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PPU: A Control Error-Tolerant Processor for Streaming Applications
with Formal Guarantees
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With increasing technology scaling and design complexity there are increasing threats from device and cir-
cuit failures. This is expected to worsen with post-CMOS devices. Current error-resilient solutions ensure
reliability of circuits through protection mechanisms such as redundancy, error correction, and recovery.
However, the costs of these solutions may be high, rendering them impractical. In contrast, error-tolerant so-
lutions allow errors in the computation and are positioned to be suitable for error-tolerant applications such
as media applications. For such programmable error-tolerant processors, the Instruction-Set-Architecture
(ISA) no longer serves as a specification since it is acceptable for the processor to allow for errors during
the execution of instructions. In this work, we address this specification gap by defining the basic require-
ments needed for an error-tolerant processor to provide acceptable results. Furthermore, we formally define
properties that capture these requirements. Based on this, we propose the Partially Protected Uniprocessor
(PPU), an error-tolerant processor that aims to meet these requirements with low-cost microarchitectural
support. These protection mechanisms convert potentially fatal control errors to potentially tolerable data
errors instead of ensuring instruction-level or byte-level correctness. The protection mechanisms in PPU
protect the system against crashes, unresponsiveness, and external device corruption. In addition, they also
provide support for achieving acceptable result quality. Additionally, we provide a methodology that formally
proves the specification properties on PPU using model checking. This methodology uses models for the
hardware and software that are integrated with the fault and recovery models. Finally, we experimentally
demonstrate the results of model checking and the application-level quality of results for PPU.
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1. INTRODUCTION

As transistor sizing approaches its limits, semiconductor fabrics are expected to ex-
perience increasing device failures [ITRS 2011]. Hardware failure arise from various
sources such as energized particle hits, increasing variability of device parameters, and
device aging [Borkar 2005]. There has been significant recent work in computer archi-
tecture attempting to guard future processors against this host of resiliency threats.
Generally, these processors deal with transient faults. The effect of these faults is that
the underlying processor may crash or the program executes incorrectly, resulting in
data or control flow errors.

Fully protecting processors against hardware threats is generally viewed as being too
expensive [Narayanan et al. 2010]. Instead, architectural solutions seek to allow certain
errors and then fully/partially correct them using lower cost architectural correction
mechanisms. In the latter category are error-tolerant architectures such as ERSA [Cho
et al. 2012], EnerJ [Sampson et al. 2011], and Argus [Meixner et al. 2007]. These
processors are error-tolerant in that they allow errors in the architectural registers, in
contrast to error-resilient processors, which correct all errors before they change the
architectural registers [Austin 1999; Ernst et al. 2003].

An important consequence of the error-tolerant approach is that it is no longer guar-
anteed that the processor executes each instruction as per the ISA. Rather it provides
a best-effort execution in the presence of faults while avoiding fatal errors. Thus, the
ISA can no longer be used as a formal specification for error-tolerant processors. Rely
is a programming language that permits quantitative reasoning about the results for
an application implemented on such processors [Carbin et al. 2013]. However, in the
absence of a specification, it is unclear what the requirements are for such processors
or what is actually delivered in the final implementation.

In this article, we address this gap by first defining formal specifications that capture
the necessary, but not sufficient, requirements on such error-tolerant processors to
produce useful output (which is application-specific, user-acceptable output). These
serve as a lower bound for what they need to implement.

Based on these requirements, we propose a Partially Protected Uniprocessor (PPU)
that provides protection schemes to avoid fatal errors and allow the processor to deliver
useful results [Yetim et al. 2013]. This processor includes components that guide control
flow, memory addressing, and I/O accesses with customizable granularities to handle
errors. In this work, we consider transient faults in the logic and memory. The effect
of these faults is bit flips in the architectural state. The errors can propagate to the
Program Counter (PC) and the Stack Pointer (SP).

We evaluate the quality of results of PPU by showing the results of different error
rates for seven Streamit [Thies et al. 2002] benchmarks, including two widely used
multimedia benchmarks (JPEG and MP3 decoders). The resulting output quality is as
good as the zero-error case for errors that occur as frequently as every 107 instructions
(<10ms of runtime). For even more frequent errors (every 250 microseconds), the SNR
value remains acceptable: 14dB (−32%) for JPEG and 7dB (−28%) for MP3.

Additionally, we show how reliability specifications can be checked on PPU using
model checking. In the system model, we consider both the hardware (HW) and software
(SW) models of PPU, as well as the effect of faults and PPU protection mechanisms. In
these experiments, the formal specifications are provided using temporal logic [Clarke
et al. 1999]. In each case that PPU fails to satisfy a property, the model checker provides
a fatal scenario which is not corrected by the processor. This demonstrates the utility
of such a methodology to verify future error-tolerant architectures to ensure that they
meet at least the minimum specifications defined in this article.

Overall, this work makes the following contributions: (i) It identifies the basic
required properties for error-tolerant processors and formally defines them using

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 3, Article 43, Publication date: April 2016.



PPU: A Control Error-Tolerant Processor for Streaming Applications with Formal Guarantees 43:3

Fig. 1. Percentage of error-free instructions needed to avoid (i) memory accesses that may cause crashes
and (ii) control flow operations that change looping behavior and leads to hangs.

temporal logic. (ii) It proposes PPU as a solution to ensure software progress through
errors without assuming a fully reliable core. (iii) Even though errors quickly become
program-critical under even modest error rates, PPU shows that control flow and mem-
ory addressing do not have to be perfectly reliable to get useful results. (iv) It shows
how the error-tolerant processor, the faults, and the program are modeled as a complete
system. (v) It formally verifies these properties on PPU and identifies aspects of the
implementation which result in those properties failing.

2. CONTROL ERROR TOLERANCE

While applications may have some inherent error tolerance, this does not translate
uniformly to instruction-level error tolerance. Errors in critical instructions may have
a catastrophic effect on execution, even for error-tolerant applications. For example,
memory access instructions cause segmentation faults if a corrupted address points to
a disallowed location. Similarly, if control flow is corrupted, a program may hang or
loop indefinitely. A location/instruction is error-intolerant if its corruption could lead to
a catastrophic failure such as a crash or a hang. For an application to progress without
crashing due to segmentation faults or going into an unresponsive state, all memory
addressing and loop back-edges are considered as error-intolerant. Transitively, all
control and data dependencies for intolerant instructions must be considered error-
intolerant as well.

Given the likelihood of these dependence chains of error intolerance, we first char-
acterized the error-intolerant instructions in StreamIt applications. Using LLVM
[Lattner and Adve 2004], we marked the error-intolerant instructions and transitively
their data and control dependencies. Figure 1 shows that as many as 65% of all instruc-
tions are error intolerant in these benchmarks. The predominance of error-intolerant
instructions shows that language support to separate the error-tolerant parts of the
program from the error-intolerant ones is not enough. This motivates our work to pro-
tect processor control flow to improve application success rates on error-prone fabrics.

