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Abstract—The Intel Threading Building Blocks (TBB) run-
time library [1] is a popular C++ parallelization environment
[2][3] that offers a set of methods and templates for creating
parallel applications. Through support of parallel tasks rather
than parallel threads, the TBB runtime library offers improved
performance scalability by dynamically redistributing parallel
tasks across available processors. This not only creates more
scalable, portable parallel applications, but also increases pro-
gramming productivity by allowing programmers to focus their
efforts on identifying concurrency rather than worrying about
its management.
While many applications benefit from dynamic management

of parallelism, dynamic management carries parallelization over-
head that increases with increasing core counts and decreasing
task sizes. Understanding the sources of these overheads and
their implications on application performance can help program-
mers make more efficient use of available parallelism. Clearly
understanding the behavior of these overheads is the first step in
creating efficient, scalable parallelization environments targeted
at future CMP systems.
In this paper we study and characterize some of the overheads

of the Intel Threading Building Blocks through the use of
real-hardware and simulation performance measurements. Our
results show that synchronization overheads within TBB can have
a significant and detrimental effect on parallelism performance.
Random stealing, while simple and effective at low core counts,
becomes less effective as application heterogeneity and core
counts increase. Overall, our study provides valuable insights that
can be used to create more robust, scalable runtime libraries.

I. INTRODUCTION

With chip multiprocessors (CMPs) quickly becoming the
new norm in computing, programmers require tools that allow
them to create parallel code in a quick and efficient manner. In-
dustry and academia has responded to this need by developing
parallel runtime systems and libraries that aim at improving
application portability and programming efficiency [4]-[11].
This is achieved by allowing programmers to focus their efforts
on identifying parallelism rather than worrying about how
parallelism is managed and/or mapped to the underlying CMP
architecture.
A recently introduced parallelization library that is likely
to see wide use is the Intel Threading Building Blocks (TBB)
runtime library [1]. Based on the C++ language, TBB provides
programmers with an API used to exploit parallelism through
the use of tasks rather than parallel threads. Moreover, TBB
is able to significantly reduce load imbalance and improve
performance scalability through task stealing, allowing ap-
plications to exploit concurrency with little regard to the
underlying CMP characteristics (i.e. number of cores).
Available as a commercial product and under an open-
source license, TBB has become an increasingly popular paral-
lelization library. Adoption of its open-source distribution into
existing Linux distributions [12] is likely to increase its usage

among programmers looking to take advantage of present
and future CMP systems. Given its growing importance, it
is natural to perform a detailed characterization of TBB’s
performance.

While parallel runtime libraries such as TBB make it easier
for programmers to develop parallel code, software-based
dynamic management of parallelism comes at a cost. The par-
allel runtime library is expected to take annotated parallelism
and distribute it across available resources. This dynamic
management entails instructions and memory latency—cost
that can be seen as “parallelization overhead”. With CMPs
demanding ample amounts of parallelism in order to take
advantage of available execution resources, applications will
be required to harness all available parallelism, which in many
cases may exist in the form of fine-grain parallelism. Fine-
grain parallelism, however, may incur high overhead on many
existing parallelization libraries. Identifying and understanding
parallelization overheads is the first step in the development
of robust, scalable, and widely used dynamic parallel runtime
libraries.

Our paper makes the following important contributions:

• We use real-system measurements and cycle-accurate
simulation of CMP systems to characterize and measure
basic parallelism management costs of the TBB runtime
library, studying their behavior under increasing core
counts.

• We port a subset of the PARSEC benchmark suite to the
TBB environment. Benchmarks are originally parallelized
using a static arrangement of parallelism. Porting them to
TBB increases their performance portability due to TBB’s
dynamic management of parallelism.

• We dissect TBB activities into four basic categories and
show that the runtime library can contribute up to 47%
of the total per-core execution time on a 32-core system.
While this overhead is much lower at low core counts, it
hinders performance scalability by placing a core count
dependency on performance.

• We study the performance of TBB’s random task steal-
ing, showing that while effective at low core counts, it
provides sub-optimal performance at high core counts.
This leaves applications in need of alternative stealing
policies.

• We show how an occupancy-based stealing policy can
improve benchmark performance by up to 17% on a 32-
core system, demonstrating how runtime knowledge of
parallelism “availability” can be used by TBB to make
more informed decisions.

Overall, our paper provides valuable insights that can help
parallel programmers better exploit available concurrency,
while aiding runtime developers create more efficient and
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Template Description

parallel_for<range, body>
Template for annotating DOALL
loops. range indicates the limits
of the loop while body describes
the task body to execute loop iter-
ations

parallel_reduce<range, body>
Used to create parallel reduc-
tions. The class body specifies a
join() method used to perform
parallel reductions.

parallel_scan<range, body> Used to compute a parallel prefix.

parallel_while<body>
Template for creating parallel tasks
when the iteration range of a loop
is not known

parallel_sort<iterator, compare> Template for creating parallel sort-
ing algorithms.

