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Abstract
Streamlining communication is key to achieving good

performance in shared-memory parallel programs.  While full
hardware support for cache coherence generally offers the best
performance, not all parallel machines provide it.  Instead,
software layers using Shared Virtual Memory (SVM) can be built
to enforce coherence at a higher level.  In prior work, researchers
have studied application-specific cache coherence protocols
implemented either in SVM systems or as handlers run by
programmable protocol processors. Since the protocols are
specialized to the needs of a single application, they can be
particularly helpful in reducing the long latencies and processing
overhead that sometimes degrade performance in SVM systems.

This paper studies implementing application-specific protocols
in hardware, but not via an instruction-based protocol processor
as is typical.  Instead, we consider configurable implementations
based on Field-Programmable Gate Arrays (FPGAs).  This
approach can be faster than software-based techniques and less
expensive than some hardware-based techniques.  We study one
application, appbt, in detail, including a VHDL-level design of the
configurable protocol design.  We sketch out approaches for other
applications as well.  Implementing protocol operations in
configurable hardware improves communication performance by
roughly 11X for a 32-node system.  While overall speedups are a
more modest 12%, our method is still promising because of its
flexibility and because it offers a new way of harnessing
configurable hardware at the network interface, where it already
exists or could be easily added to current systems.

1. Introduction
Writing shared-memory parallel programs is thought to be

easier than message-passing programs because of the simpli fied
memory and communication model involved.  Supporting fully
cache-coherent shared-memory in hardware, however, can be
expensive.  Some systems instead opt to implement a shared-
memory programming model using a software-based shared
virtual memory (SVM) system [1].

Whether implemented in hardware or software, the key to
good shared memory performance lies in the protocol
implemented.  To address this, prior research has considered
implementing appli cation-specific protocols.  In such approaches,
the cache coherence protocol is specialized to the communication
needs of a particular program.  Such protocols are possible in
cases where the coherence mechanism (either hardware or
software) can be changed or customized at program run-time.  Past
work has evaluated such protocols running in SVM software on
the main compute nodes themselves, or in handler code running on
separate protocol co-processors.

Our work investigates a third option: implementing application
specific protocols using a “configurable” hardware approach based
on Field-Programmable Gate Arrays (FPGAs).  These SRAM-

based chips can be infinitely reprogrammed just by downloading a
new stream of bits to rewrite configuration settings.  Once
configured, they behave like hardware however, with a gate-based,
rather than instruction-based interface to their functionality.  Since
current network interface boards like Myrinet already contain
FPGAs (for other purposes) it seems natural to evaluate their
util ity for application-specific protocols.  Only small changes to
existing network interface boards would be needed to make the
proposed ideas feasible.

Studying shared memory approaches and prior research in
application-specific protocols we note:

1) Flexible protocols can be conveniently implemented in
configurable hardware, rather than in software.  This
facil itates overlapping computation and communication
and can also accelerate the protocol handlers themselves.

2) Coherence protocols have characteristics amenable to
FPGA computing: bit manipulation, hardware parallelism,
and simple integer computations.

3) Existing tools designed to facilitate developing application
specific protocols in software can be retargeted to
automatically synthesize hardware implementations.

4) The network interface boards that interconnect compute
nodes typicall y have several FPGAs on them anyway.
Only minimal industry cooperation would be needed to get
a bit more space on them for implementing protocols in
them.

With these observations in mind, this paper explores the
possibility of implementing an appli cation-specific protocol
processor in configurable hardware.  A detailed study for one
application, appbt, showed an 11x speedup in communication time
compared to other implementations.  Other appli cations show
viability as well.

Sections 2 and 3 discuss previous research efforts to
implement appli cation-specific coherence protocols and why we
believe that configurable hardware is a viable alternative.  Section
4 gives an in-depth description of our proposed architecture.  In
Section 5, we outline the methodology that we use to evaluate our
architecture. In Section 6 we evaluate the feasibility and promise
of this new method with a detailed case study using appbt.
Section 7 investigates additional parallel applications with general
descriptions of possible implementations.  Section 8 discusses
potential diff iculties and future work.  Section 9 presents our
conclusions.

