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Abstract

Compiler-parallelized applications are increasing in importance as moderate-scale multiproces-
sors become common. This paper evaluates how features of advanced memory systems (e.g.,
longer cache lines) impact memory system behavior for applications amenable to compiler par-
allelization. Using full-sized input data sets and applications taken from standard benchmark
suites, we measure statistics such as speedups, synchronization and load imbalance, causes of
cache misses, cache line utilization, data traffic and memory costs.

This exploration allows us to draw several conclusions. First, we find that larger granularity
parallelism often correlates with good memory system behavior, good overall performance, and
high speedup in these applications. Second, we show that when long (512 byte) cache lines are
used, many of these applications suffer from false sharing and low cache line utilization. Third,
we identify some of the common artifacts in compiler-parallelized codes that can lead to false
sharing or other types of poor memory system performance, and we suggest methods for improv-
ing them. Overall, this study offers both an important snapshot of the behavior of applications
compiled by current parallelizing compilers, as well as an increased understanding of the inter-
play between cache line size, program granularity, and memory performance in moderate-scale
multiprocessors.

1 Introduction

Historically, parallel programming has been the domain of a relatively small group of highly
knowledgeable and dedicated supercomputer users. Recent architectural advances, however,
have propelled moderate-scale parallel computers into widespread use as general-purpose nu-
meric compute servers. Increased reliance on compiler-parallelized applications will not only be
a natural fallout from this transition to widespread moderate-scale parallel architectures; it will
also likely be one of the driving forces that help bring it about.

Although parallelizing compilers are not always successful, evidence indicates they are finally
reaching the stage where they can parallelize many interesting scientific codes. Their increasing
success opens parallel computing to a broad spectrum of users, since parallel programs can
be developed with little effort beyond what is required to develop sequential programs. In



a realm where parallel computers are widely available, compiler-parallelized applications are
likely to be the workload of choice for most users. However, relatively little is known about their
characteristics.

In particular, memory system behavior has been shown to have a significant impact on the
performance of scalable multiprocessors [7, 10, 16]. Because of the increasing disparity between
processor and memory speeds, memory systems have been evolving towards longer cache lines in
order to hide memory latency. Researchers have studied how this trend affects carefully tuned
hand-parallelized programs [22, 26]. In this paper, we examine the memory system behavior of
a new class of applications—those amenable to compiler parallelization. Qur goal is to evaluate
how these programs are impacted by advanced memory systems.

This paper makes several contributions:

e We provide a detailed examination of the memory behavior of compiler-parallelized ap-
plications. Extending on previous work in [24], we characterize the application behavior
on both PRAM (parallel random access memory) and more realistic memory models. We
use an extensive collection of real applications taken from well-known benchmark suites
such as SPEC, NAS, and PERFECT. We evaluate these benchmarks on full-sized data
sets, using metrics such as speedups, memory overheads, causes of cache misses, cache line
utilization and useful data traffic.

e Based on these measurements, we show that the granularity of application parallelism is
an important determinant of application memory behavior, and ultimately of application
performance. For many applications, we find granularity is a function of data set size.

e Finally, our research has led to a better understanding of the artifacts (e.g., small in-
ner parallel loops) that can cause excessive false and true sharing. We give examples
demonstrating that advanced compiler techniques such as array privatization and inter-
procedural parallelization can increase parallelism granularity, improving memory system
performance.

Overall, this study provides a snapshot of the interactions between current compilers, parallel
architectures, and applications. Its results can benefit both architects and compiler writers for
multiprocessors. Architects can observe how an important class of programs with characteristics
different from hand-parallelized programs will behave in relationship to trends in architecture
design. Compiler writers can apply these quantitative measurements to improve the behavior
of compiler-parallelized applications and avoid problematic patterns. In particular, the effect
of parallelism granularity on memory system behavior is vital for both architects and compiler
writers to keep in mind when attempting to exploit fine-grain parallelism on advanced memory
systems.

In the following sections, we describe the compiler, simulation methodology, and applications
used in our experiments. We present our measurements for these programs, then examine the
behavior of the compiler in greater detail before concluding.

2 The SUIF Parallelizing Compiler

For our study we used the SUIF parallelizing compiler [25] to generate parallel versions of
our applications. SUIF takes as input sequential Fortran or C programs, producing as output



parallel C programs that execute according to a master-worker model. For each program, SUIF
performed identical set of analyses and optimizations. SUIF contains most of the features found
in commercial parallelizing compilers such as KAP; these techniques include data dependence
analysis, supporting scalar analyses such as constant propagation, induction variable recognition
and scalar privatization and reduction recognition. Additionally, SUIF performs both array
privatization and interprocedural analysis. Section 7.3 will demonstrate the importance of these
advanced features. While the SUIF compiler also incorporates new techniques for improving
data locality, we disabled these optimizations for this study so that the compiler-parallelized
code more closely matches that produced by today’s commercial systems.

For this experiment, we use a very simple approach to generating parallel code. The compiler
finds the outermost loop in a loop nest for which it is safe to perform parallelization. Once SUIF
identifies a parallel loop, its iterations are divided at compile time so that each processor performs
a roughly equal number of consecutive iterations. Thus, for a loop with N iterations executed on
P processors, processor 0 performs the first [ N / P | iterations, processor 1 performs the next
[ N / P ] iterations, and so on. This simple static scheduling heuristic maintains locality and
minimizes run-time overhead; measurements show it does not lead to significant load imbalance
for our application suite. SUIF programs rely on a run-time system built from ANL macros
for thread creation, barriers, and locks. The run-time system has been tuned to eliminate false
sharing and minimize true sharing; it has been ported to the Stanford DASH [16], SGI Challenge,
and KSR-1 multiprocessors.

3 Methodology

For these experiments, we used an extended version of the MemSpy simulator [18, 19] and the
TangoLite simulation and tracing system [4, 8]. TangoLite allows simulation of parallel programs
by multiplexing their execution on a uniprocessor workstation. Because of this multiplexing,
simulation statistics will vary depending on how often one switches between simulated threads.
To fully capture potential sharing between processors, in this work we choose to interleave
between threads at each memory reference.

