
Characterization and Dynamic Mitigation

of Intra-Application Cache Interference

Carole-Jean Wu and Margaret Martonosi

Depts. of Electrical Engineering and Computer Science

Princeton University

{carolewu, mrm}@princeton.edu

Abstract—Given the emerging dominance of CMPs, an impor-
tant research problem concerns application memory performance
in the face of deep memory hierarchies, where one or more
caches are shared by several cores. In current systems, many
factors can cause interference in the shared last-level cache (LLC).
While predicting an application’s memory performance is difficult
enough in an idealized setup, it becomes even more complicated in
real-machine environments in which interference can stem from
operating system memory accesses, and even from an application’s
own prefetch requests and page table walks caused by TLB misses.

This paper characterizes the degree by which intra-application
interference factors such as page table walks and hardware
prefetching influence performance. Using hardware performance
counters on an Intel platform, we first characterize real-system
LLC interference and show that application data memory ref-
erences represent much less than half of the LLC misses, with
hardware prefetching and page table walks causing considerable
LLC interference.

Based on these characterizations, we propose dynamic man-
agement methods to reduce intra-application interference. First,
we evaluate a dynamic OS-reference-aware cache insertion policy
that reduces interference and improves user IPCs by as much as
19% (5% on average). Second, to mitigate prefetch-induced LLC
interference, we propose, implement, and evaluate an automatic
prefetch manager that uses Intel PEBS capabilities to dynamically
estimate prefetch-induced interference and accordingly adjust the
aggressiveness of hardware prefetchers as programs run. Overall,
our characterizations are important in highlighting the challenges
of intra-application interference, and our hardware and software
proposals offer significant solutions for addressing them.

1 Introduction

It is common today to run multiple applications, such as web

server, video-streaming, graphic-intensive, scientific, and data

mining workloads, on chip-multiprocessor (CMP) systems, with

multiple cores sharing the last level on-chip cache (LLC).

This can cause performance degradation and performance un-

predictability. Although inter-application interference in shared

caches has been well-studied [4, 9, 11, 21, 24], the effects of

intra-application interference also play a significant role and

have received significantly less attention. Some past work has

characterized some OS interference effects [1, 23] , but these

studies are not very recent so they do not include effects seen in

today’s deep memory hierarchies accessed simultaneously by

multiple cores. Furthermore, there is also a need to characterize

intra-application interference in the face of modern, aggressive

hardware prefetchers.

Our work provides a detailed real-system characterization

of how user references in today’s workloads are interfered

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 (
%

)

Application LLC Misses

Others [prefetching, page table walks, etc.]

Fig. 1. LLC miss breakdown: User vs. System. The lower (orange) portion
each bar represents misses caused by application memory instructions and the
upper part (black) represents misses caused by other sources, e.g. prefetching,
page table walks due to TLB lookups, etc. [Data collected on Intel Core i7].

with by operating system and prefetching references executing

on the application’s own behalf. For example, Figure 1 plots

a breakdown of LLC miss types, collected using detailed

hardware performance monitoring counters on a running Intel

Nehalem (x86) system. (Section 2 gives methodology details.)

Among all LLC misses, surprisingly few come from application

memory data references. This is because of interference from

operating system memory accesses, page table walks caused

by Translation Lookaside Buffer (TLB) misses, speculative

memory accesses, and even from an application’s own prefetch

requests.

Having established that intra-application interference from

operating system references and prefetching requests is a severe

problem in today’s systems, this paper also proposes and

evaluates dynamic management techniques to address these

concerns. In particular, our first proposal uses a different cache

insertion policy to reduce user-system interference within a

single application. This method exploits the different reuse

trends between user and system behavior to implement different

cache insertion policies for each class of references. While

simple, it offers user performance improvements by as much

as 19% and by an average of 5%. This corresponds to 10%

aggregate performance improvement and 3% on average.

In addition, we explore techniques for reducing prefetch-

induced cache interference by dynamically modulating how

aggressively prefetchers operate. Our dynamic prefetch man-

ager, built upon Intel’s Precise Event Based Sampling (PEBS)

capability, periodically assesses the degree of LLC interfer-

ence caused by prefetch requests. Based on its estimation,



TABLE I
ARCHITECTURAL PARAMETERS OF THE REAL SYSTEM (INTEL NEHALEM).

Operating System Ubuntu 9.10 Desktop
Target Platform Intel Core i7 CPU 950

L1 I-TLB 128-entry, 4-way

L1 D-TLB 64-entry (small pg.), 32-entry (large pg.), 4-way

L2 TLBs 512-entry (small-pages only), 4-way, Private

L1 I Cache 32KB, 4-way, Private, 3 cycles
L1 D Cache 32KB, 8-way, Private, 4 cycles

L2 Cache 256KB, 8-way, Private, 11 cycles

L3 Cache (LLC) 1MB per-logical-core, 16-way, Shared, 30-40 cy-
cles

the dynamic manager tunes the aggressiveness of hardware

prefetching by setting the corresponding machine state registers

(MSRs). Our approach eliminates prefetch requests predicted to

be low-payoff.

With this dynamic prefetch control, intra-application cache

interference caused by aggressive hardware prefetching is re-

duced by 25% compared to the system default (when all

prefetchers are on). Most importantly, the proposed dynamic

prefetch control improves the application performance the most

among the available prefetch options because of its ability to

adapt to program phase changes at runtime. As a result, the

application (i.e. lbm) miss counts are further reduced by 20%

compared to the best of all prefetch options explored.

Overall, this paper’s mix of real-system characterizations

with detailed evaluations of hardware and system proposals can

help guide future work in operating systems and architecture

regarding the importance and challenges of intra-application

cache interference.

The remainder of this paper is structured as follows. In Sec-

tion 2, we describe the real-system and simulation infrastructure

for the target platform and experimental setup. Then in Section

3, we present our characterizations of both system and prefetch-

induced intra-application LLC interference. This is followed

by Section 4 where we discuss the proposed cache insertion

policies and their effect on performance. Section 5 presents

the design of our dynamic prefetch management technique and

evaluates it on a real running system. This is followed by

Section 6 where we discuss related work. Finally, Section 7

offers conclusions.