2. Why Application-Specific Protocols?

Recently, application specific protocols have been recognized
as a valid means of improving protocol performance.  Several
different strategies have been proposed for their implementation.
One approach to the implementation of appli cation-specific
coherence protocols has been the development of Tempest by the
Wisconsin Wind Tunnel Project [2].  Tempest aims to provide a



standard, system-independent parallel programming user/system
interface that offers programmers access to a variety of different
communication mechanisms, including active messages, bulk data
transfer, virtual memory management, and fine-grain access
control [3].

Tempest defines the architecture of a communication interface
for shared-memory parallel programs; Blizzard is one
implementation of that architecture [4].  Blizzard runs the
coherence protocol code in software on each of the main compute
nodes.  Studies with Blizzard on applications with a wide variety
of communication patterns have shown that application-specific
coherence protocols can provide substantial speedups over even
carefully-tuned implementations using a stock coherence protocol.
This approach allows great flexibility in customizing the protocol
to application characteristics as everything is done in software.
Naturally a major disadvantage is that it slows down the host
processor since it is responsible for both computation and protocol
processing.  Another speed disadvantage is that the host processor
is not physically located next to network interface and an
associated DMA engine.

These disadvantages have spurred an interest in exploring
moving functionality from the main compute nodes down into the
network interface.  In some studies, such functionality is
implemented as extra handler code run by a programmable
network interface processor such as the LANai processor in a
Myrinet network interface [5] [6] [7].  Other approaches have
provided even more aggressive levels of hardware support, up to
full hardware cache coherence [8] [9].   Our proposal, which
implements protocol processing in configurable FPGA chips on
the network interface, represents an intermediate position between
full-hardware or full-software implementations.

3. Why Configurable Hardware?

Field Programmable Gate Arrays (FPGAs) allow the hardware
functionality of a chip to be infinitely reprogrammed through a
stream of configuration bits.  Thus, unlike an EPROM, an FPGA
can be reprogrammed simply by downloading new configurations
to its SRAM-based configuration memory bits.  Because FPGAs
are fabricated with the same manufacturing process as CMOS
SRAMs, they can be low-cost commodity parts.  The inexpensive
hardware flexibility of FPGAs has led to their use in areas
traditionally associated with custom hardware.  This has been
especially true for rapid prototyping and low-volume production.
More recently researchers have attempted to find ways to utilize
the ability of FPGAs to be reconfigured within systems.  Our
research demonstrates the use of configurable hardware to
implement application-specific coherence protocols within SVM
systems.

Reconfigurable hardware has several unique features that are
amenable to protocol processing.  Since the protocol processing
hardware is customized for each application, all of the available
resources can be used for the particular application.  In addition,
configurable hardware inherently allows extensive fine-grain
parallelism and in no way restricts the designer to sequential
execution.  Finally, FPGAs are well suited to the types of

computation prevalent in protocol processing: integer-oriented
address calculations, counter operations, and bit-manipulations.

One obstacle to the acceptance of an architecture like the RPP
is that writing application-specific coherence protocols in software
can already be a challenge; implementing hardware designs seems
even tougher. Researchers at Wisconsin have developed a
language called Teapot which aids programmers in writing and
verifying coherency protocols [10].  We can circumvent the
application-specific hardware hurdle by implementing a VHDL
backend for Teapot.  This would allow the automatic synthesis of
FPGA-based hardware from a Teapot specification.

Figure 1 outlines a potential design flow for the design of an
FPGA-based protocol processor.  First, the sharing patterns of the
parallel application must be analyzed and described in a language
such as Teapot.  The Teapot compiler would then create high level
VHDL code to be passed to commercial CAD tools for synthesis
into the FPGA configuration bitstream.

4. Our Proposal: A Reconfigurable Protocol
Processor

Figure 2 shows a diagram of the proposed system architecture.
The reconfigurable protocol processor (RPP) is tightly coupled to
both a DMA engine and the network interface (NI) CPU.  This is
similar to the Myrinet network interface.  It allows the protocol
processor to closely interact with the DMA and the NI with FIFOs
serving as buffers between parts.  Another advantage to this
architecture is that FPGAs are already available on some current
network interface boards [5].  Thus realistic implementations of
similar architectures are quite feasible in the near-term.

