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Abstract

In modern chip-multiprocessor (CMP) systems, multiple
applications running concurrently typically share the last level
on-chip cache. Conventionally, caches use pseudo Least-
Recently-Used (LRU) replacement policies, treating all mem-
ory references equally, regardless of process behavior or pri-
ority. As a result, threads deemed high-priority by the operat-
ing system may not receive enough access to cache space, be-
cause other memory intensive, but lower-priority, threads are
running simultaneously. Consequently, severe performance
degradation and unpredictability are experienced. To address
these issues, many schemes have been proposed for apportion-
ing cache capacity and bandwidth among multiple requesters.

This work performs a comparative study of two exist-
ing mechanisms for capacity management in a shared, last-
level cache. The two techniques we compare are static way-
partitioning and decay-based management. Our work makes
two major contributions. First, we make a comparative study
demonstrating potential benefits of each management scheme,
in terms of cache utilization and detailed intuition on how
each scheme behaves. Second, we give performance results
showing the benefits to aggregate throughput and performance
isolation. We find that aggregate throughput of the targeted
CMP system is improved by 50% using static way-partitioning
and by 55% using decay-based management, demonstrating
the importance of shared resource management in future CMP
cache design.

1 Introduction
It is common to run multiple heterogeneous applica-

tions, such as web-server, video-streaming, graphic-intensive,
scientific, and data mining workloads, on modern chip-
multiprocessor (CMP) systems. Commonly-used LRU re-
placement policies do not distinguish between processes and
their different memory needs. In addition, as the number of
concurrent processes increases in CMP systems, the shared
cache is highly contested. Thus, high-priority processes may
not have enough of the shared cache throughout their execution
due to other memory-intensive, but lower-priority, processes

running simultaneously. The absence of performance isolation
and quality of service can result in performance degradation.

To address these critical issues, various shared resource
management techniques have been proposed for shared caches
[3, 6, 8, 10–12, 14]. Techniques in both software and hardware
have been investigated to distribute memory accesses to the
shared cache from all running processes. In this work, we com-
pare two of these mechanisms: static way-partitioned manage-
ment and decay-based management.

Static way-partitioning has been widely used for cache ca-
pacity management because it has low hardware complexity
and straightforward management. In static way-partitioned
management, the set-associative shared cache is partitioned to
various way configurations and available ways are allocated to
each process based on its resource requirement and priority. A
more detailed discussion is in Section 2.3.

Decay-based management offers a different strategy for
cache capacity management. It is a hardware mechanism that
interprets process priority set by the operating system and as-
signs a lifetime to cache lines accordingly, taking into account
process priority and memory footprint characteristics. It is a
fine-grained technique that adapts to each process’ temporal
memory reference behavior. A more detailed discussion is in
Section 2.4.

The contribution of our work lies in the extensive and de-
tailed study of shared resource management schemes. We offer
a comparative study on the effectiveness of these techniques
both qualitatively and quantitatively. We use a full-system
simulator to duplicate each management scheme and evalu-
ate performance effects taking into account operating system
influence on the problem. In addition, we deconstruct each
scheme to demonstrate its potential benefits in terms of cache
utilization and offer a detailed intuition on how each scheme
behaves. Finally, we show that aggregate throughput of the tar-
geted CMP system is improved by 50% using way-partitioning
and by 55% using decay-based management demonstrating the
importance of shared resource management in future CMP sys-
tem design.

The structure of this paper is as follows: In Section 2, we
give an overview of shared resource management. Then, we
discuss two shared resource management mechanisms: static
way-partitioned management and decay-based management.
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Figure 1. An illustrative case study, where LRU Replacement
Policy outperforms Priority-Based Replacement Policy.

This is followed by examples of memory reference streams
which benefit from the studied management policies. In Sec-
tions 3 and 4, we describe our simulation framework, evaluate
the shared resource management schemes, and analyze perfor-
mance qualitatively and quantitatively. Then, in Section 5, we
discuss related work on shared resource management. Section
6 discusses further issues and future work. Finally, Section 7
offers our conclusions.