Thus far, error-tolerant processors provide only a weak best-effort guarantee on the
quality of the results. In practice, the result quality is expected to be acceptable in terms
of human perception. In order to accomplish this, PPU emphasizes the importance of
avoiding fatal control errors and making progress, and also of limiting the effect of data
errors such that their effects are short-lived or ephemeral [Yetim et al. 2015]. We now
sharpen these goals by developing a minimum formal specification for such processors.

3. BASIC DESIRED RELIABILITY REQUIREMENTS

The preceding discussion provides some guidance on acceptable and unacceptable con-
trol and data errors.

Control Errors: We need to avoid fatal errors such as a program hang or a crash
because this will preclude the processor from delivering any results into the future.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 3, Article 43, Publication date: April 2016.



43:4 P. A. Golnari et al.

Thus, permanent control errors such as crashes and hangs are unacceptable. Transient
control errors that result in control flow that executes less or more than the correct
code may be acceptable.

Data Errors: The processor needs to provide useful results, so any errors that result
in the output quality being useless need to be avoided. Note that this requirement on
data errors is relatively weak because it does not assure that all results will be useful.
However, it is nonetheless valuable because it precludes data errors that will result
in the output quality being useless. We now see what this space of unacceptable and
acceptable errors implies in terms of the basic desired properties. We briefly state
what these properties capture, and, in Section 6, we provide their formal language
specifications.

3.1. Progress

This property arises from the need for the processor to avoid fatal control errors such
as hangs. As discussed, transient control errors may be acceptable as long as the
processor continues to provide useful results into the future. This requirement needs
to be captured in some notion of progress, where, at each point in time, even in the
presence of faults, the processor is guaranteed to provide some useful results in the
future.

3.2. Ephemeral Effect of Errors

Although it is hard to state in general what it means for the result quality to be ac-
ceptable for human perception, we note that there is one important application-level
characteristic that these processors are exploiting. If the faults result in transient
errors in the output, then they only impact some of the output, which can poten-
tially be overlooked by human perception (e.g., an erroneous pixel or even a frame).
Once the transient error has passed, the subsequent results have the potential to be
error-free. Thus, the desired property here is that of the errors being transient (i.e.,
ephemeral) [Yetim et al. 2015]. For the errors to be ephemeral, there should always be
a time in the future when the system state needed to compute future results can be
error-free (i.e., all errors in such a system state are erased).

3.3. Executing Essential States

Because error-tolerant processors permit control errors to skip states and do less or
more computation than in the error-free case, we need to assure that useful results can
still be produced. This requires that control states essential to producing results are
visited. For instance, assuming that the result of the computations in a program are
written to the output in the kth basic block, the purpose of the program is not fulfilled if
basic block k is not executed. A model that satisfies this requirement makes sure that
the kth block is executed at some point during execution.

This set of properties does not guarantee that the processor will produce useful
results. While not sufficient, they are necessary. However, if they are not satisfied, the
processor does fail in its requirement of providing useful results. Thus, they serve as a
lower bound that may be augmented with additional stronger properties for individual
processors. In the following, we propose a set of control flow protection mechanisms that
provide reliability to a general-purpose processor. We then evaluate the effectiveness
of these mechanisms in terms of quality of results and providing the basic reliability
requirements.

4. PPU DESIGN

Figure 2 shows the key components of our proposed approach, with the five reliable
modules in dashed boxes. These modules are built on reliable hardware (error-free)
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Fig. 2. Our low-overhead support for an application to eliminate crashes, hangs, and device corruptions
includes five reliable components (dashed outline, only conceptually separated from the core). The Macro
Instruction Sequencer (MIS) with a timer ensures forward progress. The Memory Fence Unit (MFU) con-
strains memory accesses. Streamed I/O manages bounded data streams. Application Initiator/Terminator
(AIT) communicates with the components and external devices/processors on application initiation or termi-
nation, and Bus Control handles correct communication with the external devices/processors. The remaining
system (solid outline) can be unreliable with best-effort operation.

and supervise the control flow. They provide control-error protections to mitigate fatal
error effects. These supervising modules have the following goals:

(1) The program should not hang or run indefinitely. Control flow errors that result in
infinite loops or other failures to terminate must be addressed.

(2) The application should only be allowed to access information that it is allowed to.
Memory addressing errors that cause the program to access off-limits areas must
be handled.

(3) Application input/output sequences must not cause external device corruption, such
as filesystem errors. This is related to the second requirement but calls for proper
I/O controls.

(4) The accuracy of the computation as viewed in terms of the end-result data values
stored in the program outputs must be acceptable (i.e., errors should result in only
acceptably small changes to these output data). Acceptability is defined via an
appropriate application-level metric, such as SNR [Stathaki 2008].

Thus, errors that result in small changes in calculation data, or even small (within-
range) memory addressing errors or control flow errors, are all acceptable as long as
the preceding four goals are met. The first three goals guarantee progress, which is
the first requirement to produce any result. The fourth goal corresponds to satisfying
ephemeral effects of errors and executing essential states, which are required (but not
sufficient) for providing results with acceptable accuracy.

To achieve these four goals, three bounds modules—MIS, MFU, and the streamed
I/O in Figure 2—are designed to constrain execution based on application profile in-
formation and are described in the following subsections. The AIT and bus control
communicate with external devices/processors.
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Fig. 3. Macro Instruction Sequencer guides the control flow of an application by enforcing bounds on nested
scopes. The table stores information regarding the scopes of a program, and the FSM uses and updates this
information to handle application hangs or other exceptions.

4.1. Macro Instruction Sequencer

Our implementation examples for program analyses are based on StreamIt [Thies et al.
2002], a programming language and a compiler for streaming applications. Central
to the Macro Instruction Sequencer (MIS) design is the observation that a single-
threaded streaming application can be viewed as a series of coarse-grained chunks
of computation. Thus, we can constrain coarse-grained control flow by bounding the
allowed operation count per chunk and by retaining information about legal or likely
series of chunks. The MIS has the primary responsibility of a control checker for
constraining the control flow behavior of the system.

Figure 3(a) shows the MIS implementation, primarily as a state machine and a
sequencer table. The sequencer table stores the needed application profile information,
and the MIS state machine uses this information in the sequencer table to bound each
chunk’s runtime and to restart chunk execution from known points when needed.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 3, Article 43, Publication date: April 2016.



PPU: A Control Error-Tolerant Processor for Streaming Applications with Formal Guarantees 43:7

Scope: To guide control flow, we introduce the concept of a scope (i.e., the “chunks”
referred to in the previous paragraph). A scope is a region of code denoted by S_BEGIN
and S_END markers (placed by the compiler). Scopes have some of the attributes of
procedure call interfaces—known clean-slate starting points for regions of code—but
without the actual stack changes or nonsequential PC values. Normally, scopes enclose
straight-line code that the PC sequences through instruction by instruction; however,
unlike basic blocks, scopes can contain one or multiple loops. The loops boundaries
cannot cross the scopes, and a scope cannot be enclosed in a loop.

Moreover, the nesting and function call cases are handled by nested scopes. Here, we
refer to those scopes that are nested inside other scopes as “child” scopes. And “parent”
scopes are those scopes that are not a child of any other scope. While a “child” scope
can have other scopes nested inside it, a parent scope cannot be nested inside another
scope.

