
CommGuard: Mitigating Communication Errors
in Error-Prone Parallel Execution

Yavuz Yetim
Princeton University
yyetim@gmail.com

Sharad Malik
Princeton University
sharad@princeton.edu

Margaret Martonosi
Princeton University
mrm@princeton.edu

Abstract
As semiconductor technology scales towards ever-smaller
transistor sizes, hardware fault rates are increasing. Since
important application classes (e.g., multimedia, streaming
workloads) are data-error-tolerant, recent research has pro-
posed techniques that seek to save energy or improve yield
by exploiting error tolerance at the architecture/microarchi-
tecture level. Even seemingly error-tolerant applications,
however, will crash or hang due to control-flow/memory
addressing errors. In parallel computation, errors involving
inter-thread communication can have equally catastrophic
effects.

Our work explores techniques that mitigate the impact of
potentially catastrophic errors in parallel computation, while
still garnering power, cost, or yield benefits from data error
tolerance. Our proposed CommGuard solution uses FSM-
based checkers to pad and discard data in order to main-
tain semantic alignment between program control flow and
the data communicated between processors. CommGuard
techniques are low overhead and they exploit application
information already provided by some parallel program-
ming languages (e.g. StreamIt). By converting potentially
catastrophic communication errors into potentially tolerable
data errors, CommGuard allows important streaming appli-
cations like JPEG and MP3 decoding to execute without
crashing and to sustain good output quality, even for errors
as frequent as every 500µs.

Categories and Subject Descriptors Computer Systems
Organization [Performance of Systems]: Fault tolerance

Keywords Application-level error tolerance, high-level
programming languages, parallel computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694354

1. Introduction
Achieving reliable, cost-effective computation with accept-
able semiconductor yields becomes more challenging with
each new technology generation. Resilience challenges arise
due to extreme operating temperatures and currents, and due
to increased susceptibility to soft errors [6, 12, 14, 17, 26].
Originally handled primarily at the circuit level or below, the
challenges of semiconductor reliability have become press-
ing enough that architecture-level solutions must also be ex-
plored. Our goal is to find low-overhead methods to exploit
application-level error tolerance in order to improve the cost
or yield.

Not all errors are equally worrisome. In particular, while
many applications may be tolerant of modest data error
rates, other errors—in control flow, memory addressing, or
parallel communication—are often catastrophic. Thus, in
most prior work, programs are separated at design-time,
compile-time, or run-time into the operations (calculations,
loop control, etc.) that must be run on fully-reliable hardware
versus those that can be run on potentially error-prone hard-
ware. In some cases, the fully-reliable hardware represents
the bulk of the machine (all instruction decode, sequencing,
and control) while the error-prone hardware is limited to cal-
culation units, a small fraction of processor die area [25]. In
other prior work, a single fully-reliable processor manages
loop-level control sequencing and timeouts for a set of po-
tentially unreliable processors [18]. This allows more error-
prone area (and thus increases potential benefits), but lim-
its the types of applicable programs, e.g., do-all parallelism
with idempotent loop bodies [18].

Our work proposes and evaluates techniques that sup-
port the data-error-tolerant execution of a fairly broad set of
workloads, and that greatly decrease the amount of fully-
reliable hardware required. In particular, we focus on par-
allel systems in which each component core is itself only
partially reliable, and we explore methods to mitigate the
catastrophic effects of error-prone interprocessor communi-
cation between such cores. Our work enables low-cost error-
tolerant execution by converting potentially catastrophic
control flow or communication errors into potentially tol-
erable data errors.

Our approach centers on CommGuard, a simple FSM-
based technique for dynamically monitoring that the pro-
gram abides by expectations about how many data com-
munications will occur between different parallel entities.
For example, in a producer-consumer interaction, resiliency
hinges on the consumer receiving the correct number of data
items; incorrect data counts lead to deadlock, livelock, per-
manent misalignments, or other fatal issues. CommGuard
pads or discards communicated items when too many or
too few have arrived. Discarded items are chosen arbitrarily
and padding items fills data frames with arbitrary values to
use. Such techniques succeed because data errors are gener-
ally more tolerable than the control-oriented errors that stem
from incorrect item counts.

This paper shows how a CommGuard checker can be very
effective, can be built at very low-overhead, and can exploit
program-level information already frequently provided by
languages like StreamIt [29] or Concurrent Collections [3].
CommGuard allows important streaming applications (e.g.,
jpeg, mp3 decode) to execute without crashing and to sustain
good output quality, even for errors as frequent as every
500µs. Furthermore, it requires low overhead, almost all of
which is off the critical path of instruction execution.

2. Motivation
2.1 Tolerating Hardware Errors
Device scaling increases hardware fault rates for several rea-
sons and ITRS has identified reliability as a major design
challenge for newer technology nodes [16]. Hardware faults
(e.g., transistor aging, process variation, energized particle
strikes, and others) come in three types: permanent, inter-
mittent or transient [12, 17, 26]. Intermittent and transient
faults are particularly expected to increase for newer tech-
nologies [7]; this work focuses on them. Faults may or may
not result in application-level errors depending on where and
when they occur [23]. For this paper, in accordance with
prior literature [24], we use the term error to refer to an
architecture-level value change caused by a hardware-level
fault .

With increasing fault rates, conventional redundancy
techniques to detect and correct errors result in high over-
heads. In SRAM and other storage units, protection is
achieved through error correction codes (ECC) but increas-
ing fault rates require stronger codes with higher latencies
and storage overheads [1]. Further, protecting data storage
is only part of the issue; one must also address errors in
control-flow, data-flow, computation and communication.
Various forms of redundant execution [22] protect against
these errors. Redundant execution can be temporal (e.g., ex-
ecuting instructions twice on the same core) or spatial (e.g.,
executing instructions in parallel on another core). Different
choices trade-off hardware area, performance, and energy in
different ways, but none effectively avoid the high overhead
of redundancy.

Certain application classes, e.g. multimedia, have some
degree of error tolerance. They are data error tolerant in that
their output can be acceptable even without 100% error cor-
rection. They are still susceptible, however, to control flow
and memory addressing errors, which can be catastrophic.
Fully-reliable processors can avoid these errors completely
[18, 19, 25] but will incur high performance and energy over-
heads and may be cost-prohibitive for future technologies.

Some control-flow and memory addressing errors may be
acceptable as long as their effects on the execution are man-
aged. For example, architectures proposed in [18, 32] handle
control-flow and memory-addressing errors when they may
cause crashes or hangs. The reliability analysis proposed in
[4] allows cores that may have bounded control-flow and
memory addressing errors in its execution model. Here, we
refer to such processors as partially protected uniproces-
sors (PPU) and show that existing PPU microarchitectural
techniques are either insufficient or incur high overheads for
parallel computation. This paper addresses this with a low-
overhead microarchitectural solution to manage communi-
cation errors in parallel systems built on PPU cores.