2 Methodology

This section introduces our experimental methodology for both

real-system measurements and full-system simulation.

2.1 Real-System Measurement Infrastructure

We use an Intel Nehalem-based Core i7 CPU 950 (Bloomfield)

platform for the real-system characterization. This platform

includes 4 physical processor cores. Each core has private L1

and L2 caches, and all cores share the L3 cache. Each of the

cores also has a private L1 I-TLB, a private L1 D-TLB, and a

private L2 unified TLB. The detailed architectural parameters

of the target platform are described in Table I.

In real systems, hardware performance monitoring counters

(PMCs) allow us to measure misses and prefetches accurately.

(To dig deeper into the causes of observed interference, we

use simulation as later described.) We use the perfmon2 [16]

TABLE II
ARCHITECTURAL PARAMETERS OF THE BASELINE SIMULATED PLATFORM

(SIMICS/GEMS).

Operating System Sun Solaris 10

Target Platform UltraSPARC III Cu

L1 I-TLB 16-entry, fully assoc. (locked/unlocked pages);
128-entry, 2-way (unlocked pages)

L1 D-TLB 16-entry, fully assoc. (locked/unlocked pages);
512-entry or 1024-entry 2-way assoc. (unlocked
pages)

L1 I/D Caches 64KB, 4-way, Private, 3 cycles
L2 Cache (LLC) 1MB per-core, 16-way, Shared, 35 cycles

performance monitoring interface to access hardware PMCs

on the target platform. We count the number of LLC misses

which are application data read memory references with

the hardware event MEM_LD_RETIRED:LLC_MISS. We count

the aggregate number of LLC misses with UNC_LLC_MISS.

Then we use TLB_MISSES:WALK_COMPLETED for the

number of page table walks caused by TLB misses,

L1D_PREFETCH:MISS for the number of L1D prefetch

misses, and L2_RQSTS:PREFETCH_MISS for the number

of L2 prefetch misses. More detailed information about the

performance monitoring events can be found in the Intel

Software Developer’s Manual [7].

2.2 Full-System Simulation

In order to understand the sources of LLC misses in more

detail, we use a full-system processor simulator based on

Simics/GEMS [12, 19]. The simulated processor models Sun’s

UltraSPARC III Cu processor family (Table II) with two mem-

ory management unit (MMU) configurations. One configuration

has a total of 512 translations, organized as 2 256-entry L1 D-

TLBs. This configuration represents today’s high-performance

desktops, with a TLB size/organization comparable to the

Nehalem platform described in Section 2.1. We also evaluate a

larger TLB organization that has a total of 1024 entries, similar

to the Sun Fire 3800 (one of the largest TLB size/organizations

to date). Both MMU architectures have separate 16-entry fully-

set associative L1 I and D-TLBs used by the operating system

for locked pages.

Because page table walks caused by TLB miss handling are

important to our characterization, we instrument the Simics

source code to track instruction and memory references in-

curred for each TLB miss handling. Our method for capturing

this information is described in Section 3.2.

2.3 Benchmarks and Input Sets

We perform our evaluation for intra-application LLC inter-

ference using sequential applications in the SPEC CPU2006

benchmark suite [20]. All applications are run with ref input

data sets. For real-system measurements, applications are run

until completion. Since full-system simulations are orders of

magnitude slower than real-system ones, we run the same

set of SPEC CPU2006 applications but skip the first 100M

instructions and then collect the results for windows of 1B

instructions.



0%

20%

40%

60%

80%

100%
LL

C
 R

e
fe

re
n

ce
 B

re
a

k
d

o
w

n

user-mode system-mode

Fig. 2. LLC user- and system-mode reference breakdown. On average,
more than 50% of LLC references are system-mode. [Data collected with
Simics/GEMS full-system simulation].

3 Characterizing References to the Last-

Level Cache

A key contribution of our paper is in providing detailed char-

acterizations of CMP memory hierarchy behavior for current

workloads and operating systems, with a particular focus on

intra-application interference stemming either from OS ref-

erences or from prefetch requests. We first use real-system

measurements to give an overview of the behavior and sources

of cache misses. While real-system measurements are useful for

seeing the full real-world story, it can be difficult to measure

all the necessary details from the limited performance counters

available. Our research therefore provides further characteriza-

tions based on full-system simulation.

3.1 Overview Characterizations

3.1.1 Real-System Characterization on Intel Nehalem:

With hardware PMCs available in most of today’s systems,

we can estimate the degree of intra-application LLC in-

terference caused by hardware prefetching with real-system

measurement. We measure the number of user application

LLC read misses (PMC event: MEM_LD_RETIRED:LLC_MISS)

and compare it with the aggregate number of LLC

read misses (UNC_LLC_MISS:READ). The difference between

MEM_LD_RETIRED:LLC_MISS and UNC_LLC_MISS represents

the number of LLC read misses from speculative accesses,

prefetch requests, or operating system memory references.

We then collect the statistics for the number of prefetch re-

quests issued by hardware prefetchers on an Intel Nehalem plat-

form. Based on the aggressiveness of each hardware prefetcher,

the number of application LLC misses, and the aggregate LLC

miss counts, we estimate the degree of LLC interference from

an application’s own prefetch requests in real systems.

3.1.2 Characterization on Simics/GEMS: We use full-

system simulation to further investigate the sources of LLC

interference within an application. Similar to our real-system

characterization results, Figure 2 shows that, on average, less

than 50% of LLC references are from user applications. All ap-

plications experience significant LLC interference from system-

mode references.