2 Shared Resource Management
2.1 Overview and Goals

Performance isolation is an important goal in shared re-
source management. While multiple processes have accesses
to the shared cache in CMP systems, it is possible that a pro-
cess, e.g., a memory-bound one, uses the shared cache in-
tensively, and, other processes, e.g., high-priority ones, are
left with insufficient cache share throughout execution. This
results in performance unpredictability. In order to provide
performance predictability, particularly for high-priority pro-
cesses, we have to prioritize accesses to the shared cache and
isolate inter-process interference in the shared cache resource.
Consequently, we can achieve performance isolation among
all processes, and meet performance expectations.

Shared resource management refers to apportioning com-
mon resources among multiple requesters. In the case of het-
erogeneous applications running on CMP systems, multiple
requests are made to the shared cache simultaneously. How-
ever, current systems cannot explicitly assign shared cache re-
sources effectively based on process priority and characteris-
tics of each process’s memory footprints. Consequently, in or-
der to arbitrate memory accesses from all running processes
taking into account heterogeneity and process priority, shared
resource management is critical.

In Section 2.2, we discuss a simple priority-based replace-
ment policy and discuss why it is insufficient. Then, in Sec-
tions 2.3 and 2.4, we discuss static way-partitioned and decay-
based management schemes in detail.
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Figure 2. Various way configurations and miss rates: L2 miss
rates for sjeng and mcf improve as number of ways allocated in-
creases.

0

50

100

0 20000000 40000000

L2
 M

is
s 

R
at

e
 (

%
)

Decay Interval (Cycles)

Various Decay Intervals vs. L2 Miss Rate

SJENG

MCF

Figure 3. Various decay interval configurations: L2 miss rates
for sjeng and mcf improve as decay intervals increase.

2.2 Why Not Use Priority-Based Replacement?
Priority-based replacement schemes preferentially evict

cache lines associated with low-priority processes. This
scheme favors cache lines associated with high-priority pro-
cesses, and intends to provide certain performance expecta-
tion for high-priority applications while sacrificing tolerable
amounts of performance for low-priority applications. How-
ever, this performance tradeoff between high and low-priority
applications may not always pay off. In Figure 1, we illustrate
a simple example of a memory reference stream, where LRU
outperforms priority-based replacement policy.

Suppose that there are two running processes. The higher-
priority process issues memory accesses to A, C, E, and F, and
the lower-priority process issues memory accesses to B, as il-
lustrated in Figure 1. All addresses are mapped to the same set
of the 4-way set-associative shared cache.

While there are no hits for the higher-priority process in ei-
ther replacement policy, 4 out of 5 memory references are hits
for the low-priority process with the LRU replacement policy,
but all 5 memory references are misses for the low-priority pro-
cess with the priority-based policy. This is because priority-
based replacement does not take into account the temporal be-
havior of memory references. In this case, we should recognize
the significance of memory address B due its temporal locality.
We use this example to illustrate that although priority-based
replacement policy guarantees cache resource precedence to
high-priority applications, it does not always translate to over-
all performance gain. As illustrated in the example, unneces-
sary performance degradation for the low-priority process is
experienced.
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Figure 4. mcf’s cache space utilization and miss rate for decay
intervals set to 8M and 33M cycles: As decay intervals increase from
8M to 33M cycles, mcf is allocated with 10 times more cache space
and, correspondingly, its miss rate is improved by 20%.

2.3 Static Way-Partitioned Management
Various versions of static way-partitioning replacement

mechanism have been proposed in the past to parti-
tion shared caches in CMP systems [3, 6, 8, 11, 12, 14].
Shared set-associative caches are partitioned to various way-
configurations and are allocated to multiple processes. For ex-
ample, given a 4-way set-associative cache and 2 active pro-
cesses, the operating system can assign 3 ways to one process,
and the remaining way to the second process, depending on the
priority or cache resource requirements of each process.