The purpose of scopes is to delineate chunks of execution whose execution time can
be bounded. This is used to constrain the impact of error-prone fabrics in causing
major program derailments to address the mentioned four design requirements. Each
scope has an associated bound on the operation count. During normal operation, the
operation count for the active scope is incremented on each retiring instruction. If the
current operation count exceeds the scope’s allowed bound, the MIS causes this scope
to be exited according to the scope recovery process (discussed later). Figure 3 gives an
example for a part of a program with three parent scopes and two child scopes nested
to the parent scope S2. The CFG is depicted in this figure, where each state represents
a scope.

Figure 3(a) illustrates an MIS that achieves the described functionality. The se-
quencer table consists of six columns for every scope. The scope pc and the exit pc are
program counter values for the S_BEGIN and S_END instructions (i.e., markers for a
scope). The instruction limit is the per-scope bound on instruction count. The current
count of instructions executed in this scope thus far is stored in instruction count. The
parent scope is used to pass control back to the parent scope when the active scope
terminates and to check for a legal child when a new scope begins, as discussed later.
The final column manages information for the application call frame, which is used
when an execution reset must occur.

When an S_BEGIN is encountered, the MIS first checks if its PC corresponds to
an allowed child of the active scope and if the active scope has enough instructions
to execute the child scope. This scope check first uses the PC to perform a sequencer
table lookup to find the child scope entry. If the active scope is indeed a parent, then
the instruction limits are checked. If allowed to proceed, the “active scope” is updated
to start tracking instruction count and other key information of the new scope. If the
current PC is not a legal child scope, then control flow must have erroneously jumped
due to errors, eventually encountering this incorrect S_BEGIN. For such cases, a scope
recovery is executed as discussed below.

When an S_END is encountered, the MIS similarly checks if the current PC cor-
responds to the correct exit pc of the active scope. If it does, then the active scope is
updated to be the parent scope, and execution continues. As part of this scope transfer,
the parent scope’s instruction counter is updated and the child scope’s reaches zero.
One can either update by the amount of instructions actually executed by the child
scope (i.e., the counter value) or by the child’s limit. These options have subtle trade-
offs in analyzability; for this article’s results, we use the limit value. If the scope check
fails, the MIS executes a scope recovery, as discussed later.

The final possible event is instruction retirement. Here, it simply checks if the active
scope has any instructions left in its limit. If so, it retires the instruction and incre-
ments. If not, it cancels the retirement and performs scope recovery. While naively
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this check adds latency on retiring instructions, we hide this latency by batch retire-
ments. Alternatively, the check can be performed while instructions wait in the reorder
buffer.

Profiling for Instruction Count Bounds: Our approach rests on having reason-
able instruction count bounds for each scope. For streaming applications, this is fairly
tractable because the control flow includes few dynamic conditions, and the longest
execution paths are easily seen at compile-time. When programs have high variability
or even in some cases no finite overall bound (e.g., infinitely running data processing),
the application or compiler can use blocking transformations to place bounds on groups
of loop iterations without bounding the whole. We use static profiling to obtain use-
ful bounds for our benchmarks, but many other dynamic or adaptive techniques are
possible, and there is prior work to draw from Wilhelm et al. [2008].

Scope Recovery Process: When scope recovery is needed, the MIS updates the
PC to be the exit pc of the active scope. In the case of infinite loops, control may
have remained within this scope, but exceeded the allowed instruction count. Forcing
execution to the exit pc breaks this loop. In the case of bit errors that cause misdirected
jumps, control may have transferred to an incorrect scope. In these cases, we “reset”
execution by going to the exit pc and resuming from there. This may entail some number
of incorrect instructions being executed, but, again, the goal is to reduce hardware
overhead and extend generality by constraining the extent and side effects of such
behavior, rather than disallowing it entirely.

Nesting, Function Calls and Other Scope Issues: Scope annotations in the pro-
gram should be cleanly nested, meaning that scope regions can only intersect if they
have a parent-child relationship. Furthermore, S_BEGINs should dominate the clos-
ing S_ENDs, and the S_ENDs should post-dominate these S_BEGINS (e.g., a loop
can contain a scope and/or can be contained in a scope but not cross one). Function
calls should be fully contained by S_BEGIN and S_END statements at matching scope
depth. Since recovery from a scope violation involves jumping to the current scope’s
exit pc, further information is needed for scopes that include a function call. For these,
we record the stack and base pointers (last column of the sequencer table) so that when
the recovery routine jumps to the scope’s exit pc, it also resets the call frame. The frame
information is statically known if the function’s call depth is statically known (as in
our applications and many others), but one could also record the frame information
dynamically at scope start for use at scope recovery. Recursive calls should be enclosed
at the outermost caller location, and the recursive functions should not contain scopes
in them.

Hardware Overheads: The MIS manages only one scope at a time to keep the
hardware overhead low. The most common operation, bounds checking and increment,
only requires one comparator and one adder. The S_END and S_BEGIN events are
less frequent and only require a lookup to the sequencer table, a condition check, and
possibly an addition. At S_ENDs, a lookup in the sequencer table is necessary for the
parent scope whose index is stored with the active scope entry. For S_BEGIN, current
pc is used to get the information for the new scope and check if it is a valid child.
Identifying a scope by the pc of its S_BEGIN instruction makes it possible to avoid
storing the children of a scope in the sequencer table.

The sequencer table can be implemented either as a single table or as a combination
of the full table and a cache for some of the entries. For StreamIt programs, scope
counts vary from 12 for jpegdecoder to 124 for mp3decoder; this number determines
the size of the full table. If a cache is used instead, then three cached entries suffice
(i.e., the parent scope, the current scope, and the child scope). Having these entries
ready in the cache requires a prefetcher, and, since the scope tree is trivial for StreamIt
applications, implementation of the prefetcher would be trivial.
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4.2. Memory Fence Unit

In addition to control errors, our four design goals also require us to mitigate the effects
of memory access errors. For full general usage, such access errors can cause segmen-
tation faults that crash the program. Even in the constrained no operating system
scenarios considered here, such errors can influence output accuracy. To mitigate error
effects, we propose a Memory Fencing Unit (MFU). The MFU checks accesses against
the legal address range allowed for a particular scope or instruction. The MFU can
be implemented similarly to earlier segmentation schemes [Daley and Dennis 1968;
Dennis 1965] with the addition of designated error handlers for different error condi-
tions. In this work, we partition memory to be execute&read and read&write regions,
although further programming language support can be used to obtain finer grained
ranges [Gordon et al. 2012].

If a memory access is out-of-range, the MFU’s response depends on what type of
access it was. For read or write accesses (i.e., data references), we silence the fault
either by skipping this memory instruction or by referencing a dummy physical location
instead. While perhaps surprising, this response is simple to implement and abides by
the four design goals—our aim is simply to prevent memory accesses to disallowed
ranges. The third memory access type is execute, which applies to fetches intended for
instruction memory. Execute failures are illegal instruction fetches where the program
counter points to a disallowed region of memory: Either this region does not contain
program code or perhaps the PC is pointing outside the application’s allowed memory
range entirely. Simply silencing the current instruction (as we do for reads and writes)
does not work for execute failures since advancing the program counter typically leads
to yet another illegal execute access. Instead, for execute failures, the MFU signals the
MIS to end the current scope and begin scope recovery from a known point in the code.
For example, this would be the next filter in StreamIt applications. (Other exceptions
are handled similarly.)