2.1.1 Requirements
Our design will not eliminate errors entirely, but rather
seeks to limit their impact. In particular, our operational re-
quirements are as follows. First, an error-tolerant execution
needs to progress (i.e., not crash, hang, or corrupt I/O de-
vices). Second, achieving long-term execution with accept-
able output quality requires that the effects of errors must be
ephemeral. That is, if errors occur, their effect on execution
should diminish with time. The third design requirement is
that the technique be low-overhead.

2.2 Coarse-Grain Error Management and High-Level
Application Constructs

CommGuard exploits application-level constructs to identify
coarse-grained linkages between control flow and commu-
nication operations. With appropriate knowledge of control-
flow and communication relationships, small reliable hard-
ware modules can detect and mitigate the error effects seen
as violations of the operational requirements.

As a concrete example, this paper uses streaming ap-
plications. A streaming application consists of coarse-grain
compute operations each of which inputs and outputs data
streams. CommGuard uses static information, such as ex-
plicit producer/consumer connections, and monitors the
communication and control-flow construct invocations at
run-time. This allows CommGuard to identify groups of
items in the data streams and establish a run-time link be-
tween control-flow and inter-core data-flow.

Our implementation examples are based on StreamIt
[29], a programming language and a compiler for stream-
ing applications. StreamIt offers constructs to support do-
all, data, and pipeline (producer-consumer) parallelism, as
well as streaming communication between threads. Figure

F0 F1 F2

F3R

F3G

F3B

F4 F5 F6 F7

Figure 1: jpeg streaming computation graph with explicit
communication between processing nodes.

F7

push 192 items per firing pop 15360 items per firing

F6
F6
F6

F6

80 firings form a
frame computation

1 firing forms a
frame computation

F7

...

15360 items
form a frame

... ...

Figure 2: Example jpeg subgraph showing relations of
items, firings, and frames

1 shows an example streaming graph for the jpeg applica-
tion. The graph is composed of 10 parallel nodes connected
with producer-consumer edges. The graph represents the
producer-consumer pipelined execution flow of each image
pixel, with the R, G, and B elements of a pixel being han-
dled with data parallelism at one stage. For the rest of the
paper, node refers to a chunk of computation and edge refers
to communication streaming between two nodes. To execute
this application, a node runs as a separate thread pinned to a
processor and a queue implements the communication along
an edge. StreamIt uses a concurrent queue data structure to
implement a queue manager with head/tail pointers pointing
to queue buffers.

As Figure 2 shows, StreamIt expresses communica-
tion through push and pop constructs. On each node fir-
ing, the node consumes items from its incoming edges
and produces items to its outgoing edges. The amount of
algorithm-specific communication determines the per-firing
item counts. For example, the figure shows that F6 produces
192 items, and this refer to an 8-pixel by 8-pixel image re-
gion, where each pixel consists of 3 items, the red, green and
blue values.

From StreamIt constructs, one can link the control-flow
and data-flow of communicating threads by matching node
production and consumption rates. In Figure 2, a group of
192 items forms exactly one firing worth of output for F6
but forms only a part of the input for F7. However, 15360
items correspond to exact multiples of firings in both filters.
For this edge, 1 firing of F7 depends on the output of the
80 most recent firings of F6. This analysis relates groups of
producer firings to groups of items and transitively to groups
of consumer firings, and thus links producer and consumer
control-flows to the communication. In the following sec-
tions, we will use the terms frames to refer to the groups of

(a) Error-free processor cores (b) Error-prone PPU cores

(c) Error-prone PPU cores with
reliable data transmission

(d) CommGuard: Error-prone
PPU cores with framed computa-
tion.

Figure 3: Output of jpeg running on 10 threads with varying
protection mechanisms. Systems in Figures 3b-d had a mean
time between errors of 1M instructions.

items and frame computations to refer to the groups of fir-
ings that are linked through this analysis.

2.3 Example Scenario
As a motivational example, Figure 3 shows the result of run-
ning a 10-core execution of jpeg [31] with different error
rates and error protection mechanisms. Figure 3a shows the
output when the cores do not experience any errors. Next,
Figure 3b shows the output when random bit errors in ar-
chitectural registers occur on average every 1M instructions.
Even with PPU cores, the effects of errors corrupt the queue
data structure that manages the item transmissions between
the nodes. As a result, execution proceeds less than 25 mil-
lion instructions before the queue starts to transmit most of
items incorrectly. With frequent communication being the
norm (a communication event occurs as often as every 7
compute instructions on average in our benchmarks) it is
clear that errors can quickly corrupt inter-thread communi-
cation.

A first recourse might be to error-protect the communi-
cation subsystem itself, but Figure 3c—obtained with fully-
reliable queues interconnecting the PPU cores—shows that
this too is insufficient. The reliable communication sub-
strate is not enough to overcome alignment problems if
the producer cores produce more or fewer data items than
what downstream consumer cores expect. Much like Figure
3b, this scenario also quickly experiences significant error
degradation; the running program loses or garbles many out-
put pixels. In addition to protecting the data being communi-
cated, one must also be able to check and realign the number
and type of data communications being sent and received.

CommGuard provides low-overhead, coarse-grained com-
munication checkers that detect when errors must be mit-
igated in order to avoid permanent corruptions for paral-
lel streaming applications. Figure 3d shows the result of
the same 10-core jpeg execution at the same error rate
with the same PPU cores, but now with this paper’s new
CommGuard state machines to check and realign commu-
nications between cores. While errors still have mild data
effects, CommGuard allows the parallel execution to com-
plete with acceptable image quality.

3. How Errors Affect Communication
Data Transmission Errors (DTE): Bitflips can cause data
to have the incorrect value when it is being stored or trans-
mitted (e.g., in non-ECC memory or unreliable intercon-
nect). If these errors only cause value changes in the items
being transmitted but still ensure the transmission of the cor-
rect number of items then their effects are usually ephemeral
as we focus on applications with data error tolerance running
on PPU cores.

Queue Management Errors (QME): In some error
scenarios, errors may corrupt the inter-thread communica-
tion management state, such as the head and tail pointers
of a StreamIt queue. These corruptions degrade output qual-
ity significantly or cause catastrophic failure. In some cases,
such errors cause deadlock, e.g, when cores have incon-
sistent views about the full/empty status of the queue. In
other cases, corrupted head/tail pointers point to incorrect
addresses and the values returned from the queue become
incorrect for the rest of the computation. Therefore, either
(i) these pointers and their operations must be reliable, or
(ii) pointer corruptions need to be periodically repaired.

To avoid permanent errors due to data transmission, a
reliable hardware queue may communicate items between
producer-consumer pairs through error correction mecha-
nisms. However, as shown in Figure 3c, an error-free queue
is not enough. This is due to alignment errors discussed be-
low.

Alignment Errors (AE(I|F)(E|I)): Alignment errors oc-
cur when the number of communicated data items produced
or consumed depends on program control flow that might
itself be error-prone. For example, PPU cores allow small
control-flow perturbations that change iteration counts, and
that may partially construct a collection of items, possibly
missing some. Operations on such a collection will execute
incorrectly if they are written to expect properly-constructed
collections with a particular item count.