The proposed reconfigurable protocol processor system offers
a wide range of performance benefits for providing application-
specific protocols:

Background protocol processing: Software SVM rely on the
microprocessor for protocol processing; they must stall main
program execution and incur interrupt overhead in two cases: (i)
whenever a message is prepared and sent to the network interface
and (ii) whenever an incoming message is received at the network
interface.  With the RPP system, the extra hardware can send or
receive a message or other protocol event, process the event, and
transact with main memory, leaving the microprocessor to
continue with program computation.

Fast, Intelligent DMA: In our proposed architecture, the RPP is
closely coupled to a DMA engine.  There are two major reasons
why this is beneficial.  First, we achieve the benefits of fast,
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intelligent data transfer from the network interface directly to
memory, or vice-versa.  Allowing the RPP, rather than the
compute node, to control the DMA reduces the performance
degradation when sending short, non-contiguous sections of
memory, because it can easily be customized for strided accesses.

Specialized processing on both sending and receiving
messages: In managing communication, the compute node is no
longer limited to simple, general-purpose protocol commands such
as “Send memory location 17 to node 2,” but can issue brief,
application-specific commands such as “Send update data pattern
8” .  The RPP interprets these and expands them into a compli cated
message.  Extremely brief commands by the microprocessor can
set the RPP at work doing complex processing.  This improves
communication/computation overlap and also reduces the software
overhead of communication processing.  Likewise, on the
receiving end of messages, entire message handlers can be
implemented by the RPP, keeping all of the message processing
away from the microprocessor.

5. Methodology

In order to evaluate the proposed reconfigurable protocol
processor, we devised a simulation environment that allows us to
realistically compare appli cations running on an RPP system to
those running on a software SVM system.  Several simulation
models were developed to achieve this, as described below.  First,
VHDL designs and simulations were used to verify our design and
to determine feasible clock speeds.  Our second model simulates
the performance of the entire system when a particular appli cation
runs with its RPP configured for that application.  Finall y we
simulate the performance of the system when an application uses
software-based coherence.

5.1 VHDL RPP Model

In the final system, a Teapot-VHDL translator would facili tate
RPP design.  Here, however, we hand-designed the RPP in order
to get performance estimates for it.  To simulate RPP performance
for a given appli cation, the RPP is first designed at a register-
transfer level, and then state transition diagrams are constructed to
determine how many cycles various protocol functions will take to
execute.  Finally, a full VHDL design determines the cycle time
for the RPP.  Section 6.3 elaborates on the VHDL design for the
detailed appbt case study.

5.2 Multiprocessor Application Simulator

The high-level application simulator is based on MINT, a
multiprocessor, event-driven simulator [11].  MINT simulators
accept an appli cation program as input and simulate the program’s
performance, using a user-defined back-end.  MINT passes all
read, write, and other relevant events to the back-end.  Here, we
simulate the operation of coherence protocols as they service
memory requests and maintain coherency.  In addition, user-
generated events simulate other functionality, such as bulk-data
transfers or protocol-specified active messages.

5.3 System Timing

5.3.1 Protocol Timing

We consider three types of costs in simulating the message
handlers for the SVM system:
• A handler dispatch of 150 processor cycles to save the

machine state and start an interrupt.
• The handler functions incur latency to start each transfer or

receipt of data from the network interface, and take time to
actually transfer data over the PCI bus.

• The processor takes a small amount of time to perform
synchronization operations within message handlers – for
instance, the clearing or setting of a counter.  As a low
estimate, we charged the message handler 1 cycle for each
counter clear and 2 cycles for each counter increment.

5.3.2 Baseline Compute Node Timing

For our baseline system, we assume a microprocessor running
the MIPS instruction set at 300 MHz.  The processor has an on-
chip write-through data cache with 32-byte lines and 1024 entries.
Cache misses take 20 processor cycles to fil l, using the memory
bus.  The baseline configuration utili zes 32 processors in a grid
interconnect network.

