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Abstract

Sreamlining communication is key to achieving good
performance in shared-memory paralle programs. While full
hardware support for cache coherence generally offers the best
performance, not all paralld machines provide it. Instead,
software layers using Shared Virtual Memory (SYM) can be built
to enforce coherence at a higher level. In prior work, researchers
have studied application-specific cache coherence protocols
implemented either in SYM systems or as handlers run by
programmable protocol processors. Snce the protocols are
specialized to the needs of a single application, they can be
particularly hepful in reducing the long latencies and processing
overhead that someti mes degrade performance in SYM systems.

This paper studies implementing application-specific protocols
in hardware, but not via an instruction-based protocol processor
asistypical. Instead, we consider configurable implementations
based on Fidd-Programmable Gate Arrays (FPGAs). This
approach can be faster than software-based techniques and less
expensive than some hardware-based techniques. We study one
application, apphbt, in detail, including a VHDL-level design of the
configurable protocol design. We sketch out approaches for other
applications as wel. Inplementing protocol operations in
configurable hardware improves communication performance by
roughly 11X for a 32-node system. While overall speedups are a
more modest 12%, our method is sill promising because of its
flexibility and because it offers a new way of harnessing
configurable hardware at the network interface, where it already
exists or could be easily added to current systems.

1. Introduction

Writing shared-memory paralld programs is thought to be
eaer than message-passing programs because of the simplified
memory and communication model involved. Supporting fully
cache-coherent shared-memory in hardware, however, can be
expensive. Some systems ingtead opt to implement a shared-
memory progglamming model using a software-based shared
virtual memory (SVM) system [1].

Whether implemented in herdware or software, the key to
good shared memory performance lies in the protocol
implemented. To address this, prior research hes considered
implementing appli cation-specific protocols. In such approaches,
the @ache coherence protocol is specialized to the communication
neals of a particular progjam. Such protocols are possible in
cases where the coherence mechanism (either hardware or
software) can be changed o customized a program run-time. Past
work has evaluated such protocols running in SVM software on
the main compute nodes themselves, or in hander code running an
separate protocol co-procesors.

Our work investigates a third option: implementing application
specific protocols using a “configurable’ hardware approach based
on Fidd-Progammable Gate Arrays (FPGAs). These SRAM-

based chips can be infinitely reprogrammed just by downloading a
new strean of bits to rewrite @nfiguration settings. Once
configured, they behave like hardware however, with a gate-based,
rather than instruction-based interface to their functionality. Since
current network interface boards like Myrinet aready contain
FPGAs (for other purposes) it seems natura to evaluate their
utility for application-specific protocols. Only small changes to
existing retwork interface boards would be needed to make the
proposed idesas feasible.

Studying shared memory approaches and prior reseach in
application-specific protocols we note:

1) Flexible protocols can be nveniently implemented in
configurable hardware, rather than in software. This
facilitates overlapping computation and communication
and can dso accel erate the protocol handlers themsel ves.

2) Coherence protocols have characteristics amenable to
FPGA computing: bit manipulation, hardware paralleism,
and simple integer computations.

3) Exigting tods designed to facilitate devel oping application
specific protocols in software can be retargeted to
automatically synthes ze hardware i mplementations.

4) The network interface boards that interconnect compute
nodes typically have severa FPGAs on them anyway.
Only minimal industry cooperation would be needed to get
a bit more space on them for implementing protocols in
them.

With these observations in mind, this paper explores the
posshility of implementing an applicaion-specific protocol
procesr in configurable hardware. A detailed study for one
application, appbt, showed an 11x speedup in communication time
compared to aher implementations. Other applications show
viability as well.

Sections 2 and 3 dscuss previous research efforts to
implement appli cation-specific cherence protocols and why we
believe that configurable hardwareis aviable dternative. Section
4 gives an in-depth description of our proposed architecture. In
Section 5, we outline the methodol ogy that we use to eval uate our
architecture. In Section 6 we evaluate the feasibility and promise
of this new method with a detailed case study using appbt.
Section 7 investigates additional parallel applications with genera
descriptions of possible implementations.  Section 8 discusses
potentid difficulties and future work. Section 9 presents our
conclusions.

