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Adaptive Timekeeping Replacement: Fine-Grained Capacity
Management for Shared CMP Caches
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In chip multiprocessors (CMPs), several high-performance cores typically compete for capacity in a shared
last-level cache. This causes degraded and unpredictable memory performance for multiprogrammed and
parallel workloads. In response, recent schemes apportion cache bandwidth and capacity in ways that of-
fer better aggregate performance for the workloads. These schemes, however, focus primarily on relatively
coarse-grained capacity management without concern for operating system process priority levels.

In this work, we explore capacity management approaches that are both temporally and spatially more
fine-grained than prior work. We also consider operating system priority levels as part of capacity man-
agement. We propose a capacity management mechanism based on timekeeping techniques that track the
time interval since the last access to cached data. This Adaptive Timekeeping Replacement (ATR) scheme
maintains aggregate cache occupancies that reflect the priority and footprint of each application. The key
novelties of our work are (1) ATR offers a complete cache capacity management framework taking into ac-
count application priorities and memory characteristics, and (2) ATR’s fine-grained cache capacity control is
demonstrated to be effective and important in improving the performance of parallel workloads in addition
to sequential ones.

We evaluate our ideas using a full-system simulator and multiprogrammed workloads of both sequential
and parallel applications. This is the first detailed study of shared cache capacity management considering
thread behaviors in parallel applications. ATR outperforms an unmanaged system by as much as 1.63X and
by an average of 1.19X. ATR’s fine-grained temporal control is particularly important for parallel applica-
tions, which are expected to be increasingly prevalent in years to come.
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1. INTRODUCTION
It is common today to run multiple heterogeneous applications, such as web-server,
video-streaming, graphic-intensive, scientific, and data mining workloads, on chip-
multiprocessor (CMP) systems, where multiple cores share the last level on-chip cache.
Conventionally, on-chip caches implement pseudo Least-Recently-Used (LRU) replace-
ment policies. However, commonly-used LRU replacement policies do not distinguish
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Fig. 1. The bars show normalized instructions per cycle (IPC) when applications run
as an unmanaged group for each individual workload. Performance degradation is ex-
perienced when multiple applications are running simultaneously. More importantly,
performance degradation of a high-priority application, e.g. gcc in (a), fft in (b), or
lbm in (c), is more significant than others in the workloads. However, the unmanaged
scheme (LRU) does not take into account process priorities while allocating cache
capacity.

between processes and their different memory needs. In addition, current systems
cannot explicitly assign shared cache capacity effectively based on process priority
and characteristics of each process memory footprint. Consequently, while multiple
processes have access to the shared cache, it is possible, for example, that a large-
footprint but low-priority process uses the shared cache intensively, such that other
high-priority processes are left with insufficient cache share throughout execution.
This can result in performance degradation and unpredictability. In order to provide
performance predictability, particularly for high-priority processes, we have to priori-
tize accesses to the shared cache and mitigate inter-process interference in the shared
cache resource.

Not surprisingly, when multiple applications are running simultaneously, the per-
formance of all applications is consistently degraded. Figure 1 shows this for three
heterogeneous workloads. The bars show normalized instructions per cycle (IPC) when
applications run as an unmanaged group for each individual workload over when each
individual application runs alone. Performance suffers because all concurrent applica-
tions contend for the shared resources simultaneously in each workload. More impor-
tantly, performance degradation of a high-priority application is more significant than
others in the workloads. This is because the unmanaged scheme (LRU) does not take
into account application priorities while allocating cache capacity.

Furthermore, there are no detailed studies on shared resource management for par-
allel applications. Most of the existing proposals only target sequential applications.
As mainstream workloads consist of more and more parallel applications today, it is
important to explore the needs of shared cache capacity management for parallel ap-
plications. In particular, management approaches must acknowledge the differences
between references coming from cooperating versus competing threads. This work is
the first to do so.

In order to provide shared cache capacity management on CMPs, various shared
resource management techniques have been proposed previously for shared caches
[Bitirgen et al. 2008; Chang and Sohi 2007; Hsu et al. 2006; Iyer 2004; Iyer et al.
2007; Kim et al. 2004; Nesbit et al. 2007; Petoumenos et al. 2006; Qureshi and Patt
2006; Rafique et al. 2006; Zhao et al. 2007]. However, most of these techniques focus
on studies of the high level policies in their frameworks and often ignore the effec-
tiveness offered by different possible underlying capacity management mechanisms.
If the chosen cache capacity management technique partitions the shared cache space
in coarse granularity, the cache may not be utilized as efficiently. For example, way
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partitioning is a commonly-used coarse-grained shared cache partitioning technique
[Bitirgen et al. 2008; Nesbit et al. 2007; Qureshi and Patt 2006]. The major advantage
of using way partitioning is its moderate overhead and simple implementation, but it
has drawbacks as well. First, in order to have sufficient control in implementing perfor-
mance isolation, it is preferable to have more ways in the set-associative cache than the
number of concurrent processes. As the number of concurrent processes increases in
today’s CMP systems, this is difficult to achieve. In addition, way partitioning results
in inefficient cache space utilization due to its coarse granularity in space allocation.

Other papers, which offer finer-grained cache capacity management, modify cache
insertion or replacement policies to utilize shared caches more efficiently [Jaleel et al.
2008; Suh et al. 2001; Suh et al. 2002]. These proposals often relate the amount of
cache space allocated to a process to its performance improvement directly but take
into account temporal behavior of cached data implicitly (for example, with modi-
fied cache insertion/replacement policies). Our work is distinct in offering finer tem-
poral control. Furthermore, these proposals aim at improving aggregate system per-
formance, but do not distinguish between process priorities. Finally, there has been no
work studying the shared cache capacity problem for parallel applications.

In this work, we propose a novel shared cache capacity management scheme called
Adaptive Timekeeping Replacement (ATR). ATR is a fine-grained mechanism that as-
signs a “lifetime” to cache lines according to operating system process priority and
application memory reference patterns. ATR observes the memory needs of an appli-
cation during different program phases and adjusts cache space allocation accordingly
by varying the cache lifetime of each line. It does not only minimize unnecessary cache
memory interference from running processes, but also allows more fluid apportioning
of the shared cache space. Consequently, the shared cache space is utilized more effec-
tively. As such, data remaining in the cache exhibit two critical characteristics: high
priority and temporal locality. Finally, ATR is the first shared cache capacity manage-
ment considering thread behaviors in parallel applications. This fine-grained cache
capacity control improves the performance of parallel workloads by speeding up criti-
cal threads in parallel applications. We demonstrate ATR’s fine-grained time-keeping
feature is effective and important, particularly for parallel workloads.

The contributions of our work over the previously proposed capacity management
techniques are:

(1) Our proposed Adaptive Timekeeping Replacement (ATR) scheme is effective in
managing shared caches. We run full-system simulation to evaluate the ATR
scheme and its performance effects, taking into account operating system influence
on the problem. We demonstrate that ATR, which takes into account application
priorities and manages capacity in a fine-grained manner, outperforms a baseline
unmanaged system by as much as 1.63X and by an average of 1.19X for multipro-
grammed workloads with less than 3% hardware overhead.

(2) ATR’s fine-grained cache capacity management feature is particularly important
for parallel threads. We are the first to investigate capacity management on a mix-
ture of parallel applications. We show that ATR causes critical threads in a parallel
application to be sped up by 7% resulting in better overall application performance.

(3) Furthermore, the ATR scheme can be used to implement a variety of high-level
shared resource management policies implemented by the operating system, be-
cause of its flexibility and effectiveness. It can also be viewed as a building block
and used along with other prior work on cache and network bandwidth manage-
ment.

The structure of this paper is as follows. In Section 2, we give an overview of shared
resource management. In Section 3, we introduce timekeeping techniques for ordering

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 11, Article 11, Publication date: February 2011.