 We also assume a 33 MHz, 64-bit PCI bus serving as the I/O
bus for each processing node [12].  This is consistent with the
speeds of current Myrinet network interface boards.  We assume
that each PCI transaction is limited to at most 64 PCI cycles.
Reads or writes to sequential addresses need no time between
sending or receiving 64-bits of data.  Between reads to non-
consecutive addresses, a turn-around cycle is required between the
cycle where the master drives the address on the bus and the cycle
where the memory responds with data.  Between writes to non-
consecutive addresses, no turn-around cycle is necessary because
we are able to make use of the PCI “Fast Back-to-Back
Transactions” functionali ty [13].

5.3.3 Network Timing

Our network timing is modeled after the Myricom networks
[5].  To simulate wormhole routing, we assume that:

Message Delivery Time = (Number of Hops) * Cycles per Hop +
(Message Size –1) * NetStep

The NetStep we assume to be 20ns, and the cycles per hop is
set at 100ns.  Message size is measured in 16-bit chunks.  To limit
simulation time, we simulate a contention-free network because
previous work has shown that network contention is not a major
bottleneck in these applications [14].  We also assume a device
driver overhead of 40 processor cycles for each transmission or
receipt of data from the microprocessor to the network interface or
the RPP.

6. A case study: Appbt

To demonstrate our idea, we have performed a detailed design
and evaluation for an RPP customized for the appbt program.
Appbt, one of the NAS parallel benchmarks, is an iterative, three-
dimensional, computational fluid dynamics application [15].  For
each iteration, it performs a number of calculations to compute
new values for each grid point.  Some calculations rely on values
for that grid point only, while other calculations also utilize values
that are one or two grid points away. The “value” of each grid
point consists of 90 different double precision floating point



numbers that summarize the state of the fluid being studied.  The
Wisconsin Wind Tunnel (WWT) project has optimized appbt in
order to measure the potential speedups from application-specific
coherence protocols on a parallel shared memory system.  We
used their version of appbt as a starting point for our research.

Speedups from our reconfigurable protocol processor wil l only
affect the communications aspects of program execution time,
because we are only focusing on improving the communication
handlers. Thus, we next describe these communication patterns in
detail.

6.1  Appbt Communication

Figure 3 shows a flowchart of the communication that occurs
in appbt.  There are two major types of communication –
communication during the Gaussian elimination phase and
communication during the update phase.

Gaussian elimination: Gaussian elimination phases occur three
times per iteration to transmit newly calculated values in the x, y,
and z directions for both “ forward elimination” and “back-
substitution.”  Forward elimination transmits newly calculated
values to dependent grid points on the right.  Back substitution
transmits values to the left. The RPP has separate communication
handlers for each of these two types of communication.

Update Phase: The update phase of communication occurs
shortly before the end of each iteration.  Here, each node sends
updates to all neighboring nodes.  As shown in Figure 3, the
updates are the entire face, two grid points deep, shared between a
node and its neighbor.   Since these faces are not needed until the
beginning of the next iteration, we hide some inter-node
communication delay behind the remaining computation time.
Again we have implemented separate communication handlers for
each update axis (x, y, and z).

6.2 Appbt communication speedup methods

In this section we describe the enhancements that our
reconfigurable protocol processor incorporates in order to improve
communication time in appbt.  In the original Blizzard  systems,
all protocol handling is performed by the compute node.  Thus,
there is no way to overlap protocol handling with compute time.
As shown in Figure 4, the RPP decreases communication time in
two main ways:

• Decreasing the overall amount of communication time.
• Overlapping some communication with computation.

Note the computation time stays constant with both systems.
Only the communication time is decreased and overlapped with
computation.

In the following paragraphs we explore in detail the
enhancements that the RPP uses to decrease the communication
time.  The first three methods require the additional hardware that
the RPP provides. The last two techniques could be applied to a
software implementation but are more convenient with the RPP.