4.3. Streamed I/O Constraints

Finally, design goal 3 calls for I/O constraints. Real-world applications must read and/or
write data from/to external devices. Even if the use of data may be error-tolerant, its
transfer should not cause crashes or corrupt the file system. There are possible solutions
to achieve this. For example, Lax is a device driver allowing for a tolerable amount of
error in I/O [Stanley-Marbell and Rinard 2015], or a periodic check can detect and
repair file system errors [Yang et al. 2006]. Also, a journaling file system can repair
erroneous file operations before they become permanent [Prabhakaran et al. 2005].

In this work, we use streamed I/O, which only performs fixed-sized, streamed read
and write operations, and we limit the number of I/O operations allowed per file or
scope. We assume that size and number of I/O operations for a given application are
known. By constraining I/O to bounded sequential access, we achieve an error-prone
processor access to data, but not to arbitrary addresses or file system data structures.
This approach works well for StreamIt and similar benchmarks.

To evaluate the reliability of the PPU design, we model the control flow of a processor
augmented with the discussed supervising modules as follows.

5. CONTROL FLOW MODELS AT HW AND SW LEVELS

Consider the case where a program gets in an infinite loop due to a software-level fault.
The system as a whole does not make any progress since the program hangs due to
this fatal control error. Note that, in this scenario, the processor hardware does make
progress because it keeps on fetching instructions. This simple example shows that, in
order to satisfy a reliability requirement such as progress, both hardware and software
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Fig. 4. Hardware-level FSM models.

need to be taken into account because together they form a system. Therefore, in our
setting, we consider the hardware and software components as a whole system, and
we define the requirements with respect to that system. We model the hardware as a
Finite State Machine (FSM) and software as a Control Flow Graph (CFG).

In addition to modeling the HW/SW function, we also model the effect of faults and
the mechanisms to protect against these faults at each level. Recall that the focus of
PPU and other error-tolerant architectures is on transient faults and protecting against
these faults. Thus, our modeling also retains this focus.

5.1. Modeling the Hardware

The PPU protection mechanisms are implemented on a general-purpose error-prone
processor. Here, we assume Mhw (discussed later) as our baseline hardware model of
the processor. Mhw considers a pipeline design of a single-issue, in-order MIPS archi-
tecture [Patterson and Hennessy 2012]. Figure 4(a) shows an example of an FSM for
this architecture, where each instruction is fetched (Fe), decoded (Dc), executed (Exi),
accesses the memory (Mem), and writes back to the register bank (Wb).

5.1.1. Effect of Transient Faults. In the FSM model, a fault is modeled as additional
transitions. These transitions are nondeterministic; thus, they may or may not be taken
in any specific execution, capturing the transient nature of the fault. A transient fault
in the hardware can have either a transient or permanent effect. A fault is classified as
having a permanent effect when a processor ends up in an unwanted control state for
the rest of the program execution (e.g., when the FSM stays in an incorrect subset of
states forever, causing the program to either crash or hang). On the other hand, a fault
is classified as having a transient effect when it does not cause a fatal behavior (like
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a hang or crash). Figure 4(b) shows examples of the effect of transient faults on the
FSM. Shaded states and dashed transitions represent invalid states and transitions,
respectively. To keep the figure readable, we do not show all the incorrect transitions.
As an example, consider a fault resulting in the addition of an invalid transition from
the state Dc to Ex3. This addition has a transient effect because program execution
continues after Ex3. Note, however, that the erroneous state transition may have
resulted in incorrect data computation inside state Ex3. On the other hand, the result
of a fault with a permanent effect is an addition of an invalid state with transitions
that lead to it (e.g. transitions to the invalid state in the figure).

5.1.2. Protection Mechanisms. Error-tolerant processors provide micro-architectural
mechanisms to protect against hardware faults. Since our aim is to see if these mech-
anisms are sufficient to provide certain guarantees, we need to add these to our FSM,
which thus far has captured the intended function and the fault effects. As we saw, a
primary requirement is to avoid fatal errors (e.g., getting to an invalid state with no
way to recover). In practice, this is often accomplished using timeout mechanisms. As
an example, consider assigning a timer (referred to as fetch timer) to the Fe state in our
model. This timer provides a transition to the Fe state on its timeout and is reset on
entering the Fe state. This simple protection mechanism enables us to avoid the fatal
errors of getting stuck in a valid/invalid state or a loop (Figure 4(c)). We assume that
these protection mechanisms have resilient implementations and are fault-free.

5.2. Modeling the Software

As mentioned earlier, based on the StreamIt language, PPU divides a program into
scopes, where a scope is a set of instructions with the start and end of scope forming a
boundary. Figure 3 shows a CFG for part of a program with three parent scopes. This
CFG depicts many features of PPU target applications. But since our goal is to verify
reliability properties for any program that matches PPU, we now describe a general
CFG that follows PPU’s target application modeling.

A template CFG model for PPU’s target applications is shown in Figure 5(a). It
represents error-free programs with a variable number of scopes. The states Si Begin,
Si Body, and Si End represent the beginning of a scope, its body, and its exit point,
respectively. If a scope Si has child scopes (nested calls), the children are represented
by a transition from Si Body to Sk Child. When a child scope is started, it becomes
the active scope. When the nested call is finished, its parent scope becomes the active
scope. Note that since PPU does not allow back-edges or split-joint structures between
scopes, they are not allowed by our model.

While this template represents many different CFGs, for simplicity, we refer to it as
the CFG. Table I depicts the purpose of the transitions in this CFG. For example, the
first row explains edge e4, which represents an instantiation of a new scope.

5.2.1. Effect of Errors. The effect of errors on the CFG are shown in Figure 5(b). Er-
roneous states and transitions are shown with dashed lines, and their descriptions
appear in Table I. Note that Si Begin and Si End can have no errors since they are
only marking the scope boundary and do not contain any executed code, which is limited
to the scope body.

The two distinct crash states (Crashp and Crashc) are added to the error-prone CFG
because, when a crash happens, the recovery mechanisms depend on whether the active
scope is a child scope or a parent scope.

5.2.2. Protection Mechanisms and Their Modeling. Unlike DIVA [Austin 1999] or Argus
[Meixner et al. 2007], PPU does not correct every error. The effects of fatal errors are
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Fig. 5. PPU software-level CFG models.

detected and resolved by added protection mechanisms that supervise the data and
control flow.