Static way-partitioning is beneficial in several ways. First, it
is straightforward to partition and allocate the shared cache ca-
pacity in the granularity of cache ways. The system can assign
more ways of the shared cache to high-priority applications
and less ways of the cache to low-priority applications. Static
way-partitioned management can also be employed to ensure
performance isolation: since each process has been allocated
a certain amount of the shared cache for its exclusive use, its
memory performance is not impacted by concurrently running
processes.

Figure 2 illustrates that both sjeng’s and mcf’s miss rates
are improved as the number of ways allocated to them in-
creases. The number of ways can be assigned to a process
based on its process priority accordingly. This demonstrates
how performance predictability can be provided by static way-
partitioned management technique.

Despite the advantages, static way-partitioning has two ma-
jor drawbacks. First, in order to achieve the performance iso-
lation discussed previously, it is preferable to have more ways
in the set-associative cache than the number of concurrent pro-
cesses. As the number of concurrent processes increases in
today’s CMP systems, this imposes a significant constraint to
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Figure 5. An illustrative case study, where Decay-Based Re-
placement Policy outperforms LRU Replacement Policy.

cache capacity management at the granularity of cache ways.
The other drawback is inefficient cache space utilization, again
due to the coarse granularity in space allocation.

2.4 Decay-Based Management
Decay-based management builds on the cache decay idea

[5]. In a decay cache, each cache line is associated with a
decay counter which is decremented periodically over time.
Each time a cache line is referenced, its decay counter is reset
to a decay interval, T, which is the number of idle cycles this
cache line stays active in the cache. When the decay counter
reaches 0, it implies that the associated cache line has not been
referenced for the past T cycles and its data is unlikely to be
referenced again in the near future. This timer signals to turn
off the power supply of this cache line to save leakage power.

In shared resource management, however, this idea can be
used to control cache space occupancy of multiple processes
[9, 10]. When a cache line is not referenced for the past T
cycles, it becomes an immediate candidate for replacement re-
gardless of its LRU status. The key observation is that we can
use different decay intervals for each process. This allows us
to employ some aspects of priority-based replacement while
also responding to temporal locality.

As before, the operating system assigns priority to active
processes. Then the underlying cache decay hardware inter-
prets process priority accordingly. It gives the decay coun-
ters of cache lines associated with compute-bound processes
or high-priority processes a longer decay interval, so over time
more cache resources are allocated to these processes. Sim-
ilarly, the hardware may assign a shorter decay interval to
cache lines associated with memory-bound processes or low-
priority processes, in order to release their cache space more
frequently. Consequently, higher-priority data tends to stay in
the shared cache for a longer period of time.



Figure 3 illustrates how cache decay works for two appli-
cations taken individually. As decay intervals decrease, miss
rates increase. This is because cache lines which are not refer-
enced often enough decay from the cache more frequently.

In Figure 4, we demonstrate how decay intervals can be ma-
nipulated to control the amount of cache space an active pro-
cess uses. As the decay interval increases from 8 million cycles
to 33 million cycles, about 6 times more cache space is actively
used by mcf. As a result, its miss rate is decreased by 15%.
Thus cache decay represents a fine-grained dynamic method
for adjusting cache resource usage.

In Figure 5, we show how cache decay can be individu-
alized to different applications in a mixed workload. Suppose
memory addresses B and D are referenced by the lower-priority
process. After some T cycles, B’s and D’s cache lines will
decay and release their cache occupancy for replacement, as
illustrated in Figure 5. We observe that with the LRU replace-
ment policy all memory references are missed. In decay-based
management, 5 out of 9 memory references are hits. More im-
portantly, these hits are for the high-priority process. This is
because cache lines associated with the high-priority process
do not decay. In this example, LRU replacement works poorly
because it treats all memory references equally. In contrast,
decay-based replacement has more hits because it takes into
account process priority.

While decay-based management is more complex than
static way-partitioning, it may also have advantages. In par-
ticular, the shared cache space is utilized more effectively.
Data remaining in the cache exhibits two critical characteris-
tics: high-priority and temporal locality, as illustrated in the
example in Figure 5. Although it offers useful fine granularity
control, the decay-based management technique brings more
hardware overhead.