Background message processing: In some cases, messages sent
to a processor may not be needed immediately.  For example,
update messages are not needed until the beginning of the next
iteration.  In such cases, computation may continue before all the
messages have arrived.  With the software implementation, the
processor stops computation and handles an interrupt for each
message that arrives.  With the RPP implementation, the processor
never has to process an intermediate interrupt to service a
message.  Rather, the RPP deals directly with memory, placing the
arriving updates in their appropriate memory locations.  A counter,
discussed below, notifies the processor when all updates have
arrived.
Fast, Intelligent DMA: As previously discussed, the close
association of the RPP with the DMA engine allows intelligent,
application-specific DMA transfers, particularly smaller, non-
contiguous transfers.  In appbt, combining smaller messages into
larger ones involves accessing multiple non-contiguous sections of
memory.  With the RPP, such non-contiguous memory accesses
are simple.  The RPP splits messages into their component parts,
does some simple address calculations while waiting for the
current DMA operation to complete, and feeds data and addresses
to the DMA engine until the message is complete.  Using the RPP
also decreases message size (since the receiving RPP can also
calculate much address and length information on its own).
Synchronization Squashing: Regardless of whether the update
messages are sent as single grid points or entire faces, any given
node will expect multiple messages from multiple processors
before it can proceed with more computation.  In software,
synchronization for this is implemented with a software counter
for the x, y, and z directions. The data received is unused until the
counter indicates that all the data for that dimension has been
received.

With the RPP much of this processing can be avoided.  When
the program begins, the microprocessor sends a message to the
RPP tell ing it how many updates to expect from each dimension.
Since the communication is totall y static, this can be fixed through
the entire execution.  Whenever the RPP receives an update
message, it sends the update data to memory.  But instead of
incrementing a software counter, the RPP simply increments its
own version of the counter located on chip.  When the counter
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reaches the critical value, the RPP knows that all updates for that
dimension have been received, so it writes the counter value to
main memory. Thus, many intermediate reads and writes to
increment the counter are reduced to a single write when the data
is ready.
Forward Elimination: In a software-based implementation, each
data transmission during the forward elimination stage actuall y
consists of 11 different messages, each 5 doubles long.  With the
RPP, however, all the data may be sent as one message that the
receiving RPP splits to place in the appropriate areas of memory.
This is possible because the sending and receiving RPPs can
perform address calculations and control the transfer of data from
memory to the NI and vice-versa.  Thus, 11 messages are reduced
to one longer message.
Update: During the end-of-iteration update messages, the Blizzard
implementation forwards each grid point as separate message of 5
doubles.  Again the RPP can be configured to accept a much
longer message, break it into its component parts, and write the
appropriate data to memory.  In our implementation, we chose to
have the RPP send the data in whole-face chunks, so that an
update to a neighboring processor takes two messages.

6.3 VHDL Design of RPP

To get accurate results with our simulator, a full VHDL
implementation of the RPP was necessary in order to determine
the speed of our design which when tailored for appbt. The
hardware cost of two Xilinx 4013 FPGAs is also minimal
compared to that of a custom ASIC.  The design was originall y
intended to occupy one FPGA.  A configurable logic block (CLB)
is the basic unit of which FPGAs are comprised.  It can implement
roughly 10 simple gates of logic and includes 2 fli p-flops for state.

In order to meet pin and CLB constraints, we made a decision
to split the design into one FPGA for sending and one FPGA for
receiving.  However, with the more advanced FPGA technology
available today, the entire design would easil y fit onto one chip.
Figure 5 shows a block diagram of the send datapath that we used
for appbt.  The control logic consists of the finite state machines
for the five send handlers and five receive handlers.  The simplest
handlers consist of eight sequential state transitions, while the
more complex handlers have a few more states with loops.  The
receive datapath is very similar and much of the logic could be
shared.  However, the control logic made the design too large to fit
onto the Xilinx 4020 FPGA.   A 40-bit version (capable of 40-bit

address calculations) was implemented in VHDL and synthesized
using FPGA Express [16].  ViewSim was used for simulation [17].
Xilinx place and route tools were then used to generate bitstreams
and determine cycle times [18].  See Table 1 for results.