MemSpy supports monitoring cold, replacement, and invalidation cache misses on a proce-
dure and data item basis. For our study we have further broken down the category of invalidation
misses into true sharing and false sharing misses using the scheme described by Dubois et al.
[5]. In this definition, a true sharing miss occurs if: during a lifetime of the line in the cache,
the processor accesses a word written by a different processor since the last true, cold or re-
placement miss by the same processor to the same cache line. This classification captures the
prefetching effect of multiword lines in communicating newly defined values. In addition, we
also study upgrade misses. When a line is cached non-exclusively, other processors may also be
caching it. A write to that line forces an “upgrade” to exclusive mode, in which the coherence
hardware sends out invalidations to the other processors caching the line. This transition from
non-exclusive to exclusive mode caching is referred to as an upgrade miss.

3.1 Memory Systems Simulated

For our study we simulated two basic memory systems. First, we used an “ideal” PRAM
memory system to characterize each application. In our PRAM model the memory system
includes caches, but all memory access latencies are 1-cycle, so cache hits and cache misses take
the same amount of time to complete. Speedups on the PRAM system are limited only by the



amount of parallelism discovered by the compiler and load imbalance in the parallel code. We
have chosen to present the bulk of our application characterization results using this PRAM
mode because it allows us to measure inherent caching behavior without incurring the timing
variations caused by more detailed architectural models.

We include additional results on an advanced memory system that more closely resembles an
aggressive next-generation multiprocessor. It has a directory-based cache-coherent non-uniform
memory access memory system with a high speed interconnect [14, 16]. Each processor has a
single-level, least-recently-used cache whose size, associativity, and line size we vary. The penalty
for a cache miss is dependent on the line size; Table 1 shows the cache miss penalties calculated
for these machine parameters on a 16 processor system, assuming no contention. The penalties
are calculated in terms of processor cycles. A local miss occurs when a cache miss is satisfied
by the local memory at each processor. A remote clean miss occurs when the value is located
at a remote node and has not been modified. A dirty remote miss is when the value is located
remotely but has been modified — this implies an additional network hop to locate the correct
value.

Line size | Local miss | Remote clean | Dirty remote
8 bytes 48 180 264

16 bytes 49 185 269

32 bytes 50 194 278

64 bytes 52 212 296

128 bytes 56 248 332

256 bytes 64 310 394

512 bytes 80 444 528

Table 1: Cache miss penalties (cycles) vs. line size.

In comparison to our earlier study of compiler-parallelized codes [24], the machine model
in this work includes a realistic simulation of write buffering, and more detailed simulation of
contention. In particular, we model contention for the local memory bus and memory ports. We
do not model contention for the network, however, because our numbers indicate that network
contention is not likely to be a limiting factor. A round-robin page allocation policy is employed
to reduce contention. Each processor has an 8-entry write-buffer. Finally, we use a single-cycle
barrier synchronization cost.

For our study, we measure memory system performance over a range of cache line lengths (8
to 512 bytes), set associativities (direct-mapped, 4-way, and fully-associative), and cache sizes
(8KB to 1 MB). Due to space limitations, we choose to present results mostly for a baseline
memory system with a 1 MB, 128 byte line 4-way set-associative cache. The cache parameters
were selected to model a forward-looking multiprocessor memory hierarchy.

4 Applications: Background and Motivation

The applications used in our study consist of codes taken from standard scientific benchmark
suites; their characteristics are listed in Table 2. Since we wish to evaluate their memory system
behavior, and not the effectiveness of the SUIF compiler at finding parallelism, we selected
programs where SUIF successfully parallelizes most of the code. Thus, our chosen benchmarks
are not representative of all compiler-parallelizable codes, but rather of those whose performance



Refs. Parallel Parallel
Program Suite Description Input Data Set (MB) | Simd. | Coverage Gran.
(105) (%) (10° cycles)
COMPILER-PARALLELIZED BENCHMARKS
appbt NAS block-tridiagonal PDEs 12® grid (1.30) 48 100 5.73
appsp NAS scalar-pentadiagonal PDEs 122 grid (0.32) 18 98 0.30
cgm NAS sparse conjugate gradient 1400 array elems. (2.88) 37 98 1.02
erle64 MISC ADI integration 64> array elems.  (4.70) 18 100 14.59
flo52 PERFECT transonic inviscid flow 40x8 grid (1.09) 92 99 0.23
hydro2d SPEC Navier-Stokes 102x40 grid (0.62) 22 98 0.02
mgrid NAS multigrid solver 323 grid (1.09) 74 94 3.05
ora SPEC ray tracing 650 array elems.  (0.04) 31 100 213.92
simple RICEPS | Lagrangian hydrodynamics 203x183 grid (3.17) 62 94 2.36
su2cor SPEC quantum physics 8%x16 grid (4.22) | 240 98 0.05
swm256 SPEC shallow water model 2562 grid (3.73) 44 100 5.34
tomcatv SPEC mesh generation 2562 grid (3.72) 44 100 4.88

Table 2: Characteristics of scientific applications in study.

does not suffer from non-memory-related problems. (Previous work has compared some of
these codes to a set of hand-parallelized applications [24].) We define parallel coverage as the
percentage of sequential program execution time spent inside parallel regions. Using pixie to
instrument each program, we found parallel coverage of our programs by the SUIF compiler was
between 94 and 100%. Sufficient parallelism has thus been uncovered; we can concentrate on
evaluating the impact of memory system behavior on performance.

Another measure of parallelism is granularity, the amount of computation enclosed in each
parallel region. Programs with high granularity synchronize infrequently, thus performing little
communication relative to time spent doing useful work in parallel. We derived our granularity
measurements by first determining the number of instruction cycles per invocation of each
parallel loop, and then computed a weighted average of the number of cycles based on the
percentage of sequential execution time spent in each loop. The resulting granularities for each
program are presented in Table 2. As we will show in Section 6.3,for many applications the
compiler’s ability to exploit larger granularities of parallelism is correlated to good memory
performance.

For brevity, in the remainder of the paper we shall refer to these programs as the SUIF appli-
cations. Each program uses the standard data set provided; in the case of the NAS benchmarks,
we use the smaller of the standard data sets. By using standard data set sizes, we avoid the red-
herring memory performance problems that might be caused by unrealistically small problem
sizes. Where necessary we have reduced the number of time steps in each application to limit
simulation time. To prevent initialization behavior from skewing results, we reset statistics after
initialization and cold start.

4.1 Motivation

To motivate our research, Figure 1 shows speedups for 16 processor simulations for the PRAM
and advanced memory systems described earlier. Speedups are calculated relative to a uniproces-
sor run on the same memory model. For the PRAM system, SUIF applications achieve average
speedups of 12.1, demonstrating that compilers can exploit reasonable levels of parallelism for
these scientific applications.

