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Graph structures are a natural representation of important and pervasive data. While graph applications
have significant parallelism, their characteristic pointer indirect loads to neighbor data hinder scalability to
large datasets on multicore systems. A scalable and efficient system must tolerate latency while leveraging
data parallelism across millions of vertices. Modern Out-of-Order (OoO) cores inherently tolerate a fraction of
long latencies, but become clogged when running severely memory-bound applications. Combined with large
power/area footprints, this limits their parallel scaling potential and, consequently, the gains that existing
software frameworks can achieve. Conversely, accelerator and memory hierarchy designs provide performant
hardware specializations, but cannot support diverse application demands.

To address these shortcomings, we present GraphAttack, a hardware-software data supply approach that
accelerates graph applications on in-order multicore architectures. GraphAttack proposes compiler passes
to (1) identify idiomatic long-latency loads and (2) slice programs along these loads into data Producer/
Consumer threads to map onto pairs of parallel cores. Each pair shares a communication queue; the Pro-
ducer asynchronously issues long-latency loads, whose results are buffered in the queue and used by the
Consumer. This scheme drastically increases memory-level parallelism (MLP) to mitigate latency bottlenecks.
In equal-area comparisons, GraphAttack outperforms OoO cores, do-all parallelism, prefetching, and prior
decoupling approaches, achieving a 2.87x speedup and 8.61X gain in energy efficiency across a range of graph
applications. These improvements scale; GraphAttack achieves a 3x speedup over 64 parallel cores. Lastly, it
has pragmatic design principles; it enhances in-order architectures that are gaining increasing open-source
support.
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1 INTRODUCTION

Graphs provide a natural abstraction for relational data and as such, they efficiently capture key
properties of complex and pervasive systems, such as social networks and language models. Graph
algorithms operate over these structures and have applications in many domains, including rec-
ommendation systems, information spread modeling, and disease classification [23, 25, 46, 67]. In
the era of big data, graph applications process datasets that are growing rapidly and the slowdown
of chip frequency and transistor scaling necessitates innovations that span architecture, compiler,
and application design to achieve performance gains.

While significant strides in software/hardware acceleration have been made for other appli-
cation domains in the big data era, e.g., DNNs, graph applications have not experienced similar
successes. There are three fundamental problems specific to graph applications that have hindered
this process. (1) Unlike DNNs, graph algorithms do not have repeating blocks of homogeneously
parallel, dense computations. Instead, both computation and parallelization are highly variable
depending on both the problem and the input graph structure [51], which is far from ideal for
accelerator design [57]. (2) Any hardware acceleration for graph applications must compete for
precious resources, e.g., area/energy, in a system design. (3) Graph applications are characterized
by irregular memory access patterns that pose a data supply challenge. Each vertex computation
typically involves several pointer indirect accesses and conditional updates to node data. With
datasets much larger than the last-level cache (LLC), these neighbor accesses often miss in the
cache, leading to long-latency DRAM accesses that occupy (or stall) system resources. These ac-
cesses are difficult to predict and have variable dependent computation chains, which confound
prefetching, runahead, and decoupled architecture designs.

A performant and scalable solution for graph processing should have: (1) hardware efficiency,
i.e., high utilization of system resources, and (2) sufficient programmability, i.e., the ability to pro-
gram and execute a variety of algorithm implementations. As a final design philosophy, we believe
that solutions must also have (3) an accessible architecture implementation that can feasibly be in-
tegrated into existing open-source hardware design and compiler frameworks. In the golden age of
computer architecture, it is now more possible than ever to realize hardware-software co-designs,
even outside of an established chip design company. Existing solutions (both in software and hard-
ware) have fallen short of fully meeting these requirements, especially in today’s increasingly
heterogeneous graph application landscape.

Existing Software Solutions for Graph Applications. Software frameworks for graph applications
aim for efficient parallel solutions via shared memory CPUs [52, 66] and GPUs [44, 58]. These
frameworks largely target the data-parallel loops across vertices (and sometimes edges) and aim
to parallelize these loops efficiently in a homogeneous (i.e., same program per thread and single
device) manner, an approach also known as do-all parallelism. They use many threads to perform
irregular accesses simultaneously, exploiting memory-level parallelism (MLP). Many inno-
vations in these frameworks involve load-balancing, efficient data representation, synchroniza-
tion reduction, and dynamic switching between neighbor flow directions (push or pull). While
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these approaches show improvements over baseline implementations, they are limited by underuti-
lized hardware. For CPUs, the target cores are typically commercial Out-of-Order (O0O) proces-
sors, which are designed with latency tolerance mechanisms, e.g., load-store queues (LSQs) and
reorder buffers (ROBs). These components have high area and energy overheads and yet prior
work has shown that without additional hardware augmentation, they struggle with graph analytic
kernels due to complex load-load dependency chains, leaving components clogged and poorly uti-
lized [11, 36]. Thus, OoO designs are not an attractive choice for graph analytics at a small scale,
e.g., edge devices that are severely resource-constrained, nor a large scale, e.g., data centers that
aim for multicore scalability. GPUs on the other hand have poor performance when contiguous
threads access non-contiguous memory regions, which stems from the neighbor memory ac-
cesses (NMAs) in graph applications [39].

Existing Hardware Solutions for Graph Applications. To address the inefficiencies of modern chips
for graph applications, several areas of hardware innovations have been proposed. Specialized
prefetchers [6-8, 11, 54, 63] offer flexible programming models, but incur high area and energy
overheads relative to simple, in-order (InO) cores, as well as additional memory traffic. Further-
more, many designs aim to service large, power-hungry OoO cores; offering modest performance
improvements while incurring poor core utilization. In contrast, other approaches propose acceler-
ator designs with specialized pipelines and memory scratchpads [21, 38, 43]. These pipelines offer
high performance for specific algorithm implementations, but cannot adapt to different optimized
variants produced by state-of-the-art software frameworks [37, 66]. Additionally, chip designers
of a heterogeneous SoC must be careful not to overspecialize with too many accelerators for sin-
gle applications, as competition for precious area and energy resources due to fixed transistor
budgets and power limitations cause increasing optimization to have diminishing performance
returns [17, 57].

Another set of hardware solutions propose processing near- or in-memory [5, 65, 69] to hide
latency. These approaches require invasive changes to the memory system, which cause signifi-
cant barriers to implementation. Memory systems are complex and small modifications can im-
pact many components of the system, e.g., cache hierarchies, NoCs, and DRAM, requiring signif-
icant effort to verify [29]. This contrasts with modular solutions, designs that propose architec-
ture components with simple interfaces for existing core models and memory systems to target.
Such innovations can be contained and implemented on top of a variety of accessible open-source
designs [1, 9, 64].

Decoupled Architectures for Latency Tolerance. Finally, decoupled architectures aim to pro-
vide efficient data supply by overlapping memory accesses with computation [49]. Pro-
grams are sliced to create two parallel instruction streams that handle memory and com-
pute individually; the memory access stream runs ahead and supplies data to the com-
putation stream in advance. More recently, DeSC [19, 20] introduced a specialized Ter-
minal Load Buffer, to allow loads to be performed asynchronously with respect to core
operations. The Supply core, responsible for memory access, can issue requests and continue with
its operations, while outstanding requests have entries reserved in the buffer for their returned
data. This allows the Supply to runahead of the computation stream and avoid long data supply
latencies. However, requests tracked in the Terminal Load Buffer must have no dependent memory
accesses, otherwise the Supply stream cannot runahead. Unfortunately, graph applications involve
load-load dependency chains where control flow dependent on irregular memory accesses inhibits
DeSC and existing decoupled architecture designs from leveraging efficient program slicing.

Our Approach: GraphAttack. To overcome the shortcomings in existing prior approaches for
graph analytics, we present GraphAttack: a hardware-software data supply optimization for graph
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Fig. 1. Comparison of two execution timelines of the SSSP kernel (c), with the NMA highlighted in red: (a) a
single InO core and (b) a GraphAttack pair. GraphAttack mitigates long-latency effects by slicing the kernel
such that the Producer has no instructions dependent on the NMAs and can therefore asynchronously issue
them to exploit MLP (overlapping NMAs).

application acceleration on InO multicore architectures. GraphAttack is composed of compiler
techniques and modest hardware additions that together automatically identify idiomatic pointer
indirect NMAs and mitigate their latencies. Our approach’s design principles are in line with the
open-source hardware renaissance seen in modern SoC designs. This movement entails emerging
designs that opt for dense fabrics composed of many simple processing elements, e.g., InO cores,
rather than large, complex OoO cores [2, 10, 57]. These architectures provide a pragmatic and acces-
sible chip foundation for innovations in both hardware and software, enabling their development
outside of a legacy chip design company.