6.4 Simulation Results

Since the computational core of the application remains the same,
all speedups result from reducing communication time or from
overlapping it with computation.  In the first subsection we
explore in detail the results from a baseline system.  In the
following subsections we investigate the effect of varying the
system parameters.

6.4.1 Baseline System

We assume a base system with 32 processing nodes each
containing one 300 MHz microprocessor running the MIPS
instruction set.  We also assume a 33 MHz, 64-bit PCI bus as the
I/O bus in each processing node.  The default problem size is a
12x12x12 array with 60 iterations.

For this baseline system, we achieved a communication time
speedup of 10.84 for the RPP system compared to Blizzard.  In
terms of the definitions introduced in Figure 4, this means that the
non-overlapped communication time with the RPP system is
nearly 11 times smaller than the time Blizzard spent on
communication.  Part of the reason for this speedup is that a large
portion of the communication time was overlapped with
computation.  Overlapping communication with computation is a
key technique that coprocessors like the RPP use to improve
runtimes.  For appbt, the amount of overlap varies by processor.
Processors in the center of the network have more update
messages.  Update messages have more potential for overlap
because there is additional computation time available to hide
communication delays while the program is in the “Re-compute
right-hand sides” phase (see Figure 3).  For the baseline system,
45.7% of the communication was overlapped on average.   52.6%
of the total communication time for update messages were
overlapped while 28.5% of the total communication time for
Gaussian elimination messages were overlapped.

Because all of our speedup comes via improved
communication, the fraction of overall execution time that appbt
spends in communication is critical.  With a software version,
11.6% of the overall time is spent in non-overlapped inter-node

Figure 5 – Block diagram of Send datapath.
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communication.  The RPP’s enhancements bring this number
down to 1.2%.  This reduction in communication time gives the
RPP system a speedup of 1.12X over a Blizzard system for overall
program execution time.  In comparison, an ideal system that
assumes all communication occurs instantaneously, would achieve
a speedup of 1.13X over Blizzard.

While a total execution time improvement of 12% is not
phenomenal, it is important to note that appbt is a full benchmark,
not just a kernel with heavy communication.  In this paper we
focus on the communication aspects of the appli cation – the
portion of the application that the RPP succeeds in speeding up
significantly – while keeping in perspective that the overall
execution time is important as well.

6.4.2 RPP Speedups for varying numbers of processors

In our baseline system, we assume 32 processors, but smaller
configurations are also common for low-end parallel processing
systems for which the RPP might targeted.   Here, we compare the
Blizzard and RPP protocol processing methods on a common
appbt input set while varying the number of processors in the
system.  For the total execution time, we compare the RPP’s
speedup over Blizzard to that of an ideal protocol processor with
instantaneous message transmission.

Figure 6 shows the non-overlapped communication time in
appbt for Blizzard and the RPP.  From this figure we can see that
for 32 processors there is a communication time speedup of 10.8.
As we move down to 2 processors, the speedup increases to 13.5,
a change of 25%.  The fluctuations in the communication time are
due to the way that each processor’s subcube is partitioned.  The
size and shape vary as we change the number of processors, and
this causes significant changes in the communication patterns.
These increases in speedup correlate to the amount of
communication that can be overlapped.  For 32 processors, the
overlap averages 45.7%.  As we move down to 8, 4, and 2
processor networks the percentage of overlapped communication
rises into the 70s.

For the overall execution time speedup the amount of time that
is spent in communication is critical, because this is the portion of
the overall program execution that is reduced by protocol
operations. As we increase the number of processors in the
system, the amount of communication increases.  For example at 2
processors Blizzard spends 1.5% of its total execution time in
communication, but at 32 processors this number rises to 11.6%.
Thus, as we move to systems with more processors, the RPP

systems shows greater overall execution time speedups.  For 2
processors, the execution time speedup was just under 1.02X, but
at 32 processors this increases to 1.12X.