When we look at speedups for the more realistic baseline memory system, the picture is quite
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Figure 1: Application speedups for PRAM and advanced memory systems.

different. We found speedups remain quite high for some applications, but most drop signifi-
cantly compared to the ideal memory system. At 16 processors, speedups for SUIF applications
range from 0.6 to 16 with an average speedup of 7.6. These simulated speedups correspond well
with actual speedups observed for these programs on the Stanford DASH and SGI Challenge
multiprocessors [11, 25].

Clearly then, memory overhead is a primary factor in the less than linear speedups displayed
by most of these applications. Ideally we would like to understand what aspects of these appli -
cations are not amenable to features of advanced memory systems when executing in parallel.
Towards this goal, we present experimental data in two main categories. F irst, we use a PRAM
model to explore basic application characteristics such as the working set size, the spatial lo-
cality, and the type and degree of sharing present. Following this, in Section 6, we shift to a
more realistic memory system model to study the impact of these characteristics on program
performance in machines with memory latencies representative of current parallel machines.

5 Application Characteristics on an Idealized Memory System

In this first section of results, we characterize the applications according to their behavior on
the PRAM system previously described. This allows us to study the application sharing and

memory referencing characteristics that are largely inherent, rather than tied strongly to a

particular memory latency model. Our goal here is to establish a basic understanding about
the inherent locality and sharing in these applications before moving on in Section 6 to study
their performance with more realistic memory latencies. We measure both temporal and spatial
locality by varying the cache size and cache line size respectively. Temporal locality refers to the

property that if a value has been used, it is likely to be used again in the near future. Spatial
locality refers to the property that if a value has been used, then it is likely that a value near to

it in memory will be used in the near future.

5.1 Effect of Cache Size and Set Associativity

Figure 2 shows the cache miss rate for 16 processor runs of each compiler-parallelized application.
Results are presented for direct-mapped, four-way, and fully-associative caches as the cache size
varies from 8 KB to 1 MB. The cache line size is held constant at 128 bytes. (Note that due to
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Figure 2: Cache misses vs. cache size and set associativity.

the widely varying miss rates, the y-axis scale differs for each application.)

We see that applications generally show significant relative drops in their cache miss rates
as the cache size is increased. We find that only two programs, erle64 and swm256, possess
sufficiently large working sets to benefit from caches larger than 128KB. By the time the cache
size is increased to 1 MB, all the miss rates for all applications have plateaued; beyond this
point, further increases in cache size do not reduce cache miss rate significantly.

Most applications had reduced miss rates when increasing associativity from direct-mapped
to four-way caches. Smaller gains result going from four-way to fully-associative caches. Two
applications, appsp and erle64 show a large difference between four-way and fully associative
caches for smaller cache sizes; for erle64, these differences become negligible at 128KB cache
sizes, while for appsp they are reduced at a 512KB cache. (Both of these applications possess
multiple large data arrays that conflict in a 128KB cache.) For tomcatv, four-way and fully
associative miss rates roughly merge at 32KB caches, but interference remains severe in the
direct-mapped cache up to the 512KB cache size. Overall, we found 4-way and fully-associative
caches generally yielded similar results.

These results demonstrate that our choice of a 4-way associative, 1 MB cache for our baseline
advanced memory system is reasonable for avoiding excessive capacity and conflict cache misses.
With this configuration, the essential spatial locality and interprocessor sharing is exposed.



5.2 Application Sensitivity to Cache Line Size (Spatial Locality)

As processor speeds continue to increase faster than memory speeds, there has been a corre-
sponding trend towards increasing the cache line size. This increase attempts to take advantage
of spatial locality in applications in order to amortize latency over more data. It is important
to note that the decision to move to longer cache lines is being driven largely by uniprocessor
system design. In uniprocessors, cache miss rates behave predictably with increasing line size,
decreasing at first, eventually increasing as cache conflicts start to dominate.

Unfortunately, miss rates are not so predictable for multiprocessor caches [15, 23]. Longer
cache lines may prove problematic for parallel codes for several reasons. First, false sharing may
cause cache misses on logically separate data placed on the same cache line. Second, applications
may exhibit less spatial locality when executing in parallel, depending on how computation is
partitioned. Finally, longer cache lines may lead to increased data traffic, causing memory
contention. Previous research has shown false sharing to be a problem for hand-parallelized
applications [7]. Our study attempts to evaluate the effect of longer cache lines on applications
amenable to compiler parallelization. By varying the cache line size, we are in effect measuring
the spatial locality of compiler-parallelized applications.

In the subsections that follow, we look at the effect of longer cache lines on the parallelized
applications, assuming a PRAM model. We examine their effect on (i) cache miss rates and
causes, (ii) data and coherence traffic, and (iii) cache line utilization.

Cache Miss Rate Change
Miss (vs. line size) 8B 32B 128B
Run Type &B 32B 128B | 512B | —32B | —128B | —512B
1 proc All 6.17% | 1.56% | 0.40% | 0.11% | -74.7% | -74.3% | -72.7%

16 proc All 8.83% | 3.04% | 3.83% | 6.30% | -65.6% | +26.3% | +64.2%
False 0.10% | 0.34% | 2.24% | 5.02% | 250% 553% 125%
True 4.05% | 1.31% | 0.61% | 0.41% | -68% -54% -33%
Cold 0.62% | 0.17% | 0.06% | 0.03% | -72% -67% -54%
Repl 1.60% | 0.42% | 0.12% | 0.07% | -74% -71% -45%

Upgrade | 2.45% | 0.79% | 0.81% | 0.77% | -68% 2% - 5%

Table 3: Cache miss rates for varying line sizes. Numbers represent averages calculated over all
twelve SUIF applications.

5.2.1 Cache Misses

Table 3 presents average cache miss rates for a four-way set associative 128KB cache. The
average is calculated by adding each application’s miss rate together and dividing by the total
number of applications. They show that for uniprocessors SUIF programs have sufficient spatial
locality to reduce cache misses with lines up to 512 bytes. In the one-processor results, the miss
rate drops steadily, and almost proportionally to the increase in cache line length.

With 16 processors, however, the picture changes. The transition from 8-byte lines to 32-byte
lines improves the miss rate for all 12 of the applications. On average, the miss rates improve
by 65.6%. In the transition from 32-byte lines to 128-byte lines, ten out of twelve applications
get further benefits from the increased line size. The two applications which do not benefit
from 128-byte lines are simple and su2cor. In particular, simple has a large jump in false sharing
misses. At 32 byte lines, 1.9% of simple’s references result in false sharing misses, while with
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Figure 3: Cache misses vs. cache line size (1 and 16 processors).