GraphAttack builds on the key insight that the critical loops in graph analytic kernels can often
be sliced into two instruction streams such that: (1) a Producer thread performs all computation to
issue the NMAs and (2) a Consumer thread performs all computation dependent on their returned
data. This slicing enforces a one-way dependence: the Consumer depends on values issued by the
Producer, but never the opposite. In hardware, GraphAttack maps these slices onto parallel cores
and augments each Producer/Consumer pair with an asynchronous access buffer (AAB) that re-
ceives asynchronous memory requests, which are loads or atomic read-modify-writes (RMWs).
These accesses can be handled by the memory hierarchy simultaneously with respect to core oper-
ations, preventing the Producer core from having to wait for their data to return. The AAB issues
these requests to the memory hierarchy and tracks all outstanding requests simultaneously to ex-
ploit MLP and reduce the apparent cost of each long-latency DRAM access through overlapping
accesses. By targeting the AAB, the Producer runs ahead and issues long-latency memory accesses
before the Consumer needs their data, preventing stalls that InO cores would typically experience.

Figure 1 illustrates how GraphAttack achieves latency tolerance with this efficient Producer/-
Consumer slicing of the Single-Source Shortest Paths (SSSP) kernel (Figure 1(c)). Figure 1(a)
and (b) present executions of two inner-loop iterations of the kernel with the NMAs shaded in
red. Figure 1(a) displays the execution timeline of a single InO core, where all instructions are ex-
ecuted in order. This execution incurs the long latency of each NMA. We further characterize the
consequences of this behavior in Section 2.1. Figure 1(b) demonstrates GraphAttack running on
InO Producer and Consumer cores and effectively overlapping the long NMA latencies to mitigate
their costs.

We developed GraphAttack in the context of a full-system multicore chip design project. As
such, GraphAttack is an optimization on top of simple, InO multicore architectures, which enables
significant software and hardware flexibility. That is, the system can be augmented with simple
hardware components to accelerate certain application domains, and in the absence of acceleration
opportunities, the system can fall back to traditional parallelism on the InO cores. We envision its
implementation in a a standalone specialized datascience computer, e.g., [2], or a co-processor
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as part of a larger heterogeneous design. This coarse-grained reconfigurability allows reuse of
the same hardware for distinct application domains or kernel phases within the same workload.
Furthermore, GraphAttack has a nominal area/energy overhead, as it only requires a small number
of hardware queues that confine all modifications to remain independent of the cores and memory
system. These modular, hardware-efficient innovations therefore maintain high programmability
and portability, and leave opportunity for further specializations for other application domains.

In summary, this article presents GraphAttack, a hardware-software data supply optimization
for graph application execution on InO multicore architectures. Our key contributions are:

— A characterization of widespread graph applications running on InO processors; our results
show that the long latencies from NMAs are the prominent performance bottleneck and
thus, offer an opportunity for significant optimization (Section 2).

— The GraphAttack compiler (Section 3), which given a graph application kernel (1) automati-
cally identifies the bottleneck NMAs and (2) slices the program into Producer/Consumer in-
struction streams, where the Producer asynchronously issues the NMAs, and the Consumer
performs all computation dependent on these accesses.

— The GraphAttack modular hardware components (Section 4), which consist of simple core-
to-core communication queues that allow the Producer to efficiently provide data for the
Consumer. AAB allow the Producer to asynchronously issue NMA memory requests (loads
or RMWs) whose data can later be dequeued and used by the Consumer.

— An experimental evaluation (Section 6), which shows:

(a) GraphAttack realizes significant performance improvements over existing approaches, i.e.,
a 2.87x geomean speedup and 8.61X geomean improvement in energy efficiency over OoO
cores under the same area budget.

(b) Scalable performance gains, as GraphAttack achieves a 3x speedup over traditional paral-
lelism in a 64-core system.

(c) The reconfigurable design of GraphAttack allows it to support a range of applications,
even when the entire application cannot be efficiently decoupled. We present a case study
where GraphAttack achieves a 2.21x speedup over OoO cores on Direction-Optimizing
(DO) Breadth-First Search (BFS), an implementation that alternates between decoupled
push-based phases, and traditional do-all pull-based phases.

While the lean and modular design of our innovations allows GraphAttack to be applied to
000 cores, it yields the most energy and area efficiency while harnessing the simplicity of InO
cores. This demonstrates that minimal, yet precise hardware and software tailoring can result in
significant performance gains in simple multicore systems that have active open-source support.

2 BACKGROUND AND MOTIVATION
2.1 Key Bottlenecks in Graph Processing

Many graph kernels are characterized by irregular memory access patterns that occur in a
data-parallel manner over vertices when their neighbors are accessed. This results in a specific
class of long-latency memory accesses, which we refer to as NMAs. These memory accesses are
pointer indirect accesses of the form ALB[i]] to read the vertex property data of neighbors. While
many other application domains involve pointer indirect accesses of this form, graph applications
characteristically exhibit control flow dependent on these accesses, which makes this domain par-
ticularly challenging to accelerate. Figure 1(c) presents pseudocode for the pull-based SSSP kernel,
as generated by the graph processing framework: Graphlt [66]. Line 5 highlights the frequently
occurring NMA, which queries the distance to each neighbor neib_idx along edge e of vertex v.
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Fig. 2. LHS: CSR format efficiently represents a graph structure G with three arrays that store neighbor

locations. Indexing into these arrays to update the vertex property array incurs pointer indirect memory

accesses (red). RHS: GraphAttack performs compiler analysis of the dependency graph (left) of the SSSP

kernel to identify the NMA (red) and create a Producer/Consumer program slicing (right) such that the
Producer can asynchronously issue the NMA and runahead to exploit MLP.
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Fig. 3. LHS: Runtime analysis of an InO core running benchmark graph/sparse applications and inputs
demonstrates that NMAs can significantly increase runtime if not effectively mitigated. RHS: NMAs have
severe LLC miss rates, often times >50%.

The distance to v is conditionally updated if a shorter path (sum of edge values) to v is discovered
through its neighbor neib_idx and the connecting edge between them with weight e_val.

Graph applications commonly use the Compressed Sparse Column (CSC) and Compressed
Sparse Row (CSR) formats to store graph data in compact arrays that allow accessing neighbor
indices and edge weights in a streaming manner. Figure 2 (left) illustrates a graph and its efficient
representation with three arrays G. num_neibs, G.neibs, and G. edge_vals. Accessing these arrays
to determine neighbor locations as well as the vertex property array (red), i.e., the distance array in
SSSP, to read and update neighbor data, however, involves pointer indirection. The vertex property
array is accessed in the innermost kernel loop, giving rise to NMAs. Moreover, parallel push-based
implementations, which perform neighbor updates on different threads, require an atomic RMW
to ensure correct updates, as different vertices (threads) can conflict on a common neighbor.

To measure the performance impact of NMAs on overall performance, we gather classic graph
algorithms—BFS, SSSP, and PageRank (PR)—as well as emerging kernels used in recommendation
systems and sparse neural networks—Graph Projections (GP), and Sparse-Dense Hadamard
Product (SDHP). These implementations are further detailed in Table 6, and all come from com-
petitive frameworks [55, 58, 66]. We measure the contribution of memory access latency to total
runtime while running these kernels across four different datasets (Table 6) on an InO core model
(see Section 5). The left-hand side of Figure 3 shows that NMA latencies take up on average ~ 5x
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as much as the compute times in these graph applications. The computation in these applications
comprises a small percentage, i.e., less than 20% on average, of the total runtime, highlighting the
low arithmetic intensity of this domain and motivating the need for efficient data supply. The
right-hand side of Figure 3 shows that on average, the NMAs miss in the LLC over 50% of the
time, frequently requiring long-latency accesses to main memory. Given the high frequency of
these DRAM accesses, there is opportunity to overlap them and exploit MLP. Despite their la-
tency tolerance mechanisms, OoO cores see similar trends where their runtimes are dominated
by NMA latencies. Prior works have attributed this to load-load dependency chains that inhibit
these cores from exploiting significant MLP [11, 54]. These characterizations highlight that graph
applications are problematic for modern commercial processors. However, these results suggest
that precise targeting of NMAs can significantly improve the performance and scalability of these
kernels.

2.2 Shortcomings in Existing Hardware/Sofware Solutions

Specialized Graph Processing Hardware. Fixed-function graph analytic accelerator designs and
processing-in-memory (PIM) trade general-purpose flexibility for high performance through
specialization. These designs are area and energy efficient for specific kernels. However, they are se-
verely limited by the applications they support. Many accelerator pipelines and memory technolo-
gies are tailored to a vertex-centric programming model [5, 21, 38, 43, 65, 69] and thus not amenable
to several important graph algorithms, e.g., edge-centric kernels in graph neural networks, recom-
mendation systems, and sparse neural networks [15, 62, 68]. Their hardware additions are therefore
a low return investment in chip designs that target multi-kernel/-phase applications [12, 15, 62].