Section 3.2 characterizes such intra-application LLC inter-

ference caused by system references, which include page table

walks from TLB misses, application-initiated system calls, and

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

T
LB

 M
is

se
s 

p
e

r 
M

il
li

o
n

 

In
st

ru
ct

io
n

s

512-entry D-TLB 1024-entry D-TLB

Fig. 3. TLB misses per million instructions on SPARC. [Real-system
measurement performed on an Intel-Nehalem-based platform running Linux
shows similar behavior].

other operating system memory references. Because page table

walk references incurred by TLB miss handling constitute a

significant portion of system-mode memory references, we

delve deeper into TLB miss handling in general and also

specific to the SPARC and x86 (Intel Nehalem) architectures

which we use as the full-system simulation and real-system

measurement platforms in this study.

3.2 Digging Deeper: Characterizing System Ref-

erences

Since every memory reference requires virtual-to-physical ad-

dress translation, TLBs cache frequently accessed page table

entries to accelerate these translations. When a hit occurs

in the TLB, the virtual to physical address translation can

be used directly. For a TLB miss, page table walks resolve

the address translation. Processors vary regarding whether the

page table walk is controlled in hardware or software, but in

either case references causing LLC interference can occur. This

section first describes the software approach used for SPARC

architectures.

3.2.1 TLB Miss Handling for SPARC Architectures: When

a TLB miss occurs, the operating system is invoked. It first

checks the translation storage buffer (TSB), a software cache

that stores a few virtual to physical address pairs. If there is

a hit in the TSB, the TLB miss is serviced by the TSB entry.

If not, the operating system walks the page table to resolve

the address translation. During the software page table walks

caused by TLB misses, many additional instruction and data

references are incurred, which stress the memory hierarchy.

3.2.2 Identifying Page Table Walk Memory References in

Simics: A particular challenge lies in discerning which system

references correspond to page table walks since all system

references (including page table walks, application-initiated

system calls, and other operating system memory references)

arrive at the LLC as context-0 references. We instrument the

TLB miss handler in the Simics MMUs to track instruction and

memory references for page table walks. We instrument the

MMUs right after the software interrupt is invoked and before

the TLB miss is serviced. However, during this period of time,

page faults can occur and the operating system could switch its

context to handle other running processes. To accurately count

references related to TLB miss handling only, we compare the



0

500

1000

1500

2000
A

v
g

. 
In

st
ru

ct
io

n
s 

p
e

r 
T

L
B

 m
is

s

Fig. 4. Number of instruction references incurred per TLB miss handling. On
average, more than 800 instruction references are incurred to handle each TLB
miss (which might incur page faults). These additional references contribute a
significant portion of the LLC system references and can cause intra-application
LLC interference.

0

100

200

300

400

A
v

g
. 

D
a

ta
 R

e
fe

re
n

ce
s 

p
e

r 
T

LB
 

M
is

s

Fig. 5. Number of memory references incurred per TLB miss handling. On
average, more than 200 memory references are incurred to handle each TLB
miss (which might incur page faults). These additional references contribute a
significant portion of the LLC system references and can cause intra-application
LLC interference.

context IDs to only include instruction and memory references

related to page table walks and page faults.

Figure 3 shows the number of TLB misses per million

instructions for SPEC CPU2006 applications. In a 512-entry

TLB, more than 100 TLB misses occur for every million

application instructions. mcf, a large memory footprint appli-

cation, has the highest TLB miss ratio among all applications.

For the larger 1024-entry TLB organization, misses occur less

frequently.

Figures 4 and 5 illustrate that, on average, handling each

TLB miss incurs about 800 instruction and 200 data memory

references. For some applications, such as mcf, soplex, and

sjeng, the number of page table walk instruction and data

references is relatively less. This is because more of the

application’s TLB misses hit in the TSB, so a complete page

table walk is not required.

Overall, the page table walk instruction and memory ref-

erences constitute a significant portion of all system-mode

references. Figure 6 illustrates that, on average, 80% of system-

mode references are caused by TLB miss handling. In addition

to page table walks caused by TLB misses, the remaining

20% of the system references in Figure 6 can come from

application-initiated system calls, operating system kernel pro-

cess, etc. Since this represents a less significant portion among

all system-mode references, we do not further separate these

references into different categories.

0%

20%

40%

60%

80%

100%

%
 o

f 
R

e
fe

re
n

ce
s

page table walk references other system-mode references

Fig. 6. System-mode reference breakdown. On average, 80% of system-mode
references are page table walks caused by TLB misses.

3.2.3 TLB Miss Handling for x86 Architecture: Since our

real-system characterization result is based on x86 architec-

tures, we briefly discuss TLB miss handling in x86, which

involves hardware page table walks, but nonetheless, page table

walk memory references contribute to intra-application LLC

interference. There are typically four levels of page table in

64-bit systems. When a TLB miss occurs, the CPU walks the

four-level page table, so each TLB miss resolution requires

roughly four memory references and potentially incurs four

cache misses. In addition, the operating system has to ensure

consistency between TLBs and page tables. As a result, when

TLB shootdown or page faults occur, the operating system

is responsible for invalidating corresponding TLB entries and

updating the CR3 register. This case leads to many additional

cache misses of a magnitude similar to SPARC page fault

handling.

3.3 Memory Reuse Characteristics Analysis for

User- and System-Mode References

In order to devise effective cache management policies to

mitigate intra-application LLC interference between user and

system memory references, this section studies the distinct

reuse characteristics for these user and system references. When

considered on their own, user application memory references

often exhibit good reuse characteristics with excellent data

temporal locality. Data brought into the LLC are reused several

times before being evicted. However, this good reuse behavior

is degraded when user and system references share the LLC.

When user and system references are viewed together, many

of user cache lines become never reused (zero-reused) before

getting evicted from the LLC.

To illustrate this, Figure 7 examines the reuse frequencies of

the user references when they use the LLC exclusively (User

Only) and when they share the LLC with system references

(Baseline). The graph shows that when user and system refer-

ences share the LLC in the baseline case, 76% of user cache

lines are never reused before being evicted from the LLC.

However, when user references have exclusive access to the

LLC, the number of zero-reused user cache lines drops to 36%.

This is because many user cache lines that could be reused are

instead evicted early due to intra-application LLC interference

from system references.