3 Experimental Setup
3.1 Simulation Framework

We use GEMS [7], a full system simulator to evaluate both
way-partitioned and decay-based management. We simulate a
16-core multiprocessor system based on the Sparc architecture
running Solaris 10 operating system. Each core has a private
32KB level one (L1) cache and shares a 4MB level two (L2)
cache. The L1 cache is 4-way set-associative and has block
size of 64B. The shared L2 cache is 16-way set-associative and
has block size of 64B. In our model, L1 cache access latency
is 3 cycles, L2 cache access latency is 10 cycles, and L2 miss
penalty is 400 cycles.

3.2 Workloads
We use the SPEC2006 benchmark suite to evaluate shared

resource management mechanisms. First, in order to model a
high contention scenario to the shared L2 cache, we simultane-
ously run multiple instances of mcf, a memory-bound applica-
tion, along with one instance of libquantum, a non-memory
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Figure 6. Management Policies and CPI for the high contention
scenario.

intensive application. Second, in order to model mem-
ory accesses from heterogeneous applications in a multipro-
gramming environment, we use benchmarks from SPEC2006
CINT Benchmark Suite: bzip2, mcf, sjeng, astar,
libquantum, gcc, xalanc, hmmer, lbm, soplex,
povray, omnetpp, and namd. A brief description of the
benchmarks can be found in [1].

4 Performance Evaluation
We evaluate both static way-partitioned management and

decay-based management policies, and compare these two
management policies to a baseline system which does not ap-
ply shared resource management for its level-two cache. We
evaluate all possible configurations for static way-partitioning
and pick the configuration giving the best average performance
of all benchmarks. Similarly, in decay-based management we
evaluate for several decay intervals ranging from 1000 cycles
to 33,000,000 cycles and use the decay interval giving the best
average performance of all benchmarks.

4.1 Results for High Contention Scenario
We model a high contention memory access to the shared

L2 cache by running one instance of libquantum along with
seven instances of mcf in a multiprogrammed environment.
Throughout the simulation, there are eight active processes
generating memory requests to the shared cache, in addition
to the operating system scheduler process.

Figure 6 illustrates that when one instance of
libquantum is running along with multiple instances
of mcf, performance of libquantum is degraded by 80%
compared to running alone. Likewise the copies of mcf
also show a 52% degradation. This serious performance
degradation is caused by libquantum and the multiple
instances of mcf taking turns evicting each other’s cache lines
out of the shared cache repetitively.

Figure 7 depicts cache space utilization among all running
processes. When there is no cache capacity management, all
active processes compete for the shared L2 cache. As ex-
pected, most of the shared cache space is occupied by the mul-
tiple instances of mcf, which leaves an insufficient portion to
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Figure 7. Cache space utilization for the high contention scenario in baseline, static way-partitioning, and decay-based capacity management
schemes.
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libquantum.
In order to provide performance predictability for

libquantum, performance isolation has to be en-
forced. In the static way-partitioned management scheme,
libquantum is allocated with 2 ways of the shared cache
exclusively, and other processes share the remaining 14 ways.
In return, the performance of libquantum improves by
47% compared to when no management is applied. More
significantly, there is no performance degradation to the
multiple instances of mcf compared to when the multiple
instances are running alone. This is because the interference
between libquantum and the multiple copies of mcf is
eliminated completely in a static way-partitioning technique.

We next consider decay-based management. Here, cache
lines associated with libquantum do not decay. For other
processes, the decay interval is set to 10,000 cycles. This con-
figuration is used to retain more of libquantum’s data in
the shared cache. When decay-based management technique
is applied, the performance of libquantum and multiple in-
stances of mcf decreases by 20% and 2% respectively, com-
pared to when running alone. Among all capacity management
techniques that we have evaluated, the decay-based one works
the best for libquantum.