128 byte lines, this percentage jumps to 22.1% (and skews the overall averages seen in Table 3.)

In moving from 128 byte lines to 512 byte lines, the applications get less benefit. Seven out of
twelve applications have improved miss rates at these very long cache lines, but in Section 6 we
will show that these improved miss rates do not necessarily translate into improved performance.
For the other five out of twelve applications (appsp, flo52, simple, su2cor, and tomcatv) increasing
the line size causes increases in miss rate. While appsp and flo52 have a relatively moderate
increase, from 3.1% to 4.9% and from 1.3% to 1.6% respectively, the miss rates in the other
three applications increase drastically, resulting in double-digit miss rates at the 512 byte line
size. Thus, although most of the applications appear to have sufficient spatial locality to take
advantage of 128 byte lines, cache lines longer than that lead to excessive sharing in several of
the programs.

To look at this in more detail, Figure 3 shows the cache miss rate and causes of cache misses
for each application over a range of cache line sizes. The figure shows that the applications
divide themselves into two main categories. Seven of the twelve applications (appbt, cgm, erle64,
hydro2d, mgrid, ora, and swm256) have miss rates that drop monotonically with increases in
line size. These applications are dominated by the uniprocessor effects dictating that program
spatial locality will allow increases in cache line size to reduce cold misses without significantly
increasing false sharing, and thus improve overall caching performance.

Four of the remaining applications (appsp, simple, su2cor, tomcatv) have significant inter-
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Figure 4: Cause of cache misses vs. cache line size (16 processors).

processor sharing which causes their miss rate graphs to take on a different shape. For these
four programs, increases in line size from 8 bytes begin by causing improvements in cache miss
rates; the benefits from spatial locality outweigh the costs of increased false sharing. Beyond
a certain point however (64 byte lines for appsp, 32 byte lines for simple, 16 byte lines for
su2cor, and 128 byte lines for tomcatv), false sharing effects begin to dominate. For these four
applications, false sharing misses represent over half the program misses when the cache line
size is 256 bytes. The final application (flo52) has a well-behaved monotonic decrease for all but
the largest cache line size, where it increases slightly.

Figure 4 presents cache miss rates and their causes in more detail for our baseline system.
The overall miss rate of each application is indicated by the height of the bar. Within each
bar, shadings represent different causes of cache misses. The bars are broken down into five
possible types of cache misses: (i) false sharing misses, (ii) true sharing misses, (iii) cold (or
compulsory) misses, (iv) replacement misses, and (v) those occurring when a line is written to
while in non-exclusive mode, resulting in an upgrade operation to transition to exclusive mode.

For programs that exhibit “perfect” spatial locality, increasing the line size by a factor of n
will decrease the number of cold and replacement misses by the same factor n, ignoring cache
conflicts. Increasing the line size four times can thus potentially reduce cache misses by 75%. Of
the three SUIF programs (erle64, swm256, and to a lesser degree tomcatv) which are dominated
by a large number of replacement misses, the replacement misses exhibit good but not ideal
spatial locality. Only two SUIF applications, cgm and ora have almost ideal behavior for cold
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and replacement misses as the line size is increased.

Even if an application has perfect spatial locality in a single processor reference stream,
the interleaving of references from multiple processors introduces the possibility of false sharing
misses. Figure 4 shows false sharing misses tend to increase as the line size is increased. In
general this increase is slow, and is more than compensated for by the corresponding decrease in
the other classes of misses. All SUIF applications except simple reduced miss rates going from
32 to 128 byte lines, and 7 of 12 continued to reduce misses going from 128 to 512 byte lines. It
is important to note that when false sharing is encountered, its effect is frequently drastic (as in
simple). Section 7.1 discusses distinguishing access patterns in compiler-parallelized programs
that lead to excessive false sharing.

From Table 3, we see that cold misses come closest to ideal improvements. Averaged over all
the applications, they decrease 72% in going from 8 byte to 32 byte lines, 66% between 32 bytes
and 128 bytes, and an additional 52% in going from 128 bytes to 512 bytes. While true sharing
miss rates decrease as line size increases, the decrease is not as great as for cold or replacement
misses. For the same line size transitions as above, true sharing misses decrease by 68%, 55%,
and 31% respectively. This result suggests that lines that are invalidated from the cache (i.e.
actively shared lines) exhibit less spatial locality than other cache lines. In the following section,
we investigate this observation further.

5.2.2 Data and Coherence Traffic

Cache miss rates only tell one half of the story. Figure 5 illustrates how a particular miss rate
translates into an application’s actual data traffic requirements. This figure displays data traffic
for each program in bytes per instruction, which adjust for varying run times of the applications,
and gives intuition about the applications’ computation to communication ratios.

Traffic is divided into six categories. Shared traffic corresponds to inherent communication
data traffic and comprises both true and false sharing misses. Cold and replacement traffic
represent cold and replacement miss data traffic. Writeback is data written back to memory
because it has been modified in the local cache. Qwerhead is comprised of the 16-byte header
information associated with each network transaction. Finally, local traffic is data written to
and from the local memory for each processor — this traffic does not go over the network.

The applications break into several groups. One application (ora) has essentially negligible
traffic at any cache line size. Five of the applications (appbt, cgm, erle64, flo52, mgrid) have
less than 1 byte of data traffic per instruction for all but the longest cache lines. The other
six applications (appsp, hydro2d, swm256, simple, su2cor, and tomcatv2) all have significant data
traffic requirements. For 512 byte lines, most of this group (all but swm256) have data traffic of
5 or more bytes per application instruction executed.

5.2.3 Cache Line Utilization

To study traffic requirements in more detail, we use another metric related to data traffic that
we term cache line utilization. For each line of data brought into the cache, cache line utilization
indicates what percentage of the line is touched before the line is evicted or invalidated from
the cache. This metric is a good indicator of spatial locality, because it shows how effectively
the program is making use of longer cache lines. (This metric is similar to one that Torrellas et
al. used in [23], where they studied the number of words touched in a cache line.)

Figure 6 gives a utilization graph per application for a 16 processor execution. The shaded
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Figure 6: Cache line utilization vs. cache line size (16 processors).

bars indicate the overall cache line utilization for each application across a range of cache line
sizes. The dark boxes show the utilization trends for the lines that were invalidated out of the
cache, while the white boxes show the utilization trends for the remaining lines.