Even worse, a significant portion of system references in-

terfering with user references themselves exhibit bad reuse



0%

20%

40%

60%

80%

100%

mcf sphinx3 sjeng bzip2 Avg.

%
 o

f 
L
in

e
s

Baseline User Only [Cache user refs; bypass system refs]

Fig. 7. Memory reuse characteristics for user references: Percentage of lines
that are zero-reused. The good reuse patterns of user references are destroyed
by LLC interference from system references.

0%

20%

40%

60%

80%

100%

mcf sphinx3 sjeng bzip2 Avg.

%
 o

f 
Li

n
e

s

Baseline System Only [Cache system refs; bypass user refs]

Fig. 8. Memory reuse characteristics for system references: Percentage of
lines that are zero-reused.

characteristics. Figure 8 shows that, when system references

share the LLC with user references, 84% of system cache lines

are zero-reused. However, even when system references have

exclusive access to the LLC (System Only), 82% of system

cache lines are still never reused. This means that the LLC

which would be more useful to user-mode references is instead

being devoted to system-mode references, some of which have

little likelihood of ever being reused.

Given that many system references are zero-reused, it is

tempting to simply bypass all system references and completely

eliminate LLC interference between user and system references.

However, examining the system references shows that the

remaining system references are reused frequently. Figure 9

shows the reuse frequencies of system cache lines. The x-

axis represents reuse frequencies and the y-axis represents the

cumulative density function of reuse frequencies. While 82%

of system references have zero reuse frequency, 5% of system

references are reused heavily and bypassing them will degrade

performance significantly.

3.4 Characterizing Hardware Prefetching

In addition to system references, prefetch requests represent a

significant portion of LLC references. While often helpful, the

benefits of aggressive prefetching hinge on its accuracy. In the

past few decades,there have been numerous prior works [5, 6,

10, 13, 15, 22, 26] which focus on improving prefetching mech-

anisms by increasing prefetcher accuracy and/or reducing cache

pollution. However, there has not been any research work in

characterizing real-system prefetch-induced LLC interference

within applications.

In order to understand intra-application LLC interference

����

���

����

�

�
�
�
�
��
��
�
	

�
	
�
�
��

�
�
�
��
��
�



�
�

�
	
�
	

�
�	
�
�
	
�
��

��	


�����

����

���

� �� �� ���

�
�
�
�
��
��
�
	

�
	
�
�
��

�
�
�
��
��
�



�
�

�
	
�
	

�
�	
�
�
	
�
��

�	�	
��	��	���


����

����

Fig. 9. Reuse characteristics of system references. While 82% of system
references are zero-reused, the remaining 18% system references exhibit good
reuse behavior. 5% of system cache lines are reused more than 20 times.

caused by hardware prefetching, we first give background on

Intel Nehalem-specific hardware prefetching. Then we present

our real-system characterization results for intra-application

LLC interference caused by the mid-level cache prefetchers.

3.5 Hardware Prefetchers on Intel Nehalem

There are four distinct hardware prefetchers on Intel Nehalem

platforms: data cache unit (DCU) IP-prefetcher, DCU streamer-

prefetcher, mid-level cache (MLC) spatial-prefetcher, and MLC

streamer-prefetcher.

The per-core DCU IP-prefetchers looks for sequential load

history to determine whether to prefetch the data to the L1

caches; the DCU streamer prefetchers detect multiple reads to

a single cache line in a certain period of time and choose to

load the following cache lines to the L1 data caches. We leave

these two DCU prefetchers always on because Intel does not

allow any external control of them.

On the other hand, we can control the MLC spatial-

prefetchers and streamer-prefetchers by setting the correspond-

ing machine state register (MSR) bits. The MLC spatial-

prefetchers detect requests on two successive cache lines and

are triggered on if the adjacent cache lines are accessed. The

MLC streamer-prefetchers work similarly to the DCU streamer-

prefetchers, which predict the immediate future access patterns

based on the current cache line readings.

3.6 Intra-Application Interference Caused by

Hardware Prefetching

We first show the aggressiveness of the MLC prefetchers for

all SPEC CPU2006 applications. This gives an estimate for

the amount of intra-application LLC interference caused by

Nehalem’s hardware prefetchers.

Figure 10 illustrates the degree to which the LLC’s workload

stems from L2 prefetch misses. As many as 85% of the LLC

requests are due to the MLC prefetchers. Since many of these

will bring useful data from the LLC to the L2 cache, they do not

always lead to harmful interference. Nonetheless, it is clear that

the LLC’s workload is heavily influenced by MLC prefetcher

behavior, and useless prefetch requests can cause significant

LLC interference.

Next, we demonstrate the impact of turning on and off MLC

prefetchers. If turning off prefetchers helps reduce application



0

0.5

1
L2

 P
re

fe
tc

h
M

is
se

s 
p

e
r 

LL
C

 

R
e

fe
re

n
ce

Fig. 10. Behavior of Nehalem’s Mid-Level Cache (MLC) prefetchers. The
bars represent the fraction of LLC references that are due to MLC prefetches
(as opposed to demand requests due to misses in L1 or L2 caches).

LLC miss counts, intra-application LLC interference caused by

prefetch requests is considered significant. Otherwise, prefetch-

ing can effectively fetch useful data in advance.

Figure 11 shows the number of application LLC misses

and the number of aggregate LLC misses (including both

application and prefetch requests missed in the LLC) with

MLC prefetchers turned off. The left bars represent the number

of application LLC misses normalized to the baseline, for

which MLC prefetchers are on. The right bars show aggregate

LLC miss counts, also normalized to the case of prefetchers

turned on. For SPEC CPU2006 applications, such as lbm,

namd, povray, soplex, bzip2, gcc, and h264ref, turning

off prefetchers significantly increases application LLC miss

counts. This means that the MLC prefetchers can effectively

fetch useful data in advance.

For applications, such as mcf and gobmk, turning off MLC

prefetchers only slightly increases the number of application

LLC misses. This means the MLC prefetchers are less effective

but still help improve application LLC misses. For applications,

such as omnetpp, astar, and sjeng, the MLC prefetchers

are not very effective and, therefore, can be turned off with no

performance impact.

