work in various ways. First, XTREM is
intended to model a specific microarchitecture family. While
many of the core’s configuration parameters are still user-
specified (cache sizes, BTB entries, TLB size), the pipeline
structure modeled by XTREM has been designed to closely
match the microarchitecture of the Intel XScale core. This
provides added performance accuracy over currently exist-
ing tools. Second, XTREM has been validated against real
hardware using physical power measurements, hardware per-
formance counters and stress kernels, which makes XTREM
a reliable performance/power estimation tool for XScale-
based systems. Last, increasing popularity for Java-supported
devices motivated us to design XTREM to support both C
and Java applications. Other tools just focus on C bench-
marks and do not support a unified power and performance,
Java Runtime system research environment.

8. FUTURE WORK
Future work for this study includes a more in-depth study

of power behavior for Java Run-time systems. We wish to
quantify the power consumed by various JVM phases (com-
ponents) such as the Java class loader, the JIT compiler,
JITted code execution and the garbage collector phase. Such
study can potentially help identify opportunities for energy
savings by determining phases with large energy require-
ments.

Studies for CDC Java benchmarks are also in the near fu-
ture. CDC benchmarks are more sophisticated benchmarks
that behave differently from CLDC applications from both
performance and power standpoints. We have done prelimi-
nary run-time hardware performance counter measurements
and have found such experiments extremely useful for iden-
tifying major performance losses. By analyzing simulation
and hardware performance counter data, we hope to rec-
ommend power-efficient architectural changes to the Intel
XScale core that improve the overall performance of both
CDC and CLDC Java applications.

We are also interested in identifying opportunities for Dy-
namic Voltage Scaling (DVS) on XScale-based systems run-
ning Java applications. We have implemented a DVS al-
gorithm on the DBPXA255 development board which uses
HPC metrics to decide when voltage and frequency changes
should take place. We hope to investigate ways to apply
these DVS algorithms to re-curring Java phases.

9. SUMMARY
This paper has introduced XTREM, a high-level func-

tional power simulator tailored for the Intel XScale core.

XTREM has been validated using hardware performance
counters and real-hardware power measurements. We have
presented simulated power results for five MiBench bench-
marks and four CLDC Java benchmarks, reporting an aver-
age performance error of 6.5% and an average power estima-
tion error of 4%. XTREM is capable of quantifying power
requirements for the JVM and non-JVM sections of Java ap-
plications, giving software engineers and extra dimension in
power analysis. This paper has described how XTREM can
help identify “power-hungry” functional units by providing a
breakdown of power consumption and how bit-switching ac-
tivity within the Intel XScale core can produce power swings
as large as 50mW for a 200Mhz processor.

The research presented here has provided the tools to ob-
tain a broad and comprehensive view of how modern em-
bedded systems work. Our approach employs a data acqui-
sition methodology consisting of physical power measure-
ments, hardware performance counter statistics and simula-
tion results. This study has focused on Java, C-based em-
bedded and stressmark applications targeted for Intel XS-
cale Technology-based systems. We are planning to release
XTREM for wider use. We feel XTREM offers a useful step
forward for compiler and embedded software designers as it
promises to help explore a broader design space targeted for
low energy consumption and high performance.

10. ACKNOWLEDGMENTS
This work was supported in part by an NSF Informa-

tion Technology Research Grant CCR-0086031 and by SRC
contract number 2003-HJ-1121. In addition, we gratefully
acknowledge funding and equipment donations from Intel
Corp.

11. REFERENCES
[1] Java Regular Expressions.

http://www.crocodile.org/~sts/Rex/.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis
and Optimizations. In Proceedings of the 27th
International Symposium on Computer Architecture,
June 2000.

[3] Canturk Isci and Margaret Martonosi. Runtime Power
Monitoring using High-End Processors: Methodology
and Empirical Data, 2003. MICRO’36.

[4] Clark, L.T.et al. An embedded 32-b Microprocessor
Core for Low-Power and High-Performance
Applications. Solid-State Circuits, IEEE Journal o,
36(11):1599–1608, November 2001.

[5] Embedded Microprocessor Benchmark Consortium.
EEMBC Benchmarks for the Java 2 Micro Edition
(J2ME) Platform. http://www.eembc.org.

[6] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and
J.-A. M. Anderson. Quantifying The Energy
Consumption of a Pocket Computer and a Java
Virtual Machine. In Measurement and Modeling of
Computer Systems, pages 252–263, 2000.

[7] FM Software. GIF Picture Decoder.
http://www.fmsware.com/stuff/gif.html.

[8] M. R. Guthaus et al. MiBench: A free, Commercially
Representative Embedded Benchmark Suite. July
2001. IEEE 4th Annual Workshop on Workload
Characterization,.

[9] Intel Corporation. Intel XScale Microarchitecture for
the PXA255 Processor: User’s Manual, March 2003.
Order No. 278796.

[10] Intel DBPXA255 Development Platform for the Intel
Personal Internet Client Architecture. Intel
Corporation, February 2003. Order No. 278701-001.

[11] J2ME Building Block For Mobile Devices: White
Paper on KVM and the Connected Limited Device
Configuration (CLDC). Sun Microsystems, May 2000.
http://java.sun.com/j2me/docs/index.html.

[12] Jean-loup Gailly and Mark Adler. Zlib Java
Implementation. http://www.jcraft.com/jzlib/.

[13] A. Krishnaswamy and R. Gupta. Profile Guided
Selection of ARM and Thumb Instructions, 2002. In
ACM SIGPLAN Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’02).

[14] Legion of the Bouncy Castle. Bouncy Castle Crypto
1.18. http://www.bouncycastle.org/.

[15] M. Levy. Exploring the ARM1026EJ-S pipeline.
http://www.MPRonline.com.

[16] Naehyuck Chang; Kwanho Kim; Hyung Gyu Lee.
Cycle-Accurate Energy Measurement and
Characterization With a Case Study of the
ARM7TDMI [microprocessors]. In IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2000.

[17] The SimpleScalar-ARM Power Modeling Project.
PowerAnalyzer.
http://www.eecs.umich.edu/~panalyzer.

[18] The SimpleScalar Toolset. SimpleScalar LLC.
http://www.simplescalar.com.

[19] N. Vijaykrishnan. Energy-driven integrated
hardware-software optimizations using SimplePower.
In Proceedings of the 27th International Symposium
on Computer Architecture, 2000.

[20] W. Ye, N. Vijaykrishnan, M. T. Kandemir, and M. J.
Irwin. The Design and Use of SimplePower: A
Cycle-Accurate Energy Estimation Tool. In Design
Automation Conference, pages 340–345, 2000.