11:4 C. Wu and M. Martonosi

cache replacement. Then, Section 4 offers a detailed description of ATR’s algorithm
and enforcement. In Sections 5 and 6, we describe our simulation framework, evaluate
the shared resource management schemes, and analyze their performance in detail.
Section 7 discusses related work on shared resource management. This is followed by
Section 8, which presents design issues and future work. Finally, Section 9 offers our
conclusions.

2. SHARED RESOURCE MANAGEMENT OVERVIEW
Shared resource management refers to partitioning common resources among multi-
ple requesters. In the case of multiple applications running on CMP systems, multiple
requests are made to the shared cache simultaneously. However, current systems can-
not explicitly assign shared cache resources effectively based on process priority and
characteristics of each process’ memory footprint. Consequently, in order to arbitrate
memory accesses from all running processes while taking into account heterogeneity
and process priority, shared resource management is critical.

An important goal in shared resource management is performance predictability.
While multiple processes have access to the shared cache in CMP systems, it is pos-
sible that a process, e.g. a memory-bound one, uses the shared cache intensively and
other processes are left with insufficient cache share throughout execution. This can
result in performance degradation and performance unpredictability. In order to pro-
vide performance predictability, particularly for high-priority processes, we have to
prioritize accesses to the shared cache and isolate inter-process interference in the
shared caches.

Typically, shared resource management can be divided into two parts: a shared re-
source management policy and its capacity management mechanism. Shared resource
management policies define a performance goal, such as overall system throughput,
fair sharing, and/or quality of service, for a targeted system by specifying the amount of
resources allocated to all running processes in the system. Then an underlying capac-
ity management mechanism implements the specified policies to achieve the desired
performance goal. Our proposed Adaptive Timekeeping Replacement (ATR) scheme fits
into the category of the capacity management mechanism. ATR is a hardware mech-
anism that can control shared caches effectively and enforce the high-level shared
resource management policy.

There are some major design challenges faced by existing shared resource manage-
ment techniques. One of these challenges is to preferentially partition shared caches
based on process priorities assigned by operating systems. Another challenge is to
design new management techniques for collaborative threads in parallel workloads,
which are becoming more prevalent today. Next we discuss the two problems in more
detail.

2.1. Process Priorities Assigned by Operating Systems
Traditionally operating systems play the role of assigning priorities to active processes
and allocating system resources based on process priorities. This is typically done by
allocating larger CPU time slices to high-priority processes and shorter time slices
to low-priority processes. However, these operating system assigned priorities are not
taken into account in today’s shared cache capacity management schemes. Currently,
existing schemes mainly focus on exploiting application memory characteristics while
managing the shared CMP caches, but ignore application priorities. To address this
issue, ATR accounts for application priorities in its capacity management while also
responding to application memory characteristics.
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Fig. 2. An illustrative case study, where the timekeeping replacement policy outper-
forms the LRU replacement policy for a 4-way set-associative cache. Suppose memory
addresses X and Y are referenced by the lower-priority process. After some T cycles,
X’s and Y’s cache lines will decay and become candidates for replacement. With the
LRU replacement policy, all memory references will be misses. In contrast, 3 out of
7 memory references are hits with the timekeeping replacement policy. More signifi-
cantly, these hits are for the high-priority process.

2.2. Collaborative Parallel Threads in a Parallel Application
Another issue faced by shared cache capacity management techniques is that collab-
orative threads are treated equally in a parallel application. In existing techniques,
for multiprogrammed workloads that consist of several parallel applications, all par-
allel threads freely compete for the shared cache. This causes sibling threads (threads
in the same parallel application) to compete for shared CMP cache space rather than
acting cooperatively. In order to tackle this issue, we need novel techniques which rec-
ognize collaborative threads in a parallel application and help to reduce the shared
cache contention among all active threads. The proposed ATR scheme offers a solution
for this issue by identifying high-priority critical threads in a parallel application and
allocating the shared cache space preferentially to these threads.

3. TIMEKEEPING TECHNIQUES FOR ORDERING CACHE REPLACEMENT
ATR builds on the cache decay concept [Kaxiras et al. 2001] which was originally pro-
posed to reduce leakage power consumption of cache memories on chip. We first give
background on cache decay’s original use for leakage control.

3.1. Cache Decay
Cache decay exploits the generational behavior of data stored in a cache. That is, often
data in the cache have a burst of frequent reuse due to data temporal locality followed
by a period of “dead time” before they are evicted. Although implementations vary,
conceptually cache lines are associated with a decay counter which is decremented
periodically over time. Each time a cache line is referenced, its decay counter is reset
back to a decay interval, T, which is the number of idle cycles this cache line is allowed
to remain in the cache. In other words, if a cache line is frequently referenced, its
decay counter will not reach 0. When the decay counter reaches 0, it implies that the
associated cache line has not been referenced for the past T cycles and its data are
unlikely to be referenced again in the near future. In the original cache decay proposal,
this timer would signal when the power supply of the cache line should be turned off
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(with loss of data) to save leakage power. Our proposal does not turn off the cache
line nor lose data; rather, we use the generational timer construct to prioritize data
for upcoming evictions as discussed next. Furthermore, as Section 4.4 describes, our
implementation has a much lower overhead than the conceptual example’s full counter
per cache line.

3.2. Shared Cache Capacity Management
In ATR, the generational behavior exploited by timekeeping leakage control helps de-
termine which lines of a cache should be considered for early replacement. ATR sug-
gests to evict the data of low-priority processes more aggressively than that of high-
priority processes. This approach can be used to control cache space occupancy of mul-
tiple processes.

When a cache line has not been referenced for the past T cycles, it can be thought of
as moving to the LRU position in a replacement “queue”. That is, it becomes an imme-
diate candidate for replacement regardless of its LRU status. The key observation is
that we can use different decay intervals for each process. The decay counters of cache
lines associated with high-priority processes receive a longer decay interval, so over
time more cache resources are allocated to these processes. Similarly, the system may
assign a shorter decay interval to cache lines associated with streaming-memory appli-
cations or low-priority processes, in order to release their cache space more frequently.
Consequently, higher-priority data tend to stay in the shared cache for a longer period
of time.

In Figure 2, assuming a 4-way set-associative cache, we show how cache decay can
be individualized to different applications in a mixed workload. Suppose memory ad-
dresses X and Y are referenced by the lower-priority process. After some T cycles with-
out being re-referenced, X’s and Y’s cache lines will decay and become candidates for
replacement whether or not they are least recently used. With an LRU replacement
policy for the example shown in Figure 2, all memory references would be misses. In
timekeeping management, 3 out of 7 memory references are hits. More importantly,
these hits are for the high-priority process. This is because cache lines associated with
the high-priority process do not decay. In this example, LRU replacement works poorly
because it treats all memory references equally. In contrast, the timekeeping replace-
ment has more hits because it adjusts replacement based on process priority while
responding to data temporal locality. Its fine-grained control in time and in space en-
ables the effectiveness of the enforcement. Furthermore, unlike a strict priority-based
eviction scheme, timekeeping control lets low-priority applications make use of cache
space at times when the high-priority applications are not actively referencing their
cache lines.

While Petoumenos et al. [2006] explored some of the basic trends for such a tech-
nique, they focused on a statistical model that predicts thread behaviors. Our work
employs the timekeeping concept of cache decay to cache capacity management con-
sidering process priority. We offer direct performance studies, implementation details,
and consider operating system effects. Finally and importantly, our work further stud-
ies the impact on workloads with parallel applications. The timekeeping replacement
ordering coupled with adaptive decay intervals forms the core of ATR.