Lastly for applications such as libquantum and sphinx3,

we recommend turning off MLC prefetchers. As illustrated in

Figure 11, the number of application LLC misses is reduced

slightly for libquantum. More significantly, for sphinx3,

turning off the MLC prefetchers reduces both the number of

application LLC misses (left bar) and the aggregate number of

LLC misses (right bar) significantly. This means the accuracy

of the MLC prefetchers is very low for sphinx3 which leads

to more severe intra-core LLC interference.

4 Reducing OS-induced Cache Interfer-

ence

4.1 OS-Aware Dynamic Cache Insertion
Our goal is to eliminate harmful intra-application LLC inter-

ference caused by zero-reused system cache lines (82% among

all system references) while retaining cache lines with high

reuse frequencies as discussed in Section 3.3. Thus, in this

section, we present our design for a dynamic cache management

scheme that exploits the distinct memory reuse characteristics

of user- and system-mode references. Our dynamic manage-

0

0.5

1

1.5

2

2.5

3

M
is

s 
C

o
u

n
ts

 N
o

rm
a

li
ze

d
 t

o
 

S
y

st
e

m
 D

e
fa

u
lt

 [
P

re
fe

tc
h

e
rs

 O
n

]

(L
o

w
e

r 
is

 B
e

tt
e

)

Application LLC Misses Aggr. LLC Misses

Fig. 11. Intra-core LLC interference caused by MLC prefetch requests. This
graph compares miss counts (application-only or all) with prefetchers turned
off, normalized to those with prefetchers turned on.

ment scheme is based on a previously proposed technique,

called dynamic insertion policy (DIP) [17].

Our work explores a family of policies for varying cache

insertion positions based on whether the reference comes from

user or system modes. In LLCs, cache set associativities are

often as high as 16 or 32. This means that there are many

options for where to insert new data into the cache, rather than

the baseline scheme which always inserts cache lines to the

most-recently used (MRU) position. Prior work has proposed

inserting cache lines in either MRU or LRU positions to avoid

memory-intensive applications thrashing caches for the entire

workload. Our work is distinct in exploiting such approaches

while distinguishing user- and system-mode references. We

investigate three cache insertion policies varying system ref-

erence insertion positions: SYS-LRU, SYS-MID, and SYS-DYN.

While other options are possible, our policies focus on inserting

user references into the MRU position and varying insertion

positions for system references.

• SYS-LRU: This policy inserts user references in the MRU

position as in a typical cache, but it inserts system ref-

erences into the LRU position instead. System references

are detected as context ID = 0.

• SYS-MID: As in SYS-LRU, user references are inserted

in the MRU position. System references are, however,

inserted in the middle of the MRU and LRU positions.

For our 16-way set-associative LLC, this is position 8.

• SYS-DYN: This policy uses Set Dueling [9] described in

Section 4.1.1 to periodically compare user and system

miss counts for the two insertion policies, SYS-LRU and

SYS-MID. It then dynamically chooses the insertion policy

which results in fewer cache misses.

SYS-DYN is designed to adapt to changing user and system

reuse characteristics at runtime. In our setup, SYS-DYN com-

pares user and system miss counts for each insertion policy at

every 1000 LLC misses. Furthermore, in order to obtain more

good reuse system references, SYS-DYN periodically (every 64

system LLC misses) inserts system references in the MRU

position to allow system references to utilize the LLC. This

technique is similar to the bimodal insertion policy presented

in [17].

The SYS-DYN algorithm is described in Algorithm 1. In the

algorithm, we use a coefficient, c, which can be used to control

the ratio of user and system miss counts. In our experiments, we



set c = 1. This means SYS-DYN starts using SYS-LRU until it

detects that the system LLC miss count increase has surpassed

the user LLC miss count reduction. Then SYS-DYN switches

to use SYS-MID. For c greater than 1, system miss counts are

weighted more, so SYS-DYN uses SYS-MID more frequently,

and vice versa for c smaller than 1.

Algorithm 1 Algorithm for SYS-DYN.

∆user miss counts = user miss counts of SYS-LRU - user miss counts of

SYS-MID

∆system miss counts = system miss counts of SYS-LRU - system miss

counts of SYS-MID

while (user miss counts + system miss counts) % 1000 == 0 do
if ∆user miss counts + c ∗ ∆system miss counts > 0 then

SYS-DYN selects SYS-MID
else

SYS-DYN selects SYS-LRU
end if

end while

4.1.1 Hardware Implementation: This section presents the

implementation of SYS-DYN with modest hardware require-

ments. We use the set dueling mechanism to dynamically

collect user and system LLC miss counts for SYS-LRU and

SYS-MID policies. In the baseline system, we dedicate 32 out

of the 1024 cache sets to each of the two insertion policies:

SYS-LRU and SYS-MID. This means set 1, set 33, ..., and every

32nd set in the 1024-set LLC are dedicated to use SYS-LRU.

Similarly, set 2, set 34, ..., and every 32nd set are dedicated to

use SYS-MID.

We require four additional cache miss counters to count

user and system LLC misses in each policy. As described in

Algorithm 1, it then uses the policy resulting in fewer LLC

misses for the remaining 960 cache sets.

Figure 12 illustrates the hardware implementation of SYS-

DYN. The lower 5 bits of data address index field determine

the insertion position of the incoming system cache lines.

Periodically, SYS-DYN compares the miss counters and updates

the insertion policy for the remaining cache sets.

4.2 Performance Results
Figures 13–15 show the results for SYS-LRU, SYS-MID, and

SYS-DYN. In particular, Figure 13 shows user LLC miss re-

duction for the three policies. When considering user LLC miss

counts only, SYS-LRU (the leftmost bars in Figure 13) reduces

user LLC miss counts more than the other two policies. User

miss counts are decreased by as much as 14% for bzip2 and

by an average of 6%. This is because SYS-LRU aggressively

inserts system references in the LRU position. As a result, it

can eliminate LLC interference caused by system references

most effectively.