2. Why Application-Specific Protocols?

Recently, application specific protocols have been recognized
as a vaid means of improving protocol performance Severa
different strategies have been proposed for their implementation
One gproach to the implementation of application-specific
coherence protocols has been the development of Tempest by the
Wisconsin Wind Tunnel Project [2]. Tempest aims to provide a



Parallel Teapot

High Level FPGA
Application > Specification » >

VHDL Code Synthesis

Figure 1 — Proposed design flow.

standard, system-independent parald programming user/system
interface that offers programmers access to a variety of different
communication mechanisms, including active messages, bulk data
transfer, virtud memory management, and fine-grain access
control [3].

Tempest defines the architecture of a communication interface
for shared-memory parale programs, Blizzard is one
implementation of that architecture [4]. Blizzard runs the
coherence protocol code in software on each of the main compute
nodes. Studies with Blizzard on applications with a wide variety
of communication patterns have shown that application-specific
coherence protocols can provide substantial speedups over even
carefully-tuned implementations using a stock coherence protocol.
This approach allows great flexibility in customizing the protocol
to application characteristics as everything is done in software.
Naturally a magjor disadvantage is that it sows down the host
processor sinceit is responsible for both computation and protocol
processing. Another speed disadvantage is that the host processor
is not physically located next to network interface and an
associated DMA engine.

These disadvantages have spurred an interest in exploring
moving functionality from the main compute nodes down into the
network interface. In some studies, such functionality is
implemented as extra handler code run by a programmable
network interface processor such as the LANai processor in a
Myrinet network interface [5] [6] [7]. Other approaches have
provided even more aggressive levels of hardware support, up to
full hardware cache coherence [8] [9]. Our proposal, which
implements protocol processing in configurable FPGA chips on
the network interface, represents an intermediate position between
full-hardware or full-software implementations.

3. Why Configurable Hardware?

Field Programmable Gate Arrays (FPGAS) adlow the hardware
functionality of a chip to be infinitely reprogrammed through a
stream of configuration bits. Thus, unlike an EPROM, an FPGA
can be reprogrammed simply by downloading new configurations
to its SRAM-based configuration memory bits. Because FPGAS
are fabricated with the same manufacturing process as CMOS
SRAMSs, they can be low-cost commodity parts. The inexpensive
hardware flexibility of FPGAs has led to their use in areas
traditionally associated with custom hardware. This has been
especialy true for rapid prototyping and low-volume production.
More recently researchers have attempted to find ways to utilize
the ability of FPGAs to be reconfigured within systems. Our
research demonstrates the use of configurable hardware to
implement application-specific coherence protocols within SVM
systems.

Reconfigurable hardware has several unique features that are
amenable to protocol processing. Since the protocol processing
hardware is customized for each application, all of the available
resources can be used for the particular application. In addition,
configurable hardware inherently alows extensive fine-grain
pardlelism and in no way restricts the designer to sequentia
execution. Finaly, FPGAs are well suited to the types of
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Figure 2 — Proposed system architecture.

computation prevaent in protocol processing: integer-oriented
address cal cul ations, counter operations, and bit-manipulations.

One obstacle to the acceptance of an architecture like the RPP
isthat writing application-specific coherence protocols in software
can dready be a chalenge; implementing hardware designs seems
even tougher. Researchers a Wisconsin have developed a
language called Teapot which aids programmers in writing and
verifying coherency protocols [10]. We can circumvent the
application-specific hardware hurdle by implementing a VHDL
backend for Tegpot. This would allow the automatic synthesis of
FPGA-based hardware from a Teapot specification.

Figure 1 outlines a potential design flow for the design of an
FPGA-based protocol processor. First, the sharing patterns of the
parale application must be anayzed and described in a language
such as Teapot. The Teapot compiler would then create high level
VHDL code to be passed to commercial CAD tools for synthesis
into the FPGA configuration bitstream.

4. Our Proposal: A Reconfigurable Protocol
Processor

Figure 2 shows a diagram of the proposed system architecture.
The reconfigurable protocol processor (RPP) is tightly coupled to
both a DMA engine and the network interface (NI) CPU. Thisis
similar to the Myrinet network interface. It allows the protocol
processor to closely interact with the DMA and the NI with FIFOs
serving as buffers between parts. Another advantage to this
architecture is that FPGAs are dready available on some current
network interface boards [5]. Thus redistic implementations of
similar architectures are quite feasible in the near-term.