We denote alignment errors with respect to the consumer
using the notation A(I|F)(E|L) where the subscripts denote
(i) misalignment granularity, i.e. if (I)tems (i.e., the smallest
transmission units) in a frame or (F)rames are misaligned,
and (ii) misalignment amount, i.e. if misalignment caused
(E)xtra data or (L)ost data. Note that, we define errors in
their effect, not by their causes. Misalignments can happen

due to control-flow errors in the producer or consumer thread
or due to queue management errors. A realignment (of a mis-
alignment due to producer, consumer or the queue between
them) operation ensures that every new frame, which is con-
structed by the frame computation of the producer, aligns
with the start of a frame computation of the consumer.

For example misalignments, consider Figures 1 and 2. In
Figure 2, an internal control-flow error in F6 may cause it
to push one extra pixel. F7 would not be aware of the extra
item and would pop the extra item as if it is the next item
to be processed (AIE). Then, F7 compute operations would
apply to incorrect items (e.g., a scalar vector multiplication
of the incoming vectors, i.e. frames, with a constant vector).
Frame-level misalignments may be benign for F6 and F7 but
would still be catastrophic for split-joins. If F3R drops a full
frame but F3G does not, then the following F4 node will start
merging different frames (AFI). Both of these misalignment
scenarios would shift items for the rest of the computation;
without repair, they will never realign.

To summarize: a control-flow error in a producer thread
can translate to a permanent control-flow corruption in a
consumer thread. It is cost-prohibitive to prevent control-
flow errors entirely and PPU cores prevent control flow er-
rors from resulting in permanent hangs or crashes. As a re-
sult, multiprocessors built using such processors must be
prepared for the control-flow error effects on interproces-
sor communication. To protect against such alignment er-
rors, CommGuard draws inspiration from reliability solu-
tions in data networking and uses headers and frame IDs to
identify frames. Using these constructs, CommGuard han-
dles alignment errors by discarding or padding items. This
has the attribute of converting potentially catastrophic errors
into potentially tolerable data errors, with much lower over-
head than checkpointing or recomputation.

4. CommGuard: Communication Guards for
Error-Tolerant Multiprocessor Execution

Figure 4 gives an overview of CommGuard’s organiza-
tion. To manage inter-processor communication effects,
CommGuard includes three new modules per processor
core; a header inserter (HI), an alignment manager (AM),
and a queue manager (QM). Figure 5 gives a more detailed
logical view of how producer and consumer nodes interact
with CommGuard modules. CommGuard interfaces with the
normal program execution through push and pop operations.
The push operation supplies the modules with a queue iden-
tifier (QID) and the data item, and the pop operation supplies
only a queue identifier and receives data. (These can be im-
plemented either in hardware as special instructions or in
software as additions to the push/pop implementations.) The
modules access the Queue Information Table (QIT) entries
using QIDs.

The AM monitors the items being popped from the com-
munication queue by the consumer thread. It uses the frame

Memory
Subsystem

Reliable Modules

PPU core

Reliable Modules

PPU core

Queue

Unreliable Processor
Core

Queue

Queue

Reliable Modules

Reliable Modules

Alignment
Manager

(AM)

PPU protection module

popQID

Header
Inserter (HI) Active-fc

Queue
Manager

(QM)

pushQID

stall

CommGuard Modules

item

new frame computation

qu
eu

e
ac

ce
ss

,
ite

m
/h

dr

PC stream

Reliable Modules

PPU core

itempopQID

Queue

hdr

item/hdr

discardQID

Control signal Data

Queue Info Table (QIT)

pushAL

L
hdr

Queue
ID (QID)

AM
State

QM
State

PPU core

Figure 4: CommGuard modules attach to processor cores
and the PPU protection module.

Producer Consumer

Header
Inserter

push

pop

Alignment
Manager

monitor insert
header

item
hdr

item
item

hdr+1

item

item

pop

item/
hdr

monitor

item

Figure 5: Logical placement of CommGuard modules be-
tween a producer and a consumer.

headers inserted by the HI to check and maintain alignment.
The QM handles the data transmission to other threads.
The PPU core increments the active-fc counter (i.e., active
frame computation) for every new frame computation and
this counter represents the frame progress of the thread.
These modules must be built from error-free circuits. (As in
prior work [13, 18, 19, 25], reliable hardware is considered
feasible by increasing transistor sizes or voltage margins for
that portion of the design.)

4.1 Header Inserter
On the producer side of a producer-consumer queue, at the
start of every frame computation, the HI inserts a frame
header with an ID into all outgoing queues to identify the

Table 1: Alignment manager FSM states and transitions.
FSM receives events when local thread starts a new frame
computation or issues a pop instruction. The FSM transitions
to new states depending on the incoming header ID and the
active-fc.

State State Activity Event Next
State

RcvCmp

Receiving and
computing on items
for active frame
computation

New frame computa-
tion started

ExpHdr

Received future header Pdg
Received past header Disc

ExpHdr
New frame
computation started
and expecting
header from queue

Received correct header RcvCmp
Received item or past
header

DiscFr

Received future header Pdg

DiscFr
Discarding frames
from queue
(AEFE)

Received correct header RcvCmp
Received future header Pdg

Disc

Discarding items
and frames from
queue
(AEIE , AEFE)

Received future header Pdg

Pdg Padding thread for
lost data (AEIL,
AEFL)

New frame computa-
tion matched header

RcvCmp

frames as a sequence. This frame header is an alignment
marker in the outgoing stream of data. Even if the count
of data items or their specific bit values are incorrect in
the stream that follows, the frame header gives downstream
AMs specific points at which alignment can be restored.
The HI inserts the value of active-fc as the frame ID. When
active-fc reaches its limit, indicating the end of this thread’s
computation, a special frame ID indicating the end of com-
putation is inserted to every outgoing queue. A thread is
oblivious to the HI actions. Header reliability is ensured us-
ing ECC.

4.2 Alignment Manager
The AM within a consumer core aligns incoming data with
the execution of a consumer thread using the frame ID’s in
the communicated headers and the active-fc counter. The
AM controls the data that is being transferred to the cur-
rently executing thread by discarding or padding items when
necessary.

Table 1 summarizes the checking and control operations
in AM in the form of a state transition table. The AM checks
and responds to each pop instruction and to the start of a
new frame computation. In response to a pop instruction,
the QM is invoked to return the next item, which may be
a regular item or a header. If a misalignment is detected,
it may pad items to respond to the pop requests from the
thread or discard items in the queue until the misalignment
is resolved.

The normal consuming state of the thread is RcvCmp. The
state ExpHdr denotes that the thread’s control-flow has just
rolled over to a new frame computation. That is, theRcvCmp
state expects an item and ExpHdr expects a frame header
from the queue. Failure to get what is expected indicates a
misalignment, and puts the AM into one of the erroneous
states— Disc, DiscFr or Pdg—to handle the specific align-
ment error. (These are shown in parentheses in Table 1.)
The AM resolves erroneous states by advancing the local
computation or communication to the correct frame bound-
aries. More specifically, either items are discarded to bring
an incoming queue to the correct frame boundary (commu-
nication realignment) or items are padded to bring the local
computation to the correct frame boundary (computation re-
alignment).