TABLE I

TBB TEMPLATES FOR ANNOTATING COMMON TYPES OF PARALLELISM.

robust parallelization libraries.
Our paper is organized as follows: Section II gives a
general description of Intel Threading Building Blocks and its
dynamic management capabilities. Section III illustrates how
TBB is used in C++ applications to annotate parallelism. Our
methodology is described in Section IV along with our set
of benchmarks. In Section V we evaluate the cost of some
of the fundamental operations carried by the TBB runtime
library during dynamic management of parallelism. Section
VI studies the performance impact of TBB on our set of
parallel applications, identifying overhead bottlenecks that
degrade parallelism performance. Section VII performs an in-
depth study of TBB’s random task stealing, the cornerstone of
TBB’s dynamic load-balancing mechanism. In Section VIII
we provide programmers and runtime library developers a set
of recommendations for maximizing concurrency performance
and usage. Section IX discusses related work, and Section X
offers our conclusions and future work.

II. THE TBB RUNTIME LIBRARY

The Intel Threading Building Blocks (TBB) library has
been designed to create portable, parallel C++ code. Inspired
by previous parallel runtime systems such as OpenMP [7]
and Cilk [6], TBB provides C++ templates and concurrent
structures that programmers use in their code to annotate
parallelism and extract concurrency from their code. In this
section we provide a brief description of TBB’s capabilities
and functionality, highlighting three of its major features:
task programming model, dynamic task scheduling, and task
stealing.

A. Task Programming Model

The TBB programming environment encourages program-
mers to express concurrency in terms of parallel tasks rather
than parallel threads. Tasks are special regions of code that per-
form a specific action or function when executed by the TBB
runtime library. They allow programmers to create portable,
scalable parallel code by offering two important attributes:
(1) tasks typically have much shorter execution bodies than
threads since tasks can be created and destroyed in a more
efficient manner, and (2) tasks are dynamically assigned to
available execution resources by the runtime library to reduce
load imbalance.
In TBB applications, tasks are described using C++ classes
that contain the class tbb:task as the base class, which
provides the virtual method execute(), among others. The

wait_for_all(task *child) {
task = child;
Loop until root is alive

do
while task available

next_task = task->execute();
Decrease ref_count for parent of task
if ref_count==0

next_task = parent of task
task = next_task

task = get_task();
while (task);

task = steal_task(random());
if steal unsuccessful
Wait for a fixed amount of time
If waited for too long, wait for master thread
to produce new work

}
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Fig. 1. Simplified TBB task scheduler loop. The scheduling loop is
executed by all worker threads until the master thread signals their termination.
The inner, middle, and outer loop of the scheduler attempt to obtain work
through explicit task passing, local task dequeue, and random task stealing,
respectively.

method execute(), which the programmer is expected to spec-
ify, completely describes the execution body of the task. Once
a task class has been specified and instantiated, it is ready to
be launched into the runtime library for execution. In TBB, the
most basic way for launching a new parallel task is through
the use of the spawn(task *t) method, which takes a
pointer to a task class as its argument. Once a task is scheduled
for execution by the runtime library, the execute() method of
the task is called in a non-preemptive manner, completing the
execution of the task.
Tasks are allowed to instantiate and spawn additional paral-
lel tasks by allowing the formation of hierarchical dependen-
cies. In this way, derived tasks become children of the tasks
that created them, making the creator the parent task. This
hierarchical formation allows programmers to create complex
task execution dependencies, making TBB a versatile dynamic
parallelization library capable of supporting a wide variety of
parallelism types.
Since manually creating and managing hierarchical depen-
dencies for commonly found types of parallelism can quickly
become a tedious chore, TBB provides a set of C++ tem-
plates that allow programmers to annotate common parallelism
patterns such as DOALL and reductions. Table I provides a
description of the class templates offered by TBB.
Regardless of how parallelism is annotated in applications
(explicitly through spawn() or implicitly through the use of
templates), all parallelism is exploited through parallel tasks.
Conversely, even though the programmer might design tasks
to execute in parallel, TBB does not guarantee that they
will do so. If only one processor is available at the time,
or if additional processors are busy completing some other
task, newly-spawned tasks may execute sequentially. When
processors are available, creating more tasks than available
processors allows the TBB dynamic runtime library to better
mitigate potential sources of load imbalance.

B. Dynamic Scheduling of Tasks

The TBB runtime library consists of a dynamic scheduler
that stores and distributes available parallelism as needed in or-
der to improve performance. While this dynamic management
of parallelism is completely hidden from the programmer, it
imposes a management “tax” on performance, which at sig-
nificant levels can be detrimental to parallelism performance.
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class rootTask: public tbb::task
{
task * execute( ) {
childTask &A = *new( allocate_child() )

childTask;
childTask &B = *new( allocate_child() )

childTask;
set_ref_count(3);
spawn(A);
spawn_root_and_wait(B);
return NULL;
}
};

Dummy task

rootTask

childTask childTask

ref_count = 3

Main thread
int main( ) {
tbb::scheduler_init init(numThreads);
rootTask &root =

*new ( allocate_root() ) rootTask;
spawn_root_and_wait(root);
}

class childTask:: public tbb:task
{
void execute( ) {
/* Task body here */
}

};

Fig. 2. TBB code example that creates a root tasks and two children tasks. In this example, the parent task (rootTask) blocks until its children terminate.
Bold statements signify special methods provided by TBB that drive parallelism creation and behavior.