The proposed reconfigurable protocol processor system offers
a wide range of performance benefits for providing application-
specific protocols:

Background protocol processing: Software SVM rely on the
microprocessor for protocol processing; they must stal main
program execution and incur interrupt overhead in two cases: (i)
whenever a message is prepared and sent to the network interface
and (ii) whenever an incoming message is received at the network
interface. With the RPP system, the extra hardware can send or
receive a message or other protocol event, process the event, and
transact with man memory, leaving the microprocessor to
continue with program computation.

Fast, Intelligent DMA: In our proposed architecture, the RPP is
closely coupled to a DMA engine. There are two major reasons
why this is beneficial. First, we achieve the benefits of fast,



intelligent data transfer from the network interface directly to
memory, or vice-versa. Allowing the RPP, rather than the
compute node, to control the DMA reduces the performance
degradation when sending short, non-contiguous <ctions of
memory, because it can easily be customized for strided accesses.

Specialized processing on both sending and receving
messages: In managing communication, the compute node is no
longer limited to simple, genera -purpose protocol commands such
as “Send memory location 17 to node 2,” but can issue brief,
application-specific mommands sich as “Send upate data pattern
8". The RPP interprets these and expands them into a cmpli cated
message. Extremely brief commands by the microprocessor can
set the RPP at work doing complex processing. This improves
communi cation/computation owerlap and also reduces the software
overhead of communication procesing. Likewise, on the
receiving end o messages, entire message handlers can be
implemented by the RPP, keeping all of the message processng
away from the microprocessor.

5. Methodology

In order to evaluate the proposed reconfigurable protocol
procesor, we devised a Smulation environment that allows us to
redlistically compare gplicaions running on an RPP system to
those running on a software SVM system. Several simulation
model s were devel oped to achieve this, as described below. First,
VHDL designs and simulations were used to verify our design and
to determine feasible clock speeds. Our second model simulates
the performance of the entire system when a particular applicaion
runs with its RPP configured for that application. Findly we
simulate the performance of the system when an application uses
software-based coherence.

5.1 VHDL RPP M odel

In the fina system, a Tegpot-VHDL trandator would facilitate
RPPdesign. Here, however, we hand-designed the RPP in arder
to get performance estimates for it. To simulate RPP performance
for a given applicaion, the RPP is first designed a a register-
transfer level, and then state transition diagrams are @nstructed to
determine how many cycles various protocol functions will take to
execute. Finally, a full VHDL design determines the cycle time
for the RPP. Section 6.3 elaborates on the VHDL design for the
detailed appbt case study.

5.2 Multiprocessor Application Simulator

The high-level gpplication smulator is based an MINT, a
multiprocesor, event-driven smulator [11]. MINT simulaors
acoept an gppli cation program as input and simul ate the program’'s
performance, using a user-defined back-end. MINT passes all
read, write, and other relevant events to the back-end. Here, we
simulate the operation of coherence protocols as they service
memory requests and maintain coherency. In addition, user-
generated events smulate other functionality, such as bulk-data
transfers or protocol-specified active messages.

5.3 System Timing

5.3.1 Protocal Timing

We consider three types of costs in simulating the message
handlersfor the SVM system:

* A hander dispatch of 150 processor cycles to save the
machine state and start an interrupt.

*  The handler functions incur latency to start each transfer or
receipt of data from the network interface, and take time to
actually transfer data over the PCl bus.

e The procesor takes a small amount of time to perform
synchronization operations within message handlers — for
ingance the cleaing o setting o a counter. As a low
estimate, we charged the message handler 1 cycle for each
counter clear and 2cycles for each counter increment.

5.3.2 Basine Compute Node Timing

For our baseline system, we as3ume amicroprocessor running
the MIPSingruction set at 300 MHz. The processor has an an-
chip write-through data @ache with 3-byte lines and 1021 entries.
Cache misses take 20 processor cycles to fill, using the memory
bus. The baseline mnfiguration utilizes 32 processors in a grid
interconnect network.