The LLC miss reduction with SYS-LRU corresponds to as

much as 22% user IPC improvement, with an average of 5%.

Furthermore, Figure 14 shows that the aggregate IPC (including

both user and system memory references) is improved by as

much as 12% for soplex. While SYS-LRU is effective at re-

ducing user LLC miss counts, its impact on aggregate behavior

is more varied. For example, for lbm, omnetpp, sjeng, and

gobmk, SYS-LRU degrades aggregate IPCs. This is because

k

k+32i

m

m+32i
…

index

k+32i: SYS-LRU
m+32i: SYS-MID

user miss 
counters

SYS-LRU

SYS-MID

insertion policy

Existing cache module

SYS-LRU

SYS-MID

system miss 
counters

Fig. 12. Hardware implementation for SYS-DYN. In our setup, k equals 1
and m equals 2.

0.75

0.8

0.85

0.9

0.95

1

1.05

M
is

s 
C

o
u

n
ts

 N
o

rm
a

li
ze

d
 t

o
 

B
a

se
li

n
e

 (
Lo

w
e

r 
is

 B
e

tt
e

r)

SYS-LRUinsert SYS-MIDinsert SYS-DYNAMIC

Fig. 13. User LLC miss count reduction for SYS-LRU, SYS-MID, and SYS-
DYN. The user miss counts are normalized to a baseline policy of normal
cache operation, where all references are inserted in the MRU position.

although SYS-LRU improves user IPCs, system performance

degradation is more than user performance improvement. As a

result, the overall IPCs are degraded. SYS-MID alleviates this

problem.

Figure 13 shows that, although SYS-MID does not reduce

LLC miss counts as much as SYS-LRU, it consistently improves

user LLC miss counts for all applications. In addition, the

middle bars in Figure 15 shows user IPCs are improved by

4% on average. We also see that aggregate IPCs are improved

by as much as 10% for soplex and by an average of 3.5%.

This is because inserting incoming system references in the

middle of the LRU stack using SYS-MID helps retain more of

the 18% system references which exhibit good reuse behavior

while still reducing LLC interference caused by low reused

system references.

Because each of SYS-LRU and SYS-MID has its own advan-

tage in reducing LLC interference between user and system

references, we examine a hybrid policy, SYS-DYN. Indeed,

SYS-DYN is the most effective one among the three insertion

policies. SYS-DYN reduces user LLC miss counts and helps im-

prove both user and aggregate IPC performance. The rightmost

bars in Figure 13 show that SYS-DYN, although it does not



0.7

0.8

0.9

1

1.1

1.2
A

g
g

r.
 I

P
C

 N
o

rm
a

li
ze

d
 t

o
 

B
a

se
li

n
e

 (
H

ig
h

e
r 

is
 B

e
tt

e
r)

SYS-LRUinsert SYS-MIDinsert SYS-DYNAMIC

Fig. 14. IPC performance improvement for SYS-LRU, SYS-MID, and SYS-
DYN. The aggregate IPCs are normalized to a baseline policy, where all
references are inserted in the MRU position.

0.7

0.8

0.9

1

1.1

1.2

1.3

U
se

r 
IP

C
 N

o
rm

a
li

ze
d

 t
o

 

B
a

se
li

n
e

 (
H

ig
h

e
r 

is
 B

e
tt

e
r)

SYS-LRUinsert SYS-MIDinsert SYS-DYNAMIC

Fig. 15. IPC performance improvement for user references for SYS-LRU,
SYS-MID, and SYS-DYN. The user IPCs are normalized to a baseline policy,
where all references are inserted in the MRU position.

reduce user LLC miss counts as much as SYS-LRU, can help

reduce more user miss counts than SYS-MID. For all SPEC

CPU2006 applications, SYS-DYN reduces user LLC misses by

as much as 13%. Furthermore, it improves user IPCs by as

much as 19% and by an average of 5%.

More importantly, SYS-DYN can consistently improve the

aggregate IPC performance for all applications. For some

applications, such as lbm and gcc, SYS-DYN works the best

among the three insertion policies. This is because SYS-DYN

takes advantage of SYS-LRU, which can reduce user LLC miss

counts more aggressively. But when it detects the increase in

system miss counts, SYS-DYN dynamically switches to SYS-

MID instead. As a result, the number of system LLC misses is

improved. Overall, Figure 14 illustrates that SYS-DYN improves

aggregate performance by as much as 10% and 3% on average

for all applications.

5 Mitigating Prefetch-Induced Intra-

Application Cache Interference
In addition to system-mode references, hardware prefetching

contributes to intra-application LLC interference as well. Our

real-system characterization in Section 3.6 hints that Nehalem’s

MLC prefetchers may issue prefetch requests too aggressively

for some applications. This results in serious LLC interfer-

ence with user memory references within the same applica-

tion. To eliminate such prefetch-induced cache interference

caused by hardware prefetching, Section 3.6 shows that turning

off the MLC prefetchers statically for applications, such as

libquantum and sphinx3, helps improve application LLC

miss counts.

5.1 Dynamic Prefetch Management
To further demonstrate an automatic hardware prefetching con-

trol, we propose, implement, and evaluate a dynamic manage-

ment technique to adjust Nehalem’s hardware prefetchers based

on the degree of prefetch-induced LLC interference observed

at runtime.

For example, when an application experiences aggressive

intra-application interference caused by prefetch requests, our

management scheme turns off the prefetchers to eliminate such

prefetch-induced interference dynamically. When the compara-

tive samples indicate that prefetching should be turned on, the

dynamic manager turns back on the prefetchers.

5.1.1 Implementation: Other prior methods have been pro-

posed to reduce prefetch-induced cache interference, i.e. [13,

15, 26]. However, most of these designs require hardware

modification. In contrast, this work implements an effective,

dynamic prefetch manager in a real system solely by using

counter-sampling techniques and available software-accessible

registers that control the hardware prefetchers.