4.3 Queue Manager
As shown in Figure 4, the QM interacts directly with cores
and the CommGuard modules. Its responsibility is to transfer
items/headers to the AM or to other threads when requested.
The QM responds to pop and discard requests of the AM,
and the push requests of the core and the HI. Hence, the
QM performs these actions; (i) sending/receiving of items
through the memory subsystem (ii) separating items and
headers, and (iii) ECC checking of headers. Reliable queue
management eliminates the errors belonging to the QME
group from Section 3.

Here, we consider a hardware implementation for the
data queue with ISA-visible push and pop operations. The
queues (i.e., the items and their head and tail pointers) reside
in a static location in memory and the QM implements the
operations for a queue data structure. Section 5.1 elaborates
on details of this design choice.

4.4 Guided Execution Management and Its
Integration With CommGuard

We now describe CommGuard’s integration with the PPU
cores in [32]. The application is divided into coarse-grained
(potentially nested) control-flow regions termed scopes.
These are demarcated in the StreamIt benchmarks and are
at the granularity of function calls or loop nests. The PPU
cores ensure: (i) the thread running on a core sequences
correctly from one scope to the next, and (ii) it does not
loop indefinitely within some scope. This ensures accept-
able coarse-grained forward progress for the application.

The PPU protection module monitors computation inside
a thread and increments the active-fc, which the HI and AM
use as explained in Sections 4.1 and 4.2. For the StreamIt
programs as written, a scope encompasses each frame com-
putation. Choosing coarser scopes or down-sampling the
active-fc increment frequency through a saturating counter
allows the CommGuard modules to monitor alignment at
larger granularities. Lastly, to determine when the compu-
tation in a thread ends, the PPU protection module signals
CommGuard when a thread’s outermost global scope exits.

Shared head/tail working
set pointers + ECC

Working sets
item

hdr+2

item
item

item
item
item

hdr+1
item
item
item
hdr

hdr+3

Local head
pointer into
working set

QM state entry in
QIT (Producer)

Memory Hierarchy

Edge addr
(as QID)

Queue

Local tail
pointer into
working set

QM state entry in
QIT (Consumer)

Edge addr
(as QID)

Figure 6: QM uses local pointers to access the local working
set and shared pointers to share working sets across threads.

5. Hardware Design Considerations
5.1 Queue Manager
For this work we assume a hardware queue implementation
as shown in Figure 6. The QM protects head/tail pointers
through ECC and shares them with QM’s in other cores.
The QM follows the StreamIt implementation for a parallel
queue; a 320KB memory region divided to 8 sub-regions
to avoid per-item access to the head/tail pointers. Further, a
blocked queue that spins on a condition does not repeatedly
compute ECC since it is looking for a change in its value.

QM employs blocking operations when the queue is full
or empty. PPU cores determine the queue state, e.g., number
of items in the queue can overflow due to erroneous control-
flow. Therefore, the QM needs timeout mechanisms to avoid
indefinite blocking. A timeout may cause incorrect data to be
transmitted but frame checking would still ensure alignment
at the frame boundaries.1

5.2 Hardware Operations
Table 2 shows the hardware suboperations CommGuard ex-
ecutes in response to the CommGuard interface events. The
push event adds the item to the local working set and gets
a new working set if the working set becomes full. In re-
sponse to a pop event, the FSM in Pdg state responds to the
request with a 0. Otherwise, the next data unit is popped
from the queue. Depending on if the data unit is a regular
item or a header and the state of the FSM CommGuard may
issue more pops and discard items (see Table 1 for different
cases). New frame computation event triggers header inser-
tions for all outgoing queues. Table 3 shows the overheads
of the suboperations from Table 2.

5.3 Timing, Pipeline and Speculation
CommGuard’s ECC and header bit pattern operations (Table
3), are off the critical path of execution in steady-state oper-
ation. Header bit patterns and ECC can be computed prior
to insertion. At the receiver, the header-bit-pattern and ECC
operations can be performed for the head of the queue before
the item is needed.

1 We did not observe any timeouts in any of our experiments.

Table 2: CommGuard Suboperations

Architectural
Operation

CommGuard Suboperations

push QM-push-local item
if QM-local-full

QM-get-new-workset
pop if FSM-check not Pdg

do
QM-pop-local
if QM-local-empty

QM-get-new-workset
if is-header then

check-ECC for header
FSM-check/update

while FSM not DONE
new frame com-
putation

prepare-header
compute-ECC for header
for out-queues:

FSM-update
QM-push-local header
if QM-local-full

QM-get-new-workset

Table 3: CommGuard Suboperations and Their Overheads

CommGuard
Suboperation

Operational Overhead

prepare-header Read then increment active-fc, set
header-bit

is-header Check header-bit
check/compute-ECC Single-word ECC set/check
FSM-check/update Checking/updating a 5-state FSM

(see Table 1)
QM-push/pop-local,
QM-local-full/empty

Additional memory events
for header transmissions (No
CommGuard overhead for regular
item transmissions)

QM-get-new-workset 10 check/compute-ECC opera-
tions for shared pointer access
through QM

Frame computation invocations are serializing operations
for push/pop instructions, because CommGuard compares
headers coming from the incoming streams with active-fc
as set by frame computation invocations. While this depen-
dency may incur stalls, the resulting performance hit is small
since frame computations usually contain more instructions
than typical pipeline depths. The number of instructions per
frame computation in the median threads of our applica-
tions ranges from 72 and 33 for audiobeamformer and
complex-fir, to thousands for the other applications. We
evaluate the run-time overhead of the stalls in Section 7.2.2.

We propose three options regarding speculation for
CommGuard’s architecturally visible push and pop opera-
tions: (i) A processor may execute instructions speculatively

until it encounters a push/pop. (ii) CommGuard QM stores
speculative state for buffer pointers and committed push/pop
instructions alter the visible queue state. This adds one copy
in the QIT (Figure 4) for each speculative local pointer (Fig-
ure 6). (iii) QM operations use processor load/store opera-
tions to utilize the existing speculative hardware. Here, we
consider option (ii) as the speculative storage overhead is
small (Section 5.5).

5.4 Varying Frame Sizes Throughout an Application
Frame sizes are design knobs for adjusting CommGuard
alignment granularity. The CommGuard implementation ex-
plained here targets a uniform frame definition across an ap-
plication. That is, for all threads every frame received from
the incoming queues matches a frame computation and ev-
ery frame computation triggers a header insertion to the out-
going queues indicating a new frame. CommGuard can in-
crease the application-wide frame definitions by downscal-
ing the frame computation frequencies through one satu-
rating counter for frame computation invocations. In addi-
tion, CommGuard can also support varying frame definitions
across an application. This requires a redundant active-fc
counter per frame domain. We do not detail this design here
since our experiments showed that the default application-
wide frame definitions provide sufficient output quality for
our benchmarks.

5.5 Hardware Area
We do not provide circuit-level implementations for the logic
of AM, HI and QM but we expect this to be small based
on the storage needed. CommGuard modules need reliable
storage for maintaining static and dynamic state and here we
show that this storage is small enough to reside on core.