We dso assume a33 MHz, 64-bit PCI bus srving as the 1/10
bus for each processing node [12]. This is consistent with the
speeds of current Myrinet network interface boards. We assume
that each PCI transaction is limited to at most 64 PCl cycles.
Reals or writes to sequentid addresses need no time between
sending o recdving 64-bits of data. Between reads to non-
consecutive aldresses, aturn-around cycle is required between the
cycle where the master drivesthe aldress on the bus and the cycle
where the memory responds with data. Between writes to non-
consecutive aldresses, no turn-around cycle is necessary because
we are able to make use of the PClI “Fast Back-to-Back
Transactions” functionality [13].

5.3.3 Network Timing

Our network timing is modeled after the Myricom networks

[5]. Tosimulate wormhole routing, we assume that:

Message Delivery Time = (Number of Hops) * Cycles per Hop +
(Message Size —1) * NetStep

The NetStep we asume to be 20ns, and the cycles per hop is
set at 100ns. Message sizeis measured in 16-bit churks. To limit
simulation time, we simulate a contention-free network because
previous work has shown that network contention is not a major
bottleneck in these applications [14]. We dso assume adevice
driver overhead of 40 procesor cycles for each transmission or
receipt of data from the microprocesor to the network interface or
the RPP.

6. A casestudy: Appbt

To demonstrate our idea, we have performed a detailed design
and evauation for an RPP customized for the appbt program.
Appbt, one of the NAS paralld benchmarks, is an iterative, three-
dimensional, computational fluid dynamics application [15]. For
eah iteration, it performs a number of calculations to compute
new values for each grid point. Some calculations rely on values
for that grid point only, while other cal culations also utilize values
that are one or two gid points away. The “value’ of each gid
point consists of 90 dfferent double precision floating point
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Figure 3 — Overall structure of an Appbt iteration, showing
computation and communication. This structure describes all
iterations after the first iteration.

numbers that summerize the state of the fluid being studied. The
Wisconsin Wind Tunnel (WWT) project has optimized appbt in
order to measure the potential speedups from applicati on-specific
coherence protocols on a pardlel shared memory system. We
used their version of appbt as a sarting point for our research.

Speedups from our reconfigurable protocol processor will only
affect the communications aspects of program execution time,
because we ae only focusing an improving the cwmmunication
handlers. Thus, we next describe these ammmunication patternsin
detail.

6.1 Appbt Communication

Figure 3 shows a flowchart of the @mmunication that occurs
in appbt. There ae two maor types of communication —
communication duing the Gaussian €imination phase ad
communication during the update phase.

Gaussian eimination: Gaussian eimination phases ocaur three
times per iteration to transmit newly calculated valuesin the x, v,
and z directions for both “forward elimination” and “back-
subgtitution”  Forward eimination transmits newly calculated
values to dependent grid points on the right. Back subgtitution
transmits values to the | eft. The RPP has separate communication
handlersfor each of these two types of communication.

Update Phase: The update phese of communication ocaurs
shortly before the end of each iteration. Here, each node sends
upcktes to al neighboring nodes. As sown in Figure 3, the
upcktes are the entire face, two grid points deep, shared between a
node and its neighbor.  Since these faces are not needed until the
beginning o the next iteration, we hide some inter-node
communication delay behind the remaining computation time.
Again we have implemented separate communication handlers for
each update axis (%, y, and 2).

6.2 Appbt communication speedup methods

In this sction we describe the enhancements that our
reconfigurable protocol procesor incorporatesin order to improve
communication time in appbt. In the origina Blizzard systems,
al protocol handling is performed by the compute node. Thus,
there is no way to owerlap protocol handling with compute time.
As sown in Figure 4, the RPP decreases communication time in
two main ways:

»  Decreaing the overall amount of communication time.
*  Overlapping some communication with computation.

Non-Overlapped
g Communication Comm. Time
= *—  Time ‘
c
k=
§ i\
]
Computation
% —  Time Overlapped
i Comm. Time
Blizzad RPP

Figure 4 —- Communication in Blizzard vs. RPP.

Note the mmputation time stays constant with both systems.
Only the communication time is decreased and owerlapped with
computation.