Furthermore, different variants of vertex-centric kernels can have optimal performance depend-
ing on the algorithm and dataset. Pull-based variants are communication-efficient, as vertices only
update their local values, while push-based implementations, where vertices push updates to neigh-
bors, are more work-efficient at the cost of more communication often via atomic RMWs [13, 60]. In
fact, for some workloads, e.g., BFS, it is beneficial to switch strategies during computation [12, 66],
requiring a flexible programming model that accelerator designs lack.

Flexible Latency Tolerance. In contrast, many latency tolerance approaches build upon general-
purpose cores. Decoupled Access/Execute (DAE) architectures [19, 20, 49] aim to overlap
memory accesses and computation by slicing programs such that one thread, the Access, ex-
clusively handles memory accesses, while the other, the Execute, performs value computation.
Ideally, the Access runs ahead of the Execute, asynchronously issuing requests and enqueuing
data without predicting access patterns. This has been successful for sparse linear algebra routines,
where pointer indirect accesses have no memory dependencies and there exists sufficient compute
to overlap with memory accesses. However, many graph applications suffer from loss of decou-
pling [14] events, where control flow dependencies and small compute to memory ratios limit data
supply. Given this, DeSC explicitly states that it cannot feasibly accelerate graph applications [19].

The other alternative on this front is prefetching, which faces two key issues: (1) imperfect
accuracy and timeliness increases cache pollution and memory bandwidth pressure and (2) adding
specialized units to fetch data, e.g., long-latency pointer indirect accesses, often adds energy and
area consumption. Such units can require significantly more area than an entire InO core. Prior
work has used up to 12 InO cores [8] as prefetchers for one OoO core. While these InO cores may
comprise a small area overhead relative to the OoO core, judicious hardware-software co-design
can enable these simple InO cores to be utilized as full general-purpose cores instead of solely
as prefetching units. Moreover, the OoO core can be replaced with several InO cores to unlock
significant parallelism and energy/area savings. We describe this in more detail next.
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Table 1. GraphAttack Handles NMAs with More Efficiency and Programmability Compared
to Prior Latency Tolerance Techniques
Approach Sufficient Latency Tolerance | Core Model | Memory Overhead Hardware Additions/Specializations
DSWP [42] :ﬁ’t fljlztmon IaA{Ee et Any None Minimal (synchronization array)
DeSC [19] No, does not identify terminal Out-of-Order | None Moderate (CAMs for out-of-order data
RMWs supply)
IMP [63] No, inaccurate prefetches for Any Extra energy and traffic | Moderate (prefetching engine, can be

low-degree vertices

(inaccurate prefetches)

triggered in regular workloads)

DROPLET [11]

No, inaccurate prefetches for
low-degree vertices

Out-of-Order

Extra energy and traffic
(inaccurate prefetches)

Moderate (property prefetcher, data in
page table and L2 req queue)

Software No, compiler pass struggles An Extra energy and traffic None
Prefetching [7] | with complicated control flow Y (late prefetches)
Event-Triggered | No, compiler pass struggles Out-of-Order Extra energy and traffic | High (several in-order cores as
Prefetching [8] | with complicated control flow (late prefetches) prefetching units)

Utilization of multiple High (specialized 3D-stacked memory
Tesseract [5] Yes, only for VP apps Out-of-Order DRAM units tech.)
Graphi- Yes, only for VP apps with small | Specialized Reduced energy and High (specialized modules and large
cionado [21] datasets pipeline e (el scratchpad, for VP apps only)

scratchpad) ’

. . Reduced energy and -~ .
HATS [32] Yes, fpr datasets with sufficient Ao traffic (locality Moderate (specialized engine for each
locality . per-core cache)

scheduling)

GraphAttack Yes, through Producer runahead ;?:erirre)f' None Minimal (small queues)

In-Order vs. Out-of-Order Cores. 000 cores have been the staple of commercial multicore sys-
tems as they perform exceptionally well for many application domains. However, graph workloads
exhibit complex load-load dependency chains whose latencies cannot be hidden by traditional
000 mechanisms, leading to poor core utilization [11, 36]. On the other hand, InO cores can be up
to 5x more energy efficient per-cycle than OoO cores [31], and 30X smaller than OoO cores [8]. In
light of these comparisons, our real-system, energy- and area-constrained, multicore chip design
favors InO cores to harness their simplicity and energy efficiency for acceleration of graph analyt-
ics. By augmenting a simple, InO multicore system with minimal additions, our approach achieves
high performance and scalability without sacrificing general-purpose flexibility.

A Taxonomy for Data Orchestration. In summary, prior approaches for latency tolerance and
graph applications as well as their pitfalls can be broken down into four categories: (1) Decoupled
and Runahead Architectures are limited in the runahead they can achieve due to complex load-
load dependency chains that inhibit efficient program slicing for decoupling. Our approach offers
tailored compiler techniques that leverage knowledge about graph application behavior to split
these dependency chains. (2) Prefetchers for irregular accesses tend to be inaccurate for graph
analytics due to complex control flow dependencies. Our approach avoids speculation to guarantee
no data fetch inaccuracy. (3) In-/Near- Memory and (4) Accelerator designs propose invasive
hardware modifications that severely limit portability and programmability. We strive for modest
hardware additions that precisely target application bottlenecks in order to achieve performance
on par with accelerators, yet can support a wide variety of algorithm implementations. Table 1
presents a summary of these works in comparison to GraphAttack.

2.3 GraphAttack Overview

GraphAttack overcomes the inefficiencies of prior latency tolerance approaches for graph appli-
cations without overspecializing hardware components. At a high level, our data supply approach
utilizes compiler techniques to map irregular memory accesses and graph computations onto a
multicore architecture augmented with modest hardware capable of performing select memory
accesses asynchronously. The goal of asynchronous memory accesses is to minimize the apparent
cost of each individual access by overlapping the long-latency costs of several DRAM accesses
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and exploiting MLP. By slicing programs such that NMAs are decoupled from their dependent
instructions and issued asynchronously, GraphAttack mitigates their latency effects and specifi-
cally addresses the control flow dependencies of graph applications that challenge prior works.

The compiler first performs an analysis of a kernel’s dependency graph to automatically identify
where the NMAs occur. It then slices the programs into two kernels: the Producer and the Con-
sumer. The Producer kernel is transformed to perform all necessary instructions to issue NMA
memory requests. Such instructions determine NMA addresses (and arguments for RMWs). Mean-
while, the Consumer kernel is transformed to perform all instructions dependent on the data re-
turned by the NMAs. The compiler then replaces the NMA with a special ISSUE instruction on the
Producer and CONSUME instruction on the Consumer, thereby allowing for asynchronous commu-
nication between these two decoupled kernels. The ISSUE instruction is a compiler API call to the
AAB that issues the loads and produces the loaded values to a queue to be then consumed by the
consumer through the CONSUME compiler API call to the AAB.

Figure 2 presents an example of the compiler’s dependency graph analysis for the pull-based
SSSP kernel (Figure 1(c)) whose NMA is highlighted. Slicing the program along the NMA results
in Producer/Consumer threads such that the Producer does not perform any instructions depen-
dent on the NMA. For example, in SSSP, the Consumer is responsible for the computation to update
a vertex’s data if a new shortest path to the vertex is discovered. This slicing must be performed
carefully to ensure correct memory consistency behavior, i.e., the sliced program must guarantee
the same behavior as the non-sliced program. Prior approaches (e.g., [19]) used complex hardware
structures, e.g., CAMs, to check for and resolve memory conflicts between Producer and Consumer
streams. Rather than require heavy-weight and invasive hardware components, we instead require
that the Producer, Consumer, and the NMA all operate on disjoint addresses within a single loop
iteration so that memory conflicts will not occur. This can be automatically checked with a stan-
dard alias analysis in the compiler. If the compiler is unable to verify disjoint addresses across
these three components, it notifies the user and falls back to a do-all parallel compilation model.
While this condition may seem strict, we found that all graph applications we evaluated satisfied
this condition, with the exception of SSSP (discussed in Section 3.1).