Figure 5(c) shows a CFG that includes the effects of the MIS and MFU, denoted as
MPPU, and Table I provides a detailed description of the changes to the CFG. As an
example, consider the transitions from a crash state to a valid state (e21 and e27). This
captures the effect of the ability of PPU to reset the PC when a crash occurs.
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Table I. Transitions of the PPU Modified CFG

e4 i++ indicates that Si ends and Si+1 begins.
e5, e6 Model arbitrary number of nested scopes inside Si .

e7 Models arbitrary depth of scope nesting.

e10, e17 Without recovery, crash states are absorbing (sink).
e12, e13, e14 Wrong transition to/from a parent scope.

e19, e20 Wrong transition to/from a child scope.

e21, e27 Wrong data-memory access is silenced or referenced to a dummy address.
e22, e28 Wrong I-memory access is silenced and Si is terminated.

e23 If PC reaches a wrong scope boundary, MIS terminates the Si

e23, e24, e25, e26 Timers represent the MIS instruction counters, which prevent getting stuck in a scope.
e29 SP and BP are refreshed at the beginning of Si .

6. PROPERTY DEFINITIONS

Section 3 discussed the reliability concerns in terms of the high-level properties of
progress, ephemeral effect of errors, and executing essential states. In this section, we
take this a step further by showing how these properties can be defined formally. We
then discuss PPU’s additional properties and formally define them. The definitions
we provide in this section are solely examples of many different forms to define these
properties depending on the application.

In these formal definitions, we benefit Linear Temporal Logic (LTL) [Clarke et al.
1999]. LTL adds temporal modal operators to propositional logic. In this work, we use
the Globally (G), Finally (F), and Next (X) operators. Given a formula ψ , Gψ indicates
that ψ is always true, Fψ indicates that ψ is eventually true at some point in the
future, and Xψ indicates that ψ is true at the next state.

6.1. Basic Desired Reliability Properties

6.1.1. Progress. Progress is defined with respect to to the FSM or CFG models. A
reasonable notion of progress is that neither model is stuck in a set of states (i.e., a
state cannot be visited infinitely often with the exception of states that are part of a
valid infinite loop). From now on, we assume that our target CFG and FSM do not have
a valid infinite loop and eventually halt.

General Definition. If progress is satisfied, each state Si that is executed should be
executed in a finite time interval. Figure 6(a) compares an error-free run with an error-
prone run that violates progress. In the error-prone run, progress is violated because
control flow keeps visiting S2 and S3 infinitely. In other words, to satisfy progress,
there should exists a finite time interval (including the empty interval) for each state
Si within which Si is visited. After this time interval, state Si is not visited again:

∀Si ∃ti : ∀t > ti S(t) �= Si, (1)

where S(t) is the state of the control flow at time t.

Formal Definition. A system makes progress when both the hardware FSM and the
software CFG are making progress. It is important to note that if the hardware FSM
does not make progress, then the CFG does not make progress either. However, the
FSM can progress while the CFG is stuck (e.g., the software is stuck in an invalid
infinite loop). This requires us to verify progress on both the FSM and the CFG.

Hardware Level: The FSM meets the control states Fe, Dc, Ex, Mem, and Wb in a
loop that is repeated for each instruction. It comes to a halt when the “halt” command
is decoded. Therefore, the progress property can be said to hold at the hardware level
as long as instructions are being fetched. This is true even if the FSM states are visited
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Fig. 6. Progress and ephemeral effect of errors properties.

in an incorrect order due to faults. Essentially, this weak notion of progress permits
the instruction results to be erroneous as long as instructions are being fetched.

This can be checked in practice in a bounded way as follows: Consider a timer that is
reset any time that Fe is visited. Then, this timer always shows the time interval since
the last visit of Fe (TFE). Now, we verify progress by checking if the FSM visits state
Fe at least once in a TN time interval:

G(TFE < TN). (2)

Software Level: The CFG does not make progress if either (i) it is stuck in a state,
(ii) it is stuck in a loop, or (iii) it reaches an invalid state with no way to recover.
In MPPU, since the states Si Begin and Si End are not corrupted by errors, if MPPU
reaches Si End, either e4 must be taken and thus Si+1 Begin is reached, or the program
terminates. We therefore check for progress by proving the following property:

∀i : G(Si Begin → F Si End). (3)

6.1.2. Ephemeral Effect of Errors. The main purpose of this property is to avoid accumu-
lation of data errors. Figure 6(b) compares an error-free run with an error-prone run,
in which the error effects cause the control flow to deviate from its correct path at S1.
This control flow converges to its correct path at S4 since the error effects fade by then.

General Definition. This property demands that the effect of a single error fades in
a certain time duration (i.e., there is always some time t in the future where the data
errors before t do not effect the results after t).

This is illustrated in Figure 6(b). This figure shows a time interval (t′
0 to t′

2) of the
error-prone run of a program and the corresponding time interval of the error-free run
(t0 to t2). We assume all previous error effects have been cleared by time t′

0 and the
two error-free and error-prone runs have identical states at the beginning of this time
interval. At time t′ = t′

e, a transient error occurs in the error-prone run; hence, this
run deviates from the error-free run. If the effects of the error totally disappear before
t′
2, say at time t′

1, and no other error occurs, then the state of the error-prone run at
t′
1 should match the error-free run state at some corresponding time t1. The following
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equation captures this:

∃t′
0, ∃t0 : Se(t′

0) = Se free(t0),∀t′ ∈ (t′
e, t′

2], t′
e > t′

0 : e(t′) = f alse
⇒ ∃t′

1 ∈ (t′
0, t′

2], ∃t1 : ∀δt ∈ (0, t′
2 − t′

1] : Se(t′
1 + δt) = Se free(t1 + δt), (4)

where e(t′) = f alse means that no error has occurred at time t′, Se(t′) is the state of
the error-prone run at time t′, and Se free(t) stands for the state of the error-free run at
time t.

Formal Definition. As previously mentioned, the ideal situation is that effects of
transient errors totally disappear before the next time interval starts. However, this
requirement may be too strong and, in addition, hard to satisfy. In this section, we give
a practical definition by focusing on the effects of errors on persistent variable states at
either the hardware or software levels. By persistent variables we mean those variables
that are alive longer than some time interval (�T ). A variable is alive between the
time it is defined until it is used [Appel 1998].

For the FSM, the persistent variables include the processor’s architectural states,
such as the PC, Stack Pointer (SP), and Base Pointer (BP). For the CFG, the persistent
variables can include loop counters and the variables that are alive inside a loop. These
parameters are application-specific, and we assume that, for a given program, they can
be determined automatically by static or dynamic methods.

In our definition of this property, we assign a timer to each of the persistent variables.
The timer is reset whenever the variable state is known to be correctly updated to a
value independent of its previous state.

Using this timer, Equation (5) captures the ephemeral effect of an error’s property,
where Pi is the ith persistent variable and Ti is the timer value.

∀Pi : G(Ti < �T ). (5)

6.1.3. Executing Essential States. Essential control states are those states that play an
irreplaceable role in a program. Thus, if any of these states is missed, the corresponding
run of the program cannot deliver useful results.

General Definition. There are many ways to define this property. Our definition
indicates that the essential states (Sess) should be met at least once during execution:

∀Sess∃t : S(t) = Sess. (6)

Figure 7(a) compares an error-free run with an error-prone run that still satisfies
the essential states property. In this run, the essential state (Sess) is not skipped, while
other state[s] (S2) might be skipped because of error effects.