It is apparent that overall utilization rates decrease as cache line sizes increase, sometimes
very quickly. The average utilization for SUIF programs drops from 85.5% at 32 byte lines to
64.9% at 128 byte lines. In going from 128 to 512 byte lines, it drops again to 43.6%. The low
utilizations indicate that much of the data fetched into cache for longer cache lines is unused.

5.2.4 Classification of Utilization

As we have seen, low cache line utilization leads to large amounts of unused data traffic. In order
to focus on the causes of poor cache line utilization for these applications, we ran experiments
in which we further divided utilization statistics into two categories: lines that leave the cache
due to invalidation and the remaining cache lines. The curves formed by the dark and light
boxes in Figure 6 show the the utilization for invalidated cache lines, and all other cache lines,
respectively. For most applications, with a 128 byte line size, invalidated cache lines exhibit
lower utilization than the other cache lines. The intuitive explanation is that if lines are evicted
by invalidation, either true or false sharing may have led to the line being prematurely evicted
from the cache. (One exception, appsp, is due to pathological conflicts in the four-way associative
cache.) As the line size increases, a larger fraction of the misses become invalidation misses, the
“other” set can be quite small, and so the statistics of that set are sometimes (as in hydro2d and
su2cor) based on too small a set of references to be representative.
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Figure 7: Cause of cache misses vs. processors.

Overall, distinguishing utilization behavior can be important, because the bimodal behavior
suggests that special optimizations for each type of behavior may be possible. In systems allowing
flexible protocols (such as Tempest [21]), one could specialize handling for each type of data.
Essentially, the protocol could implement smaller coherence units for the previously-invalidated
data, while maintaining coherence units equal to the cache line size for the previously replaced
data. Alternatively, prefetching techniques could make use of this information to focus efforts
on fetching non-invalidated cache lines in order to exploit their higher degree of spatial locality.

5.3 Effect of Number of Processors (Communication-to-Computation Ratio)

In addition to measuring the spatial locality of compiler-parallelized applications, we would also
like to measure the scalability of these applications by measuring their inherent communication
as the number of processors increases. By varying the number of processors, we are in effect
measuring the computation-to-communication ratio of compiler-parallelized applications.

5.3.1 Cache Misses

Figure 7 shows the increase in cache miss rates as the numberof processors is increased from one
to 64 for our PRAM memory system. As with previous metrics, ora is extremely well-behaved,
with low miss rates for all numbers of processors. Three applications, cgm,erle64 and swm256,
have miss rates that actually decrease as one moves from a 1 processor run out to 4 and 8
processor runs. The bulk of these misses are due to cache replacements, and as more processors
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Figure 8: Data traffic vs. processors.

are added, the miss rate drops. This is because the total cache of the machine has increased. For
cgm, the drop is from a uniprocessor miss rate of 0.65% to its minimum miss rate at 2 processors
of 0.15%. For erle64, the minimum miss rate is 0.26% and occurs at 8 processors. For swm256
the minimum miss rate is 043% and occurs at 32 processors.

A third group of applications (appbt, appsp, flo52, hydro2d, and mgrid) start out with quite
low uniprocessor miss rates. As the number of processors is increased, however, the miss rates
climb steadily. In these applications, the primary cause of the increase is true sharing. That is, as
the number of processors increases but the problem size remains constant, multiple processors
are more likely to require pieces of data being generated by other processors. The program
artifacts that lead to true sharing are described in more detail inSection 7. For hydro2d, its 64
processor miss rate is a very significant 5.1%. For the other 5 applications in this group, miss
rates at 64 processors range from roughly 1% to 3%.

A fourth group of applications (simple, su2cor, tomcatv2) is also characterized by relatively
low uniprocessor miss rates. As the number of processors is increased here, however, the miss
rate climbs due to false sharing. False sharing occurs with increasing processors, because as
each processor’s chunk of work becomes smaller, its data is more likely to share a cache line
with some other processor’s data. Thisexcessive false sharing leads to some of the highest cache
miss rates seen for the benchmarks. For example, simple has miss rates of roughly 30% for 16,
32, and 64 processor runs. The other two applications, su2cor and tomcatv2, have miss rates of
16.9% and 10.3% for the 64 processor runs.
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Figure 9: Cache misses vs. machine model.

5.3.2 Data and Coherence Traffic

Figure 8 displays the data traffic requirements for the different applications running with varying
numbers of processors. As before, this is plotted in terms of the bytes of data required per
instruction, which allows us to compare the computation to communication requirements of the
different applications. The applications group themselves into categories roughly as they did in
Figure 7.

Some applications such as ora, swm256, and (perhaps to a lesser extent) erle64 are extremely
scalable. Two of these, swm256 and erle64, benefit from the increased total cache present as we
increase the number of processors, while ora has almost negligible traffic to begin with and can
thus scale more easily.

The remaining programs display increases in remote sharing traffic as the number of proces-
sors is increased. As we saw in Figure 7, this is due to true sharing in six applications (appbt,
appsp, cgm, flo52, hydro2d, and mgrid). In the remaining three applications (simple, su2cor,
tomcatv2) the traffic increase is due to false sharing. The traffic is by far the most significant
in simple, where a 16 processor run requires about 16 bytes of data to be transferred into the
cache for each instruction executed. (Although a single instruction clearly cannot reference 16
bytes of data, it can cause an entire 128 byte cache line to be brought in. Thus, on average it
is possible for the number of bytes of data transferred per instruction to be significantly larger
the amount of data addressable by a single load or store instruction.)

6 Application Characteristics on Advanced Memory Systems

The PRAM model is useful for measuring inherent sharing characteristics that are machine
independent, but a realistic memory model can provide more accurate information on the impact
of issues such as memory access costs and contention. In this section we evaluate the impact of
a realistic advanced memory system.

One of the concerns with using a detailed memory model is that variations in the machine
parameters can affect timing and skew results. Figure 9 demonstrates the difference in cache
miss rates between the PRAM and baseline advanced memory model. We see that there are
differences in the absolute miss rates, but qualitatively the relative application behavior is very
similar.
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Figure 10: Relative application performance vs. cache line size.