In particular, we take advantage of Nehalem’s Precise Event

Based Sampling (PEBS) capability to collect samples for

application LLC miss counts periodically. For example, if the

sampling period is set to N, an interrupt will be generated at

every Nth application LLC miss, to dump records for the par-

ticular sample. We instrument the perfmon2 interface to take a

time stamp, when the sample is collected, by reading the time

stamp counter with the RDTSC instruction. Furthermore, based

on the decision of our dynamic prefetch control algorithm, we

set the appropriate software accessible machine state registers

(MSRs) to adjust the hardware prefetchers.

Next, we describe our simple but effective dynamic prefetch

control algorithm. There are two major phases in our dynamic

prefetch manager: a dynamic profiling phase and a program run

phase. In the dynamic profiling phase, we turn on the MLC

prefetchers and measure the time taken to complete s samples.

We then repeat the measurement with the MLC prefetchers

turned off. If it takes more time to complete s samples when

prefetchers are turned off, this means application LLC misses

occur less frequently in time. So we leave all prefetchers turned

off for the program run phase. Otherwise, we turn back on

the prefetchers. The pseudo-code for our dynamic prefetch

controller is described in Algorithm 2. The sampling period

used in the algorithm is 10,000. This means, at every 10,000

application LLC misses, a sample is recorded. We set s to

50 and period to be 10,000. This means the duration of the

dynamic profiling phase is 100 samples and the duration of the

program run phase is 9,900 samples. Our empirical data show

that using 100 samples (1% of the program period) for the

dynamic profiling phase can sufficiently determine the correct

prefetch control option.

Since our dynamic prefetch control is built upon perfmon2,

it inherits the performance monitoring interface overhead. To

quantify this overhead, we measure the time spent in PEBS

collection. For the sampling frequency used in our experiments,

one sample collected for every 10,000 application LLC misses,

the overhead is negligible. For all experiment runs, it is con-

sistently less than 0.5% making our dynamic prefetch control



Algorithm 2 Algorithm for dynamic prefetch control. sample N is the sample
number.

if sample N % period == 0 then
// dynamic profiling phase: prefetchers on
prev time = curr time;
Turn on all hardware prefetchers;

else if sample N % period == s then
// dynamic profiling phase: prefetchers off
Time on = curr time - prev time;
prev time = curr time;
Turn off all hardware prefetchers;

else if sample N % period == 2*s then
// program run phase
Time off = curr time - prev time;
if Time on > Time off then

Turn on all hardware prefetchers;
else

Turn off all hardware prefetchers;
end if

end if

0

0.5

1

1.5

2

2.5

3

A
p

p
li

ca
ti

o
n

 L
LC

 M
is

s 
C

o
u

n
ts

 

N
o

rm
a

li
ze

d
 t

o
 S

y
st

e
m

 D
e

fa
u

lt

(L
o

w
e

r 
is

 B
e

tt
e

r)

Prefetchers On (System Default) Prefetchers Off Dynamic Management

Fig. 16. Application LLC miss reduction for the three prefetch control options:
Prefetchers On (System Default), Prefetchers Off, and Dynamic Management.

a lightweight and practical implementation in real systems.

5.2 Performance Results
The proposed dynamic prefetch controller helps reduce appli-

cation miss rates by as much as 25%. Figure 16 illustrates

the application LLC miss counts normalized to the system

default, in which all prefetchers are turned on. The leftmost

bars represent the system default option (always 1), the middle

bars represent the prefetchers-off option, and the rightmost bars

represent the dynamic prefetch control.

For most applications (mcf, omnetpp, astar, namd,

soplex, sjeng, bzip2, gcc, gobmk, and h264ref) the

dynamic prefetch manager can correctly choose the prefetch

option that results in fewer application LLC miss counts.

For libquantum and sphinx3, which experience aggressive

prefetch-induced cache interference, the dynamic prefetch man-

ager can reduce interference and, in turn, reduce application

miss rates by 5% and 25% respectively.

Interestingly, the dynamic prefetch technique improves the

application memory performance the most for lbm and povray.

lbm’s application LLC miss reduction in the dynamic prefetch

controller surpasses the miss reduction in both the System

Default and Prefetchers Off options. This is because the dynamic

prefetch manager observes changes in the program phase and

adjusts the aggressiveness of hardware prefetchers accordingly.

Figure 17 illustrates the prefetch control decisions over lbm’s

program execution. By adjusting the aggressiveness of Ne-

halem’s prefetchers based on the dynamic sampling phase, our

�

�
��
��
��
�
�
	
�

�
� �

�

� ���� ����� ����� ����� ����� �����

�
��
��
��
�

�����������������	���

����� ������ ������ ������ ������

���

Fig. 17. Prefetch options chosen by the automatic prefetch manager.

method can determine the best prefetch option as programs run.

5.3 Summary
To summarize, we provide the first real-system characteri-

zation for intra-application interference caused by hardware

prefetching and summarize the effects for a range of different

applications. Using existing PMCs on today’s platforms, we can

characterize the degree to which prefetch requests interfere with

user memory references. We find that hardware prefetching

can harm performance for applications, such as libquantum

and sphinx3, because of prefetch-induced intra-application

LLC interference. In this case, turning off hardware prefetching

improves application memory performance.

To mitigate prefetch-induced cache interference automati-

cally, we implement a runtime prefetch manager that dynam-

ically estimates the degree of LLC interference caused by

prefetch requests and adjusts the aggressiveness of hardware

prefetchers during program execution. We demonstrate that

the proposed dynamic prefetch control can further improve

application performance due to its ability to adapt to program

phase changes.

6 Related Work
6.1 Shared LLC Capacity Management
LLCs are among the most critical shared resources in CMP

systems. To achieve performance isolation, quality of service,

and better system throughput for the LLC, numerous research

efforts have attacked cache capacity management [4, 9, 11, 14,

17, 18, 21, 24, 25].

These efforts, however, do not distinguish user references

from system references and likewise do not distinguish prefetch

requests from other memory references. Our work demonstrates

that intra-application LLC interference from page table and

prefetch activity is significant and should not be neglected in

the LLC capacity management. To our knowledge, we are the

first to identify and analyze intra-application LLC interference

caused by system memory references and prefetch requests

for both real systems and full-system simulation platforms.