Formal Definition. Defining the essential states for both the FSM and CFG is gener-
ally application-based. In this work, we assume that the essential states are known for
both the FSM and CFG. Then, we formally define this property based on Equation (6):

∀Sess : F (Scontrol = Sess), (7)
where Scontrol is a state of CFG or FSM. Comparing this definition with Equation (2),
we can see that, in the FSM and for the essential state of Fe, executing the essential
states is a special case of making progress with �T equal to the program run. However,
in a conservative definition, all hardware states can be defined as essential.

6.2. PPU’s Additional Properties

The PPU model satisfies additional properties that are not necessarily required but are
helpful for providing useful results. We now discuss two of these properties, in-order
control flow and availability of partial results. These properties are at the software
level.
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Fig. 7. Executing the essential states and in-order control flow properties.

6.2.1. In-Order Control Flow. Figure 7(b) compares an error-free run with an error-prone
run, where the latter run visits the same set of states but in an incorrect order. The
error-prone control flow does not violate any of the basic desired reliability properties.
This is not stuck in a state or a loop, and it also visits all the states including possible
essential states. However, there is a low chance a processor with this control flow
behavior produces useful results.

General Definition. The in-order control flow property indicates that the states of a
control flow are visited in order. This property is defined as follow:

∀Si, Sj :
(
tR

j > 0, j > i
) → tR

j > tR
i . (8)

Here, the inequality j > i denotes that Si strictly precedes Sj in the error-free CFG.
In this definition, tR

j is the retirement time of Sj , which is also the last time Sj is visited.
Note that tR

j is zero when Sj is skipped. In that case, comparing the retirement times
is meaningless. Effectively, this property allows Sj to be skipped but not executed out
of order.

Formal Definition. To formally define this property for MPPU, we define parameter
Iret as the index of the last retired scope at the time. For instance, if in a run of a
program, Si is the last retired state thus far, Iret = i at the time. Now, Equation (9)
formally defines this property:

G(XIret ≤ Iret). (9)

This means that the latest retired state is always either the same as the previous
retired state or succeeds that state in the error-free CFG. In a stronger definition of
this property, we can prohibit skipping the states:

G(XIret = Iret − 1 ∨ XIret = Iret). (10)

Which means that the latest retired state is always either the same as the previous
retired state or is the immediate successor of that state in the error-free CFG.
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6.2.2. Availability of Partial Results. The in-order property restricts the order of the scopes
being retired, but it does not reason about when the states are retired. After Si is
retired, the results produced by this state are ready. Thus, information about this
time is helpful to know when to expect partial results instead of waiting for the whole
program to finish.

General Definition. Given tR
i as the partial result time for Si, one can expect partial

results produced by Si any time after tR
i . Thus, Si should be retired and is not visited

again by tR
i :

∀t > tR
i , S(t) �= Si. (11)

In a stronger definition, we might replace S(t) �= Si with S(t) > Si. The stronger
definition indicates that partial results produced by Si are expected after all states
preceding Si (in the error-free CFG) are retired.

Note that if a CFG satisfies the progress property in Equation (1), the program even-
tually finishes at some point (Ttot). It is obvious that tR

i ≥ Ttot satisfies Equation (11).
But the interesting case is when tR

i < Ttot satisfies Equation (11). Which means that
partial results produced by state Si are ready by some known time tR

i and before the
program finishes.

Formal Definition. The in-order property indicates that the scopes are retired in
order. It means that scope Si is retired only after all its preceding scopes are skipped
or retired. However, considering MPPU (Figure 5(c)), there are various possible paths in
the CFG that satisfy the in-order requirement. For instance, the finishing part of some
of the possible paths are:

... Si Begin → Si Body → Si End, or

... Si Begin → Si Body → Sk Child → Si Body → Si End, or

... Si Begin → Si Body → Sj → Sj → ... → Si End, or etc.

However, MIS forces a strict timing schedule on all the possible paths. Based on this
schedule, regardless of which path PC takes, partial results produced by scope Si are
ready any time after tR

i . And since MPPU retires the scopes in order, the retirement
time of state Si can be calculated as the sum of the time durations spent in Si and
the preceding states in the error-free CFG. As the stronger definition in Equation (10)
indicates, this partial result time should satisfy the following equation:

∀i G(Ttimer > tR
i → Iret > i), (12)

where, Ttimer is the time passed since the beginning of a program and is measured by
a timer.

Note that, to calculate tR
i , we assumed PPU retires scopes in order. The assumption

of in-order retirement, as well as other properties defined in this section, is verified on
MPPU next.

7. EVALUATION

In this section, we evaluate the reliability of the PPU design by formally verifying the
properties discussed in Section 6. We then evaluate it in terms of quality of results.

7.1. Property Verification

We verify the reliability properties on the hardware and software levels of the PPU
design’s control flow. Figure 8 shows the flow of our experiments. In Section 5, we
modeled the fault-free control flow of this design at both levels, then we added the
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Fig. 8. Flow of the experiments for the formal verification of the properties.

Table II. Model Checking Results

Model Property Reachable States Time (s) Holds?

HW Level Single Core FSM
Progress

308
0.022 Y

Ephemeral effect - N
Essential states 0.022 Y

SW Level PPU CFG

Progress

2.06 × 1013

2.97 Y
Ephemeral effect 1.44 N
Essential states 99.90 N
In-order CF 1.61 Y
Partial results availability 3.30 Y

effects of faults and protection mechanisms to our models. Now, we verify the reliability
properties written in SMV using the NuSMV [Cimatti et al. 2000] model checker.

The experiments were run on a 1.7GHz Intel Core i7 running OS X 10.9.5. Table II
reports the verification results, where the reachable states show the number of the
states that the model checker could reach in the respective model. The CPU time
shows the time that the model checker needs to verify the respective property on a
model. The huge difference between the reachable states of the two models and also
their model checking time is because the HW model FSM in Figure 4 is much simpler
(with fewer states and transitions) than PPU’s SW level CFG in Figure 5. A “-” in
the column for the CPU time indicates that the property did not formally need to be
checked, as discussed in the respective subsections.

7.1.1. Single Core Error-Prone Processor. We verify progress (Equation (2)), ephemeral
effects of errors (Equation (5)), and meeting essential states (Equation (6)) on the Mhw
model in Figure 4(c). Table II indicates the results of this experiment.

Progress: The progress property (defined in Equation (2)) is satisfied in Mhw. This is
due to the added fetch timer that makes sure instructions are being fetched constantly.

Ephemeral effect of errors: To satisfy this property, persistent variable states should
be updated frequently enough. Since in Mhw no variable state is refreshed, this property
is not satisfied in Mhw.

Meeting essential states: We assume that the essential state in Mhw is Fe. This
assumption implies that this property is satisfied in Mhw because of the added fetch
timer. Note that, in order to satisfy this property given a different set of essential states,
a separate timer must be assigned for each essential state.

7.1.2. PPU. At the software level, we verify PPU’s reliability with respect to MPPU. In
our model, we select reasonable values of the parameters: The number of scopes is 20,
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Fig. 9. PPU can keep skipping a child scope.

�T is 15, the time limit for the parent scopes (Tps) is 10, and an instruction counter
for the child scopes is not used.