In the following peragraphs we eplore in detail the
enhancements that the RPP uses to decrease the communication
time. The first three methods require the aditional hardware that
the RPP provides. The last two techniques could be gplied to a
software implementation but are more wnvenient with the RPP.

Background message processing: In some cases, messages sent
to a procesor may not be needed immediately. For example,
updste messages are not needed until the beginning o the next
iteration. In such cases, computation may continue before al the
messages have arrived.  With the software implementation, the
procesor stops computation and handles an interrupt for each
message that arrives. With the RPP implementation, the procesor
never has to process an intermediate interrupt to service a
message. Rather, the RPP deds directly with memory, placing the
arriving updates in their appropriate memory locations. A courter,
discussed below, notifies the procesor when al updates have
arrived.

Fast, Intelligent DMA: As previoudy discussed, the dose
asciation of the RPP with the DMA engine dlows intelligent,
application-specific DMA transfers, particularly smaller, non-
contiguous transfers. In appbt, combining small er messages into
larger onesinvolves acoessing multiple non-contiguous sections of
memory. With the RPP, such non-contiguous memory acceses
are smple. The RPP splits messages into their component parts,
does me simple aldress cdculations while waiting for the
current DMA operation to complete, and feeds data and addresses
to the DMA engine until the message is complete. Using the RPP
also decreases message size (since the receiving RPP can aso
calculate much address and length information on its own).
Synchronization Squashing: Regardless of whether the update
messages are sent as sngle grid points or entire faces, any given
node will expect multiple messages from multiple processors
before it can proceed with more mputation. In software,
synchronization for this is implemented with a software counter
for the x, y, and z directions. The data received is unused until the
counter indicates that al the data for that dimenson hes been
received.

With the RPP much o this processing can be avoided. When
the program begins, the microprocessor sends a message to the
RPPtelling it how many updetes to expect from each dimension.
Since the communicationistotaly static, this can be fixed through
the entire execution. Whenever the RPP recdves an update
message, it sends the update data to memory. But instead of
incrementing a software counter, the RPP simply increments its
own version of the ounter located on chip. When the counter
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reaches the aitical value, the RPPknows that all updates for that
dimension have been received, so it writes the counter value to
main memory. Thus, many intermediate reads and writes to
increment the cunter are reduced to a single write when the data
isready.

Forward Elimination: In a software-based implementation, each
data transmission duing the forward dimination stage actually
consists of 11 dfferent messages, each 5 doubles long.  With the
RPP, however, dl the data may be sent as one message that the
receiving RPP splits to pace in the appropriate aeas of memory.
This is posgble because the sending and receving RPFs can
perform address cal culations and control the transfer of data from
memory to the NI and vice-versa. Thus, 11 messages are reduced
to one longer message.

Update: During the end-of-iteration update messages, the Blizzard
implementation forwards each grid point as sparate message of 5
doubles. Again the RPP can be mnfigured to acoept a much
longer message, break it into its component parts, and write the
appropriate datato memory. In our implementation, we chose to
have the RPP send the data in whole-face churks, so that an
upckte to a neighboring processor takes two messages.

6.3 VHDL Design of RPP

To get acaurate results with our smulator, a full VHDL
implementation of the RPP was necessary in order to determine
the speed o our design which when talored for appbt. The
hardware cost of two Xilinx 4013 FPGAs is aso minimd
compared to that of a custom ASIC. The design was originally
intended to occupy one FPGA. A configurable logc block (CLB)
isthe basic unit of which FPGAs are momprised. It can implement
roughly 10 simple gates of logic and includes 2 fli p-flops for state.

In order to meet pin and CLB constraints, we made adecision
to split the design into ane FPGA for sending and one FPGA for
receiving. However, with the more advanced FPGA technology
avail able today, the entire design would easily fit ornto ane chip.
Figure 5 shows a block diagram of the send datapath that we used
for appbt. The @ntrol logc consigts of the finite state machines
for the five send handlers and five recdve handlers. The smplest
handlers consist of eight sequential state transitions, while the
more complex handlers have afew more states with logps. The
receive datapath is very similar and much of the logc could be
shared. However, the @ntrol logc made the design toolargeto fit
onto the Xilinx 4020 FPGA. A 40-bit version (capable of 40-bit

Table 1 — Cycle times from xdelay with
4013EHQ240-2.

address calculations) was implemented in VHDL and synthesized
using FPGA Express[16]. ViewSim was used for smulation [17].
Xilinx place and route tods were then used to generate bitstreams
and cetermine cycle times [18]. See Table 1 for results.