In our implementation, CommGuard modules store 2
counters and their limits; active-fc and a saturating counter
to optionally down-scale frame computation frequency for
larger frame sizes. Further, the modules need to store the
following for each incoming queue; 3-bits and 1 word for
header, queue ID, the local buffer pointer and its specula-
tive copy in the QIT (Table 1, and Figure 6). The number of
queues per thread varies and for our benchmarks this number
was at most 4. Therefore, with 4 queues per core the total
reliable storage would account to 4 × 4B + 4 × (3bits +
4B + 4B + 4B + 4B) ≈ 82B. Hence we assume this is
completely cached on core.

6. Experimental Methodology
Simulation: To validate CommGuard, we implement the
proposed hardware modules in a detailed Virtutech Simics
functional architecture simulator [20] extended with error
injection capabilities. Our baseline system is a 32-bit Intel
x86 architecture simulating 10 processor cores. Our simula-
tor models hardware errors through architectural error injec-
tion and implements the PPU cores described in [32].

Every core in our simulator implements an error injection
module that randomly flips bits in the register file. Each error
injector picks a random target cycle in the future following
the mean error rate, and flips a random bit in the register file
when the simulation reaches the target cycle. Register-based
error injection has been used in prior work [18, 30].

We vary mean-time-between-errors (MTBE) to capture
the trends in output quality changes, run-time and error han-
dling statistics. Each core’s error injection is independent
and has its own random number generator. Therefore, the
MTBE mentioned in our experiments represents the MTBE
of each core, i.e. not the MTBE of the whole multi-core pro-
cessor. (So errors in the full multi-core are more frequent.)
For every MTBE, we ran the application 5 times using dif-
ferent random number generator seeds and observed the de-
viation across different runs.

To model realistic error rates, we use functional ISA sim-
ulation, which allows us to run applications fully at error
rates of interest and compare output qualities. Our simulator
does not use detailed microarchitectural models [2], which
would provide accurate performance models but at the cost
of simulation speed. CommGuard events are triggered by in-
structions modeled as ISA extensions. We implemented the
new hardware modules, QM, HI, and AM as explained in
Section 4. The hardware events of the CommGuard modules
are implemented using the Simics API for hardware mod-
ules.

We implemented StreamIt’s push and pop operations as
ISA extensions that use x86 registers for hand-off for data
and edge identifiers. Therefore, data transmissions are also
error-prone due to our register-based error injector. This
models uncore error sources. Headers are not error-prone
because we assume they are end-to-end ECC protected and
account for their overhead. Headers with their ECC are
also word-sized items since header values in the order of
thousands are enough to identify frames across a streaming
graph.

Power Estimation: As a proxy for power estimates,
we record processor event counts (i.e., all instructions com-
mitted, memory accesses), and CommGuard overhead event
counts (Tables 2 and 3) during all simulation runs.
CommGuard’s remaining hardware operations are simple
comparisons and arithmetic operations. CommGuard sub-
operations are on par with or simpler than instruction pro-
cessing pipestages. Aside from push and pop instructions,
they are not implemented as software visible instructions,
but to give some intuition regarding their relative frequency,
we show hardware operation counts as a percentage of pro-
cessor instruction counts.

Real-System Measurements: To estimate pipeline per-
formance effects (Section 5.3) we use real hardware mea-
surements of slightly-modified StreamIt applications run-
ning on an 8-core Xeon E3-1230 (3.30GHz) without Sim-
ics. We modify applications by inserting an lfence instruc-

tion at all frame boundaries. The lfence instruction in Intel
x86 architecture is a serializing instruction, i.e. all instruc-
tions complete before lfence executes [15]. This serializa-
tion reflects the fact that our CommGuard implementation
requires that pushes&pops that follow a new frame computa-
tion stall until the instruction for the new frame computation
commits. lfence instructions at frame computation bound-
aries serialize all instructions and (conservatively) observe
CommGuard dependencies.

Benchmarks: Our experiments use 6 benchmarks from
the StreamIt benchmark suite: audiobeamformer,
channelvocoder, complex-fir, fft, and widely-used
multimedia applications jpeg and mp3. We used the clus-
ter backend of StreamIt to automatically parallelize these
applications for 10 cores using the shared-memory model.
We modified the StreamIt compiler backend to use the new
instructions for hardware-push and hardware-pop instead of
library calls to the existing StreamIt software implementa-
tion of communication.

mp3 and jpeg are lossy compression/decompression al-
gorithms. Lossiness is commonly measured using signal-to-
noise-ratio (SNR) for audio, and using peak-signal-to-noise-
ratio (PSNR) for image [27]. The image quality obtained by
standard lossy compression levels [28, 31] is a baseline in
our experiments. To provide this quality reference we first
encode the raw input file. We decode the raw data through an
error-free decoder to establish the baseline SNR under lossy
compression. We then decode the encoded file through the
decoder running on error-prone hardware, and compare the
result quality (both algorithmic and error-prone lossiness)
with the baseline (only algorithmic). For the remaining four
applications, we calculate SNR to compare the outputs of
error-prone runs directly with the outputs of error-free runs.

7. Experimental Results
Our experiments show that (i) CommGuard avoids perma-
nent corruptions due to communication and control-flow er-
rors and has good output quality even at high error rates
(Section 7.1) and (ii) it does this with low overhead (Sec-
tion 7.2).

7.1 Quality of Results
Figure 7 shows an example run of the jpeg application on
error-prone processors (MTBE of 512K instructions) with
CommGuard modules. jpeg decoding the full image re-
quired 16 padding and discard operations. The frames at
the jpeg output are rows 8-pixels high and pad/discard
events are denoted on the right hand side of these rows.2

Without CommGuard, Figure 3c showed that the output of
jpeg is completely corrupted at this error rate even with
a reliable queue and PPU cores. On the other hand, Fig-

2 A misalignment may have happened in any thread. Because all threads
share the frame definitions, we can annotate them visually at the application
output.

Discard operation

Pad operation

Figure 7: Example jpeg output running with CommGuard
(MTBE of 512k instructions) with PSNR of 20.2dB. Arrows
for pad/discard actions are shown adjacent to the frames for
which CommGuard detected misalignment.

10
-810
-710
-610
-510
-410
-310
-210
-1

64 128 258 512 1024 2048 4096R
a
ti
o
 o

f
L
o

s
t
D

a
ta

to
 A

c
c
e
p

te
d
 D

a
ta

MTBE (instructions x 1000)

audiobeamformer
channelvocoder

complex-fir

jpeg
fft

mp3

Figure 8: Realignment may result in data loss of correct
items. We calculate data loss as the sum of padded and
discarded bytes.

ure 7 shows only some 8-pixel-high erroneous lines. As
CommGuard aligns computation and communication at ev-
ery frame boundary, the frames following the corrupted
frames start without the effects of misalignment. This is
critical for the effects of control-flow errors to be ephemeral
and not cumulative.