As illustrated in Figure 6, we observe 13% better per-
formance of libquantum compared to the static way-
partitioning technique and 2% performance degradation for the
multiple instances of mcf. This confirms what we have ob-
served in Figure 8, where data from multiple mcf processes
in the cache have more temporal locality in the static way-
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partitioning scheme.
Figure 8 illustrates the average cache line reuse distance in

cycles and recognizes the temporal locality of data residing in
different sizes of the shared cache. For the multiple instances
of mcf, the static way-partitioning technique retains more tem-
poral data in the shared cache than the decay-based manage-
ment technique. This is because, in the high contention sce-
nario, data in the shared cache must exhibit strong temporal lo-
cality already due to LRU replacement. As a result, mcf’s data
in decay-based management scheme does not show as much
temporal locality. This also indicates that the reuse distance of
mcf’s cache lines is less than mcf’s assigned decay interval.

In this section, we have shown libquantum and the mul-
tiple instances of mcf experience severe performance degrada-
tion of 80% and 52% when there is no capacity management.
This performance degradation is alleviated significantly when
capacity management is applied. This is because memory foot-
print characteristics are taken into account for shared resource
management and, in addition, performance isolation is consid-
ered.

4.2 Results for General Workloads
We model scenarios with general workloads using bzip2,

mcf, sjeng, astar, libquantum, gcc, xalanc,
hmmer, lbm, soplex, povray, omnetpp, and namd. In
the first scenario, we demonstrate how static way-partitioned
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and decay-based management schemes can help constrain the
resources devoted to high memory footprint applications. In
the second scenario, we show how each management tech-
nique can be used to ensure enough of the shared cache is al-
located to the high priority process.

4.2.1 Case 1: Constraining a Memory-Intensive Ap-
plication

We run bzip2, mcf, sjeng, astar, libquantum, and
gcc in a multiprogrammed environment to generate heteroge-
neous memory requests to the shared cache. Here we demon-
strate how static way-partitioning and decay-based manage-
ment schemes are used to isolate memory requests from a
memory-intensive application, mcf, and to achieve perfor-
mance isolation.

Figure 9 compares when each benchmark is running alone
to when all benchmarks are running simultaneously with-
out cache capacity management. Here we see that mix-
ing applications causes performance degradation from 4% for
libquantum to 25% for sjeng. This is because mcf is ac-
tively contending for the shared cache space; as a result, per-
formance of other benchmarks is impacted.

Figure 10 illustrates the cache space distribution for all
benchmarks under no capacity management and two cache
capacity management schemes. In the beginning bzip2,
astar, and libquantum occupy most of the shared cache
space. Then mcf and libquantum start requesting more of
the shared resource throughout the execution. This is the main
cause of performance degradation experienced by other ap-
plications. Compute-intensive benchmarks, bzip2, sjeng,
astar, libquantum, and gcc, are left with an insufficient
portion of the shared cache space.

In order to isolate mcf’s memory interference on other
running applications, we constrain its cache occupancy to 4
ways out of the 16-way set-associative cache, while other
benchmarks share the remaining 12 ways. Figure 10 illus-
trates that mcf uses 25% of the shared cache exclusively and
other benchmarks share the remaining portion. As a result of
this constraint on mcf’s cache space, its performance is de-
graded by 5% compared to when no capacity management is
present. In return, the performance of bzip2, astar, and
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Figure 11. Reuse-distance per cache space occupancy of mcf
with decay-based and static way-partitioned management tech-
niques: Decay-based management technique prefers to retain data ex-
hibiting more temporal locality than static way-partitioned manage-
ment technique does.

libquantum is improved. Next, consider a decay-based
scheme.

In order to limit the amount of the shared cache that mcf
occupies, a 1-million-cycle decay interval is assigned to cache
lines associated with mcf and no decay is imposed on other
benchmarks. We observe that a 2% performance degradation
is experienced by mcf compared to when there is no cache ca-
pacity management. In exchange, the performance of bzip2,
sjeng, astar, libquantum, and gcc is improved by 7%,
2%, 2%, 2%, and 2% respectively. Compared to static way-
partitioning, mcf’s performance degradation is lessened be-
cause decay-based management retains more temporal reuse
data in the shared cache. Figure 11 shows the average reuse
distance per cache space occupancy for mcf. In the decay-
based scheme, mcf’s data remaining in the shared cache ex-
hibit more temporal locality than in the static way-partitioning
scheme, as discussed previously in Section 2.4.