6.1 Effect of Cache Line Size

Uniprocessor experiments show that the performance of SUIF applications improved an average
of 36% going from 32 to 128 byte lines and 8% going from 128 to 512 byte lines. While these
applications do display good uniprocessor spatial locality, we find that as parallel programs,
their performance does not necessarily uniformly improve as cache lines grow longer. Figure 10
displays the change in performance for 16 processor executions as cache line size varies. (The
y-axis shows performance relative to the simulated wall clock time for the 8-byte line run; that
is, a bar of height 2 means that run was twice as fast as the base run for that application.)

Of the twelve applications, only one (swm256) receives any performance benefit from increas-
ing the cache line size to 512 bytes. Four of the applications reach peak performance at 256
byte lines, while three applications reach peak performance at 128 byte lines. In the remain-
ing applications, either minimal memory activity (ora) or excessive sharing (simple, su2cor, and
tomcatv2) limits the best cache line size to be quite small. Over all the applications, the average
application improves performance by 27.8% by moving from 32 to 128 byte lines, but drops by
14.6% when going from 128 byte to 512 byte lines.

We discover a similar result when looking at the number of miss cycles per instruction
(MCPI). Figure 11 displays the MCPI of 16 processor executions for different cache line sizes.
The shading of each bar indicates three different types of stalls: (i) read stalls, (ii) stalls due to
contention at the memory ports, and (iii) write stalls.

Increasing the cache line size from 32 to 128 bytes reduces MCPI for all SUIF programs
except simple and su2cor. Removing simple (clearly an outlier) from the calculations, average
MCPI decreases from 1.26 to 0.78. In comparison, going from 128 to 512 byte cache lines
increases MCPI for 7 of 12 programs, with average MCPI (again excluding simple) jumping
back up to 1.65.1 It thus appears that for the given data sets and cache configurations, SUIF
programs were able to exploit 128 but not 512 byte lines.

The shading indicating contention also highlights an interesting difference between some of
the applications. The bulk of the applications (appbt, cgm, erle64, flo52, su2cor, and swm256)
form a group of programs in which there is only moderate contention at small cache lines, and the
contention decreases steadily as the line size increases. This is because the good spatial locality

IIncluding simple, the three average MCPI would be 1.50, 2.46, and 5.02 respectively.
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Figure 11: Miss cycles per instruction (MCPI) vs. cache line size. The runs execute with 16
Processors.

in these applications causes the longer cache lines to be used efficiently. Other applications,
like appsp, hydro2d and tomcatv, show similar trends although they display higher absolute
contention stalls at short cache lines. On the other hand, simple is an example of an application
which starts out with fairly low contention at short cache lines, and then displays increases in
contention as the line size increases. This is further confirmation of simple’s inability to make
efficient use of long cache lines. With 512 byte lines, false sharing is so extreme that simple
spends nearly 42 cycles per instruction in memory stalls, and 8.4 of these cycles per instruction
are in contention at the memory port.

Note the vital role memory system behavior plays in determining the performance of the
SUIF applications. For 128 byte cache lines, the average MCPI of 2.46 indicates over twice as
many cycles are spent on memory accesses as on useful computation. For 512 byte cache lines
SUIF applications spend 5 times as many cycles on memory accesses as on useful computation.
For a few applications, MCPI is particularly high. In such cases poor memory system behavior
severely degrades performance and may even cause slowdowns compared to sequential execution.

Figure 12 shows how the wait times of synchronization operations are affected by the mem-
ory system. This figure breaks down cycles spent within synchronization operators into three
categories. First, there is time (due to load imbalance) at each barrier ending a parallel region.
This time includes both the cost of passing through the barrier, as well as any wait time at the
barrier. Second, there is time spent at each of the barriers that end sequential regions of code.
At these barriers, N-1 processors are idle, waiting for the other processor to perform some task
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Figure 12: Synchronization cost vs. cache line size.

sequentially.? Finally, in two of the applications, a third category of time — time spent in locks
and other synchronization — is also significant.

Overall, we find that for these applications, synchronization overhead, especially due to
load imbalance, can be significant. Many synchronization operations such as passing parallel
function arguments take place via shared memory, so cache line size affects parallelism overhead.
In addition, memory system effects may increase the variance of task execution times, increasing
load imbalance between processors. This latter effect is evidenced by the fact that for most of
the applications, SCPI is minimized at a 128 byte cache line size. Recall that this is the most
efficient line size in terms of program performance; by minimizing the task time, we tend to
reduce the variance between tasks which leads to improved load balancing.

6.2 Effect of Number of Processors

In Section 5, we examined the effect of varying numbers of processors on the rate and causes of
application cache misses. Here, we revisit this issue, this time studying the effect on performance
in a more realistic memory model.

Figure 13 shows the average MCPI vs. the number of processors, for 1 to 64 processors. For
almost all the applications, MCPI increases with increasing processors. This is because for these

2 Although this wait time is primarily due to insufficient parallelism, it appears in our measurements as syn-
chronization cost.
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Figure 13: Miss cycles per instruction (MCPI) vs. number of processors.

applications and data sets, at 64 processors, memory performance degradation due to true and
false sharing generally outweighs any possible benefits due to increased total cache size. (The
only exception to this is swm256, which does show MCPI at 32 processors that is comparable
to the uniprocessor MCPI.)

Paralleling MCPI, Figure 14 shows that SCPI typically increases strongly with the number
of processors used. For most of the applications, synchronization overhead is comprised almost
entirely of load imbalance overhead once the number of processors is increased to 64. This is
in part due to the fact that we are scaling up the number of processors without changing the
problem decomposition. It is also, however, due to memory system effects; as MCPI increases
with the number of processors, so does the task variance leading to load imbalances.

6.3 Memory Behavior and Task Granularity

This section has provided a baseline characterization of the memory behavior of compiler-
parallelized applications running on multiprocessors. It is important to note that we are using
full-sized data sets for all the applications discussed. Our conclusions are thus being drawn
not based on toy data sets, but on the default data sets provided by SPEC, NAS, and other
benchmark suites.

Overall, we observe a high correlation between granularity of parallelism and good memory
system behavior. To establish this trend, we have partitioned the SUIF programs in our study
into three groups, based on whether their granularity was in the top, middle, or bottom third
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Figure 14: Synchronization cycles per instruction (SCPI) vs. number of processors.

of our suite. Their memory system behavior is summarized in Table 4. We find that SUIF
applications with larger granularity have the best memory system performance, resulting in
both greater speedups and higher percentage of ideal speedups achieved. Medium granularity
SUIF applications have higher false sharing misses on average, skewed by the poor behavior
of simple. SUIF applications with smaller granularity have generally poor performance, with
especially high true sharing miss rates. Thus, while many compilers have so far striven for
coarse-grain parallelism in order to reduce synchronization overhead, we provide compelling
evidence of its importance for memory performance as well.