4. ATR IMPLEMENTATION
This section first introduces the key components in the ATR framework. Then we ex-
plain ATR’s algorithm and its enforcement for selected performance targets. Finally
we discuss the hardware implementation and overhead for ATR.
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if( PerformanceHP < βL*PerformanceTarget ){

//Region 4

DecayIntervalLP = DecayIntervalLP / αL

DecayIntervalMP = DecayIntervalMP / αM

}else if( PerformanceHP < βM*PerformanceTarget ){ 

//Region 3

DecayIntervalLP = DecayIntervalLP / αM

}else if( PerformanceHP > βU*PerformanceTarget ){ 

//Region 1

DecayIntervalLP = DecayIntervalLP * αM

DecayIntervalMP = DecayIntervalMP * αL

}

Region 1

IPC alone

Fig. 3. (a) Region classification with an IPC target described in Section 4.3.1. (b)
Pseudo code for ATR’s decay interval calculation.

4.1. Implementation Overview
In order to adapt to memory needs during different program phases of an applica-
tion, ATR monitors performance of applications of interest based on process priorities
and aims to provide performance expectation defined by shared resource management
policies. ATR observes a metric of choice and adjusts decay intervals of applications
accordingly. Depending on the metric chosen, the ATR scheme can support different
high-level capacity management policies, such as to maximize overall system through-
put, to satisfy quality of service goals, and/or to provide fairness in cache sharing. Pos-
sible metrics include cache space allocation per process, the number of cache misses,
or instructions committed per cycle.

4.2. ATR Algorithm and Enforcement
This section explains ATR’s parameters and algorithm in detail. There are three prior-
ity levels in the ATR framework: high-priority (HP), medium-priority (MP), and low-
priority (LP). Cache lines associated with HP applications never decay, whereas those
associated with MP and LP do.

With the three priority levels, there are five parameters. αM and αL are weighting
factors which determine how fast decay intervals change for MP and LP applications.
Cache lines associated with lower priority processes have larger α values, so the de-
cay intervals are decremented faster. Thus the lower-priority cache lines move more
quickly to the LRU position in the shared cache. For a system that must support more
intermediate priority levels, the ATR scheme can be simply extended to provide more
intermediate decay factors. In addition, we define βU , βM , and βL as the tolerance
thresholds for a target metric. The β values determine how much performance degra-
dation is tolerable for HP applications.

Typically, the operating system annotates its policies to the underlying hardware
mechanisms. As a result, it is the most suitable candidate to set α and β values for
active processes based on their priorities. Then the underlying ATR hardware mecha-
nism interprets the policies defined by the operating system and guarantees the qual-
ity of service goal for processes in different priority levels. In the case of the ATR
scheme in this work, we set the α and β parameters according to application priorities
to demonstrate how ATR can effectively enforce the performance goal defined by the
preset parameters.

Next, we explain ATR’s algorithm. Figure 3(a) depicts four regions into which the
performance of the application(s) of interest can fall at any point in time. Figure 3(b)
provides the pseudo code for the ATR algorithm. In the example, we use application
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IPC to represent the application performance. The different regions in Figure 3(a)
correspond to how the HP application’s performance compares to a target level.

Region 1 represents a better-than-target performance region, where IPChp ap-
proaches the performance of the application running alone, IPCalone, and is greater
than the upper performance tolerance threshold, βU*IPCalone. Because the perfor-
mance of the HP application(s) is close to the performance upper bound, ATR can
allocate more cache space to the MP and LP applications running concurrently by
increasing their associated decay intervals with factors of αL and αM respectively.

Region 2 represents a controlled performance region, where IPChp is between the
upper performance degradation tolerance, βU*IPCalone, and the mid performance
degradation tolerance, βM*IPCalone. When the performance of the HP application(s)
falls in region 2, decay intervals of the MP and LP applications can remain unchanged.
This is because the performance of the HP application(s) lies in the controlled perfor-
mance region and meets the QoS goal defined by the β values.

Region 3 represents a slight-degradation performance region. When IPChp falls in
region 3, the HP application(s) experience performance degradation: IPChp falls in be-
tween the mid performance degradation tolerance, βM*IPCalone, and the lower perfor-
mance degradation tolerance, βL*IPCalone. In order to catch up with IPCalone, cache
lines associated with LP applications are to be evicted more frequently by a factor of
αM under the ATR scheme. As a result, HP applications can utilize more shared cache
space.

Finally, region 4 represents a severe-degradation performance region. When in re-
gion 4, IPChp is classified as severely degraded. Here, ATR will decrease decay in-
tervals of both MP and LP applications by factors of αM and αL respectively, so the
associated cache lines are evicted more frequently. As a result, the HP application(s)
are allocated more shared cache space.

ATR decay interval adjustments continue dynamically either until IPChp increases
or until the MP and LP intervals reach their preset lower bounds. These lower bounds
provide worst-case guarantees for MP and LP applications. In general, the HP appli-
cations are allocated more shared cache space and can recover from the performance
loss caused by the interference of others. On the other hand, the lower bounds stabilize
the control algorithm and ensure minimal cache space for MP and LP applications.

Although IPC is used as the performance metric for the performance target in this
example, the ATR scheme is flexible and can enforce other performance metrics defined
by a specific shared resource policy. Section 4.3 discusses this in more detail.

4.3. Performance Target
The previous example used IPC as the target metric, but ATR is general and can use
other performance metrics as well, such as cache miss counts, or cache occupancies.
A performance target based on an IPC metric tracks application performance more
directly whereas performance targets based on cache resource metrics, such as cache
miss counts and cache occupancies, are less direct, but sometimes easier to obtain
dynamically. In Sections 4.3.1 and 4.3.2, we explain how the ATR framework obtains
its performance target using IPC and cache resource metrics respectively.

4.3.1. IPC Target. Deducing the target IPC for an application can come from an ap-
plication performance goal (e.g. a soft-realtime video game or media player) or from
profiling. We use profiling in our work. The application of interest is first run alone
owning the entire shared cache. Every 100 million cycles, its performance in IPC is
recorded. This is essentially the most direct method for knowing how the application
would run in isolation. When the target application runs concurrently with other ap-
plications, its instruction counts are lined up with the counts when it is running alone,
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(a) Region Classification with a Cache Resource Metric (b) Pseudo Code for ATR’s Decay Interval Calculation

if( #LP_cache_misses/#HP_cache_misses >= γL){

DecayIntervalLP = DecayIntervalLP / αL

}else{

DecayIntervalLP = DecayIntervalLP * αM

}

if( #MP_cache_misses/#HP_cache_misses >= γM){ 

DecayIntervalMP = DecayIntervalMP / αM

}else{

DecayIntervalMP = DecayIntervalMP * αL

}

Fig. 4. (a) Region classification with a cache resource target described in Section 4.3.2.
(b) Pseudo code for ATR’s decay interval calculation.

so IPCalone is used for the same program section. Nevertheless, the IPCalone can also
be obtained by dynamic performance prediction using, for example, the techniques
proposed in [Isci et al. 2006; Tam et al. 2009] with some modification.

For a parallel application, we set the performance target based on the IPC of the
critical thread(s). This is because the performance of a parallel application is often
bounded by the slowest running threads. There has been other work [Bhattacharjee
and Martonosi 2009] which focuses on predicting critical threads in a parallel applica-
tion based on thread cache behavior at runtime. Our work uses a similar but simpler
technique which determines thread criticality by the lowest-IPC thread.