Furthermore, we show such intra-application interference can

be reduced significantly via dynamic management.

6.2 OS/User LLC Reference Characterization
While indeed OS caching effects have been studied in the

past [1, 23], our paper characterizes the influence of operating

systems in the context of modern CMPs and modern workloads,

with state-of-the-art hardware prefetchers. Furthermore, while

these prior studies recognized OS interference, they did not pro-

pose interference mitigation techniques. In contrast, our work



details the factors causing intra-application cache interference

and proposes a dynamic cache management solution to the

problem.

6.3 TLB Miss Handling
Jacob and Mudge [8] compared several memory management

units and showed that page table walk references can conflict

with user program and data in the shared memory hierarchies.

This observation is consistent with what we have presented in

this paper and stresses the importance of our work. Bhargava

et al. [3] proposed two-dimensional (2D) page table walks to

accelerate address translations in the virtualized environment.

Although the 2D page table walks accelerate TLB miss han-

dling, they can introduce more system references and stress the

shared memory hierarchies even more. To reduce the overhead

caused by page table walks, Barr et al. [2] proposed novel

page table structures that can improve the number of memory

references caused by page table walks. Both approaches [2, 3]

focus on improving the page table organizations to accelerate

TLB miss handling. This paper, however, offers an orthogonal

solution. Our proposed dynamic cache insertion policies can be

incorporated into [2, 3] to further eliminate LLC interference

caused by low (or even zero) reused page table walk references.

7 Conclusion
Overall, our work has quantified the significant degree of

intra-application interference in current workloads and systems.

Our measurement methodology used real-system measurements

based on Intel Nehalem hardware performance counters where

possible, and followed up with Simics/GEMS full-system sim-

ulation to get more details beyond what performance counters

offer. For each of the major sources of LLC interference, we

offer strategies for reducing them dynamically. Our proposed

insertion policy improves user IPCs by as much as 19%. Our

proposed prefetch manager eliminates as many as 25% of LLC

misses compared to the system default. These techniques can

form an important part of an arsenal to improve user application

performance and make it more predictable in the face of system

complexities that make LLC interference challenging to predict

and manage.

8 Acknowledgments
We thank Stephane Eranian and Jason Mars for their support

on prefetching control and perfmon2 usage in Nehalem. We

also thank Yu-Yuan Chen, Aamer Jaleel, Joel Emer, and the

anonymous reviewers for their useful feedback and insights

related to this work. This material is based upon work supported

by the National Science Foundation under Grant No. CNS-

0627650 and CNS-07205661. The authors also acknowledge

the support of the Gigascale Systems Research Center, one of

six centers funded under the Focus Center Research Program

(FCRP), a Semiconductor Research Corporation entity.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of
operating system and multiprogramming workloads. ACM Transactions
on Computer Systems, 1988.

[2] T. Barr, A. Cox, and S. Rixner. Translation caching: Skip, don’t walk
(the page table). In Proceedings of the 37th International Symposium on
Computer Architecture, 2010.

[3] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating two-
dimensional page walks for virtualized systems. In Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, 2005.

[5] I. Hur and C. Lin. Memory prefetching using adaptive stream detection.
In Proceedings of the 39th International Symposium on Microarchitecture,
2006.

[6] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham.
Effective stream-based and execution-based data prefetching. In Proceed-
ings of the 18th International Conference on Supercomputing, 2004.

[7] Intel 64 and IA32 Architecture Software Developer’s Manuals.
http://www.intel.com/products/processor/manuals/.

[8] B. Jacob and T. Mudge. A look at several memory management units,
TLB-refill mechanisms, and page table organizations. In Proceedings of
the 11th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 1998.

[9] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer. Adaptive insertion policies for managing shared caches. In
Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques, 2008.

[10] N. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In Proceedings
of the 17th International Symposium on Computer Architecture, 1990.

[11] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In Proceedings of the 13th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
2004.

[12] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s
GEMS simulator toolset. SIGARCH Computer Architecture News, 2005.

[13] K. Nesbit, A. Dhodapkar, and J. Smith. AC/DC: an adaptive data cache
prefetcher. In Proceedings of the 13th International Conference on
Parallel Architecture and Compilation Techniques, 2004.

[14] K. Nesbit, J. Laudon, and J. Smith. Virtual private caches. In Proceedings
of the 33rd International Symposium on Computer Architecture, 2007.

[15] J. Peir, S. Lai, S. Lu, J. Stark, and K. Lai. Bloom filtering cache misses
for accurate data speculation and prefetching. In Proceedings of the 16th
international Conference on Supercomputing, 2002.

[16] Perfmon2: Hardware-based Performance Monitoring Interface for Linux.
http://perfmon2.sourceforge.net/.

[17] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive
insertion policies for high performance caching. In Proceedings of the
34th International Symposium on Computer Architecture, 2007.

[18] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of the 39th International Symposium on Microar-
chitecture, 2006.

[19] Simics Simulation Platform. http://www.virtutech.com/.
[20] SPEC Benchmark Suite. http://www.spec.org/cpu2006/.
[21] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive set pinning:

managing shared caches in chip multiprocessors. In Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

[22] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In Proceedings of the 13th International Symposium
on High Performance Computer Architecture, 2007.

[23] J. Torrellas, A. Gupta, and J. Hennessy. Characterizing the caching and
synchronization performance of a multiprocessor operating system. In
Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1992.

[24] Y. Xie and G. Loh. PIPP: promotion/insertion pseudo-partitioning of
multi-core shared caches. In Proceedings of the 35th International
Symposium on Computer Architecture, 2009.

[25] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
CacheScouts: Fine-grain monitoring of shared caches in CMP platforms.
In Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, 2007.

[26] X. Zhuang and H. Lee. Reducing cache pollution via dynamic data
prefetch filtering. IEEE Transactions on Computers, 2007.