We can compare our results for SUIF applications to similar numbers collected previously
for SPLASH [24]. Unfortunately, we also find that, overall, even coarse-grain SUIF applications
for these problem sizes have relatively high memory system costs when compared to hand-tuned
SPLASH applications. For the baseline memory system, SPLASH benchmarks tended to have
lower MCPI and miss rates than the set of SUIF applications. To focus in greater detail on
the causes of higher memory system cost in these codes, the following section examines par-
ticular application and compiler characteristics that have significant impact on memory system
behavior.
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Metric Larger | Med. | Smaller
Grain | Grain | Grain

Granularity
(10° cycles) 59.9 2.8 0.2
Parallel
Coverage 99.9% | 96.5% | 95.0%
Ideal Speedup
(16 proc) 144 | 127 9.3
Sim’d. Speedup
(16 proc) 124 6.5 3.9
% Ideal Speedup
(16 proc) 86% 51% 42%

Performance | 128B 1.37 1.10 1.21
vs. 32B lines | 512B 1.39 0.84 0.85
Cache Miss 32B 1.32 4.25 3.80
Rate 128B 0.44 6.54 2.51

(% of refs) 512B 0.23 10.61 4.67
False Sh. 32B 0.03 0.66 0.35
Misses 128B 0.04 4.28 0.70
(% of refs) 512B 0.07 9.46 2.93
True Sh. 32B 0.41 1.93 2.31
Misses 128B 0.16 0.70 1.20
(% of refs) 512B 0.08 0.39 0.86

Cache 32B 87% 8% 83%
Line 128B 70% 70% 58%
Util. 512B 46% 44% 40%

Table 4: Summary of memory system behavior.

7 Characteristics of Compiler-Parallelized Applications

We have seen that SUIF applications with good speedup and memory behavior tend to have
coarse granularity and large data sets. Here we describe in greater detail properties of the
applications with poor memory behavior. Our simulator allows us to pinpoint parallel loops in
the program that cause false and true sharing misses. We examine these loops, show how these
problems are related to granularity and data set size, and discuss how new compiler technology
can improve these programs’ memory behavior.

7.1 Causes of False Sharing

Five of the programs, simple, su2cor, appsp, tomcatv and hydro2d have false sharing misses that
account for more than 0.48% of all references for the 128 byte cache line configuration. Most
notably, 16.1% of references in simple are false sharing misses. The primary cause of false
sharing in these programs can be attributed to the following pattern of a parallel loop enclosing
assignments to contiguous array elements:

DOALL I
A(D)

1, N

Almost all such loops were innermost loops. The predominant false sharing problem arises when
N/P, the number of iterations divided by the number of processors, is fewer than the number
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of elements that fit on a cache line. Under this scenario, a processor may share a cache line
with two or more processors. Though this example appears quite simple, it occurs frequently in
practice; we found it to be the major cause of false sharing misses in simple, appsp and hydro2d.
Note that this same pattern that has poor spatial locality on a multiprocessor would exhibit
excellent spatial locality in a uniprocessor setting.

In tomcatv and su2cor, the same pattern occurs, but N/P is greater than or equal to the
number of elements on a cache line. In this case, false sharing arises if the number of elements
accessed by a processor is not a multiple of the number of elements on a cache line, or the array
elements accessed are not aligned at a cache line boundary. When the loop strides through the
data in this way, a processor may share the first and last cache lines it is using with at most
one other processor; the other cache lines it uses are not shared. In all these programs, the loop
bounds are fairly small (at most 512), and are a function of the data set size.

7.2 Causes of True Sharing

For SUIF compiler-parallelized applications, false sharing misses can occur within a single par-
allel loop. True sharing misses, in contrast, usually occur when a memory location written in
one parallel loop is accessed in a subsequent parallel loop. The frequency of true sharing misses
thus decreases for programs with coarse-grained parallelism, since the computation advances
between parallel loops less frequently.

Note that some implementations of parallel reductions, operations that perform a sum, prod-
uct, minimum or maximum over a series of data elements, could potentially lead to significant
true sharing misses. These misses might result because one processor updates a memory location
used by another processor, guarded by synchronization. However, reductions were not a signifi-
cant cause of true sharing in our experiment. This result is largely due to SUIF’s implementation
of reductions, whereby the per-processor reduction computation is performed on private data
followed by synchronized global accumulation of the private copies. Thus, the reduced memory
locations are only globally updated at most once per processor rather than every time they are
accessed.

For four of the programs, hydro2d, appsp, simple and tomcatv, true sharing misses account
for more than 0.9% of all references. In particular, about 2.8% of the references in hydro2d are
true sharing misses. We found that these misses are caused by parallelizing loops containing
stencil patterns for small arrays. The pattern for such loops in hydro2d is the following:

DOALL J = 1, N
DOI =1, M
A(I,J) =

DOALL J = 1, N
DOI =1, M

B(I,J) = A(I,J-1) + A(I,J+1)

The first loop nest computes values of A while the second loop nest consumes those values.
If the value of N is too small, each processor accesses large numbers of nonlocal elements of A
in the second loop nest. In hydro2d the value of N can be as low as 20, causing significant true
sharing for 16 processors.
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Data 16 Cache Miss Rate (% of refs) | Cache

Set Parallel Parallel Proc. All False True Line
Application Size Coverage Gran. Speedup | MCPI | Misses | Sharing | Sharing Util.
EFFECT OF ARRAY PRIVATIZATION AND INTERPROCEDURAL ANALYSIS
appbt-naive 12° 84% 0.12 x10° 0.3 6.0 5.2 14 3.1 76%
appbt 128 100% 5.73 x10° 6.4 0.4 0.7 0.1 0.5 73%
appsp-naive 123 91% 0.15 x10° 0.6 4.9 6.5 1.8 3.7 61%
appsp 128 98% 0.30 x10° 2.9 14 2.5 0.8 1.0 60%
EFFECT OF DATA SET SI1ZE

su2cor-small 6° x 12 97% 0.03 x10° 2.2 3.2 8.2 5.2 1.1 56%
su2cor 8% x 16 99% 0.05 x10° 5.9 1.2 2.2 1.2 0.3 52%

Table 5: Effect of array privatization, interprocedural analysis, and data set size on memory
behavior.