4.3.2. Other Targets. An alternative to using profiled IPC as ATR’s performance target
is to use other dynamic metrics, such as the number of L2 misses or cache occupancy.
Work, such as [Kim et al. 2004; Jaleel et al. 2008], also uses a dynamic cache miss
count metric to guide the proposed cache partitioning algorithm. Here we offer an
example policy that uses cache miss counts to guide ATR’s enforcement mechanism.
Similarly, we can fit the performance curves of MP and LP applications at any point in
time in Figure 4(a). Here γM and γL represent the L2 miss count ratio of MP and HP
applications and that of LP and HP applications respectively. When an inter-process
conflict miss occurs to a HP process, ATR decreases MP’s and LP’s decay intervals
by factors of αM and αL. In return, the HP process can utilize more shared cache
space. ATR then periodically checks whether the L2 miss proportions of MP/LP and
HP processes exceed γM and γL, the preset target. If it does, the performance of MP or
LP processes is degraded more than desired, so ATR will increase MP’s and LP’s decay
intervals to allow more cache utilization. As a result, miss count ratios of MP/LP and
HP processes stay close to γM and γL. Figure 4(b) provides the pseudo code for the
decay interval calculation with a cache resource metric.

4.4. Hardware Implementation and Overhead
This section discusses the hardware implementation and overhead for ATR in detail.
The ATR hardware interprets process priorities assigned by the operating system to
decay threshold with an N-entry lookup table, where N is the number of processors.
This small hardware lookup table maps PIDs to decay intervals for all active processes.
Then, at every sampling interval, the ATR scheme compares the performance of HP
applications to its performance target and the tolerance thresholds as described in
Section 4.2. It also calculates the next decay intervals based on the comparison result
and the α values. Since we only allow α factors to be multiples of 2, the calculation
for new decay intervals is a simple shift and, as a result, this calculation is not a
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Fig. 5. Decay counter implementation with 2-bit speed counter per cache line incurs
less than 1% overhead for 64-byte cache lines. The overhead is even less for longer
cache lines: 0.1% for 256-byte cache lines.

performance bottleneck. Alternatively, the decay interval calculation is only performed
every 10 million cycles, so this calculation can be done in software. In this work, we
simulate all modifications in hardware with a full-system simulator (Section 5.1).

For decay counter implementation, the ATR scheme primarily relies on a single
global cycle counter. Some of the global counter’s middle or high-order bits are used to
control the per-line or regional counters in the cache, as discussed in [Hu et al. 2002].
Only a small number of coarse-grained decay bits, e.g. 2 bits, are stored per cache entry
along with a subset/hash of PID. In this two-level scheme, when four decay intervals
are required (i.e. 64K, 256K, 1M, and 4M), the 4th, 6th, 8th, and 10th bits of the global
counter are used to control the local counter. The single global counter decrements ev-
ery cycle, but local per-entry counters only decrement every 4096 cycles. When a local
counter reaches zero, its associated cache line becomes an immediate candidate for re-
placement. Our work has explored design options and determined that four different
decay intervals are sufficient.

When only a few representative decay intervals are required, ATR can be imple-
mented with a 2-bit speed counter per cache line as shown in Figure 5. This incurs
less than 1% hardware overhead for 64-byte cache lines. For longer cache lines, the
overhead is even less. If more fine-grained decay interval increments are desired, the
two-level counter scheme incurs no more than 3% overhead for 64-byte cache lines,
which is still reasonably low overhead.

Last but not least, although we do not model this, the same decay counter hardware
can be used both for ATR’s capacity management and for timekeeping leakage energy
control. This amortizes overhead over two benefits and allows systems to optimize for
power, cache capacity management, or both.

5. EXPERIMENTAL SETUP
5.1. Simulation Framework
We evaluate the proposed ATR scheme using GEMS [Martin et al. 2005]. GEMS is
built upon Virtutech Simics [Virtutech Simics 2010], a full-system multi-core processor
simulator. We simulate both 4-core (for sequential workloads) and 16-core (for parallel
workloads) CMP systems based on the Sparc architecture running Solaris 10 operating
system. We elaborate the workload setup in Section 5.2.

The microarchitectural parameters for our baseline memory sub-system are based
on Intel’s Core2 Quad chips clocked at 2.83 GHz on a 45 nm technology node [Intel
Corp. 2010]. Each processor core has a 4-way set-associative, 32KB private L1 cache
with 64B cache lines. All cores share the two 2MB L2 cache banks (4MB in total). The
L2 cache banks are 16-way set-associative with 64B cache lines.

CACTI 5.3 determines the L2 cache access latency to be 2.87ns. This means, it takes
8.12 cycles to access the L2 cache. We round up to a higher access latency of 10 cy-
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Fig. 6. Application L2 cache miss ratios of sequential and parallel applications used
in our workloads.

cles for the experiments in the paper to represent CMP systems running at a higher
frequency.

GEMS memory modules add 4 more cycles to determine and access the cache banks.
Furthermore, a simple interconnection network is modeled, which includes 2 more cy-
cles for network link latency. Thus, overall, the L2 cache access latency is 16 cycles.
This also matches well with Core2 Quad’s design parameters. The measured L2 cache
access latency for Core2 Quad machines is 15 cycles [Intel Corp. 2011]. Similarly, we
use CACTI 5.3 to determine the access latencies for other memory components in the
system, where L1 cache access takes 3 cycles and DRAM access takes 268 cycles re-
spectively.

5.2. Workload Construction
We use a combination of sequential and parallel applications to evaluate shared re-
source management mechanisms. The sequential applications come from the SPEC
2006 benchmark suite; the parallel applications are from the SPLASH-2 [Woo et al.
1995] and PARSEC [Bienia et al. 2008] benchmark suites. To better suit today’s
CMP cache sizes and configurations, the SPLASH-2 applications use the scaled input
datasets suggested in [Bienia et al. 2008]. The PARSEC applications use the simlarge
input datasets. Figure 6 shows the L2 cache miss ratios of sequential and parallel ap-
plications used in our workloads. The L2 cache miss ratio represents an application’s
memory characteristics and is provided as background information to help understand
the mixed memory characteristics for the entire aggregate workloads.

Tables I and II then summarize the seven workloads we study. Five of these are mul-
tiprogrammed mixtures of sequential applications (SPEC2006); the other two work-
loads are multiprogrammed mixtures of parallel applications. The workloads repre-
senting multiprogrammed mixes of sequential and parallel applications are intended
to illustrate several scenarios.

First, Workloads 1 and 2 are general sequential scenarios. Here, we generate hetero-
geneous memory requests to the shared cache by running gcc, gobmk, and lbm in Work-
load 1 and bzip2, gcc, and mcf in Workload 2. Each of the three applications is pinned
to an individual core (in the 4-core CMP system). The remaining core is dedicated
for operating system activities, so the OS interference on the running applications is
minimized.

Workloads 3 and 4 are general purpose parallel workloads. Workload 3 consists of
three parallel applications, fft, barnes, and radix, from the SPLASH-2 benchmark
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Table I. Workloads reflect general sequential and general parallel scenarios. The application priority in
all workloads is randomly chosen to mimic the OS priority assignment.

Workload 1: General, Sequential
SPEC2006 gcc gobmk lbm
Priority Level HP MP LP

Workload 2: General, Sequential
SPEC2006 bzip2 gcc mcf
Priority Level HP MP LP

Workload 3: General, Parallel
SPLASH-2 barnes fft radix
Priority Level HP MP LP
Input Dataset 65,536 particles 4,194,304 points 8,388,608 points
Domain scientific computing scientific computing sorting

Workload 4: General, Parallel
PARSEC streamcluster canneal fluidanimate
Priority Level HP MP LP
Input Dataset simlarge simlarge simlarge
Domain data mining engineering animation

Table II. Workloads reflect high-contention scenarios. The application priority in all workloads is ran-
domly chosen to mimic the OS priority assignment.