In hardware, GraphAttack tracks outstanding asynchronous NMA requests via a small buffer,
the AAB, between each Producer/Consumer pair. When the Producer executes an ISSUE instruc-
tion, it sends the memory request to the AAB, which the Consumer queries when executing a
CONSUME instruction. The AAB is agnostic to the core and memory subsystem; it operates inde-
pendently with no changes to internal core state or structure and performs accesses through the
memory hierarchy with no changes to coherence protocols or caching policies. Despite its flexibil-
ity, GraphAttack advocates for InO cores because its precise targeting of memory latency bottle-
necks yields significant speedups and even greater energy efficiency gains without complex OoO
hardware. Similar to GPUs, InO cores offer simplicity that makes them ideal building blocks when
designing programmable accelerators in a heterogeneous system.

With its tightly coupled compiler slicing and small hardware components, GraphAttack opti-
mizes the performance of graph analytic kernels, as illustrated in Figure 1. Specifically, it creates
an efficient program slicing where the Producer asynchronously issues NMAs and the Consumer
performs dependent memory accesses. This targeting of the AAB enables overlapping of long NMA
latencies, as seen in Figure 1(b). GraphAttack differs from prior decoupling approaches [19, 49] by
allowing the Consumer to access memory, which enables a strict one-way dependence such that
the Producer never depends on the Consumer. This is key to performance; removing control flow
dependencies on the long-latency NMAs frees the Producer from stalling, so it can runahead and
issue multiple NMAs to be overlapped. Overall, GraphAttack builds on top of general-purpose
InO cores with minimal hardware additions and precise compiler techniques to improve energy
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Table 2. The Three RMW Operations Supported in GraphAttack

Operation Description

COMPARE_EXCH (addr, cmp,val) Compares cmp to the value stored at addr; if they are equal, stores val
at addr; returns the comparison result

MIN(addr,to_min) If to_min is less than the value stored at addr, then to_min is stored at
addr; returns the comparison result
ADD (addr, to_add) Adds to_add to the value stored at addr; returns the previous value

efficiency and leverage scalability to manycore systems that can exploit large amounts of par-
allelism in graph analytic workloads. These design choices offer flexible support for both push-
and pull-based implementations of vertex-centric applications and multi-phase data analytic work-
loads.

3 A COMPILER FOR PRODUCE/CONSUMER SLICING OF GRAPH APPLICATIONS

The GraphAttack compiler performs hardware-efficient program slicing to target NMAs in graph
applications while preserving the original program semantics. This slicing approach is inspired by
decoupled software pipelining [48], but (1) focuses on graph applications using domain-specific
insights about their access patterns; and (2) utilizes a specialized buffer to perform asynchronous
accesses that are key for Producer runahead in this application domain. For practical reasons, our
compiler operates on C++ programs and it is implemented as a series of LLVM compiler passes.
Our approach is not tied to any particular aspect of either, other than the input being an imperative
programming language with constructs such as for loops and the ability to operate (load, store,
and RMW) on memory locations.

3.1 Data Parallel Loops

The GraphAttack compiler takes as input: a data parallel for loop, similar to OpenMP’s for loop
pragma [41]. In graph applications, the outermost loop (over vertices) is often parallelized (line 1
in Figure 1(c)). As is common in do-all parallel loops, these loops must be free of data-races. That
is, if two loop iterations access the same memory location, then neither access can be a write.
In other words, loop iterations must be independent, i.e., able to be executed in any interleaving.
However, some graph applications iteratively update vertex data, e.g., distances to vertices. Thus,
GraphAttack extends the data race free (DRF) model to these applications by utilizing two rules
with explicit use-cases:

Read-Modify-Write (RMW) Operations. Push-based implementations require atomic updates to
neighbors as multiple vertices can simultaneously update a common neighbor’s data. Thus, the
programming model resolves inter-loop write conflicts through a set of standard RMW operations
(shown in Table 2). Note that RMWs in GraphAttack guarantee atomicity, but not synchroniza-
tion and can only be used for associative and commutative reduction operations over neighbor
updates.

Asynchronous Updates. By default, the compiler terminates the slicing procedure if any memory
conflict across loop iterations is found. This allows simple hardware implementations, e.g., those
that do not need to track memory conflicts, to maintain the semantics of the original program.
However, one relaxation is beneficial for certain graph applications. The user must explicitly enable
this relaxation and ensure their program remains correct under the relaxed semantics.

A loop iteration may write to a memory location that another iteration reads. However, the
written value is not guaranteed to be visible until the implicit barrier at the end of the parallel
for loop. We refer to this behavior as an asynchronous update and it is crucial for competitive
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Fig. 4. The GraphAttack compiler flow.

performance in some pull-based graph kernels. This exception is required because some parallel
implementations of graph applications contain potentially redundant work, as it is more scalable
for multiple threads update data simultaneously, and compute on the same (potentially) stale data,
rather than sequentializing updates. Because graph applications are iterative, they will continue
computing until a convergence criteria is met, e.g., there are no further updates because the global
best result has been discovered. Updates based on stale data will not affect the correctness of these
algorithms. For example, a loop iteration in the SSSP kernel of Figure 1(c) can update its vertex
many times (line 9). However, other iterations (operating in parallel) may read a stale value for this
vertex when pulling neighbor updates (line 5). This will not affect the global minimum distance
that has been discovered so far. Eventually, the updated values will be discovered by other threads.
Because the algorithm iterates until it finds a global minimum, early updates are not required for
correctness, but can speed up convergence. For example, SSSP on the Twitter dataset traverses
roughly 2X fewer edges when allowed to asynchronously update.

3.2 Program Slicing Conditions and Procedure

The program slicing procedure is split into three steps, outlined in Figure 4. First, the compiler
finds the NMA(s) by examining loop nestings and address origins. Next, the program is sliced into
Producer/Consumer streams. Finally, the memory safety is verified through pointer analysis. If the
compiler fails at any of these steps, the user is given a diagnostic message and the compiler falls
back to a traditional do-all parallel compilation mode.

Finding NMAs. The compiler first aims to find the NMA(s) in the graph kernel. Heuristically, it
searches for loads (and RMWs) in the innermost loop for which the addresses originates from an
earlier load. Our approach specifically targets single pointer indirect accesses of the form A[B[i]1],
which is most common in graph applications, the focus of this work. The GraphAttack compiler
and architecture design have the flexibility to be extended to support different irregular memory
access patterns, e.g., ALBLC[i]]1], that may occur in other workloads; we leave this to future work.
For example, examining accesses in the innermost loop of the SSSP kernel (Figure 1(c)) locates
the NMA as the load on line 5 because its address originates from the prior load on line 4. If the
compiler cannot find an NMA, then the slicing fails.

Producer/Consumer Slicing. Once the compiler has found the NMA(s), it slices the program into
two streams to be mapped onto the Producer and Consumer. In terms of a dependency graph,
the Producer slice is a backwards slice, i.e., instructions collected on a reverse traversal of the
dependency graph, starting from the NMA argument values. For loads, this argument is simply
the memory address. For RMWs, the arguments are the address and the other arguments listed in
Table 2. On the Producer, NMA(s) are replaced with an API call ISSUE, which issues the NMA. This
instruction takes in all required arguments for the original NMA, including the address and any
required values (for RMWs). Additionally, a distinct opcode indicates the type of access, i.e., load
or RMW. The Producer issues the memory request through the AAB, which tracks the request and
enqueues the returned value. Because the result of the request is tracked through the queues, the
ISSUE instruction has no return value itself. The Consumer slice is created in four parts:
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(1) The NMA(s) are replaced with an API call to CONSUME. This call takes no arguments and
simply returns the value that the memory operation would have normally returned.

(2) A backwards slice of the control flow dependencies on the NMA(s). This pass ensures that
every ISSUE performed by the Producer will match with a CONSUME on the Producer. The
backwards slice needs only consider control-dependencies, as the CONSUME instruction has
no arguments, and thus does not have any data-dependencies.

(3) A forward slice on the data returned by the CONSUME instructions, which allows the Con-
sumer to perform any computation dependent on the NMA(s). All instructions identified in
this slice must have access to all their original operands; thus an additional backwards slice
from each instruction is performed.

(4) A backwards slice, including both data and control dependencies, on all store instructions.

We have validated this compilation scheme works across our benchmark suite (see Section 5).
However, we assume that the only output from the kernel occurs through memory, e.g., memory
stores. Step 4 ensures that all outputs are performed on the consumer, regardless on their
dependency on the NMA. However, if the kernel can have output through other mechanisms, e.g.,
a syscall, then the slicing mechanism will need to be updated, e.g., by putting the syscall on the
consumer.

Duplicate Instructions. Similar to prior decoupling approaches, this slicing may result in dupli-
cate instructions appearing on the Producer and Consumer, e.g., for loop overheads. Because the
bottleneck of graph applications is clearly the latency from the NMA, there is flexibility in how
duplicate instructions are handled, so long as they preserve the semantics of the original program.
Here, we detail how different types of duplicated instructions are handled.