In this section, we have shown the benefits that constraining
one memory-intensive application can have in a mixed work-
load environment. Although static way-partitioning achieves
performance isolation between mcf and the other 5 applica-
tions, its coarse granularity of cache way allocation trades off
5% performance degradation for mcf with an average of 1%
performance improvement for the rest of applications. In con-
trast, for the decay-based scheme, mcf’s performance is de-
graded by only 2%, and the performance of the other 5 ap-
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plications is improved even more. The decay-based scheme’s
benefits come from its fine granularity and improved ability to
exploit data temporal locality.

4.2.2 Case 2: Protecting a High Priority Application
We use a different set of general workloads, xalanc,

hmmer, lbm, soplex, povray, omnetpp, and namd, to
model heterogeneous memory requests to the shared cache
in a multiprogrammed environment. Here, assuming lbm is
a high priority application, we demonstrate how static way-
partitioned and decay-based management schemes can be used
to allocate enough of the shared cache to lbm with minimum
performance tradeoff for other concurrent processes.

Figure 13 compares each benchmark running alone to when
all benchmarks are running simultaneously without cache ca-
pacity management. In the simultaneous case, performance
degradation is experienced from 3% for hmmer to 49% for
lbm. Performance impact to lbm, the high priority applica-
tion, is the most severe among all applications. As illustrated
in Figure 12, when there is no capacity management, lbm re-
quests the most of the shared cache space in the first half of the
execution. Then xalanc, soplex, and omnetpp start de-
manding more cache space in the second half of the execution,
leaving lbm with less of the shared cache.

Next, consider static way-partitioning. In order to ensure
enough of the shared cache space is allocated to the high prior-
ity application throughout execution, lbm is allocated 4 ways
out of the 16-way set-associative cache. Other benchmarks
share the remaining 12 ways. As a result, the performance
of lbm is improved by 30% compared to when no capacity
management is applied, although there is an average of 3%
performance degradation among other benchmarks: 7% for
xalanc, 9% for soplex, 1% for omnetpp, and 4% for
namd.

In the decay-based scheme, cache lines associated with all
benchmarks, except lbm, are set to decay every 10,000 cy-
cles. Data associated with lbm does not decay. This leaves
lbm more cache space allocation as needed throughout execu-
tion. Compared to when no capacity management is applied,

performance of lbm increases by 34%. At the same time, per-
formance of other benchmarks improves by 3.5% on average.
Again, this performance gain comes from the fine granularity
control of the decay-based management technique.

In this section, we have presented static way-partitioning
and decay-based management techniques to protect a high pri-
ority application, lbm, from memory footprint interference of
other concurrent applications. In this scenario, decay-based
technique is a better capacity management choice because it
not only provides enough of the shared cache space to the high
priority application throughout the execution, but, at the same
time, its fine granularity control of cache line allocation helps
to improve performance of the other 6 applications as well.

4.3 Results Summary
We have presented how static way-partitioned and decay-

based management schemes help distribute the shared L2
cache space effectively and achieve performance isolation, par-
ticularly for high priority processes.

The high contention scenario shows how each tech-
nique reduces interference of memory references between
libquantum and the multiple instances of mcf. In the gen-
eral workload scenarios, we demonstrate approaches for con-
straining and protecting individual applications. The decay-
based management has fine granularity control that effectively
partitions and distributes the shared cache space to request-
ing processes. Moreover, it retains data exhibiting two critical
characteristics in the shared cache: high priority and temporal
locality.

5 Related Work
5.1 Fair Sharing and Quality of Service

Many cache capacity management techniques have been
proposed, targeting cache fairness [6, 12]. Thus far our work
focuses mainly on process throughput. We discuss how static
way-partitioned and decay-based management can be used
to prioritize memory accesses based on process priority and
memory footprint characteristics. Further cache fairness poli-
cies can be incorporated into both capacity management mech-
anisms discussed in this work.