6.4.3 RPP Speedups for varying microprocessor speeds

Our baseline system, which assumed 300MHz, is about the
clock rate of many current-generation microprocessors.
Investigating the effects of higher microprocessor speeds is
interesting as we look to the future.  It is also interesting to explore
the speedup that the RPP would obtain on lower-end
microprocessors.  The RPP’s low hardware and design costs make
it well suited for low cost multiprocessors which would tend to
have lower end microprocessors. We compared the Blizzard and
RPP protocol processing methods on a common appbt input set
while varying the speed of the host processors.  For the total
execution time, we again compare the RPP’s speedup over
Blizzard to that of an ideal protocol processor with instantaneous
message transmission.

Figure 7 shows appbt’ s non-overlapped communication time
for both systems.  Both times increase as the microprocessors
become faster.  Since we have assumed the RPP cycle time to
remain constant while a software approach benefits from clock
rate improvements, the RPP is slower relative to Blizzard at high
clock speeds.  We would expect, however, that future generations
of FPGAs would allow the RPP to increase in performance with
the microprocessor.  Furthermore, limitations of the 33MHz PCI
bus become a factor at the high clock speeds.  For these reasons
our communication speedup varies considerably – from 25.2 for
100MHz processors to 6.9 for 600MHz processors.

The overall execution time speedup vs. Blizzard increases as
we move to higher clock rates.  For example, from 100MHz to
600MHz the speedup increases from 1.09 to 1.15.  This is because
the faster processors decrease the amount of time spent on
computation.  Hence, communication plays a larger role in the
overall program execution time at higher clock speeds and this
benefits the total execution time speedup.  For Blizzard’ s 100MHz
system, the fraction of time in communication was 9.4%.  This
increases to 14.8% for the 600MHz system.  For the RPP, these
numbers drop to 0.4% and 2.4% respectively.

7. Other Applications

The main focus of our discussion so far has been on the
parallel appli cation, appbt.  The RPP techniques that were

Figure 6 – Non-overlapped communication t ime for
RPP and Blizzard (avg num. Kcycles per iteration).
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successful in improving appbt’ s execution time are also applicable
to a wide range of applications.  Without going to the same level
of detail, this section discusses RPP implementations for other
applications, keeping in mind the strategies discussed in Section 4:
• Background protocol processing
• Fast, Intelli gent DMA
• Speciali zed processing on both sending and receiving

messages

7.1 EM3D

EM3D is another parallel benchmark application that models
the propagation of electromagnetic waves through objects in three
dimensions [19].  The program contains a set of E nodes, which
represent electric fields, and H nodes, which represent magnetic
fields.  E and H nodes are arranged in a bipartite graph with
directed edges linking E and H nodes that depend on each other.
During each iteration, E nodes are updated based on the weighted
values of neighboring H nodes and vice-versa.  A common parallel
implementation divides regions of E and H nodes up into
computing node segments.  Communication between processors
occurs when E and H nodes are connected by a “remote edge”,
meaning that the neighboring E and H nodes are on different
processors.

During the first iteration, the communication pattern has not
been established so a general purpose protocol must be used.
After the first iteration of EM3D, the sharing pattern between
processors has been set and will stay the same for all subsequent
iterations.  That is, when an E or H node is updated, there is a
known list of compute nodes that need to be sent a message with
the updated data.  At this point, application-specific update
protocols can take over to enhance communication eff iciency.
The appli cation-specific protocol for EM3D updates all remote
nodes at the end of each half-iteration [4].  This approach made
sense there because the processor is busy calculating new values
of the current nodes, so it has no free CPU time available for
protocol processing.  In addition, leaving all of the updates to the
end of the half-iteration allows one large message to be sent to
each processor that needs update data.

Now we consider how an RPP could be used to decrease
communication overhead.  With an RPP most protocol processing
could be entirely overlapped with computation.  After each node
has been calculated, the RPP sends that update message to the
dependent processing node.  The closely-coupled DMA engine
allows eff icient transfer of these small messages.  Groups of
messages are packaged and sent to a specific processor as in
appbt.  Furthermore, the RPP performs all protocol
synchronization support which includes deciding when all
incoming dependent nodes have been received.  This type of
synchronization is very eff icient in FPGAs with bit manipulations.