If a duplicated instruction performs logic or arithmetic, then it is performed on both slices (e.g.,
node 3 in Figure 2). For duplicated load instructions, we opt to perform the load only on the Pro-
ducer, and then communicate the value to the Consumer through the AAB, which feeds into the
Communication Queue (described in Section 4), which buffers data in issue order similar to DAE
architectures [19, 49]. The Producer first loads the value using a normal memory access opera-
tion, and then sends the value to the Consumer via an API call PRODUCE. The Consumer uses
the same API call to retrieve produced values from the Communication Queue as it does for the
asynchronously issued values, i.e., using CONSUME. Having only one processor perform the load
alleviates bandwidth pressure, which is important, especially for graph applications. RMW instruc-
tions are sliced similarly; they are performed entirely on the Producer, and the result is sent to the
Consumer through the communication queue.

We note that the Consumer handles all store operations, as they typically do not appear in
the Producer backward slices of the NMA(s) in graph applications. This is similar to prior DAE
approaches, where the Consumer (or Execute) is responsible for the computation required for the
stored values. The difference in GraphAttack is that the Consumer also computes the address and
stores data directly to memory rather than sending the value back to the Producer. This simplifies
our design, as the Producer and Consumer do not have to synchronize or use invasive and costly
components, e.g., CAMs, for store operations. However, this comes at the expense of a memory
aliasing check (described next) to ensure the sliced program maintains the original semantics.

Figure 2 shows an example of dependency graph slicing with SSSP. The NMA (instruction 5)
is decoupled into an ISSUE/CONSUME pair. Instruction 3 is duplicated; the remaining instructions
are sliced based on the forward/backward slicing criteria described above. If the compiler is given
a program where the slicing is not possible, e.g., if issuing an NMA depends on the result from
another NMA, then the slicing procedure is terminated.

Memory Safety. To ensure the sliced program maintains the same behavior as the original pro-
gram, the compiler performs a safety check to ensure that the Producer, Consumer, and the NMA(s)
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do not have any memory conflicts. Specifically, the set of written addresses performed by different
actors, i.e., the Producer, Consumer, and NMAs, must be disjoint. This is different from the parallel
for loop notion of data-race freedom discussed earlier, as this check analyzes intra-loop iteration
memory accesses. This check is required because decoupled architectures do not guarantee
coherence among the actors, as the Producer and Consumer operate in different temporal planes
in order for the Producer to gain runahead. Thus, a Producer could read a stale value if it has run
far enough ahead of an NMA, or the Consumer, even on the same loop iteration. To implement this
check, we use alias analysis, which can be aided by compiler annotations, e.g., restrict. Graph
applications typically contain non-aliasing data-structures and do not perform complex pointer
arithmetic, thus, in our experience, we did not find any applications that violate this check.

Since alias analysis is fundamentally imprecise, the GraphAttack compiler throws an exception
that can be overwritten by the programmer if an address region can have overlapping accesses
by the Producer and Consumer. In the dependency graph of the sliced SSSP kernel in Figure 2,
the Consumer writes to dist[v] (node 10), and the NMA reads from dist[neib_idx] (node 5).
The compiler is unable to validate that v != neib_idx and throws an exception. However, a
programmer can overwrite this exception knowing that a vertex is disjoint from its neighbors to
proceed with slicing. This is a common pattern in graph applications, but it is difficult to reliably
resolve in a C-like front-end language. However, GraphAttack could be implemented as a backend
to a graph DSL, e.g., Graphlt [66], in which case these access patterns are known to be safe.

Compilation Soundness. A successful GraphAttack program slicing efficiently maps to InO cores
while preserving the DRF-inspired semantics presented in Section 3.1. Because all loop iterations
must be independent, the Producer can runahead to another iteration while the Consumer contin-
ues to compute a prior iteration. The memory safety validation in the compiler ensures that the
Producer, Consumer, and AAB access disjoint memory, avoiding the need for coherence between
these components. Finally, the asynchronous update relaxed semantics occur when the Consumer
writes a value, but the Producer has potentially runahead and issued loads to the same address.
Thus, read-after-write dependencies are not always guaranteed. The implicit barrier at the end of
the parallel loop waits for both the Producer and Consumer to arrive, providing synchronization.

We note that the GraphAttack compiler chain implements heuristics and is not guaranteed to
detect NMAs or efficiently slice all graph applications. However, we found these heuristics suffi-
cient for all graph applications we studied. Future work may aim to build a GraphAttack slicing
backend into a graph DSL (e.g., [44, 58, 66]) that directly exposes graph vertices and neighbors.

4 GRAPHATTACK HARDWARE SUPPORT

GraphAttack augments pairs of simple InO cores with small buffers to retain the flexibility of a
general-purpose multicore architecture while offering specialized data supply for graph kernels.
Cores can be configured to perform do-all parallelism or decoupling as Producer/Consumer pairs.
Each pair is equipped with novel hardware support for asynchronous atomic RMW instructions
(discussed in Section 3), as well as asynchronous loads. Because only modest hardware additions
are necessary for GraphAttack optimizations, InO cores are a practical and more hardware-efficient
choice for data supply, enabling significant energy efficiency compared to prior latency tolerance
approaches and greater flexibility compared to graph analytic accelerator designs.

4.1 Augmenting Multicore Architectures

Figure 5 presents GraphAttack hardware support that revisits and simplifies traditional DAE ar-
chitectures [49]. Each Producer/Consumer pair uses two FIFO queues.

The Asynchronous Access Buffer (AAB). This buffer is responsible for tracking outstanding re-
quests as they are served by the memory system. This is inspired by the DeSC [19] Terminal Load
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Fig. 5. GraphAttack augments parallel InO Producer/Consumer cores with modest hardware additions: the
AAB, its ALU, and the communication queue. Gray arrows highlight the datapath for asynchronous accesses,
e.g., RMWs.

Buffer that supports terminal loads, whose values are used only on the Compute. The AAB en-
ables significant performance improvements; the compiler splits the dependency chains in graph
applications by mapping an ISSUE instruction onto the Producer core to target the AAB and asyn-
chronously issue an NMA (the dependent load or RMW). When the Producer encounters this
instruction, it issues a memory request and reserves an entry in the AAB for the returned data.
The Producer does not have to wait for the memory hierarchy to return this data because the AAB
tracks it, so it continues with its next instruction, eliminating the stall that would typically occur
in an InO core.

If the NMA misses in the cache, an MSHR is assigned for it, as normal. However, unlike a con-
ventional core, this MSHR records the NMA’s position in the AAB instead of a destination register
to indicate where to place the data in the AAB once it returns from the memory hierarchy. Thus,
the maximum number of outstanding asynchronous memory requests is the number of MSHR en-
tries. When the Producer encounters a PRODUCE instruction that is preceded by a normal load, it
enqueues the returned data in the AAB without issuing any asynchronous accesses.

The Communication Queue. This queue holds values of all completed memory accesses performed
(normal loads), or issued (asynchronous), by the Producer to be retrieved by the Consumer in pro-
gram order. To guarantee that asynchronous accesses maintain program order, the Communication
Queue does not interface with the Producer, but only with the AAB as it is populated with data.
For all accesses, when the head of the AAB contains data, it is passed over to the Communication
Queue for the Consumer to use (via CONSUME).

A Modular Design. These queues have simple interfaces disjoint from the core model, as they
are simply targeted via API calls. While minimizing core modifications, these modest hardware
additions support data communication within each pair and can be implemented on a scratchpad,
as seen in many accelerator-oriented systems [4, 21].

4.2 Hardware-Efficient Asynchronous RMWs

Our work innovates over prior decoupled architectures by introducing novel hardware support for
decoupled asynchronous RMWs, that is, an RMW that can be issued asynchronously on one core and
the result can be retrieved in another core at a later time. Figure 5 illustrates GraphAttack’s pro-
posed hardware additions. Specifically, the AAB is equipped with an ALU to perform arithmetic for
atomic RMW operations. Unlike the Terminal Load Buffer in DeSC [19], the AAB supports asyn-
chronous RMWs in addition to loads. This support is key to unlocking significant performance and
energy-efficiency gains for parallel push-based implementations of graph processing algorithms.
Similar to asynchronous loads, the compiler statically determines asynchronous RMWs to have
no dependents on the Producer slice. These correspond to the NMA(s) in graph applications. When
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these accesses reach the memory stage, the AAB issues a request to the memory hierarchy for data
and exclusive permissions to the cacheline accessed @. The addresses for these asynchronous
access requests are then stored in the AAB @. As is typical of atomic operations, the memory
system guarantees that the asynchronous RMW eventually acquires exclusive permissions to the
data’s cacheline. Upon receiving the permissions and data @, the L1 cache memory controller sends
the data to the AAB. A dedicated ALU on the AAB performs arithmetic necessary for the atomic
operation @. The result of the operation (e.g., a success indicator or a data value, depending on
the semantics of the RMW operation) is simultaneously enqueued in the Communication Queue in
issue order @ (to be retrieved by a corresponding CONSUME instruction @). Meanwhile, the atomic
write of the newly computed data is performed to the memory hierarchy @. The RMW then gives
up exclusive access to its cacheline. While this description uses an exclusive access mechanism to
implement the RMW, we imagine that the RMWs could also be implemented using a simple logic
unit that implement a loop over load-link/store-conditional operations, especially because these
operations are supported open-source standards, e.g., RISC-V.