Iyer [3] has focused on priority classification and enforce-
ment to achieve differentiable quality of service in CMP sys-
tems. Both static way-partitioned and decay-based manage-
ment mechanisms can be used to satisfy the desired quality of
service goal discussed in Iyer’s work. Similarly, Hsu et al. [2]
have proposed performance metrics, such as cache miss rates,
bandwidth usage, IPC, and fairness, to evaluate various cache
policies. This additional information can assist the operating
system to determine shared resource allocation better. More-
over, Iyer et al. [4] have suggested an architectural support for
QoS-enabled memory hierarchy that optimizes performance of
high priority applications with minimal performance degrada-
tion of low priority applications. Nesbit et al. [8] also address
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Figure 12. Cache space utilization for the general workload scenario – case 2 in baseline, static way-partitioning, and decay-based capacity
management schemes.

resource allocation fairness in virtual private caches, where its
capacity manager implements static way-partitioning.

5.2 Dynamic Cache Capacity Management
Dynamic cache capacity management has been initially

proposed by Suh et al. [14]. In his proposal, the operating sys-
tem distributes equal amount of cache space to all running pro-
cesses, keeps cache statistics in flight, and dynamically adjusts
cache space distribution among all running processes. This
is a dynamic version of way-partitioned management. Other
dynamic techniques based on way-partitioned management in-
clude [6, 11]. In addition to static way-partitioning mecha-
nisms, Srikantaiah et al. [13] have proposed adaptive set pin-
ning to eliminate inter-process misses, and hence to improve
aggregate throughput in targeted CMP systems. Petoumenos
et al. [10] offers a statistical model to predict thread behaviors
in a shared cache and proposes capacity management through
cache decay. To the best of our knowledge, however, there has
not been any prior work based on decay management taking
full system effects into account.

6 Discussion and Future Work
Thus far, we have presented two hardware mechanisms,

static way-partitioning and decay-based management, which
can be used to enforce cache capacity management. While the
operating system offers more flexibility in defining quality of
service goals, it plays a significant role in annotating its poli-
cies or specific goals to the underlying hardware mechanisms.
The underlying hardware mechanisms then interpret the poli-
cies defined by the operating system and guarantee some level
of quality of service by adjusting shared resource allocation.
In the case of way-partitioning, concurrent processes can start
with an equal number of cache ways allocated. Then the hard-
ware can dynamically adjust cache way allocation to processes
to fulfill quality of service goals defined by the operating sys-
tem. Similarly, in the decay-based management scheme, the
underlying hardware can vary decay intervals associated to
each process in flight to satisfy policies specified by the op-
erating system. While certain quality of service goals can be
achieved by shared cache capacity management, strict applica-
tion response time requirements remain a challenge.

7 Conclusion

In this work, we investigate a variety of shared resource
management techniques and compare two of these mecha-
nisms: static way-partitioned management and decay-based
management. These two mechanisms adapt to unique char-
acteristics of an application’s memory footprints, take into ac-
count process priority, and distribute the shared cache space
accordingly. We have offered illustrative examples of mem-
ory reference streams with a variety of replacement policies,
and two mechanisms that effectively manage the shared cache.
Our study shows that performance isolation is better achieved
by the static way-partitioned management scheme, while tem-
poral characteristics of applications are better captured by the
decay-based management scheme in the general workload en-
vironment. In addition, although static way-partitioning has
simple hardware complexity and a straightforward manage-
ment, its coarse granularity of cache ways imposes a huge con-
straint on effective resource allocation. Whereas, decay-based
technique offers a more flexible shared cache capacity man-
agement, as illustrated in our study.

Our simulation results demonstrate that in the high con-
tention scenario, aggregate throughput of the targeted CMP
system is improved by 50% using static way-partitioning and
by 55% using decay-based management over a system without
shared resource management. In the general workload envi-
ronment, aggregate throughput of the targeted CMP system on
average is improved by 1% using static way-partitioning and
by 8% using decay-based management over a system without
capacity management. Finally, we have offered a comparative
study on when decay-based management technique is prefer-
able to static way-partitioning, and demonstrated the impor-
tance of capacity management of the last level on-chip cache
in future CMP cache designs.
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