Workload 5: High Contention, Sequential
SPEC2006 bzip2 gcc mcf lbm
Priority Level HP HP LP LP

Workload 6: High Contention, Sequential
SPEC2006 gcc mcf mcf mcf
Priority Level HP LP LP LP

Workload 7: High Contention, Sequential
SPEC2006 hmmer bzip2 gobmk gcc
Miss Ratio HP MP MP LP

suite. Each is run with four threads and each thread is pinned to an individual core in
the 16-core CMP system. The second multithreaded workload includes three different
parallel applications, canneal, streamcluster, and fluidanimate, from the PARSEC
benchmark suite. Similarly, each application is run with four threads and each thread
is pinned to an individual core.

Finally, Workloads 5-7 model the high-contention scenarios to the shared cache.
These high-contention scenarios are the ones that most fundamentally motivate cache
resource management approaches. Workload 5 models high contention memory access
to the shared cache by running bzip2, gcc, mcf, and lbm, where both mcf and lbm are
memory-bound applications. Workload 6 also models the high contention scenario by
including one instance of gcc along with three instances of mcf. The first three applica-
tions are pinned to individual cores in the 4-core CMP system and the last application
share its core with OS activities. Finally, the last high-contention workload, Workload
7, consists of four SPEC2006 applications, bzip2, gcc, gobmk, and hmmer. This workload
is used to demonstrate ATR’s enforcement for both an IPC and a dynamic cache miss
metric. Table III summarizes ATR’s configurations for all workloads.

5.3. Performance Metric
In the multiprogrammed sequential workloads, Workloads 1, 2, 5, 6, and 7, we mea-
sure the performance in IPC of each application for the same program section following
the method discussed in Section 4.3.1. We show speedup for each application individu-
ally. We also compute a weighted speedup metric related to application priorities. The
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Table III. ATR configuration for all workloads. In a full implementation, the OS would set and adjust these parameters.

IPC Control αL αM βL βM βH

Sequential Workloads 4 2 0.93 0.96 0.97
Parallel Workloads 4 2 0.90 0.95 0.97

αL αM γL γM γH

Cache Miss Control 4 2 4 2 N/A

Table IV. STR configuration for all workloads. Application priorities are given in Tables I and II. HP application cache lines
are never decayed.

LP Decay Interval (in cycles) MP Decay Interval (in cycles)
Workload 1 4096 8192
Workload 2 4096 1,048,576
Workload 3 1,048,576 8,388,608
Workload 4 1,048,576 4,194,304
Workload 5 4,096 8,192
Workload 6 4,096 N/A
Workload 7 262,144 4,194,304

speedup of high-, medium-, and low-priority applications are weighted 3:2:1. Further-
more, for Workload 7, we also use a dynamic cache resource metric (in number of L2
cache misses) to measure the performance of each application individually in addition
to weighted mean.

For Workloads 3 and 4 that consist of parallel applications, we run each application
to completion and use execution time speedup as the performance metric. If one of the
applications finishes earlier than other applications in the workload, it restarts and
reruns until all applications finish at least once. This ensures a degree of multipro-
grammed contention throughout the full simulation.

6. PERFORMANCE EVALUATION
We investigate a static, non-adaptive scheme, called Static Timekeeping Replacement
(STR). Then we compare the performance results for STR and ATR to a baseline sys-
tem which uses the LRU replacement policy for its level-two cache. Furthermore, we
implement another recently proposed cache capacity management scheme, TADIP-F
[Jaleel et al. 2008]. We extend TADIP-F to account for application priorities and give
a detailed comparison to ATR in Section 6.4.

6.1. STR Scheme
We first consider STR, a static version of ATR, in order to show the importance of ATR’s
ability to adaptively change decay intervals at runtime. For STR, we experiment with
36 pairs of decay intervals for MP and LP applications ranging from 4K cycles to 64M
cycles. Based on these results, we pick the single decay interval combination giving
the best weighted average performance for applications. Thus, the STR results show
an idealized best-case performance for a static decay interval, and can be used as a
comparison point. Table IV summarizes the decay interval combinations chosen.

6.1.1. General, Sequential Workloads: Workloads 1 and 2. Figure 7 shows that, for
all workloads except Workload 2, STR significantly improves performance compared
to the unmanaged baseline. In Workload 1, STR preferentially allocates more shared
cache space to the high-priority applications, gcc. In return, the performance of gcc
and gobmk is improved by 17% and 16% relative to the unmanaged case although the
performance of lbm is degraded by 1%, as shown in Figure 8(a). This minimal perfor-
mance tradeoff of lbm and significant performance gain of gcc and gobmk comes from
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Fig. 8. Performance comparison for (a) Workload 1 and (b) Workload 2.

the fine-grained capacity control of STR and its ability to eliminate memory interfer-
ences in the shared cache between lbm and the other applications.

However, for Workload 2, STR is not flexible enough and cannot improve the perfor-
mance of the high-priority application as illustrated in Figure 8(b). For workload 2, the
performance of bzip2, the high-priority application, remains the same as it is in the
unmanaged baseline. Furthermore, the performance of mcf, the low-priority applica-
tion, is degraded by 9%. This is because STR is unable to adjust the decay intervals to
adapt to changes in memory needs over the program execution. ATR’s dynamic decay
interval selection addresses this problem.

6.1.2. General, Parallel Workloads: Workloads 3 and 4. Next, we investigate STR’s
effectiveness for workloads comprised of parallel applications, Workloads 3 and 4. As
illustrated in Figure 9, when the shared cache is unmanaged, radix uses most of the
shared cache over the program execution, leaving almost no cache space for fft and
very little for barnes, the high-priority application. In STR, radix’s cache space oc-
cupancy is constrained when other higher priority applications request more shared
cache space. In return, the performance of fft and barnes is improved by 5% and
1%. More importantly, because of the fine-grained control of the STR scheme, the per-
formance of radix experiences no additional degradation compared to the baseline
scheme. Similarly, in Workload 4, the STR scheme can improve the performance of
streamcluster, the high-priority application, and canneal by 4% and 13% respectively
without additionally harming the performance of fluidanimate, the low-priority appli-
cation. Figure 10 illustrates this.
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Fig. 9. Cache space utilization for Workload 3 under (a) the baseline scheme, (b) STR,
and (c) ATR. During time T1, ATR prefers to retain barnes (the HP application) cache
lines, then fft’s (the MP application), and last radix’s (the LP application) as shown
in (c), whereas the allocation in the baseline scheme is on-demand (by LRU).
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7.

6.1.3. High Contention, Sequential Workloads: Workloads 5-7. Finally, we illustrate
that STR can improve the performance of Workloads 5-7 in the high contention scenar-
ios significantly. In Workload 5, STR preferentially allocates more shared cache space
to the high-priority applications, bzip2 and gcc, while retaining data that exhibit good
temporal locality from lbm and mcf. In return, the performance of bzip2 and gcc is im-
proved by 50% and 27% relative to the unmanaged case although the performance of
lbm is degraded by 5%, as shown in Figure 11(a). More interestingly, the performance of
the other low-priority application, mcf, is improved by 28%. This results in a net aver-
age performance improvement. If lbm’s small performance degradation is problematic,
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Fig. 13. Cache space distribution over time for Workload 1: (a) under the baseline
scheme and (b) under the ATR scheme.

the operating system could categorize it as an MP application, which would help pro-
tect it from mcf’s heavy use of the cache. Another alternative is to let the operating
system decrease the α values at runtime. Thus lbm, the LP application in the work-
load, is allowed to use more shared cache. The minimal performance tradeoff of lbm
and significant performance gain of mcf comes from the fine-grained capacity control
of STR and its ability to eliminate memory interferences in the shared cache between
lbm and all other applications. We see similar performance result for Workloads 6 and
7 as illustrated in Figures 11(b) and (c).