Unlike previous DAE approaches, e.g., [19], the Consumer may access memory, e.g., from com-
putation dependent on the result of an NMA. Recall from Section 3 that the compiler ensures
that there are no memory conflicts between the Producer, Consumer, and NMAs. Thus, Consumer
memory accesses can be performed through the Consumer core’s pipeline @. This requires no
additional hardware or logic because they leverage the Consumer’s private caches. Furthermore,
because there are no memory conflicts between the Producer, Consumer, and NMAs (with the ex-
ception of asynchronous updates), there are no performance impacts due to cache coherence. For
push-based graph algorithms, vertex property updates are entirely encapsulated by RMWs.

5 EVALUATION METHODOLOGY

Our compiler and hardware code as well as our benchmarks and simulator configurations are
open-source’*%? and are being developed as part of our full-system chip design project.

Compiler. We implement GraphAttack compilation techniques through Clang/LLVM passes.
These passes have two different modes: (1) GraphAttack slicing or (2) traditional parallelism. Par-
allelism is provided via OpenMP and Producer/Consumer streams are mapped to pairs of OpenMP
threads. An LLVM pass performs the slicing by searching for instructions of interest (NMAs) to use
as anchors and for creating Producer/Consumer slices. The slices are further refined with LLVM’s
dead-code elimination pass, which identifies unneeded instructions after slicing.

Simulation Infrastructure. To evaluate GraphAttack, we use MosaicSim [30], a cycle-driven simu-
lator designed for hardware-software co-design exploration and heterogeneous systems. The sim-
ulator is able to accurately model many performance bottlenecks of modern systems, including
memory contention, e.g., cache invalidation costs when multiple threads access the same data.
The simulator has been validated against an Intel Xeon processor and has demonstrated agile per-
formance evaluation capabilities for early-stage design of heterogeneous systems [50]. To demon-
strate GraphAttack hardware efficiency and flexibility, we employ a single-issue InO core modeled
after Ariane, an open-source, InO CPU that is the base core model of emerging manycore chip
designs [1, 64], as well as a quad-issue OoO Haswell-like core model. Table 3 compares their mi-
croarchitectural features. Each core has private L1 and L2 caches, and all cores share an LLC. The
L1 cache also has a simple streaming prefetcher and 32 corresponding MSHR entries, which limits
the maximum number of outstanding memory requests.

https://github.com/amanocha/GraphAttack_Applications.
Zhttps://github.com/PrincetonUniversity/GraphAttack.
3https://github.com/PrincetonUniversity/MosaicSim.
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Table 3. Core Model Parameters Table 4. Memory and Queue (Shaded) Parameters
Parameter Out-of-Order In-Order L1 32KB/private/8-way/4-cycle latency
I Width 4 1 MSHR 32 entries per L1 cache

ssue Wi t L2 256KB/private/8-way/11-cycle latency

Instr. Window/ROB/LSQ  128/128/128 -

B h Predicti Gsh Gsh L3 2MB/shared/16-way/34-cycle latency

ranch Prediction share S1Ar€ - pRAM DDR3L /68GB/s BW/100ns latency
Frequency/Tech. Node 2GHz/22nm 2GHz/22nm -

Core Area (mm?) .44 1.01 Comm Queue 512 entries

) ___ Async. Acc. Buffer 128 entries

Queue Acc. Latency 3 cycles

Producer/Consumer pairs are modeled with InO cores, while the AAB and communication
queue are modeled as FIFO queues with configurable sizes. Table 4 summarizes these memory hi-
erarchy and queue configurations. We model core area and energy consumption using McPAT [27]
and find the 00O core model to be approximately 8% larger than the simpler, InO Ariane cores.
Using this ratio, we perform equal-area comparisons between multicore InO and OoO configu-
rations. We use Cacti [34] for area and power modeling of the caches and the FIFO queues and
find that the modest GraphAttack hardware additions add negligible (< 1%) area overhead. We use
the VAMPIRE tool [18] to model DRAM power. These measurements allow us to quantitatively
evaluate energy consumption using a dynamic energy model.

Applications. We evaluate GraphAttack on eight competitive graph application implementa-
tions, detailed in Table 6. We obtain the push- and pull-based variants of BFS, SSSP, and PR from
Graphlt [66], GP as a direct CPU port of the Gunrock [58] GPU implementation, and SDHP from
the Theano DNN framework [55].* GP and SDHP are used in emerging application domains, e.g.,
recommendation systems and sparse neural networks [15, 68]. While SDHP is used in sparse lin-
ear algebra rather than graph analytics, its use of a sparse matrix to filter a dense matrix incurs
long-latency accesses similar to NMAs, making it amenable to GraphAttack innovations.

Push-based BFS, SSSP, and PR use the COMPARE_EXCH, MIN, and ADD RMW operations, respec-
tively. Pull-based SSSP uses the relaxed asynchronous update semantics (discussed in Section 3).
“Vertex-centric” describes applications that can be expressed as iterative computations where
nodes are updated based on neighbor data; BFS, SSSP, and PR are vertex-centric. For all eight
applications, GraphAttack compiler techniques successfully perform Producer/Consumer slicing.

Input Datasets. Graph application performance can highly depend on the input dataset [51, 66].
Table 5 summarizes the variety of inputs used to capture performance variability. Synthetic inputs
(Kronecker networks [26]), follow a power-law distribution, similar to many real-world datasets.
Social and web networks, e.g., Twitter and Wikipedia data, serve as concrete real-world inputs.
For vertex-centric workloads, we utilize large graphs with millions of nodes to demonstrate that
our technique scales to the modern network sizes. However, such large networks have massive
data footprints (i.e., hundreds of GB) and the number of computations for these applications scales
with the number of nodes in the network. In order to feasibly simulate these programs with such
massive data footprints, we sample each network by simulating 20 million edge traversals within
the densest and most representative epoch of each application/input combination. GP and SDHP
do not require simulation sampling, as their computations scale with the number of edges and
thus we utilize smaller datasets for these two applications. We use bipartite social networks and a
synthetic power-law graph for GP and smaller Kronecker, social, and web networks for SDHP.

4Other frameworks, e.g., Scipy, densify the sparse matrix. This is not energy efficient as it performs many unneeded com-
putations, however, it has high performance mappings to common vectorized hardware.
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Table 5. Application Inputs and Properties Table 6. We evaluate GraphAttack on 5 Applications;
3 (BFS, SSSP, PR) Have 2 Variants (push, pull),
Application Input Nodes Edges Avg/gl:gx Yielding 8 Total
Kronecker (kr) 34M 1B 31/639K L. Vertex Async
BES. Sssp. pRr TWitter (tw) 53M 2B 37/780K APP Description Centric Update RMWs
o000 IR Wikipedia (wk)  12M 378M 31/8K A A A
Sd1 Web (wh) 95M 2B 20/IM gpg Given starting ver_tex, find min. number Yes No Push
Power (po) 7K/21K 63751 9/6K of hops to all vertices. only
. . Dbpedia (db) 46K/89K 144K 3/2K ggsp Given starting vertex, find min. distance Yes Pull Push
GP (bipartite) Amazon (am) 60K/116K 165K 3/2K (sum of edge weights) to all vertices. only  only
YouTube (yt) 30K/94K 300K 10/8K Vertex scores flow to outgoing Push
PR . . Yes No
Kronecker (kr) 33K 883K 27/6K neighbors until all scores converge. only
Sinkhorn (sh) 100K 173K 2/4K Relate vertices in a bipartite graph
SDHP GP tition with shared neighbors in the ~ N N N
Amazon (am) 28K 80K 3/1K partition with shared neighbors in the o 0 o
YouTube (yt) 30K 300K 10/8K other partition. o
SDHP Compute elementwise multiplication of No No No

a sparse matrix and dense matrix.

Prior Latency Tolerance Approaches. We quantitatively compare GraphAttack to general-purpose
latency tolerance approaches as well as graph-tailored prefetching.