To better understand the principal sources of overhead that we
measure in Sections V and VI, this section describes the main
scheduler loop of the TBB runtime library.
When the TBB runtime library is first initialized, a set of
slave worker threads is created and the caller of the initializa-
tion function becomes the master worker thread. Worker thread
creation is an expensive operation, but since it is performed
only once during application startup, its cost is amortized over
application execution.
When a worker thread is created, it is immediately associ-
ated with a software task queue. Tasks are explicitly enqueued
into a task queue when their corresponding worker thread calls
the spawn() method. Dequeueing tasks, however, is implicit
and carried out by the runtime system.
This process is better explained by Figure 1, which shows
the procedure wait_for_all(), the main scheduling loop
of the TBB runtime library. This procedure consists of three
nested loops that attempt to obtain work through three different
means: explicit task passing, local task dequeue, and random
task stealing.
The inner loop of the scheduler is responsible for executing
the current task by calling the method execute(). After the
method is executed, the reference count of the task’s parent is
atomically decreased. This reference count allows the parent
task to unblock once its children tasks have completed. If this
reference count reaches one, the parent task is set as the current
task and the loop iterates. The method execute() has the
option of returning a pointer to the task that should execute
next (allowing explicit task passing).
If a new task is not returned, the inner loop exits and
the middle loop attempts to extract a task pointer from the
local task queue in FILO order by calling get_task(). If
successful, the middle loop iterates calling the most inner loop
once more. If get_task() is unsuccessful, the middle loop
ends and the outer loop attempts to steal a task from other
(possibly) existing worker threads. If the steal is unsuccessful,
the worker thread waits for a predetermined amount of time.
If the outer loop iterates multiple times and stealing continues
to be unsuccessful, the worker thread gives up and waits until
the main thread wakes it (by generating more tasks).

C. Task Stealing in TBB

Task stealing is the fundamental way by which TBB at-
tempts to keep worker threads busy, maximizing concurrency
and improving performance through reduction of load imbal-
ance. If there are enough tasks to work with, worker threads

that become idle can quickly grab work from other worker
threads.
When a worker thread runs out of local work, it attempts
to steal a task by first determining a victim thread. TBB 2.0
utilizes random selection as its victim policy. Once the victim
is selected, the victim’s task queue is examined. If a task can
be stolen, the task queue is locked and a pointer describing the
task object is extracted, the queue is unlocked, and the stolen
task is executed in accordance with Figure 1. If the victim
queue is empty, stealing fails and the stealer thread backs off
for a pre-determined amount of time.
Random task stealing, while fast and easy to implement,
may not always select the best victim to steal from. As
the number of potential victims increase, the probability of
selecting the “best” victim decreases. This is particularly true
under severe cases of work imbalance, where a small number
of worker threads may have more work than others. Moreover,
with process variations threatening to transform homogeneous
CMP designs into an heterogeneous array of cores [13],
effective task stealing becomes even more important. We will
further study the performance of task stealing in Section VII.

III. PROGRAMMING EXAMPLE

Figure 2 shows an example of how parallel tasks can be
created and spawned in the TBB environment. The purpose
of this example is to highlight typical steps in executing
parallelized code. Sections V and VI then characterize these
overheads and show their impact on program performance.
For the given example, two parallel tasks are created by the
root task (the parent task), which blocks until two child tasks
terminate. The main() function begins by initializing the
TBB runtime library through the use of the init() method.
This method takes the number of worker threads to create as an
input argument. Alternatively, if the parameter AUTOMATIC is
specified, the runtime library creates as many worker threads
as available processors.
After initialization, a new instance of rootTask is cre-
ated using an overloaded new() constructor. Since it is
the main thread and not a task that is creating this task,
allocate_root() is given as a parameter to new(),
which attaches the newly-created task to a dummy task.
Once the root task is created, the task is spawned using
spawn_root_and_wait() which spawns the task and
calls the TBB scheduler (wait_for_all()) in a single call.
Once the root task is scheduled for execution, rootTask
creates two children tasks and sets its reference count to
three (two children tasks plus itself). When the children tasks
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Benchmark Description Number of tasks Avg. task duration (cycles)

fluidanimate Fluid simulation for interactive animation purposes 420 × N 19M

swaptions Heath-Jarrow-Morton framework to price portfolio of swaptions 120,000 25K

blackscholes Calculation of prices of a portfolio of European Options 1, 200 × N tasks 256K (@ 32 cores)

streamcluster Online Clustering Problem 11, 000 + 6, 000 × N 23M

Micro-benchmarks
Bitcounter Vector bit-counting with a highly unbalanced working set 5,740 5K

Matmult Block matrix multiplication 12,224 6K

LU LU dense-matrix reduction 31,200 4K

Treeadd Tree-based recursive algorithm 12,290

TABLE II

OUR BENCHMARK SUITE CONSISTS OF A SUBSET OF THE PARSEC BENCHMARKS PARALLELIZED USING TBB AS WELL AS TBB MICRO-BENCHMARKS.