While STR improves the performance for all workloads except Workload 2, its inabil-
ity to adjust decay intervals on the fly results in less effective memory allocation. As
a result, the performance of the high- and the medium-priority applications is slightly
degraded in Workload 2. Furthermore, to determine the optimal combination of the
decay intervals for MP and LP applications in the STR scheme requires multiple pro-
filing runs. This imposes a constraint on STR’s feasibility. In the following section, we
will demonstrate ATR can detect the change of memory needs for all applications at
runtime, dynamically adjust decay intervals, and, as a result, allocate the shared cache
space more effectively to all running applications.

6.2. ATR Scheme
ATR’s dynamic decay interval adjustments reduce the need for profiling and increase
its ability to exploit application program phases. When the shared cache is managed
under the ATR scheme, Figure 7 shows that ATR offers a significant performance im-
provement across all workloads. The performance benefit is especially large for work-
loads where memory needs change over different program phases.

6.2.1. General, Sequential Workloads: Workloads 1 and 2. When compared to the
STR scheme, ATR can further improve the performance of gcc, the high-priority appli-
cation in Workload 1, by additional 6% without degrading the performance of the other
applications. Figure 12 shows that this is because ATR can allocate cache memory ef-
fectively based on its performance monitoring by quickly adjusting the decay intervals
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Fig. 15. Cache space distribution over time for Workload 2: (a) under the baseline
scheme and (b) under the ATR scheme.

of the MP and LP applications. As a result, the high-priority application receives more
cache space in the ATR technique [Figure 13].

With Workload 2, we demonstrate ATR’s ability to adapt to memory needs of all
applications over different program phases is critical and essential. When bzip2, the
high-priority application, is running along with gcc and mcf in Workload 2, its perfor-
mance is degraded by 31%. This performance degradation is caused by the memory
interference in the shared cache. When bzip2’s memory requirement decreases, ATR
immediately increases the decay intervals associated with gcc’s and mcf’s cache lines
as illustrated in Figure 14, so more shared cache can be utilized by gcc and mcf. Fig-
ure 15 illustrates that when the shared cache is managed under the ATR scheme,
bzip2, the high-priority application, immediately receives more shared cache space as
required throughout the execution. Then, when its memory need decreases, ATR im-
mediately allows the other applications to use more shared cache space. As a result,
the performance of bzip2 and gcc is improved significantly by 28% and 11% respec-
tively in the ATR scheme. In contrast, STR’s inability to adapt to different program
phases results in slight performance degradation in Workload 2.

6.2.2. General, Parallel Workloads: Workloads 3 and 4. Next, we explore how the
ATR scheme manages the shared cache space to improve the performance of work-
loads comprised of parallel applications, especially for the high-priority ones. Figures
16 and 17 depict the performance of critical threads in Workloads 3 and 4 over time.
As discussed in Section 4.3.1, the ATR logic monitors the performance of the critical
threads for the high-priority applications, barnes in Workload 3 and streamcluster
in Workload 4. Once it observes a slowdown beyond the tolerance threshold, the ATR
hardware immediately decreases the decay intervals of other running applications.

Figure 17(b) illustrates that, during time interval T1, for Workload 4, the perfor-
mance of the critical thread of streamcluster is rising, so the ATR logic increases the
decay intervals for canneal and fluidanimate. This allows both applications to uti-
lize more shared cache space. Then, during time interval T2, the performance of the
critical thread is declining. As a result, ATR decreases decay intervals of canneal and
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Fig. 16. (a) The IPC performance of barnes critical thread, the high-priority application
in Workload 3, over time in the baseline and ATR schemes. (b) The decay interval
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Fig. 17. (a) The IPC of streamcluster’s critical thread over time under the baseline and
ATR schemes. During time T1, the performance of the critical thread of streamcluster
is rising, so the ATR logic increases decay intervals for canneal and fluidanimate as
shown in (b). During time T2, the performance of the critical thread is declining, so
the ATR logic decreases decay intervals of other running applications. As a result,
cache lines associated with canneal and fluidanimate move to the LRU position more
quickly, similarly for time T3 and T4.

fluidanimate, so cache lines associated with the two applications move to the LRU
position more quickly. As a result, more shared cache space is allocated to the high-
priority applications as requested. Consequently, the performance of the high-priority
applications in Workloads 3 and 4 is improved by 4% and 7% respectively.

Although the performance of fft in Workload 3 and canneal in Workload 4 is im-
proved more in the STR scheme, the performance improvement of the high-priority
applications is more significant in the ATR scheme. This is because with statically
assigned decay intervals in the STR scheme, fft and canneal are able to use more
shared cache space leaving barnes and streamcluster with insufficient cache share
over certain program phases. In contrast, ATR is able to observe these subtle changes
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Fig. 18. Cache space distribution over time for Workload 6: (a) under the baseline
scheme and (b) under the ATR scheme.

in memory needs over time and adjust the decay intervals accordingly. Consequently,
the performance of both barnes and streamcluster, the high-priority applications, is
improved by an additional 3% compared to the improvement in the STR scheme.

6.2.3. High Contention, Sequential Workloads: Workloads 5-7. Finally we demon-
strate that compared to STR, ATR can further improve the performance of Workloads
5-7 in the high contention scenario. ATR works better than (or as well as) STR and
improves the performance of Workloads 5-7 by 1.64X, 1.07X, and 1.06X respectively
(Figure 7). ATR generally better protects the performance of the high-priority applica-
tions in the workloads.

The additional performance gain for the high-priority applications comes from ATR’s
ability to adapt to the memory needs of all applications at runtime. The ATR mecha-
nism first assigns an initial decay interval to each MP and LP application. Then during
the workload execution, ATR quickly settles to the decay intervals that can be used to
achieve the performance target. When the IPC target is met, ATR increases decay in-
tervals for the medium- and low-priority applications. Figure 18 illustrates that ATR
can preferentially allocate more shared cache space to the high-priority application in
Workload 6. Consequently, ATR further improves the performance of the high-priority
application in the workloads.

6.3. Dynamic Miss Tracking
As discussed in Section 4.3.2, ATR can also be guided by target metrics other than IPC.
Here as one example, we consider cache miss counts. Figure 19 illustrates the L2 miss
reduction for a workload (Workload 7) which consists of four SPEC2006 applications,
bzip2, gcc, gobmk, and hmmer. The left bar shows the number of L2 cache misses under
no management, the middle bar shows the management scheme under ATR’s enforce-
ment with βM=2 and βL=4, and the right bar shows the number of L2 misses when
each application is running alone. ATR reduces the number of L2 misses of the high-
priority application, hmmer, by 27%. Furthermore, the overall L2 misses is reduced by
11%. Here ATR is demonstrated as an effective, and yet flexible mechanism for shared
cache capacity management using dynamic cache miss tracking.

6.4. Comparison to TADIP-F and TADIP-FP
Another cache capacity management scheme, called Thread-Aware Dynamic Insertion
Policy with Feedback (TADIP-F) has been proposed recently [Jaleel et al. 2008]. Both
TADIP-F and ATR perform capacity management for shared caches by modifying the
cache insertion/replacement policy. The original TADIP-F work does not take into ac-
count application priorities in managing the shared cache. Here we take a step further
to extend the original TADIP-F work and propose a version of TADIP-F which encodes
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Fig. 19. Performance comparison for ATR under the guidance of a cache resource met-
ric: L2 miss counts.

application priorities (TADIP-FP). Then we compare the three schemes to demonstrate
ATR’s strengths.

6.4.1. TADIP-F. TADIP-F observes the memory requirement of all running applica-
tions and determines the insertion position of an incoming cache line by set-sampling.
It proposes to insert all incoming cache lines to two possible insertion positions: either
the LRU or MRU position. After insertion, LRU management occurs. For example, for
a cache-thrashing application, the majority of its incoming cache lines are placed in
the LRU position and a few in the MRU position. This insertion policy is called bi-
modal insertion policy (BIP). On the other hand, for a LRU-friendly workload, TADIP-
F always inserts its incoming cache lines in the MRU position. This policy is called
most-recently-used insertion policy (MIP).