Figure 8 shows the amount of data loss (i.e. padded or dis-
carded items) due to realignment across different error rates.
Even at extreme error rates (MTBE of 64K instructions)
the loss is less than 0.2% for five benchmarks. Jpeg loses
more data than other benchmarks because it has the lowest
frame/item ratio for default frame size (1 frame for every
7K items on average). However, the loss is still less than
0.2% at an MTBE of 512K instructions. This shows that data
loss due to padding and discarding actions are small. The
visible error clusters are largely due to intra-thread control-
flow and memory addressing errors.

Figure 9 shows different outputs and PSNR values for the
jpeg application at varying MTBE values. PSNRs of 20dB
or more are quite acceptable, and for PSNRs larger than
30dB, the errors are hardly visible. When errors are quite
frequent (MTBE=128k), the image is more corrupted, but
the flower is still recognizable. Thus this technique is useful
even at extreme error rates.

Figure 10 shows output quality averages and standard de-
viations for varying MTBEs for jpeg and mp3, respectively.
For MTBEs as frequent as 512K instructions, output quality

(a) MTBE=128k (PSNR: 14.7dB) (b) MTBE=512k (PSNR: 18.6dB)

(c) MTBE=2048k (PSNR: 28.6dB) (d) MTBE=8192k (PSNR: 35.6dB)

Figure 9: Visual results with PSNR values at varying MTBE
values. Output quality reaches error-free PSNR, 35.6dB, at
an MTBE of 8192k instructions.

 5
 10
 15
 20
 25
 30
 35
 40

64 128 258 512 1024 2048 4096 8192

P
S

N
R

 (
d
B

)

MTBE (instructions x 1000)

(a) jpeg (error-free PSNR: 35.6dB)

-4

-2

 0

 2

 4

 6

 8

 10

64 128 258 512 1024 2048 4096 8192

S
N

R
 (

d
B

)

MTBE (instructions x 1000)

Default frame sizes
2x frame sizes

4x frame sizes
8x frame sizes

(b) mp3 (error-free SNR: 9.4dB)

Figure 10: Comparison of quality loss due to “error-free
lossy compression” and “error-prone lossy compression
with CommGuard” at varying MTBEs and varying frame
sizes. (Deviations are shown only for default frame sizes.)

is maintained at very good levels: 20dB (error free PSNR of
35.6dB) and 7.6dB (error free SNR of 9.4dB), respectively.
Example audio outputs for different error rates for the mp3

application may be heard at: http://youtu.be/k72hTg5zbik.
With larger frame sizes, realignment operations less fre-
quent. Therefore, run-time overheads decrease (as discussed

 30

 40

 50

 60

 70

 80

 90

64 128 258 512 1024 2048 4096 8192

S
N

R
 (

d
B

)

MTBE (instructions x 1000)

(a) audiobeamformer

-20
 0

 20
 40
 60
 80

 100
 120
 140
 160

64 128 258 512 1024 2048 4096 8192

S
N

R
 (

d
B

)

MTBE (instructions x 1000)

(b) channelvocoder

 30

 35

 40

 45

 50

 55

 60

64 128 258 512 1024 2048 4096 8192

S
N

R
 (

d
B

)

MTBE (instructions x 1000)

Default frame sizes
2x frame sizes
4x frame sizes
8x frame sizes

(c) complex-fir

 5
 10
 15
 20
 25
 30
 35
 40

64 128 258 512 1024 2048 4096 8192

S
N

R
 (

d
B

)

MTBE (instructions x 1000)

(d) fft

Figure 11: Output quality loss of error-prone runs with CommGuard with respect to the error-free execution (error-free SNR is
infinity).

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

audiobeamformer

channelvocoder

complex-fir

jpeg
fft mp3

GMean

R
a
ti
o
 o

f
H

e
a
d
e
r

L
o
a
d
s
/S

to
re

s
 t
o

A
ll

P
ro

c
e
s
s
o
r

L
o
a
d
s
/S

to
re

s

Load
Store

Figure 12: CommGuard overhead on memory events.

in Section 7.2) but a misalignment is likely to corrupt more
data.

Figure 11 shows SNR values for the remaining bench-
marks. Among these benchmarks, complex-fir maintains
error-free output quality for MTBEs as frequent as 1024K,
while channelvocoder shows the same improvement at
higher MTBEs (4096K). Similarly, channelvocoder, fft,
and mp3 approach 0dB quickly, whereas the remaining
benchmarks are more resilient even at extreme error rates.

7.2 Hardware Overheads
CommGuard dynamically monitors execution and commu-
nication, induces additional memory events due to header
pushes and pops and may affect the pipeline. Our evalua-
tions show that coarse-grained protection keeps overheads
low.

7.2.1 Extra Memory Events due to Headers:
CommGuard induces extra queue pushes and pops for the
headers it inserts. The CommGuard QM implements the

-2 %

0 %

2 %

4 %

6 %

8 %

10 %

12 %

audiobeamformer

channelvocoder

complex-fir

jpeg
fft mp3

GMean

C
o
m

m
G

u
a
rd

E
x
e
c
u
ti
o
n
-T

im
e
 O

v
e
rh

e
a
d

Default frame sizes
2x frame sizes
4x frame sizes
8x frame sizes

Figure 13: Runtime overhead of additional header pushes
and pops, and pipeline serialization at frame boundaries.
Measured on real hardware (100 runs) for varying frame
sizes. Headers are additional item pushes&pops and pipeline
stalls at frame boundaries are implemented by lfence instruc-
tions. Reference is execution without CommGuard.

header pushes by storing the inserted headers in the software
queue (just like data items in the queue). Since the queue
is implemented as a software data structure in normal pro-
gram memory, there is no extra storage overhead per se, but
headers may lead to energy and performance overheads. As
a proxy for power/energy influence in the memory hierar-
chy, Figure 12 shows the additional memory events due to
header pushes and pops. (Performance effects are below.)
Across benchmarks, our experiments show that the geomet-
ric mean increase in memory events is less than 0.2%. The
maximum effect is for audiobeamformer, and even that is
very small: Frame headers increase the number of data loads
by only 0.66% and data stores by only 0.75%.

0%

1%

2%

3%

4%

5%

audiobeamformer

channelvocoder

complex-fir

jpeg
fft mp3

GMean

R
a
ti
o

 o
f

C
o

m
m

G
u

a
rd

 S
u
b

o
p

e
ra

ti
o

n
s
 t
o

C
o

m
m

it
te

d
 P

ro
c
e

s
s
o
r

In
s
tr

u
c
ti
o

n
s

FSM/Counter
ECC

Header Bit
Total

Figure 14: CommGuard operations normalized to processor
instruction commits.

7.2.2 Execution Time Overheads:
Here, we measure CommGuard runtime overhead using the
techniques described in Section 6, which account for extra
pushes, pops, and pipeline serialization at frame boundaries.
Figure 13 shows that extra CommGuard operations do not
affect the performance for jpeg, fft, or mp3.
audiobeamformer and complex-fir show the worst be-
haviors but their execution time increase is still less than 4%.
The mean runtime overhead across all benchmarks is only
1%. Increasing frame sizes slightly reduces the already low
execution time overheads, but since some applications, such
as jpeg, have output quality sensitive to frame size (Fig-
ure 11) it is preferred to use the StreamIt-default frame size
rather than anything larger.