Progress. As discussed in Section 6, for the application to make progress, the PC
should not get stuck in a state or a loop. The results show that this property holds
in MPPU (Table II). Thus, the PC supervision by MIS and the recovery mechanisms in
MPPU are strong enough to ensure progress. Also, MIS counters for child scopes are not
necessary for satisfying the progress property.

Ephemeral Effect of Errors. To satisfy this property, persistent variable states should
be updated frequently enough. In PPU, the hardware-level persistent variables of PC,
SP, and BP are updated any time a scope is started. Therefore, this property holds
at the hardware level if and only if the maximum time that PC is allowed to spend
in a parent scope (Tps) is less than the maximum acceptable period for the persistent
variables to update (�T ). However, this property does not necessarily hold with respect
to MPPU because PPU does not update any program variable.

Possible Solution: Generally speaking, in contrast with many programs that carry
the data for a while, stream applications work on a frame of data for a short while.
Therefore, we do not expect many persistent variables in this type of programs. How-
ever, we noticed that each of the StreamIt applications targeted by PPU contains one
main loop whose loop counter is alive as long as the program runs. Clearly, the loop
counter is a persistent variable and thus should be protected.

Executing Essential States. We assume there is one essential state that can be any of
the valid scopes. Our experimental results show that this property is satisfied in MPPU
when the essential state is a parent scope (Sess = Si Begin for any i) and fails when
it is a child scope (Sess = Sk for any k). One simple counter example occurs when the
essential state is S2.1 and the CFG of Figure 5(c) takes this series of transitions: [active
scope = S1] e1, e29, e2, e3, e4 [active scope = S2], e29, e3, e4 [active scope = S3], etc. This
path is colored orange in Figure 9. As this example shows, the essential state of S2.1
can simply be skipped.

Possible Solution: To prevent PC from skipping essential child scopes, we suggest
adding a column to the MIS table and keeping track of visiting the essential child
scopes. One should note that if one scope is essential, its parent scope (if any) should
also be marked essential. Otherwise, skipping the parent scope would prevent visiting
the essential child scope.

Assume that scope Si (either parent scope or child scope) has some of child scopes,
among which m > 0 child scopes are essential. Since Si has essential child scopes, it
would not be skipped. As PC enters Si, MIS allows Si to be retired only after all of
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its m essential child scopes are visited. At any attempt of PC to exit Si, MIS should
reset the PC to the beginning of one of the unvisited essential child scopes. Therefore,
Si retirement would be rejected at most m times, and, since m is a finite number, this
scheme would not interfere with the progress property.

In-order Control Flow. As the results show, MPPU satisfies the in-order property for
parent scopes. The reason is that MIS keeps track of the retired scopes and does not let
a wrong scope be retired. Since MIS does not let the parent scopes be skipped (discussed
in the essential states property), we also verified the strong version of this property
(Equation (10)) on MPPU, where Iret in Equation (10) is the index of the last retired
parent scope thus far. The result of this experiment is depicted in Table II.

Partial Results Availability. Since MPPU satisfies the in-order property for the parent
scopes, the path PC takes is deterministic in term of the scopes’ order. However, the time
duration that PC spends in each of the scopes is not deterministic. Thus, tR

i is calculated
assuming that PC spends maximum allowed time in all preceding scopes. Consequently,
once a program run begins, one can expect partial results of the computations inside
scope Si in tR

i amount of time.

Addressing Desired Properties in a Multicore Implementation. A subsequent imple-
mentation of PPU in a multicore context [Yetim et al. 2015] addresses the gaps in the
desired properties as follows:

Ephemeral Effect of Errors: PPU satisfies this property by protecting the persis-
tent variables in an error-free header. At the beginning of each chunk of computation
(referred to as frame computation), a frame header is inserted to indicate the beginning
of the frame computation. The persistent variables of a frame computation, including
the main loop counter, are Error Correction Coding (ECC) protected inside the respec-
tive frame headers [Yetim et al. 2015].

Executing Essential States: PPU protects the main loop computation and assigns
each of the child scopes to a core [Yetim et al. 2015]. Therefore, the assigned cores
would execute the child scopes, and the possible essential child scopes would not be
missed.

Overall, PPU meets most of its desired goals, but the results of the property checking
point to failures in meeting some of the basic desired reliability properties. As discussed,
these were fixed in a subsequent multicore implementation of PPU. In the following,
we evaluate PPU in term of quality of results.

7.2. Quality of Results

We evaluate the performance of PPU by running StreamIt benchmarks and evaluating
the accuracy of the results in the presence of faults.

7.2.1. Simulation Infrastructure. To study how errors percolate from hardware through
ISA to the application, we built a simulation infrastructure based on the detailed Vir-
tutech Simics functional architecture simulator [Magnusson et al. 2002]. Our baseline
system is the 32-bit Intel x86 architecture.

The MIS is simulated as a snooping device that observes the retiring instructions.
It implements the scope table and the scope FSM shown in Figure 3(a). The MFU
is implemented as a modified TLB module. Based on the access address and request
type, it checks if the application has the required access permission for that memory
region. For read/write access violations, this module returns a physical dummy loca-
tion. For execute access failures, it instructs the MIS to initiate a scope termination
and recovery. Finally, we simulate Streamed I/O by transforming the I/O calls in the
StreamIt applications to certain x86 instructions that our simulator uses as markers
for initiating emulated streamed I/O accesses.
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Error Injection: The simulator models hardware errors by flipping bits in the regis-
ter file. Error events occur randomly following a uniform distribution for a given Mean
Time Between Errors (MTBE). We model hardware errors by randomly flipping bits
in the register file following a uniform distribution for a given MTBE. The 32-bit x86
architecture has a small number of general-purpose registers. Arithmetic registers are
used for complex operations that use a larger state space compared to the operations
on ESP, EBP, and EIP registers, thus they should experience more errors. As a result,
this module injects errors directly into the following six registers: E[A-D]X, ESI, and
EDI. Other states, including registers like ESP, EBP, or EIP, can become corrupted
transitively. For example, since these registers are written to/from the stack at proce-
dure calls, they are corrupted via memory addressing errors. Thus, our protection and
system recovery mechanisms apply to ESP, EBP, and EIP errors also. It is worth men-
tioning that our observation confirms that errors affect ESP, EBP, and EIP registers
even without direct error injection. For instance, we observed that erroneous pointers
in loops would often overwrite large sections of the stack.

7.2.2. Benchmarks. Our experiments use seven benchmarks from the StreamIt bench-
mark suite [Thies et al. 2002]. These are either multimedia processing applications or
kernels for such applications. These benchmarks were primarily selected due to the
suitability of multimedia applications for error-tolerant computation. In this work, we
insert the S_BEGIN and S_END instructions around the location of each StreamIt
filter function call. After profiling the applications in error-free runs to determine the
scope execution bounds and other static scope information, we run them with our
modules activated for error-prone operation.