TADIP-F uses a few cache sets to sample workloads running simultaneously and
vary a per-core policy selection (PSEL) counter to track misses in each insertion policy.
A miss in the MRU-insertion cache sets increments the PSEL counter and a miss in
the bimodal-insertion cache sets decrements the PSEL counter. The rest of the cache
sets use the most-significant-bit (MSB) of the PSEL counters to determine the inser-
tion policy: MSB=1 uses BIP and MSB = 0 uses MIP. In contrast, the ATR scheme
takes access timing into account by keeping track of the time interval since the last
access to cached data. We compare TADIP-F with the ATR scheme and demonstrate
the importance of this temporal aspect of the ATR scheme, particularly for the studied
parallel workloads.

6.4.2. TADIP-FP. Since the original TADIP-F does not consider process priorities,
we also implement a priority-aware version of TADIP-F, called TADIP-FP. TADIP-FP
varies how fast PSEL counters are incremented and decremented based on application
OS priorities. The PSEL counter for high-priority application is incremented by 1 as
it is in TADIP-F, but it is decremented faster by a constant larger than 1. As a result,
TADIP-FP uses MIP for the high-priority application more frequently. On the other
hand, the PSEL counter for low-priority application is incremented faster by a constant
larger than 1 and is decremented as it is in TADIP-F. This means TADIP-FP is more
inclined to use BIP for the low-priority application.

In our experiments, we use the weights for high-, medium-, and low-priority applica-
tions to determine the rate of change for the per-core PSEL counters. For high-priority
applications, we increment the PSEL counters by 1 when a miss occurs in the cache
set sampling for MIP and decrement the PSEL counters by 3 when a miss occurs in
the cache set sampling for BIP. As a result, TADIP-FP is more likely to select MIP
for the high-priority applications. For medium-priority applications, TADIP-FP incre-
ments the PSEL counters by 2 and decrements the PSEL counters by 2 also. Finally,
for low-priority applications, TADIP-FP increments the PSEL counters by 3 when a
miss occurs in its cache sets sampling for MIP and decrements the PSEL counters by
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Fig. 21. (a) Cumulative density function for the PSEL counter of gcc, the high-priority
application, in Workload 1. TADIP-FP selects to use MIP for the high-priority appli-
cation more frequently than TADIP-F. (b) Performance comparison for TADIP-F and
TADIP-FP. TADIP-FP improves the performance of the high-priority application by
2.5% more than TADIP-F.

1 when a miss occurs in its cache sets sampling for BIP. As a result, TADIP-FP selects
BIP for the low-priority applications more frequently than TADIP-F.

6.4.3. Comparative Performance Results. Figure 20 compares the overall perfor-
mance for all workloads under TADIP-F, TADIP-FP, and ATR. ATR performs better
than TADIP-F by 9% on average. More importantly, TADIP-F does not account for
OS-imposed priorities as ATR does. Figures 20(a) and (b) show that ATR outperforms
TADIP-F for parallel applications in Workloads 3 and 4 by 15% and 4% respectively.
Furthermore, the performance of two parallel applications in Workload 3, fft and
radix, is degraded severely under TADIP-F. This is because (1) not all cache sets in
TADIP-F use the optimal insertion policy, and (2) threads in the same parallel appli-
cation also have to compete for shared cache in TADIP-F. Figure 20(c) illustrates that
the performance of bzip2, the high-priority application in Workload 5, is 21% better in
the ATR scheme than in TADIP-F. This is because ATR preferentially allocates more
shared cache space to the high-priority application(s) whereas TADIP-F only observes
memory footprint characteristics and optimizes for the overall system throughput, but
does not aim to provide preferential cache allocation based on process priority.
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and TADIP-FP. TADIP-FP improves the performance of the high-priority application
by 1.5% more than TADIP-F.

Next, we investigate the performance results in the priority-aware TADIP-FP tech-
nique. For Workloads 1 and 6, TADIP-FP improves the aggregate performance the
most, by 28% and 14%. For all other workloads, ATR performs better. Although TADIP-
FP prioritizes high-priority cache lines, for a low-priority cache line which is inserted
to the LRU position followed by a cache hit, TADIP-FP promotes this low-priority cache
line to the MRU position. From here on, such low-priority cache lines are treated no
differently from a high-priority cache lines. As a result, the performance benefit gained
by high-priority applications is still limited in the TADIP-FP scheme.

Figure 21(a) shows the cumulative density function (CDF) for the PSEL counter
values of the high-priority application, gcc, in Workload 1. TADIP-F selects to use BIP
for gcc’s cache lines for 55% of the program run while TADIP-FP always selects to use
MIP for gcc’s cache lines. Figure 21(b) illustrates that, as a result, TADIP-FP improves
the performance of the high-priority application, gcc, by 2.5% over TADIP-F. This is
because more high-priority cache lines are inserted in the MRU position.

Similarly, Figure 22(a) shows the CDF for the PSEL counter values of the high-
priority application, bzip2, in Workload 2. TADIP-F selects to use BIP for bzip2’s cache
lines for 19% of the program run while TADIP-FP again always selects to use MIP
for bzip2’s cache lines. As a result, TADIP-FP improves the performance of the high-
priority application by 1.5% over TADIP-F as illustrated in Figure 22(b). Although
TADIP-FP can help improve the performance of the high-priority applications in both
Workloads 1 and 2, the overall (weighted) performance does not improve much com-
pared to TADIP-F. On average, TADIP-FP improves workload performance by 1% more
than TADIP-F.

In summary, although TADIP-F can be extended for priority level consideration
by weighting misses of high-priority applications more heavily (for example, TADIP-
FP), there are only two insertion position for incoming cache lines: MRU or LRU. If a
low-priority application’s cache line is first inserted to the LRU position and then re-
referenced, TADIP-F promotes it to the MRU position. It then must step back through
the position to LRU before eviction. On the other hand, with ATR, low-priority cache
lines become immediate candidates for eviction based on their decay counters even
when they are in MRU position. Therefore, ATR can better manage the shared cache
capacity taking into account the temporal behavior of data and process priority while
also improving the system throughput.

6.5. Sensitivity to Decay Intervals
Although temporal adaptivity is clearly important, we observe that decay intervals
used in most of the workloads settle to a few possible values in various program phases.
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Fig. 23. Comparison of the ATR and ATR-reduced schemes. Performance here is nor-
malized to the ATR scheme, and the performance of ATR already represents an im-
provement over the baseline in all cases.

Thus, it may be sufficient for the ATR scheme to support just these representative de-
cay intervals which can ease ATR’s temporal control for cached data. This ATRreduced

scheme implements four possible decay interval options for all cache lines: 4K cycles,
32K cycles, 1M cycles, and never decay. Figure 23 shows the performance compari-
son of the ATR and ATRreduced schemes. On average the ATRreduced scheme performs
similarly as the ATR scheme for all sequential workloads. We note, however, that the
coarser-grained control does not improve the performance of the high-priority applica-
tion(s) as much as the ATR scheme.

ATR also performs better than the ATRreduced scheme (7% and 6% respectively)
for the parallel workloads, Workloads 3 and 4. This is because the memory needs in
parallel applications change more frequently and more diversely as illustrated previ-
ously in Figures 16(b) and 17(b). Nonetheless, overall ATRreduced offers competitive
performance improvement as ATR. For all workloads, the performance gain under the
ATRreduced mechanism is only 3% worse than ATR’s. In general, ATRreduced represents
a simpler control implementation and similar performance to ATR.