7.2.3 Run-time Activity of CommGuard Modules
Tables 2 and 3 show the hardware operations that CommGuard
may execute during run-time. CommGuard operations oc-
cur very infrequently relative to other processor activ-
ity. While some of our benchmarks (audiobeamformer,
channelvocoder) contain threads that have a frame size of
1 item (i.e., one header overhead for every data item), the op-
erations in the processor core still dominate all CommGuard
hardware activities.

Figure 14 shows that the CommGuard operations are only
as frequent as 2% of processor instruction commits (geo-
metric mean). Even in the worst-case (audiobeamformer)
all operations occur as frequently as 4.9% of processor in-
struction commits. The header bit-pattern operations (to in-
dicate if a data unit is a regular item or a header) are the
most frequent operations and are simple less-than-a-word
size sets/checks. ECC computation for the headers (a rel-
atively more complicated operation even though only for
word-sized data) occurs only for 0.5% of instructions for
audiobeamformer.

8. Applicability to Other Programming
Models

In this work, CommGuard utilizes high-level information
from StreamIt’s programming model. However,

CommGuard’s principles of modular error-tolerance through
coarse-grain control-flow/data identification apply more
broadly to other programming models. The key attribute
used by CommGuard is a frame structure linking shared
data or communication to coarse-grained program control
flow. Other StreamIt attributes, such as strict producer/con-
sumer relationships and static definition of the size of data
transfers are not needed by CommGuard.

Programming models that can express high-level control-
flow constructs and how these control-flow constructs in dif-
ferent threads relate may easily implement CommGuard. For
example, Concurrent Collections [3] expresses control-flow
by tagging produced items of a thread and steps threads
with a matching tag. Similarly, keys in MapReduce [8] pro-
grams identify a group of items and express the sequencing
of parallel operations. CommGuard’s headers are identifiers
for data frames, and alignment manager modules use these
identifiers for realignment. Other research such as DeNovo
also proposes hardware-software constructs for coherence
and communication that can similarly be employed [5].

9. Discussion and Related Work
Modularity and Self-Stabilization: CommGuard allows
each local thread to make control-flow, memory addressing,
and data errors without considering their effects on other
threads. In addition to the design advantages of core-local
management, this modular structure makes CommGuard
easy to reason about and verify.

The concept of Self-stabilization [9] from distributed
systems formalizes the ephemeral effects of errors. Self-
stabilizing systems guarantee that a perturbation resulting
in an erroneous state will eventually be corrected to bring
the system to a valid state. Our design principles align with
this goal. Errors may cause degradation of the output qual-
ity but the reliable protection modules repair the system
to continue producing useful output. Existing techniques
can rely on CommGuard’s modularity to verify global self-
stabilization properties using self-stabilizing local execu-
tion. Related work [10] shows verification of self-stabilizing
Java programs. Work in [4] further shows how error-tolerant
hardware models can be specified to verify such program-
level properties.

Reliable Hardware: To address hardware errors, SRAM
and other storage units use error correction codes [1], and
other hardware units (i.e., logic) can use larger transistors or
higher voltage [17, 24]. Razor [11] is a lower-level example
of low-overhead error recovery. It detects timing errors using
shadow latches and recovers from them by pipeline flush and
re-execution. Razor provides low overhead error protection
by targeting timing errors in critical paths. Redundant pro-
gram execution [22] at different pipelines/hardware thread-
s/processors helps recover from errors but incurs very high
energy/performance overheads due to double redundancy for
error detection and triple redundancy or re-execution for er-

ror recovery. These techniques are all directed towards main-
taining an error-free hardware abstraction. In this work, we
target applications that are tolerant to data errors and propose
using these hardware reliability techniques only for small re-
liable modules. The rest of the micro-architecture permits
errors that are potentially acceptable at the application level.
Argus [21] detects errors separately for control-flow, data-
flow, computation and memory. Like Argus, our work also
distinguishes these concerns, and further includes inter-core
communication errors. However, Argus targets error detec-
tion, while we go further with limited error correction to pro-
vide useful computation results.

Application-Level Error Tolerance: Some work has,
like ours, leveraged application-level information while han-
dling errors in computation. ANT (Algorithmic Noise Tol-
erance) [13] uses an estimator block to mitigate the effects
of errors for circuits implementing signal processing algo-
rithms. This is a hardware solution that does not need to
deal with control-flow issues addressed in our work. Plac-
ing checkers using heuristics [30] strives to improve detec-
tion of control-flow and memory addressing errors. In con-
trast, CommGuard uses coarse-grain application information
to detect the catastrophic errors and manage their effects.

Program-Level Specification and Analyses: EnerJ [25]
partitions computation into error-tolerant and error-intolerant
instructions to be implemented using “error-prone but low
power” and “error-free but high power” components. En-
erJ does not allow any errors on control-flow or memory
addressing and requires a fully-reliable processor for error-
intolerant instructions; this requires over half of the pro-
cessor to be designed with reliable hardware. While EnerJ
targets reducing energy consumption through using error-
prone functional units on an otherwise-error-free processor,
CommGuard more aggressively targets error-tolerant com-
putation on unreliable processors that can only afford small
reliable components.

Rely [4] lets programmers express application-level prop-
erties for error-tolerance and uses probabilistic hardware
models to prove these properties. Further, Rely allows some
control-flow and memory addressing errors. Here, we have
shown that relaxed control-flow and memory addressing
quickly cause catastrophic errors due to inter-core commu-
nication. Therefore, without CommGuard, Rely’s reliability
analysis would capture the misalignments and conclude that
the application has virtually zero reliability. However, with
CommGuard, the reliability analysis can capture that er-
ror effects do not propagate across frame boundaries. As a
result, Rely’s reliability analysis may compute the overall
application reliability for streaming data. We experimentally
verified CommGuard and have laid out this verification pos-
sibility using Rely-style analysis as future work.

Error-Tolerant Architectures ERSA [18] uses one re-
liable processor core to control algorithmic flow and many
unreliable processors cores to execute error-tolerant worker

tasks. ERSA requires application rewrite to fit this parti-
tioned do-all execution model and the overhead of the re-
liable processor core can only be amortized when the appli-
cation has many parallel threads. In contrast, CommGuard
has fewer demands on the programming model, is fully
automated in the StreamIt compiler and can also handle
do-all parallelism which can be easily written in StreamIt.
CommGuard could potentially enhance ERSA by enabling
inter-core cooperation among the unreliable cores and thus
help expand its programming model.

10. Conclusions
This work investigates the challenges of parallel program ex-
ecution on error-prone hardware, and proposes CommGuard
as a low-overhead communication protection mechanism.
CommGuard uses small reliable hardware modules designed
as simple FSMs to manage the coarse-grained computation
progress of a core within which they reside, and the com-
munication to/from that core. CommGuard uses application-
level constructs that express how coarse-grain control-flow
operations are related to data-flow operations. We use al-
ready existing constructs in StreamIt as a concrete example,
however these constructs exist in other high-level program-
ming languages as well.