Out-of-Order (000) Cores leverage instruction-level parallelism to overlap computation, e.g.,
arithmetic instructions, with memory accesses. Although they are the prominent core model uti-
lized in modern multicore architectures, they are poorly utilized by graph applications and conse-
quently incur area and energy overheads, as described in 2.2.

DeSC [19] is a state-of-the-art DAE architecture that leverages decoupled program execution to
hide memory access latency. It utilizes a Supply core to exclusively handle memory accesses and
address computations and a Compute core to perform other, e.g., arithmetic, computations. This
work introduced terminal loads, i.e., loads whose values are used only on the Compute, to allow
the Supply to runahead and supply data for the Compute. However, because graph applications
exhibit control flow dependent on the NMAs, DeSC cannot slice along these bottleneck memory
accesses. Furthermore, this approach proposes an area-inefficient hardware implementation that
utilizes two OoO cores and CAMs to communicate data between the Supply and Compute.

DROPLET [11] is a state-of-the-art data-aware decoupled prefetcher for graph analytics. This
approach advocates for memory hierarchy tailoring; it utilizes a streaming prefetcher in the L2
cache to prefetch streaming memory accesses, i.e., neighbor locations, whose data determine the
addresses of NMAs. By prefetching neighbor locations, DROPLET aims to fetch the data for NMAs
early and eliminate demand misses and stalling due to DRAM accesses. This prefetching is specula-
tive, which can incur memory traffic and energy overheads; Section 7 further describes prefetching
techniques.

6 RESULTS

This section demonstrates GraphAttack’s ability to meet its performance goals through latency
tolerance, scalability, energy efficiency, programmability, and portability.

6.1 GraphAttack Performance

A chip-to-chip comparison between InO and OoO cores would not be appropriate, as OoO cores
have many components that can accelerate executions, e.g., through OoO execution, at the cost of
higher area and energy. Thus, we perform an equal-area evaluation. Table 3 shows a conservative
estimate that matches 8 InO cores to 1 OoO core. We use this as a basis to compare GraphAttack
against various optimizations for latency tolerance and graph analytics on OoO cores. In our first
evaluation, Figure 6 compares 2 OoO cores, 16 parallel InO cores, 2 OoO cores with DROPLET
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Fig. 6. Speedup comparisons between 2 parallel OoO cores, 16 parallel InO cores, 2 00O with DROPLET
prefetching, 1 00O DeSC pair, and 8 InO GraphAttack pairs (ratios that equalize for area). GraphAttack
significantly outperforms do-all parallelism, prefetching, and decoupling techniques on all graph-traversal
apps, while DeSC has comparable performance gains on SDHP.
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Fig. 7. LHS: GraphAttack achieves significant Producer runahead, with average runahead distances far
greater than the DRAM latency of 200 cycles (100 ns). RHS: GraphAttack requires very small (<10 entries)
AABs.

prefetching [11], DeSC (1 00O pair), and 8 GraphAttack (InO) pairs for the push-based variants of
vertex-centric applications BFS, SSSP, and PR, as well as GP and SDHP. Due to limited space, we
opt to omit results for the pull-based variants; they have similar latency bottlenecks to push-based
implementations and thus similar performance gains.

GraphAttack outperforms all prior techniques on vertex-centric applications, achieving up to a
6.16x speedup (BFS on Kron) with geomean 2.87X over 2 parallel OoO cores. It offers the greatest
speedups on vertex-centric graph applications because they exhibit control flow dependent on
the NMAs that troubles existing latency tolerance approaches. These speedups are even more
notable on the synthetic Kronecker network; real-world networks exhibit more locality due to
community structure, helping the performance of the baseline (parallel OoO cores). Despite
tailoring its prefetchers to graph application access patterns, DROPLET faces challenges on many
real-world graphs because they have a large number of low degree vertices (1-2 neighbors),
which hurts the accuracy and timeliness of the L2 streaming prefetcher that aims to prefetch
addresses of NMAs. Consequently, DROPLET offers limited performance gains that range from
0.97 x —1.42x. While DeSC can identify the NMA and show performance gains in SDHP (no
control flow dependency), it struggles on all vertex-centric applications , where control flow
dependencies prevent the NMAs from being identified as terminal. GraphAttack, however,
delivers performance gains over the baseline for all application/input combinations.

To highlight the substantial performance impact of enabling GraphAttack as a data supply op-
timization on top of a multicore architecture, we also compare it to do-all parallelism with 16 InO
cores, where GraphAttack achieves up to a 2.71x speedup (geomean 2.16x). With targeted mini-
mal hardware additions, GraphAttack is able to catapult general-purpose hardware, e.g., a 16 InO
core system, to reap significant gains.
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Fig. 8. Speedup comparisons between GraphAttack and traditional parallelism scaling from 1 to 64 cores
on Kron and power law bipartite networks. GraphAttack performance improvements scale linearly, enabling
scalability for a manycore architecture.

6.2 Exploiting Memory Level Parallelism

GraphAttack relies on MLP to mitigate memory access bottlenecks. MLP stems from Producer
runahead, as long-latency memory requests are issued, overlapped, and completed early. The
Producer and Consumer begin operating on the application at the same time, creating a brief
“warm-up period” where the Consumer waits for the Producer’s initial memory accesses to
complete. As the Producer continues issuing long-latency memory access requests, it quickly runs
ahead of the Consumer. The left-hand side of Figure 7 presents the average runahead distances
of all applications and inputs. We measure runahead distance as the number of cycles between
when a memory request is issued on the Producer and received on the Consumer. Most runahead
distances are greater than the 200-cycle (or 100ns) DRAM latency, effectively removing the latency
of NMA accesses to the Consumer. In PR, runahead becomes extreme because the Consumer
performs floating point computation but even in this case, the AAB is never filled to capacity.

The right-hand side of Figure 7 presents the AAB’s max and average queue occupancy (number
of entries) for all applications and inputs. For each application, the max queue occupancy remains
constant across inputs and is at most 9 entries. The size of the AAB can be small because the
Producer only needs to runahead 200 cycles, which are incurred by 10-15 instructions that only
span a few inner loop iterations. Thus, there are many more AAB (and MSHR) entries than neces-
sary. We selected and modeled larger queue sizes as design decisions for future innovations, e.g.,
batching of memory requests that more aggressively use queues without incurring significant area
overheads. The size of the Communication Queue does not impact the Consumer; if it is full, the
Producer stalls. While this may lower Producer runahead, the Consumer can continue to read from
the queue and only stalls when the queue is empty (waiting for data).

6.3 Scalability

Figure 8 demonstrates the scaling trends of two multicore systems: (1) traditional do-all parallelism
and (2) GraphAttack. We measure the performance of each of our eight applications (normalized
to that of a single InO core) on the idiomatic Kron (power-law bipartite for GP) input. Since inner
loops have no inter-loop dependencies and this input has a power-law nature, traditional paral-
lelism performance (light blue bars) scales nearly linearly from 1-32 cores. At 64 cores, it stops
scaling on push-based BFS and SSSP due to synchronization overheads and load imbalances. Mean-
while, GraphAttack (orange bars) performance improvements scale up to 64 cores, with respect to
both a single-core baseline and an equal-area do-all parallelism configuration. Because atomic op-
erations are handled exclusively by either the Producer or Consumer, GraphAttack encounters
fewer synchronization overheads than the baseline. Furthermore, GraphAttack exhibits less load
imbalance as the data parallelism is halved from the perspective of any core, i.e., the data is paral-
lelized amongst all Producer cores and amongst all Consumer cores in two separate groups.
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Fig.9. Energy efficiency comparisons between 2 parallel 00O cores, 16 parallel InO cores, DROPLET prefetch-
ing (2 000), DeSC (1 000 pair), and 8 GraphAttack (InO) pairs (ratios that equalize for area). With hardware-
efficient innovations, GraphAttack achieves significant energy efficiency gains over all other techniques.

In a 32-core system, configuring the cores as GraphAttack (Producer/Consumer) pairs achieves
up to a 7.18% speedup (geomean 2.2X) over do-all parallelism. Compared to a single GraphAt-
tack pair, 32 pairs achieve near linear scaling, up to a 31.56X improvement. GraphAttack begins
to saturate memory bandwidth with 64 cores (32 pairs) with no additional memory traffic. This
demonstrates that our approach effectively transforms the latency bottleneck into a bandwidth
bottleneck, which can be alleviated with advanced memory systems, such as high-bandwidth
memory (HBM).