THE VALUEN REPRESENTS THE NUMBER OF PROCESSORS BEING USED.

int bs_thread(void *tid_ptr) {
int tid = *(int *)tid_ptr;
int start = tid * (numOptions / nThreads);
int end = start + (numOptions / nThreads);
BARRIER(barrier);

for (j=0; j<NUM_RUNS; j++) {
price[tid*LINESIZE] = 0;
for (i=start; i<end; i++)
price[tid*LINESIZE] +=

BlkSchlsEqEuroNoDiv(...);
BARRIER(barrier);
if(tid==0) {
acc_price = 0;
for(i=0;i<nThreads;i++)
acc_price += price[i*LINESIZE];

}
}
return 0;

}

int bs_thread(void) {
for (j=0; j<NUM_RUNS; j++) {
mainWork doall;
tbb::parallel_reduce(tbb::blocked_range<int>(0,
numOptions, GRAIN_SIZE), doall);
acc_price = doall.getPrice();
}

return 0;
}

struct mainWork {
fptype price;

public:
void operator()(const tbb::blocked_range<int> &range) {
int begin = range.begin();
int end = range.end();
for (int i=begin; i!=end; i++)

local_price += BlkSchlsEqEuroNoDiv(...);
price +=local_price;

void join(mainWork &rhs){price += rhs.getPrice();}
fptype getPrice(){return price;}

};

pthread version

TBB version

Fig. 3. This example shows how blackscholes is ported to the TBB
environment. The original code consist of pthreaded code, where each thread
executes the function bs_thread(). In TBB, bs_thread() is only
executed by the main thread, and the template parallel_reduce is used
to annotate DOALL parallelism within the function’s main loop (in bold font
above). For clarity, not all variables and parallel regions are shown.

execute and then terminate, the reference count of the parent
is decreased by one. When this count reaches one, the parent
is scheduled for execution. The corresponding task hierarchy
is shown to the right of Figure 2.
It is possible for childTask() to create additional par-
allel tasks in a recursive manner. As worker threads use task
stealing to avoid becoming idle, child tasks start creating local
tasks until the number of available tasks exceeds the number
of available processors. At this point, worker threads dequeue
tasks from their local queue until their contents are exhausted.
This simple example shows how parallel code can be created

with little regard to the underlying machine characteristics
(i.e. number of cores). While easy to use, the abstraction
layer provided by the runtime library makes it difficult for
programmers to assess the performance cost of exploiting
available parallelism. In Section V we use real and simulated
measurements of CMP systems to characterize the cost of
basic TBB operations in order to better understand their
contribution to overall parallelization overhead.

IV. CHARACTERIZATION METHODOLOGY

A. Software Characteristics

We study the impact of the TBB runtime library on
parallel applications by porting a subset of the PAR-
SEC [14] benchmark suite: fluidanimate, swaptions,
blackscholes, and streamcluster. Out-of-the-box
versions of these benchmarks are parallelized using a coarse-
grain, static parallelization approach, where work is statically
divided among N threads and synchronization directives (bar-
riers) are placed where appropriate. We refer to this approach
as static; it will serve as the base case when considering TBB
performance.
In porting these benchmarks to the TBB environment, we
use version 2.0 of the Intel Threading Building Blocks library
[15] for the Linux OS. We use release tbb20_010oss, which
at the start of our study was the most up-to-date commercial
aligned release available (October 24, 2007). The most recent
release (tbb20_020oss, dated April 25, 2008), addresses in-
ternal casting issues and makes modifications to internal task
allocation and de-allocation, issues which do not modify the
outcome of our results.
We compile TBB using gcc 4.0, use the optimized

release library, and configure it to utilize the rec-
ommended scalable_allocator rather than malloc
for dynamic memory allocation. The memory allocator
scalable_allocator offers higher performance in mul-
tithreaded environments and is included as part of TBB.
Porting benchmarks is accomplished by applying available
parallelization templates whenever possible and/or by explic-
itly spawning parallel tasks. Since we want to take advantage
of TBB’s dynamic load-balancing, we aim at creating M

parallel tasks in an N core CMP system whereM ≥ 4 ·N . In
other words, at least four parallel tasks are created for every
utilized processor. In situations where this is not possible (in
DOALL loops with a small number of iterations, for example),
we further sub-partition parallel tasks in order to create ample
opportunity for load-balancing. An example of how a PARSEC
benchmark is ported to the TBB environment is shown in
Figure 3.
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Fig. 4. Measured (hardware) and simulated costs for basic TBB runtime activities. The overhead of basic action such as acquire_queue() and
wait_for_all() increase with increasing core counts above 4 cores for our simulated CMP.

In addition to porting existing parallel applications to the
TBB environment, we created a set of micro-benchmarks with
the purpose of stressing some of the basic TBB runtime pro-
cedures. Table II gives a description of the set of benchmarks
utilized in this study.

B. Physical Performance Measurements

Real-system measurements are made on a system with two
1.8GHz AMD chips, each with dual cores, for a total of four
processors. Cores includes 64KB of private L1 instruction
cache, 64KB of private L1 data cache, and 1MB of L2 cache
[16]. Performance measurements are taken using oprofile
[17], a system-wide performance profiler that uses processor
performance counters to obtain detail performance information
of running applications and libraries. We configure oprofile to
sample the event CPU_CLK_UNHALTED, which counts the
number of unhalted CPU cycles on each utilized processor.

C. Simulation Infrastructure

Since real-system measurements are limited in processor
count, we augment them with simulation-based measurements.
For our simulation-based studies, we use a cycle-accurate
CMP simulator modeling a 1 to 32 core chip-multiprocessor
similar to that presented in [18]. Each core models a 2-issue,
in-order processor similar to the Intel XScale core [19]. Cores
have private 32KB L1 instruction and 32KB L1 data caches
and share a distributed 4MB L2 cache. L1 data caches are
kept coherent using a MSI directory-based protocol. Each
core is connected to an interconnection network modeled as
a mesh network with dimension-routing. Router throughput is
one packet (32 bits) per cycle per port.
Our simulated processors are based on the ARM ISA. Since
the TBB system is designed to use atomic ISA support (e.g.
IA32’s LOCK, XADD, XCHG instructions), we extended our
ARM ISA to support atomic operations equivalent to those
in the IA32 architecture. This avoids penalizing TBB for its
reliance on ISA support for atomicity.