6.4 Simulation Results

Since the computational core of the application remains the same,
al speedups result from reducing communication time or from
overlapping it with computation. In the first subsection we
explore in detall the results from a baseline system. In the
following subsections we investigate the effect of varying the
system parameters.

6.4.1 Basline System

We asume a base system with 32 pocessng nodes each
containing ane 300 MHz microprocessor running the MIPS
ingruction set. We dso assume a33 MHz, 64-bit PCI bus as the
I/0 bus in each processing node. The default problem size is a
12x12x12 array with 60 iterations.

For this baseline system, we achieved a communication time
speedup o 10.84 for the RPP system compared to Blizzard. In
terms of the definitions introduced in Figure 4, this means that the
non-overlapped communication time with the RPP system is
nealy 11 times sndler than the time Blizzard spent on
communication. Part of the reason for this geedup is that alarge
portion of the mmunication time was overlapped with
computation. Overlapping communication with computation is a
key technique that coprocesors like the RPP use to improve
runtimes. For appbt, the amount of overlap varies by processor.
Processors in the center of the network have more update
messages.  Update messages have more potentid for overlap
because there is additional computation time available to hide
communication delays while the program is in the “Re-compute
right-hand sides’ phase (see Figure 3). For the basdine system,
45.7% of the communication was overlapped on average. 52.6%
of the tota communication time for update messages were
overlapped while 28.5% of the tota communication time for
Gaussian elimination messages were overl apped.

Because dl of our speedup comes via improved
communication, the fraction of overall execution time that appbt
spends in communication is critical. With a software version,
11.6% of the overal time is ent in non-overlapped inter-node
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communication. The RPP's enhancements bring this number
down to 12%. This reduction in communication time gives the
RPPsystem a speedup of 1.12X over a Blizzard system for overal
program execution time. In comparison, an ided system that
assumes al communication ocaurs instantaneously, would achieve
aspeedup o 1.13X over Blizzard.

While atotal execution time improvement of 12% is not
phenomendl, it is important to note that appbt is afull benchmark,
not just a kernel with heary communication. In this paper we
focus on the communication aspects of the gplicaion — the
portion of the application that the RPP succeeds in speeding up
significantly — while keeping in perspective that the overall
execution timeisimportant as well.

6.4.2 RPP Speedupsfor varying numbers of processors

In our basdine system, we aaume 32 processors, but smaller
configurations are dso common for low-end parallel processing
systems for which the RPP might targeted. Here, we compare the
Blizzard and RPP protocol processing methods on a mmmon
appbt input set while varying the number of processors in the
system. For the total execution time, we compare the RPP's
speedup over Blizzard to that of an idea protocol processor with
instantaneous message transmission.

Figure 6 shows the non-overlapped communication time in
appbt for Blizzard and the RPP. From this figure we @n see that
for 32 procesors thereis a ommunication time speedup o 10.8.
As we move down to 2 procesrs, the speadup increases to 13.5,
a change of 25%. The fluctuationsin the communication time are
due to the way that each processor’s subcube is partitioned. The
size and shape vary as we change the number of processors, and
this causes sgnificant changes in the @mmunication patterns.
These increases in speedup correlate to the amount of
communication that can be overlapped. For 32 procesrs, the
overlap averages 45.7%. As we move down to 8 4, and 2
procesor networks the percentage of overlapped communication
risesinto the 70s.

For the overall execution time speedup the amount of time that
is spent in communication is critical, because thisis the portion of
the overall program execution that is reduced by protocol
operations. As we increase the number of processors in the
system, the amount of communication increases. For example at 2
procesors Blizzard spends 1.5% of its total execution time in
communication, but & 32 procesors this number rises to 11.6%.
Thus, as we move to systems with more procesors, the RPP
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Figure 7 — Non-overlapped communication time for
RPP and Blizzard (avg num. Kcycles per iteration).

systems shows greater overal execution time speedups. For 2
procesors, the execution time speedup was just under 1.02X, but
at 32 processorsthisincreasesto 112X.