6.4 Energy Efficiency

Figure 9 presents an equal-area energy-efficiency comparison between the same configurations
shown in Figure 6, measuring the energy efficiency normalized to that of 2 000 cores. We measure
energy efficiency as energy-delay, a product of energy consumption (described in Section 5) and
runtime. GraphAttack achieves greater energy efficiency than all other latency tolerance configu-
rations for all applications and inputs, with the exception of SDHP on Kron and YouTube. In these
two cases, DeSC achieves significant runtime performance improvements (OoO execution coupled
with efficient program decoupling) that outweigh the energy overheads of using OoO cores. Over-
all, GraphAttack achieves up to a 27X improvement (geomean 8.61X) in energy efficiency over 2
parallel OoO cores due to faster runtime performance and greater hardware efficiency. Given the
2.87x geomean runtime speedup, 6.3 of the energy savings (geomean) is due to core power sav-
ings alone. These improvements highlight the stark contrast between significant area and energy
overheads of 00O cores and GraphAttack’s modest hardware additions on top of simple, InO cores.

6.5 Flexible Application Support

We demonstrate GraphAttack’s multi-phase application support on DO BFS, an optimized imple-
mentation that switches between pull- and push-based kernels per epoch depending on how many
vertices are active [12]. Push-based BFS is more efficient in the early phases of the application when
the frontier of active vertices is small, as parallel memory accesses are less likely to conflict. The
pull-based variant is more performant once part of the graph has been traversed as vertex compu-
tation can break early if a visited parent is found. Unlike the traditional pull-based BFS we studied
above, DO BFS applies an early break optimization in its pull phases to eliminate unneeded neigh-
bor traversals. Unfortunately, this optimization creates a control flow dependency on the NMA
that GraphAttack cannot efficiently decouple. Thus, we configure the cores to perform do-all par-
allelism for pull-based phases of DO BFS and enable GraphAttack during the push-based phases.
Unlike specialized hardware tailored to push- or pull-based vertex-centric kernels, GraphAttack
flexibly supports reconfigurability between decoupling and do-all parallelism on a per-phase basis.
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Fig. 10. Speedup comparisons between 1000, 8 parallel InO, and GraphAttack (8 InO) for different direction-
optimized BFS variants. Through its flexibility, GraphAttack optimizes the performance of all variants.

Figure 10 shows an equal-area speedup comparison between 1 OoO core, 8 parallel InO cores,
and 4 GraphAttack pairs on DO BFS with varying amounts of pull- and push-based phases.
GraphAttack consistently outperforms the OoO core and performs as well as or better than
do-all parallelism due its flexibility. It offers particularly significant speedups, up to 5.78X, for
the push-heavy and push-only variants, where data supply optimizations weigh heavily on the
speedup. While an accelerator, e.g., Graphicionado [21], may excel at a particular configuration,
e.g., pull-based, it simply cannot support other configurations without sacrificing programmability
or specialization, making GraphAttack the most performant option across the board. There are
scenarios where pull-based implementations are useful, e.g., when RMW contention is costly, and
where push-based implementations are better, as they are more work-efficient. Unlike accelerators,
GraphAttack utilizes the same hardware to handle all of these different implementations without
requiring different custom modules or invasive modifications for each implementation.

GraphAttack’s multi-phase application support can be extended to many other data analytic
workloads, e.g., graph neural networks [67], where both data supply optimizations and traditional
parallelism are key to optimal performance. Furthermore, the portability and space efficiency of
GraphAttack make it a performant and optimal option for heterogeneous systems where it can be
coupled with accelerators on the same chip. In cases where the ratio of accelerator communication
costs to computation rate is high, parallel InO cores can swap in for accelerators. This flexibility
makes GraphAttack a viable optimization for datacenter chips.

7 RELATED WORK

We cover the most closely related works in Section 2, including hardware prefetchers [6, 8, 11, 54],
rigid accelerators designs [5, 21, 38, 43], and Decoupled Access/Execute [19, 20, 49]. Section 3
discusses decoupled software pipelining [48, 56]. Here, we discuss a wider range of works in the
area.

Prefetching Prefetching is a broad technique that now spans the computing stack. Timeli-
ness is a critical issue; early prefetches may be evicted from the cache before they are used or
cause other useful data to be evicted, while late prefetches may lose latency benefits. Speculative
prefetching also causes increased bandwidth pressure, limiting scalability in a multicore system.
Software and programmable prefetchers [7, 8, 28] employ compiler passes to identify problematic
(e.g., pointer indirect, random) memory accesses and schedule prefetch instructions accordingly.
However, these passes struggle to schedule timely prefetches for graph applications, where con-
trol flow statement(s) lead to variability in execution time. Meanwhile, for appropriate applications,
GraphAttack avoids these issues, as it retrieves the data with perfect precision and holds it in com-
munication queues.

Data-aware hardware prefetchers [11, 63] reduce latency for pointer indirection, e.g., ALB[i]].
By using a streaming prefetcher for the sequential accesses, the addresses of NMAs can be de-
termined early. However, in graph applications, vertices have varying degrees, which results in a
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variable number of streaming accesses. This causes inaccurate prefetches that add bandwidth pres-
sure. Additionally, these prefetches are designed for specific data-structures. GraphAttack flexibly
supports our entire application suite (Table 6), which involves different data-structures that expe-
rience irregular accesses: CSC/CSR graphs, adjacency lists, and filtered dense matrixes.

Address-correlation prefetching approaches [59, 61] improve the latency of irregular accesses
by storing correlated addresses using large metadata structures. However, these approaches are
for applications that have repetitiveness in indirect memory accesses (e.g., repeated traversal of a
linked list). These patterns do not often appear in graph applications, and thus, these approaches
would have limited value in this domain.

Runahead, Slipstream, and Pipelined Architectures Prior work has explored techniques,
which rely on runahead execution [16, 35, 40]. These approaches pre-execute application code and
generate cache misses early to hide the long latency cost of future demand requests. However, these
approaches are limited to short runahead intervals due to their speculative nature. In GraphAttack,
Producer runahead is limited only by the size of efficient hardware buffers, and even with small
buffers, it is able to achieve the long runaheads that are required by severely latency-bound graph
applications. Continuous runahead [22] proposes runtime analysis hardware to dynamically
identify dependence chains and pre-execute accordingly. Slipstream and look-ahead architec-
tures [24, 47, 53] employ two execution streams where one stream skips non-essential computation
and thus operates speculatively. However, graph applications have irregular, unpredictable control
flow that impedes both NMA dependence chain identification and accurate speculation.

Lastly, Pipette [36] aims to improve core utilization for irregular applications by decoupling
threads within a multithreaded core and making use of architecturally visible queues. This work
shares the same goal as GraphAttack, but requires manual code transformations in order to split
applications into pipeline stages and targets OoO cores, whereas GraphAttack automatically de-
couples graph applications along their NMAs for InO execution.

Specialized Memory Systems Prior techniques for graph processing aim to improve mem-
ory bandwidth efficiency through specialized engines within the memory hierarchy. Refs. [4, 32]
leverage the power-law nature of real-world networks, and cache or reschedule worklist updates
accordingly. Mukkara et al.[33] buffers and coalesces updates throughout the memory hierarchy to
exploit temporal locality. Because GraphAttack is flexible and independent of the memory system,
its latency improvements synergize with the bandwidth efficiency of these techniques and combin-
ing the different approaches would yield even greater performance. Buffets [45] is a storage idiom
for orchestrating communication in accelerators, particularly those designed for dense workloads.
It provides tools to manage the synchronization in a decoupled manner, similar to DAE. In con-
trast, GraphAttack focuses on accelerating graph applications on modern hardware composed of
general-purpose cores.

Processing-in-Memory [5, 65, 69] leverage a PIM distributed architecture. While PIM has
shown great promise, it requires invasive core and memory hierarchy modifications, which are
difficult to implement in today’s open-source hardware ecosystem. Additionally, they require pro-
gram adaptation which only specific, e.g, vertex-centric kernels can utilize. GraphAttack, however,
requires minimal hardware additions that complement the core models of existing architectures
and flexibly support a rich range of applications.

8 CONCLUSION

This article presents a flexible hardware-software approach that targets memory latency bot-
tlenecks in graph applications through compiler techniques and modest hardware additions.
GraphAttack provides significant performance and energy efficiency gains due to its (1) innova-
tive program slicing approach that automatically identifies and optimizes for long-latency NMAs
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through data Producer/Consumer pairs and (2) small, shared AAB that enable simple, InO multi-
core architectures to overlap neighbor accesses and exploit MLP. By precisely targeting the laten-
cies that critically bottleneck graph applications, our approach is the first to make InO data supply
specialized, practical, and optimal for graph analytics while offering significant application flexi-
bility. Thus, GraphAttack enables scalability to a manycore programmable accelerator or efficient
graph computations performed at the edge. This is timely work for the New Golden Age of Com-
puter Architecture [3], where significant efficiency gains are realized with vertical approaches,
exemplified by GraphAttack.
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