V. CHARACTERIZATION OF BASIC TBB FUNCTIONS

Dynamic management of parallelism requires the runtime
library to store, schedule, and re-assign parallel tasks. Since
programmers must harness parallelism whose execution time is
long enough to offset parallelization costs, understanding how
runtime activities scale with increasing core counts allows us
to identify potential overhead bottlenecks that may undermine
parallelism performance in future CMPs.
In measuring some of the basic operations of the TBB
runtime library, we focus on five common operations:

1) spawn() This method is invoked from user code to
spawn a new task. It takes a pointer to a task object as
a parameter and enqueues it in the task queue of the
worker thread executing the method.

2) get_task() This method is called by the runtime
library after completing the execution of a previous task.
It attempts to dequeue a task descriptor from the local
queue. It returns NULL if it is unsuccessful;

3) steal() This method is called by worker threads with
empty task queues. It first selects a worker thread as the
victim (at random), locks the victim’s queue, and then
attempts to extract a task class descriptor.

4) acquire_queue() This method is called by
get_task() and spawn() in order to lock the task
queue before a task pointer can be extracted. It uses
atomic operations to guarantee mutual exclusion.

5) wait_for_all() This is the main scheduling loop
of the TBB runtime library. It constantly executes and
looks for new work to execute and is also responsible for
executing parent tasks after all children are finished. We
report this cost as the total time spent in this function
minus the time reported by the procedures outlined
above.

All of the procedures listed above are directly or indirectly
called by the scheduler loop shown in Figure 1, which consti-
tute the heart of the TBB runtime library. They are selected
based on their total execution time contribution as indicated
by physical and simulated performance measurements.
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Fig. 5. Speedup results for three PARSEC benchmarks (top) and three micro-benchmarks (bottom) using static versus TBB. TBB improves performance
scalability by creating more tasks than available processors, however, it is prone to increasing synchronization overheads at high core counts.

A. Basic Operation Costs

Figure 4 shows measured and simulated execution costs
of some of the basic functions performed within the TBB
runtime library. We report the average cost per operation
by dividing the total number of cycles spent executing a
particular procedure by the total number of times the procedure
is used. Physical measurements are used to show function
costs at low core counts, while simulated measurements are
used to study the behavior at high core counts (up to 32
cores). Since our simulation infrastructure allows us to obtain
detailed performance measurements, we divide steal into
successful steals and unsuccessful steals. Successful steals are
stealing attempts that successfully return stolen work, while
unsuccessful steals are stealing attempts that fail to extract
work from another worker thread due to an empty task queue.
Figure 4 shows results for two micro-benchmarks,

bitcounter, and treeadd. Bitcounter exploits
DOALL parallelism through TBB’s parallel_for() tem-
plate. Its working set is highly unbalanced, which makes the
execution time of tasks highly variable. The micro-benchmark
treeadd is part of the TBB source distribution and makes
use of recursive parallelism.

A.1. Hardware Measurements

On the left hand side of Figure 4 real-system measurements
show that at low core counts, the cost of some basic functions
is relatively low. Functions such as get_task(), spawn(),
and acquire_queue() remain relatively constant and even
show a slight drop in average runtime with increasing number
of cores. This is because as more worker threads are added,
the number of function calls increases as well. However,
because the cost of these functions depends on their outcomes,
(task_get() and steal(), for example, have different
costs depending on whether the call is successful or unsuccess-
ful), the total cost of the function remains relatively constant,
lowering its average cost per call.

Figure 4 also shows an important contrast in the stealing be-
havior of DOALL and recursive parallelism. In bitcounter,
for example, worker threads rely more on stealing for ob-
taining work, allowing the average cost of stealing to in-
crease slightly with increasing cores due to increasing stealing
activity. For treeadd, where worker threads steal work
once and then recursively create additional tasks, the cost
of stealing remains relatively constant. Treeadd performs
a small number of steals (less than 7,000 attempts), while
bitcounter performs approximately 4 million attempts at
4 cores. Note that one-core results do not include stealing since
all work is created and executed by the main thread.