6.4.3 RPP Speedupsfor varying microprocessor speeds

Our baseline system, which assumed 300MHz, is about the
clock rate of many current-generation microprocesors.
Investigating the effects of higher microprocessor speeds is
interesting as we lodk to the future. It isa so interesting to explore
the speedup that the RPP would ddtain on lower-end
microprocesors. The RPPslow hardware and design costs make
it well suited for low cost multiprocessors which would tend to
have lower end microprocessors. We mmpared the Blizzard and
RPP protocol processng methods on a cmmon appbt input set
while varying the speed of the host processors. For the total
execution time, we gain compare the RPP's eedup ower
Blizzard to that of anideal protocol processor with instantaneous
message transmission.

Figure 7 shows appbt’s non-overlapped communication time
for both systems. Both times increase & the microprocessors
become faster. Since we have asaumed the RPP cycle time to
remain constant while a software gproach benefits from clock
rate improvements, the RPP is dower relative to Blizzard at high
clock speeds. We would expect, however, that future generations
of FPGAs would alow the RPP to increase in performance with
the microprocessor.  Furthermore, limitations of the 33MHz PCI
bus become a factor at the high clock speeds. For these reasons
our communication speedup varies considerably — from 25.2 for
100MHz processorsto 6.9 for 600M Hz processors.

The overdl execution time speeadup vs. Blizzard increases as
we move to higher clock rates. For example, from 100MHz to
600M Hz the speedup increases from 1.09 to 1.15. Thisis because
the faster processors decrease the amount of time spent on
computation. Hence, communication plays a larger role in the
overall program execution time & higher clock speeds and this
benefitsthe total execution time speedup. For Blizzard's 100MHz
system, the fraction of time in communication was 9.4%. This
increases to 14.8% for the 600MHz system. For the RPP, these
numbers drop to 0.4% and 24% respectively.

7. Other Applications

The main focus of our discusson so far has been on the
pardlel applicaion, appbt. The RPP techniques that were



succesgul inimproving appbt’ s execution time ae dso applicable
to a wide range of applications. Without going to the same level
of detail, this sction discusees RPP implementations for other
applications, kegping in mind the strategies discussed in Section 4:
»  Background potocol processng

*  Fast, Intelligent DMA

e Specidized processng on hoth sending and receiving

messages

7.1 EM3D

EM3D is another parald benchmark application that models
the propagation of & ectromagnetic waves through objects in three
dimensions [19]. The program contains a set of E nodes, which
represent electric fields, and H nodes, which represent magnetic
fields. E and H nodes are aranged in a bipartite graph with
directed edges linking E and H nodes that depend on eech other.
During each iteration, E nodes are updated based on the weighted
values of neighboring H nodes and vice-versa. A common perallel
implementation dvides regions of E and H nodes up into
computing node segments.  Communicaion between procesors
occurs when E and H nodes are @mnnected by a “remote edge”,
meaning that the neighboring E and H nodes are on different
processors.

During the firgt iteration, the emmunication pattern has not
been established so a general purpose protocol must be used.
After the firg iteration of EM3D, the sharing pettern between
procesors has been set and will stay the same for al subsequent
iterations. That is, when an E or H node is updated, there is a
known ligt of compute nodes that need to be sent a message with
the updated data. At this point, application-specific update
protocols can take over to enhance communication efficiency.
The gplicaion-specific protocol for EM3D updates al remote
nodes at the end o each hdf-iteration [4]. This approach made
sense there because the procesor is busy calculating new values
of the current nodes, so it has no free CPU time available for
protocol processing. In addition, leaving all of the updates to the
end of the half-iteration alows one large message to be sent to
each procesor that needs update data.

Now we consider how an RPP could be used to decrease
communication overhead. With an RPP most protocol processng
could be entirely overlapped with computation. After each node
has been cdculated, the RPP sends that update message to the
dependent processing node. The closdly-coupled DMA engine
alows efficient transfer of these smdl messages. Groups of
messages are packaged and sent to a specific procesor as in
appbt. Furthermore, the RPP performs al protocol
synchronization support which includes deciding when dl
incoming dependent nodes have been receved. This type of
synchronization is very efficient in FPGAs with kit manipulations.