Chandra, Larus, and Rogers have provided an in-depth
analysis of communication and computation time for shared-
memory and message-passing versions of EM3D [20].  The
analysis notes that a Blizzard implementation running application-
specific protocols allows the shared-memory version to perform
equivalently with the message-passing version.  Using this
conclusion we are able to roughly estimate the amount of speedup
that the RPP could achieve.  For the main loop there would be
26.5M cycles of computation and 40M cycles of communication.
Thus approximately 26.5M cycles of communication would be
overlapped with computation.  The remaining 13.5M cycles of
communication would likely be reduced by RPP enhancements.

However, as a low-estimate to potential speedup we assume that
these non-overlapped communication cycles remain the same.
This results in a total execution time improvement of about 51%
for the RPP over Blizzard.  The increased amount of time spent in
communication explains why EM3D promises more improvement
on the RPP than appbt.

7.2 Unstructured

Unstructured is based on a computational fluid dynamics
application that uses an unstructured mesh to model a physical
structure [21].  Nodes make up the structure of the mesh and are
connected by edges, when in pairs, and by faces, when in groups
of three or four.  A common parallel implementation groups
related nodes together and then partitions edges onto various
processors.  Computation involves iterative loops over nodes,
edges, and faces, and thus edges and faces that span processors
will require shared data to maintain coherency.  Like EM3D, the
communication dependency pattern is fixed after the first iteration.

Because of the extensive amount of time spent in
communication, unstructured is well-suited to an RPP
implementation.  Inter-node dependency synchronization could be
taken care of by the RPP for each node in the system.  The RPP
would keep track of when all incoming dependencies have arrived
and when all messages have been sent out for a particular node.
The RPP would also be responsible for sending update messages
in the background.  After each node is ready to be sent out, the
processor would send a single message to the RPP, which would
then send the dependent data to the correct processors.  Additional
background processing would be possible as the RPP could send
update messages for nodes in the edge-loop while the processor is
doing computation in the face-loop.

Overall the point of this section has been to emphasize that
RPP benefits are not isolated to appbt alone.  Rather, we feel that
this approach shows significant promise as a low-cost accelerator
in systems that provide no dedicated hardware cache coherence
support.

8. Related Work and Discussion

Much of the closely-related work in the area of memory
coherency protocols has been discussed throughout this paper.  In
the area of configurable computing, there has recently been some
research interest in coupling configurable logic with the network
interface.  McHenry et al. [22] have proposed an FPGA-based
front-end processor that filters information to an ATM firewall
host to ensure network security.  Guillaud et al. [23] have
proposed a communication interface board for PCs which
incorporates a transputer, an FPGA, and a VRAM to implement
reconfigurable high level communication services for distributed
real-time data and multimedia communication.  None of these
approaches, however, have considered configurable network
interfaces with parallel computing appli cations in mind.

Much of this paper has discussed the performance and cost
benefits of a reconfigurable protocol processor.  Another
advantage that systems li ke the RPP have is that it is relatively
easy to update the coherency protocols as applications or protocol
strategies change over time.  All that is required is modification of
the VHDL design to suit the new communication patterns.  Hard-
wired coherency protocols li ke Stanford’s DASH [24] do not
allow this.



9. Conclusion

This paper presents a new architecture for implementing
application-specific cache coherency protocols.   This study (i)
identifies a new, easil y-adopted use of configurable hardware in
mainstreams systems, and (ii) provides benchmark evaluations
characterizing both communication behavior and whole program
performance.  We feel that our RPP architecture hits a
performance/cost sweet spot between software and custom
hardware approaches.  With little additional hardware expense and
design time, an RPP-style architecture could be implemented on
many of today’s high-speed network cards.  Our approach speeds
up communication time in the appbt application by a factor of
11X.  For completeness, we have also considered whole-program
performance, rather than just the individual protocol handlers; our
whole-program performance improvements of 12% are also
significant.  In exploring other applications, we have identified
several that show the potential for even more sizable performance
improvements.
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