A.2. Simulation Measurements

In a similar way to our physical measurements, sim-
ulated results show that functions such as get_task()
and spawn() remain relatively constant, while the cost
of other functions such as acquire_queue() and
wait_for_all() increase with increasing cores. For
bitcounter, the cost of acquire_queue() increases
with increasing core counts while for treeadd it remains
relatively constant. Further analysis reveals that since tasks
structure variables are more commonly shared among worker
threads for bitcounter, the cost of queue locking increases
due to memory synchronization overheads. For treeadd,
task accesses remain mostly local, avoiding cache coherence
overheads.
The function wait_for_all() increases in cost for
both studied micro-benchmarks. Treeadd utilizes explicit
task passing (see Section II-B) to avoid calling the TBB
scheduler, reducing its overall overhead. Nonetheless, for
both of these benchmarks, atomically decreasing the parent’s
reference count creates memory coherence overheads that
significantly contribute to its total cost. For bitcounter,
memory coherence overheads accounts for 40% of the cost of
wait_for_all().
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As previously noted, the two benchmarks studied in Figure
4 have different stealing behavior, and thus different stealing
costs. For bitcounter, the cost of a successful steal remains
relatively constant at about 560 cycles per successful steal,
while a failed steal attempt takes less than 200 cycles. On
the other hand, the cost of a successful steal for treeadd
increases with increasing cores, from 460 cycles at 4 cores
to more than 1,100 cycles for a successful steal on a 32-
core system. Despite this large overhead, the number of
successful steals is small and has little impact on application
performance.
While many of these overheads can be amortized by in-
creasing task granularity, future CMP architectures require
applications to harness all available parallelism, which in many
cases may present itself in the form of fine-grain parallelism.
Previous work has shown that in order to efficiently parallelize
sequential applications as well as future applications, support
for task granularities in the range of hundreds to thousands of
cycles is required [20][21]. By supporting only coarse-grain
parallelism, programmers may be discouraged from annotating
readily available parallelism that fails to offset parallelism
management costs, losing valuable performance potential.

VI. TBB BENCHMARK PERFORMANCE

The previous section focused on a per-cost analysis of basic
TBB operations. In this section, our goal is to study the impact
of TBB overheads on overall application performance (i.e.
the impact of these costs on parallelism performance). For
this purpose, we first present TBB application performance
(speedup) followed by a distilled overhead analysis via cate-
gorization of TBB overheads.

A. Benchmark Overview

Figure 5 shows simulation results for static versus TBB
performance for 8 CMP configurations: 2, 4, 8, 9, 12, 16,
25, and 32 cores. While the use of 9, 12, or 25 cores is
unconventional, it addresses possible scenarios where core
scheduling decisions made by a high level scheduler (such
as the OS, for example) prevent the application from utilizing
the full set of physical cores.
One of the most noticeable benefits of TBB is its abil-
ity to support greater performance portability across a wide
range of core counts. In swaptions, for example, a static
arrangement of parallelism fails to equally distribute available
coarse-grain parallelism among available cores, causing severe
load imbalance when executing on 9, 12, and 25 cores. This
improved performance scalability is made possible thanks to
the application’s task programming approach, which allows
for better load-balancing through the creation of more parallel
tasks than available cores. This has prompted other parallel
programming environments such as OpenMP 3.0 to include
task programming model support [22].
While TBB is able to match or improve performance
of static at low core counts, the performance gap between
TBB and static increases with increasing core counts, as
in the case with swaptions, matmult, and LU. This
widening gap is caused by synchronization overheads within
wait_for_all() and a decrease in the effectiveness of
random task stealing. To better identify sources of significant
runtime library overheads, we categorize TBB overheads and
study their impact on parallelism performance. The perfor-
mance of random task stealing is studied in Section VII.

The performance impact of the TBB runtime library on our
set of applications is confirmed by our hardware performance
measurements. Table III shows the average percent time spent
by each processor executing the TBB library as reported
by oprofile for medium and large datasets. From the
table it can be observed that the TBB library consumes a
small, but significant amount of execution time. For example,
streamcluster spends up to 11% executing TBB pro-
cedures. About 5% of this time is spent by worker threads
waiting for work to be generated by the main thread, 4% is
dedicated to task stealing, and about 3% to the task scheduler.
TBB’s contribution at 4 cores is relatively low. However, it
is more significant than at 2 cores. Such overhead dependency
on core counts can cause applications to perform well at low
core counts, but experience diminishing returns at higher core
counts.

B. Categorization of TBB Overheads
Section V studied the average cost of basic TBB operations:

spawn(), get_task(), steal(), acquire_queue(),
and wait_for_all(). To better understand how the TBB
runtime library influences overall parallelism performance, we
categorize the time spent by these operations as well as the
waiting activity of TBB (described below) during program
execution into different overhead activities. However, since the
net total execution time of task allocation, task spawn, and task
dequeuing is less than 0.5% on a 32 core system for our tested
benchmarks, only four categories are considered:

• Stealing Captures the number of cycles spent deter-
mining the victim worker thread and attempting to steal
a task (pointer extraction).

• Scheduler This category included the time spent inside
the wait_for_all() loop.

• Synchronization Captures the time spent in locking
and atomic operations.

• Waiting This category is not explicitly performed by
parallel applications. Rather it is performed implicitly by
TBB when waiting for a resource to be released or during
the back-off period of unsuccessful stealing attempts.

Figure 6 plots the average contribution of the aforemen-
tioned categories. Two scenarios are shown: the top row
considers the case where the latencies of all atomic operations
are modeled, while the bottom row considers the case when
the cost of performing atomic operations within the TBB
runtime library is idealized (1-cycle execution latency). We
consider the latter case since TBB employs atomic operations
to guarantee exclusive access to variables accessed by all
worker threads. Some of these variables include the reference
count of parent tasks. As the number of worker threads is
increased, atomic operations can become a significant source
of performance degradation when a relatively large number of
tasks are created. For example, in swaptions, synchroniza-
tion overheads accounts for an average of 3% per core at 16