Chandra, Larus, and Rogers have provided an in-depth
analysis of communication and computation time for shared-
memory and message-passing versions of EM3D [20]. The
analysis notes that a Blizzard implementation running application-
specific protocols alows the shared-memory version to perform
equivaently with the messge-passng wverson. Using this
conclusion we ae aleto roughly estimate the amount of speedup
that the RPP could achieve. For the main logp there would be
26.5M cycles of computation and 40M cycles of communication.
Thus approximately 26.5M cycles of communication would be
overlapped with computation. The remaining 13.5M cycles of
communication would likely be reduced by RPP enhancements.

However, as a low-estimate to potential speedup we asume that
these non-overlapped communication cycles remain the same.
This results in a total execution time improvement of about 51%
for the RPP over Blizzard. The increased amount of time spent in
communication explains why EM3D promises more improvement
on the RPP than appht.

7.2 Unstructured

Unstructured is based on a @mputational fluid dynamics
application that uses an unstructured mesh to model a physical
structure [21]. Nodes make up the structure of the mesh and are
connected by edges, when in pairs, and by faces, when in goups
of three or four. A common pardlel implementation groups
related nodes together and then partitions edges onto various
procesrs.  Computation involves iterative logps over nodes,
edges, and faces, and thus edges and faces that span processors
will reguire shared data to maintain coherency. Like EM3D, the
communication dependency pattern is fixed after the first iteration.

Because of the etensve amount of time spent in
communication, ungtructured is well-suited to an RPP
implementation. Inter-node dependency synchronization could be
taken care of by the RPP for each node in the system. The RPP
would keep track of when all incoming dependencies have arrived
and when al messages have been sent out for a particular node.
The RPP would aso be responsible for sending update messages
in the background After each node is realy to be sent out, the
processor would send a single message to the RPP, which would
then send the dependent data to the arrect processors. Additiona
background pocessing would be possible & the RPP could send
upcdate messages for nodes in the alge-loop whil e the processor is
doing computation in the face-loap.

Overall the point of this sction has been to emphasize that
RPP benefits are not isolated to appbt done. Rather, we fed that
this approach shows sgnificant promise & alow-cost accelerator
in systems that provide no dediceted hardware @che coherence

support.
8. Redated Work and Discussion

Much of the closdy-related work in the aea of memory
coherency protocols has been discussed throughout this paper. In
the aea of configurable cmputing, there has recently been some
research interest in coupling configurable logic with the network
interface  McHenry et a. [22] have proposed an FPGA-based
front-end procesor that filters information to an ATM firewall
host to ensure network security. Guillaud et al. [23] have
proposed a communication interface board for PCs which
incorporates a transputer, an FPGA, and a VRAM to implement
reconfigurable high level communication services for distributed
rea-time data and multimedia ammunication. None of these
approaches, however, have mnsidered configurable network
interfaces with parallel computing appli cationsin mind.

Much of this paper has discussed the performance and cost
benefits of a reconfigurable protocol processor.  Another
advantage that systems like the RPP have is that it is reatively
easy to update the wherency protocols as gpplications or protocol
strategies change over time. All that is required is modification of
the VHDL design to suit the new communication petterns. Hard-
wired coherency protocols like Stanford’'s DASH [24] do not
alow this.



9. Conclusion

This paper presents a new architecture for implementing
application-specific cache coherency protocols.  This gudy (i)
identifies a new, easily-adopted use of configurable hardware in
mainstreams systems, and (ii) provides benchmark evaluations
characterizing both communication behavior and whole program
performance.  We fed that our RPP architecture hits a
performance/cost sweet spot between software ad custom
hardware gproaches. With little alditional hardware expense and
design time, an RPRstyle achitecture could be implemented on
many of today's high-spead retwork cards. Our approach speeds
up communication time in the appht application by a factor of
11X. For completeness, we have aso considered whole-program
performance, rather than just the individual protocol handers; our
whole-proggam performance improvements of 12% are dso
significant. In exploring aher applications, we have identified
several that show the potentid for even more sizable performance
improvements.
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