7.3 Effect of Granularity

It is well accepted that parallelizing compilers should find the largest parallel loops possible,
since it increases the amount of parallel computation and reduces synchronization costs. What
our study shows is that finding coarse-grain parallelism can also have a very beneficial effect on
memory system behavior.

The SUIF compiler employs two techniques that enable detection of more outer parallel loops
than current commercial compilers. First, array privatization locates arrays used as temporary
storage within a loop. By creating private copies of the array for each parallel process, storage-
related dependences associated with these arrays are eliminated. Private data, similar to the
discussion of reductions above, are thus not involved in either true or false sharing misses.
Second, all of the parallelization analyses in the SUIF compiler are performed interprocedurally,
so that procedure boundaries do not affect the system’s ability to locate parallel loops. The
combination of these techniques enables the compiler to parallelize outer loops containing over
a thousand lines of code in some cases. A more detailed discussion of the implementation of
these techniques can be found in [11, 12].

To illustrate how these techniques can impact memory behavior, consider the performance
of two SUTF applications, appbt and appsp. Table 5 displays their performance for the baseline
memory architecture. appbt and appsp are the SUIF parallelized output that have been used
throughout this paper, while appbt-naive and appsp-naive represent versions of the programs
compiled without array privatization and interprocedural analysis. Parallel granularity increases
with advanced analysis. Although parallel coverage is high for both versions of each program,
memory behavior can be significantly different.

For the programs parallelized by SUIF with array privatization and interprocedural analysis,
MCPI are lower, false and true sharing misses comprise a smaller fraction of all references, and
cache line utilization increases. For appbt-naive, the impact of memory system effects overwhelms
any improvements due to parallelization, causing the program to run one-third sequential speed
on 16 processors. The impact on the memory system is almost as dramatic for appsp. These
results show that advanced compilation technology aimed at detecting coarse-grain parallelism
can be critical for improving memory system behavior.
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7.4 Effect of Data Set Size

We also observe that for many SUIF programs, the data set size directly affects the parallelism
granularity and hence memory behavior. As we showed earlier, false and true sharing misses are
often caused by parallel loops with few iterations. For many SUIF applications, the number of
iterations in these parallel loops depends on the data set size. For example, consider su2cor, one
of the programs with moderate levels of false sharing. Table 5 presents results for our baseline
memory system; it shows that when the data set size is reduced by a factor of three, memory
behavior degrades drastically. The miss rate, and false and true sharing misses increase by a
factor of two or more, while cache line utilization and speedups are halved. These results show
that it is important to use realistic data set sizes when studying memory system behavior.

8 Related Work

Our work is unique in providing a detailed characterization of the memory behavior of compiler-
parallelized codes. In addition, we have highlighted some of the constructs expected to be
common in these codes and explained how they affect caching performance. By contrast, pre-
vious work has focused almost exclusively on characterizing memory system behavior of hand-
parallelized applications on different styles of cache coherent multiprocessors. While our work
draws on a significant body of related work in understanding multiprocessor memory behavior,
we outline below the most directly relevant studies.

Eggers and Katz [7] did important early work characterizing application caching behavior
of hand-parallelized programs in bus-based multiprocessors. For their applications, they show
that the majority of cache misses in a bus-based multiprocessor are due to sharing misses. They
also demonstrate that the overall miss rate in a multiprocessor can increase as the cache line
size increases, whereas it tends to go down in uniprocessors. Bolosky and Scott [3] developed
the cost component method to measure false sharing and applied it to four computation kernels.
More recently, Dubois et al. [5] introduced a definition of false sharing and used it to measure
four hand-parallelized applications. We use their definition for our study.

Torrellas et al. [23] measured false and true sharing and the number of bytes used per cache
line. They find poor spatial locality has a greater impact than false sharing in determining the
overall miss rate of their applications. In comparison, the SUIF applications in this study have
excellent spatial locality and are limited mostly by false sharing. Both Torrellas et al. [23] and
Eggers and Jeremiassen [6] suggest program transformations to eliminate false sharing in hand-
parallelized programs. The latter have implemented their transformations in a compiler, and
used them to eliminate false sharing in the SPLASH benchmarks by padding lock variables [13].
(In our SPLASH programs lock variables have also been padded to eliminate false sharing.)

Only a handful of researchers have looked at the behavior of compiler-parallelized applica-
tions. Blume and Eigenmann [2] analyzed the performance of commercial parallelizing compilers
on the PERFECT benchmarks, concluding that they detected only limited amounts of paral-
lelism. The SUIF compiler incorporates many of the analyses they deemed vital; as a result, it
enjoys much better success in extracting parallelism.

More recently, Natarajan et al. [20] measured operating system, parallelism, and memory
contention overhead for five PERFECT applications on the Cedar multiprocessor. They de-
termined that parallelism overhead consumed 10-25% of program execution time and memory
contention overhead was over 10%. Our study focused on a more advanced memory system and
compiler; we also determine causes of poor memory behavior. Lilja [17] examines the impact
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of prefetching in conjunction with loop scheduling strategies that schedule blocks of consecutive
iterations to execute on each processor.

Finally, we note that there is much active research on compiler techniques to improve memory
performance. Heuristics are being developed to reduce true sharing by improved co-location of
data and computation [1, 3] and eliminate false sharing by better compiler management of large
coherence units [9]. Our study helps to point out areas of poor program memory behavior
deserving of additional research.

9 Conclusions

In this paper, we demonstrate that good memory system behavior is vital to achieving reason-
able speedups on moderate-scale multiprocessors. We present the first detailed study of the
impact of advanced memory systems on the performance of a large suite of compiler-parallelized
codes running with their full-size data sets. Our results show applications amenable to com-
piler parallelization suffer from significantly higher memory costs than hand-parallelized codes,
particularly for longer (e.g. 512 byte) cache lines. We discover that increases in granularity are
frequently correlated with improvements in memory behavior and overall performance. We also
identify compiler constructs that lead to frequent true and false sharing, and present case stud-
ies that quantify the positive impact of advanced compiler techniques such as interprocedural
analysis and array privatization.

Overall, this study has several implications. For computer architects, our study shows a high
degree of sharing is likely for compiler-parallelized applications running on advanced memory
systems with long cache lines. For compiler writers, we discover small parallel loops to be the
primary culprit in poor memory behavior; compilers need to be more careful in parallelizing
small loops since sharing misses may outweigh any potential benefits from parallelism. For
both architects and compiler writers, the potential impact of parallelism granularity on memory
system behavior should be weighed carefully when making tradeoffs in system design.
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