Benchmark Medium Large
fluidanimate 2.6% 5%
swpations 2.4% 2.6%

blackscholes 14% 14.8%
streamcluster 11% 11%

TABLE III

TBB OVERHEADS AS MEASURED ON A 4-PROCESSOR AMD SYSTEM

USING MEDIUM AND LARGE DATASETS.
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Fig. 6. Average contribution per core of the TBB runtime library on three PARSEC benchmarks. TBB contribution is broken down into four categories.
The top row shows TBB contribution when latency of atomic operations is appropriately modeled. The bottom row shows TBB contributions when atomic
operations are modeled as 1-cycle latency instructions.

cores (achieving a 14.8X speedup) and grows to an average of
52% per core at 32 cores, limiting its performance to 14.5X.
When atomic operations are made to happen with ideal single-
cycle latency, this same benchmark achieves a 15X speedup
at 16 cores and 28X at 32 cores. Swaptions is particularly
prone to this overhead due to the relatively short duration
of tasks being generated. This is typical, however, of the
aggressive fine-grained applications we expect in the future.
For our set of micro-benchmarks, synchronization overheads
degrade performance beyond 16 cores as shown in Figure 5.
Excessive creation of parallelism can also degrade perfor-
mance. For example, the benchmark blackscholes con-
tains the procedure CNDF which can be executed in parallel
with other code. When we attempt to exploit this potential for
concurrency, the performance of blackscholes decreases
from 19X to 10X. This slowdown is caused by the large
quantities of tasks that are created (from 6K tasks on a
simulated 8-core system to more than 6M tasks from paral-
lelizing the CNDF procedure), quickly overwhelming the TBB
runtime library as scheduler and synchronization
costs overshadow performance gains.
Discouraging annotation of parallelism due to increasing
runtime library overheads reduces programming efficiency as
it forces extensive application profiling in order to find cost-
effective parallelization strategies. Runtime libraries should be
capable of monitoring parallelism efficiency and of suppress-
ing cost-ineffective parallelism by executing it sequentially or
under a limited number of cores. While the design of such
runtime support is outside the scope of this paper, the next
section demonstrates how runtime knowledge of parallelism
can be used to improve task stealing performance.

VII. PERFORMANCE OF TASK STEALING

In this section, we take a closer look at the performance
of task stealing. Task stealing is used by worker threads to
avoid becoming idle by attempting to steal tasks from other
worker threads. Adequate and prompt stealing is necessary to

reduce potential sources of imbalance. This is particularly true
at barrier boundaries since failure to promptly reschedule the
critical path (the thread with the most amount of work) can
lead to sub-optimal performance.
To study the behavior of random task stealing in TBB,
we make use of three micro-benchmarks and monitor the
following two metrics:

• Success rate: The ratio of successful steals to the number
of attempted steals.

• False negatives: The ratio of unsuccessful steals and steal
attempts given that a worker in the system had at least
one stealable task.

A. Initial Results

Figure 7 shows our results. As noted by this figure, random
stealing suffers from performance degradation (decreasing suc-
cess rate) as the number of cores is increased. This variability
in performance is more noticeable in micro-benchmarks that
exhibit inherent imbalance (bitcounter and LU), where
the drop in the success rate is followed by an increase
in the number of false negatives as the number of cores
increases. Our results show that random victim selection, while
effective at low core counts, provides sub-optimal performance
at high core counts by becoming less “accurate,” particularly
in scenarios where there exists significant load imbalance.

B. Improving Task Stealing

We attempt to improve stealing performance by imple-
menting two alternative victim selection policies: occupancy-
based, and group-based stealing. In our occupancy-based
selection policy, a victim thread is selected based on the
current occupancy level of the queue. For this purpose, we
have extended the TBB task queues to store their current task
occupancy, increasing its value on a spawn() and decreasing
it on a successful get_task() or steal.
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Fig. 7. Stealing behavior for three micro-benchmarks. For benchmarks with significant load imbalance such as bitcounter and LU, random task stealing
losses accuracy as the number of worker threads is increased, increasing the amount of false negatives and decreasing stealing success rate.

Our occupancy-based stealer requires all queues to be
probed in order to determine the victim thread with the most
work (highest occupancy). This is a time consuming process
for a large number of worker threads. Our group-based stealer
mitigates this limitation by forming groups of cores of at most
5 worker threads. When a worker thread attempts to steal, it
searches for the worker thread with the highest occupancy
within its own group. If all queues in the group are empty,
the stealer selects a group at random and performs a second
scan. If it is still unsuccessful, the stealer gives up, waits for
a predetermined amount of time, and then tries again.
Table IV shows the performance gain of our occupancy-
based and group-based selection policies for 16, 25, and 32
core systems. Two additional scenarios are also shown: ideal
occupancy, and ideal stealer. Ideal occupancy, similarly to
our occupancy-based stealer, selects the worker thread with the
highest queue occupancy as the victim, however, the execution
latency of this selection policy is less than 10 cycles1. Our
ideal stealer is the same as ideal occupancy stealer, but also
performs actual task extraction in less than 10 cycles (as
opposed to hundreds of cycles reported in Section V).
Overall, occupancy-based and group-based victim selection
policies achieve better performance than a random selection
policy. When the latency of victim selection is idealized (ideal
occupancy), the performance marginally improves. However,
when both selection and extraction of work is idealized,
speedup improvements of up to 28% can be seen (matmult),
suggesting that most of the overhead in stealing comes from
instruction and locking overheads associated with task extrac-
tion.
With future CMP systems running multiple parallel ap-
plications and sharing CPU and memory resources, future
runtime libraries will require dynamic approaches that are
able to scale with increasing core counts while maximizing
performance. We have shown how current random stealing
approaches provide sub-optimal performance as the probability
of selecting the “best” victim decreases with increasing core
counts. Occupancy-based policies are able to better identify the
critical path and re-assign parallelism to idle worker threads.