6.6. Summary
This work proposes a priority-aware capacity management approach, ATR. We demon-
strate that ATR’s fine-grained cache capacity management in space and time is effec-
tive and important in improving the performance of both sequential and parallel work-
loads. ATR outperforms an unmanaged baseline by as much as 1.63X and by an aver-
age of 1.19X. We take a step further to implement a priority-aware version of TADIP-F,
called TADIP-FP. Our results show that ATR performs better than both TADIP-F and
TADIP-FP by an average of 9% and 8% respectively. Finally, we show, with a simpler
ATR implementation featuring four decay intervals, ATRreduced can sustain ATR’s sig-
nificant performance improvement with only 3% performance tradeoff on average.

7. RELATED WORK
There has been a significant amount of research in capacity management for shared
CMP caches [Bitirgen et al. 2008; Hsu et al. 2006; Iyer 2004; Jaleel et al. 2008; Kim
et al. 2004; Nesbit et al. 2007; Petoumenos et al. 2006; Qureshi and Patt 2006; Rafique
et al. 2006; Suh et al. 2001; Suh et al. 2002; Zhao et al. 2007]. However, the underlying
capacity control mechanisms used in these proposals are often based solely on spatial
partitioning of shared caches. To the best of our knowledge, our proposed ATR scheme
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is the first shared cache capacity management that takes into account not only spatial
allocation of shared caches and temporal characteristics of cached data but also appli-
cation priorities. Furthermore, this is the first detailed study of shared cache capacity
management considering thread behaviors in parallel applications.

Qureshi et al. [2006] proposed Utility-based Cache Partitioning which monitors re-
source utilization among all running processes in flight and distributes the shared
cache accordingly using way-partitioning. CacheScouts [Zhao et al. 2007] offered a
finer-grained monitoring for shared caches but it also uses spatial partitioning for
its shared caches. Similarly, Nesbit et al. [2007] proposed virtual private caches
which consist of a bandwidth manager and a capacity manager implementing way-
partitioning. Furthermore, Bitirgen et al. [2008] also uses spatial partitioning as its
underlying mechanism for the shared cache while coordinating other on-chip shared
resources: shared caches, cache bandwidth, and power budgets. To investigate the ef-
fectiveness of spatial partitioning, Iyer [2004] demonstrates that spatial partitioning
of shared caches in various granularity can help achieve QoS goals more effectively
for CMP platforms. Moreover, Kim et al. [2004] discussed five performance metrics
for CMP cache sharing which help the operating system determine shared cache al-
location better and offered two algorithms that also suggest to spatially partition the
shared cache. We argue that the proposed ATR scheme can provide a more effective
shared cache capacity allocation because not only is it capable of managing shared
caches spatially in the granularity of cache lines, but it also takes the timing behavior
of cached data into account. It is promising both as a stand alone capacity manage-
ment scheme, as well as in concert with other resource management scheme discussed
above.

Srikantaiah et al. [2008] proposed adaptive set pinning to identify and eliminate
inter-process misses in CMP systems. This work is complementary to the proposed
ATR scheme and can be used to further improve system throughput. Petoumenos et
al. [2006] offered a statistical model to predict thread behaviors in a shared cache
based on cache decay while no direct performance studies nor implementation details
are given for managing the shared cache. Jaleel et al. [2008] proposed TADIP-F, as
discussed in Section 6.4. Xie and Loh [2009] extended the idea in TADIP-F for shared
cache capacity management and showed that the proposed pseudo-partitioning scheme
allows better utilization of the shared cache. Finally, Jaleel et al. [2010] proposed RRIP
which modifies cache replacement policies based on cache line reuse interval predic-
tion. While this work is similar to ours, ATR is distinct in its application priority han-
dling. Furthermore, this work is the first quantifying the need for fine-grained capacity
management for parallel workloads.

8. DISCUSSION AND FUTURE WORK
In this section, we describe the role of the operating system in general for capacity
management schemes and specific to the proposed ATR scheme. In addition, we discuss
other design choice for cache memory organizations and the impact for cache capacity
management studies. Finally we list the future direction for this work.

8.1. Operating Systems
Operating systems apportion system resources to running processes based on the as-
signed priorities. Traditionally that has included CPU time slices, but our work shows
that shared CMP caches must similarly be managed. While the operating system of-
fers more flexibility in defining quality of service goals, it plays a significant role in
annotating its policies or specific goals to the underlying hardware mechanisms. The
underlying hardware mechanisms then interpret the policies defined by the operating
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system and guarantee some level of quality of service by adjusting shared resource
allocation.

In the case of ATR, the operating system can specify the α and β values based on its
QoS goals. The underlying hardware can vary decay intervals for each process on the
fly to satisfy OS policies. It is interesting to consider whether there is benefit to having
more priority levels than what is currently supported by ATR. On the other hand, for
processes with equal priorities, ATR does not treat them differently. A potential future
work is to explicitly assign the α and β values based on application cache utilization
for processes in the same priority level.

8.2. Non-Uniform Cache Access Design
Non-uniform cache access (NUCA) design is becoming more prevalent for today’s mem-
ory systems and poses an interesting challenge in cache capacity management tech-
niques. The traditional monolithic last-level cache (LLC) is separated to a few cache
banks enabling more parallelism accessing the cache bank modules. However, this re-
sults in non-uniform cache access latencies for the shared LLC. Accessing cache banks
located closer to a particular processor takes less time than other banks located further
on the chip.

This NUCA design certainly influences the cache capacity management problem and
motivates new approaches to cache partitioning. Cache capacity management schemes
should take into account cache bank access time when apportioning the shared LLC.
This can further optimize for application performance and system throughput. How-
ever, NUCA or the traditional uniform cache access (UCA) design is orthogonal to both
ATR and TADIP-F, which focus on improving application performance via modifying
cache insertion and replacement policies. As a result, we do not further investigate
this cache design choice in this work, but leave it as potential future work.

8.3. ATR for Shared versus Private Data in Parallel Applications
The proposed ATR scheme is the first work quantifying an approach for cache capacity
management for parallel applications. Currently, ATR, without special treatment, can
effectively improve parallel thread performance with its fine-grained capacity alloca-
tion. However, a more complicated ATR scheme can be designed to take into account
the data sharing characteristics: shared versus private data in a parallel application.
For example, assigning a longer decay interval to shared data can help reduce the
eviction rate of shared L2 cache blocks and their corresponding L1 cache blocks. As
a result, the amount of coherence messages in the interconnection network between
L1 and L2 caches can be significantly reduced. Furthermore, this can also reduce the
overall application cache miss rate. Although the current ATR scheme does not take
advantage of the data sharing property in parallel applications, this opportunity re-
mains for future work.

9. CONCLUSION
In this work, we propose ATR, a fine-grained capacity management for shared caches,
based on timekeeping techniques. ATR monitors the performance of high-priority ap-
plication(s) and dynamically apportions shared cache space among running processes
based on memory footprints and process priorities. We evaluate the proposed approach
including operating system effects. We demonstrate that ATR outperforms a baseline
system by as much as 1.63X and by an average of 1.19X for all studied workloads.
Furthermore, we study ATR’s effectiveness on workloads consisting of parallel appli-
cations. ATR can improve application performance over unmanaged scenarios by ac-
celerating critical threads; overall application performance is improved by as much as
7%. ATR’s fine-grained temporal control is particularly important for parallel applica-
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tions. We take a step further to implement a priority-aware version of TADIP-F and
show that ATR performs better than both TADIP-F and TADIP-FP by 9% and 8% re-
spectively. Overall, ATR is an effective mechanism for capacity management in shared
caches, because of its fine temporal and spatial control of the shared cache space. While
we have demonstrated ATR’s effectiveness in isolation, it can also be viewed as a build-
ing block to be used along with other prior work on cache and network bandwidth
management.
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