Our results show that CommGuard can sustain correct
operation and provide good output quality: 20dB for jpeg
and 7.6dB for mp3, running on 10 error-prone cores, for er-
rors occurring as frequently as every 500µs at each core.
CommGuard avoids catastrophic degradation of output qual-
ity and only introduces mean overheads of 0.3% on the
memory subsystem events, 2% as additional hardware op-
erations relative to the committed instructions, and 1% on
execution time.

11. Acknowledgements
The authors acknowledge the support of C-FAR and SONIC
(under the grants HR0011-13-3-0002 and 2013-MA-2385),
two of six SRC STARnet centers by MARCO and DARPA.
In addition, this work was supported in part by the National
Science Foundation (under the grant CCF-0916971).

References
[1] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilk-

erson, and S.-L. Lu, “Energy-efficient cache design using
variable-strength error-correcting codes,” in Proceedings of
the Annual International Symposium on Computer Architec-
ture, 2011.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[3] Z. Budimlic, M. Burke, V. Cave, K. Knobe, G. Lowney,
R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach,

and S. Tasirlar, “Concurrent collections,” Scientific Program-
ming, vol. 18, no. 3-4, pp. 203–217, 2010.

[4] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quan-
titative reliability for programs that execute on unreliable
hardware,” in Proceedings of the International Conference on
Object Oriented Programming Systems Languages and Appli-
cations, 2013.

[5] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou,
“Denovo: Rethinking the memory hierarchy for disciplined
parallelism,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, 2011.

[6] M. Clemens, B. Sierawski, K. Warren, M. Mendenhall,
N. Dodds, R. Weller, R. Reed, P. Dodd, M. Shaneyfelt,
J. Schwank, S. Wender, and R. Baumann, “The effects of neu-
tron energy and high-z materials on single event upsets and
multiple cell upsets,” IEEE Transactions on Nuclear Science,
2011.

[7] C. Constantinescu, “Trends and challenges in vlsi circuit reli-
ability,” IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107–113, 2008.

[9] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control,” Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[10] Y. h. Eom and B. Demsky, “Self-stabilizing java,” in Proceed-
ings of the Conference on Programming Language Design
and Implementation, 2012.

[11] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: A low-power pipeline based on circuit-level timing
speculation,” in Proceedings of the Annual International Sym-
posium on Microarchitecture, 2003.

[12] G. Gielen, P. De Wit, E. Maricau, J. Loeckx, J. Martı́n-
Martı́nez, B. Kaczer, G. Groeseneken, R. Rodrı́guez, and
M. Nafrı́a, “Emerging yield and reliability challenges in
nanometer cmos technologies,” in Proceedings of the Confer-
ence on Design, Automation and Test in Europe, 2008.

[13] R. Hegde and N. R. Shanbhag, “Energy-efficient signal pro-
cessing via algorithmic noise-tolerance,” in Proceedings of the
International Symposium on Low Power Electronics and De-
sign, 1999.

[14] W. Huang, M. Stan, S. Gurumurthi, R. Ribando, and
K. Skadron, “Interaction of scaling trends in processor archi-
tecture and cooling,” in Semiconductor Thermal Measurement
and Management Sym., 2010.

[15] Intel Corporation, vol. 3A, pp. 8–16,
2014. [Online]. Available: http://www.intel.com/
content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.
pdf

[16] ITRS, “ITRS process integration, devices, and struc-
tures,” http://public.itrs.net/Links/2011ITRS/2011Chapters/
2011PIDS.pdf, ITRS, 2011.

[17] K. Kuhn, M. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotl-
yar, S. Ma, A. Maheshwari, and S. Mudanai, “Process technol-

ogy variation,” IEEE Transactions on Electron Devices, 2011.

[18] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra,
“ERSA: Error resilient system architecture for probabilistic
applications,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2010.

[19] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn,
“Flikker: Saving dram refresh-power through critical data par-
titioning,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, 2011.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner, “Simics: A full system simulation platform,” Com-
puter, vol. 35, no. 2, pp. 50–58, 2002.

[21] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost,
comprehensive error detection in simple cores,” in Proceed-
ings of the Annual International Symposium on Microarchi-
tecture, 2007.

[22] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed
design and evaluation of redundant multithreading alterna-
tives,” in Proceedings of the Annual International Symposium
on Computer Architecture, 2002.

[23] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin, “A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance micro-
processor,” in Proceedings of the Annual International Sym-
posium on Microarchitecture, 2003.

[24] S. Mukherjee, Architecture Design for Soft Errors. Morgan
Kaufmann Publishers Inc., 2008.

[25] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “EnerJ: Approximate data types
for safe and general low-power computation,” in Proceedings
of the Conference on Programming Language Design and Im-
plementation, 2011.

[26] B. Sierawski, R. Reed, M. Mendenhall, R. Weller,
R. Schrimpf, S.-J. Wen, R. Wong, N. Tam, and R. Bau-
mann, “Effects of scaling on muon-induced soft errors,” in
International Reliability Physics Symposium, 2011.

[27] T. Stathaki, Image Fusion: Algorithms and Applications.
Academic Press, 2008.

[28] G. Stoll and K. Brandenburg, “The iso/mpeg-audio codec: A
generic standard for coding of high quality digital audio,” in
Audio Engineering Society Convention, 1992.

[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt:
A language for streaming applications,” in Proceedings of the
International Conference on Compiler Construction, 2002.

[30] A. Thomas and K. Pattabiraman, “Error detector placement
for soft computation,” in Proceedings of the Conference on
Dependable Systems and Networks, 2013.

[31] G. K. Wallace, “The JPEG still picture compression standard,”
Commun. ACM, vol. 34, no. 4, 1991.

[32] Y. Yetim, M. Martonosi, and S. Malik, “Extracting useful
computation from error-prone processors for streaming ap-
plications,” in Proceedings of the Conference on Design, Au-
tomation and Test in Europe, 2013.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://public.itrs.net/Links/2011ITRS/2011Chapters/2011PIDS.pdf
http://public.itrs.net/Links/2011ITRS/2011Chapters/2011PIDS.pdf

	Introduction
	Motivation
	Tolerating Hardware Errors
	Requirements

	Coarse-Grain Error Management and High-Level Application Constructs
	Example Scenario

	How Errors Affect Communication
	CommGuard: Communication Guards for Error-Tolerant Multiprocessor Execution
	Header Inserter
	Alignment Manager
	Queue Manager
	Guided Execution Management and Its Integration With CommGuard

	Hardware Design Considerations
	Queue Manager
	Hardware Operations
	Timing, Pipeline and Speculation
	Varying Frame Sizes Throughout an Application
	Hardware Area

	Experimental Methodology
	Experimental Results
	Quality of Results
	Hardware Overheads
	Extra Memory Events due to Headers:
	Execution Time Overheads:
	Run-time Activity of CommGuard Modules

	Applicability to Other Programming Models
	Discussion and Related Work
	Conclusions
	Acknowledgements