VIII. GENERAL RECOMMENDATIONS

Based on our characterization results and experience with
the TBB runtime library, we offer the following recommenda-
tions for programmers and runtime library developers:

1This latency is imposed by our CMP simulator.

For programmers: At low core counts (2 to 8 cores), most
of the overhead comes from the usage of TBB runtime pro-
cedures. Creating a relatively small number of tasks might be
sufficient to keep all processors busy with sufficient opportu-
nity for load balancing. At higher core counts, synchronization
overheads start becoming significant. Excessive task creation
can induce significant overhead if task granularity is not
sufficiently big (approximately 100K cycles). In either case,
using explicit task passing (see Section II-B) is recommended
to decrease some of these overheads.
For TBB developers: While it might be difficult to reduce
synchronization overheads caused by atomic operations within
the TBB runtime library (unless specialized synchronization
hardware becomes available [23]), offering alternative task
stealing policies that consider the current state of the runtime
library (queue occupancy, for example) can offer higher paral-
lelism performance at high core counts. Moreover, knowledge
of existing parallelism can help drive future creation of concur-
rency. For example, when too many tasks are being created,
the runtime library might be able to “throttle” the creation
of additional tasks. In addition, while not highly applicable
to our tested benchmarks, we noted an increase in simulated
memory traffic caused by the “random” assignment of tasks
to available processors. An initial deterministic assignment
of tasks followed by stealing for load-balancing might help
maintain data locality of tasks.

IX. RELATED WORK

CMPs demand parallelism from existing and future soft-
ware applications in order to make effective use of avail-
able execution resources. The extraction of concurrency from
applications is not new, however. Multi-processor systems
previously influenced the creation of software runtime libraries
and parallel languages in order to efficiently make use of
available processors. Parallel languages such as Linda [11],
Orca [24], Emerald [25] and Cilk [6], among many oth-
ers, were designed with the purpose of extracting course-
grain parallelism from applications. Runtime libraries that
extended sequential languages for parallelism extraction such
as Charm++ [4], STAPL [5] and OpenMP [7] have become
valuable tools as they allow programmers to create parallel
applications in an efficient and portable way. Many of these
tools and techniques can be directly applied to existing CMP
systems, but in doing so, runtime libraries also bring their
preferred support for coarse-grain parallelism. This work has
taken an important step towards the development of efficient
runtime libraries targeted at CMPs with high core counts by
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Our Approach Ideal
Benchmark Occupancy Group-Occupancy Ideal Occupancy Ideal Stealer

P16 P25 P32 P16 P25 P32 P16 P25 P32 P16 P25 P32

bitcounter 2.5% 2.5% 3.7% 2.3% 3.5% 4.2% 2.41% 2.8% 3.7% 4.7% 6.9% 7.8%

LU 10% 4.1% 9.7% 9.9% 4.3% 8.3% 10.2% 4.6% 8.0% 16.0% 10.4% 20.6%

matmult 9.5% 6% 19% 8.2% 5.3% 17.8% 9.8% 7.0% 21.1% 10.8% 9.8% 28.7%

TABLE IV

MICRO-BENCHMARK PERFORMANCE IMPROVEMENTS OVER DEFAULT RANDOM TASK STEALING WHEN USING AN IDEAL OCCUPANCY-BASED VICTIM

SELECTOR, AND AN IDEAL OCCUPANCY-BASED VICTIM SELECTOR WITH IDEAL TASK EXTRACTION. OUR STEALING POLICIES IMPROVE PERFORMANCE

BY NEARLY 20% OVER RANDOM STEALING AND COME CLOSE TO IDEAL BOUNDS. WE EXPECT LARGER IMPROVEMENTS FOR LARGER CORE COUNTS.

highlighting some of the most critical overheads found within
the TBB runtime library.

X. CONCLUSIONS AND FUTURE WORK

The Intel Threading Building Blocks (TBB) runtime library
is an increasingly popular parallelization library that encour-
ages the creation of portable, scalable parallel applications
through the creation of parallel tasks. This allows TBB to
dynamically store and distribute parallelism among available
execution resources, utilizing task stealing for improve re-
silience to sources of load imbalance.
This paper has presented a detailed characterization and
identification of some of the most significant sources of
overhead within the TBB runtime library. Through the use
of a subset of PARSEC benchmarks ported to TBB, we show
that the TBB runtime library can contribute up to 47% of the
total execution time on a 32-core system, attributing most of
this overhead to synchronization within the TBB scheduler.
We have studied the performance of random task stealing,
which fails to scale with increasing core counts, and shown
how a queue occupancy-based stealing policy can improve
performance of task stealing by up to 17%.
Our future work will focus on approaches that aim at reduc-
ing many of the overheads identified in our work. We hope to
accomplish this through an underlying support layer capable
of offering low-latency, low-overhead parallelism management
operations. One way to achieve such support is through a
synergistic cooperation between software and hardware layers,
giving parallel applications the flexibility of software-based
implementations and the low-overhead, low-latency response
of hardware implementations.
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