The StreamIt compiler produces corresponding C++ code. An open-source MP3
encoder/decoder library (http://lame.sourceforge.net/) compresses a recorded signal and
decodes it to the StreamIt C++ back-end’s preferred format. The StreamIt java imple-
mentations provide the JPEG encoder/decoder; we use these implementations to encode
a raw image and decode it to the preferred back-end format. We run the benchmarks
with varying MTBEs to see how the corresponding application output changes and
which error types are prominent for the acceptable ranges of the output quality. For
each MTBE, we do 10 runs using different seeds for the random number generator of
the error injector. The simulation runs to measure end-to-end error impact on program
output use full-length application runs on the simulated machine, whereas other error
characterizations use a truncated version (the first 50ms measured on the machine)
due to long simulation times.

7.2.3. Experimental Results. Here, we first characterize catastrophic errors in terms of
their frequency and execution impact. Second, we study the efficacy of the proposed
protection mechanisms on application output quality for JPEG and MP3.

Characterization of Catastrophic Errors. Prominent Error Types Handled by Protec-
tion Modules: Figure 10 shows how often different protection handlers are invoked for
each type of error. An MTBE of 256k instructions is high enough to maintain accept-
able output quality and low enough to analyze the effects of errors (see Section 7.2.3).
The figure shows that memory write and read failures are the most common failures
experienced—up to an order of magnitude more frequent than architectural bit flips
themselves. (Consider, for example, if a bit flip occurs in a pointer used for several
memory accesses.) Write failures are more frequent than read failures because an ap-
plication usually has read permissions for address ranges that it can write to, but the
converse is not true. For applications with more complicated control flow, forced scope
exits are also prominent.
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Fig. 10. At an MTBE of 256k instructions, the most common error types are memory address errors (read
and write accesses to nonpermitted memory regions) and, in some benchmarks, forced scope exits (due to
execute access errors, processor exceptions, or exceeding an instruction count limit). Shaded bars show total
event counts (e.g., memory accesses) and patterned bars indicate the number of events experiencing an error.
The last bar per application shows the average number of bit flips injected into the architectural registers.

Effects of Illegal Instruction Fetch: As Section 4 discusses, an execute failure occurs
due to an illegal instruction fetch. Without the MFU, trying to execute the correspond-
ing memory location would likely fail, and the next memory location would be illegal
too. This would effectively be a program crash, and Figure 12(a) shows results related
to this issue. Only two of our applications ever experience execute access failures. The
failures for fft start for MTBE ≈ 106 instructions, and for mp3decoder they start for
MTBE ≈ 105 instructions. In our system, the MFU detects such accesses and the MIS
initiates scope recovery. Even though this may cause data errors for the computation on
the current block of data, the streaming application can use scope recovery to withstand
this error and continue execution with useful results (see Section 7.2.3).

Errors Causing Application Hangs: While the MFU could enable some error-tolerant
operation, it would be insufficient without the MIS. In particular, without the MIS’s
ability to keep control flow on track, errors not only affect program and address values,
but they also cause the programs to hang and fail to reach the end of the computation.
Figure 12(b) shows that fft, jpegdecoder, and mp3decoder would hang (runtime higher
than 20×) at an MTBE as infrequent as ≈ 106 instructions. As Section 7.2.3 shows,
our modules enable computation with acceptable outputs for even more frequent errors
executing strictly fewer instructions than the given limit.

The MIS guarantees that the scopes do not exceed their instruction limits; however it
cannot eliminate all performance overheads that may be caused by errors. For example,
an error-free run may exercise shorter paths of the control flow, whereas an error-prone
run may erroneously choose longer paths, hence causing a performance overhead.
StreamIt applications do not exhibit this behavior in our experiments. In contrast, for
high error rates, applications exit loops early, causing the application to complete faster
but with degraded output quality.

Effects of Errors on Application-Level Quality Metrics. Our second set of experiments
assess how low-level hardware errors affect application-level quality metrics with the
protection modules in place. We focus on two important applications due to their wide
adoption and ability to tolerate errors. JPEG is a widely used lossy image compression
standard, and MPEG-2 Audio Layer III (MP3) is a widely used lossy audio compression
standard. For a given raw signal X, they define a compression algorithm to produce
a smaller file Y and also a decompression algorithm to reproduce the output signal
Z. However, due to information loss in the compression stage, the output Z is not the
same as input X. SNR [Stathaki 2008] is a common metric to quantify this difference.
We use SNR to quantify the change that lossy compression introduces, even assuming
error-free hardware. Next, we run the decompression stage through our simulator and
calculate the SNRe of the output from error-prone hardware, Ze. Comparing SNR with
SNRe provides a useful metric for the quality of the output of the error-prone run for
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Fig. 11. Image outputs from the JPEG decoder benchmark at different Mean Time Between Errors (MTBEs)
from the same seed for the random number generator.

Fig. 12. (a) Applications experience hangs (infinite looping) with the Mean Time Between Error (MTBE)
as high as every ≈ 106 instructions. Hangs are more common with increasing error rates. (b) Without the
MFU, we define an illegal instruction fetch as a crash. fft and mp3decoder experience crashes, particularly
for MTBEs of 128K instructions or less.

a given MTBE. As before, we perform 10 runs to capture the statistical variation of
SNRe across runs.

Figure 13(a) shows JPEG benchmark results. With very frequent errors, SNRe is
close to 0dB, meaning that output error is as prominent as the signal itself. As errors
become less frequent, however, SNRe improves and reaches SNR.

Figure 11 presents images for two SNRe values. With an MTBE of 2048k instruc-
tions on average, there is little visible error. In fact, SNRe matches SNR even though
the protection mechanism has actually handled 19k memory errors. When the MTBE
reaches 32k the image is visibly corrupted but still quite recognizable. At this point,
the program has withstood ≈ 106 memory errors, 10 forced scope exits due to instruc-
tion limits, 1 illegal instruction fetch, and 2 processor exceptions. Note that due to the
streaming nature of these applications, the errors show up as lines in the image. Since
a StreamIt application works on a block of data per iteration, and crucial variables
such as buffer pointers are reinitialized at every iteration, a corruption burst is cleared
in the following iteration. Interestingly, we did not alter the application to have this be-
havior; this “partial restore” of buffer indices is natural to StreamIt. These experiments
highlight how our lightweight hardware additions enable programs to withstand and
recover from error in order to produce useful results.

Figure 13(b) for the MP3 decoder shows similar trends. However, in contrast with
JPEG, here the SNR can go to negative values. This is because of data represen-
tation. The JPEG application efficiently uses the 8-bit each of Red-Green-Blue per
output pixel, so even the highest error power is comparable to the original signal
power. However, MP3 represents the audio output signal as pulse code modulated, so
the bit utilization depends on sound volume. Since an error can make arbitrary out-
put signal changes, our output can have higher power than the original, resulting in
negative SNR. More frequent errors can improve the SNR value (to zero) because,
with lower MTBEs, the application produces a zero output signal, and silence is better
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Fig. 13. Output quality of the (a) JPEG and (b) MP3 decoder algorithms running at different Mean Time
Between Errors (MTBEs). The flat line in each graph corresponds to the output quality when the decoder is
run without any errors.

Table III. Efficacy of Protection Mechanisms in Terms of Satisfying Reliability

Error in
Control Flow? Progress Ephemeral Effect of Errors

Executing Essential
States

EnerJ
No

It benefits from error-free
control flow.

It is possible to distinguish
the persistent variables and
define them as “precise.”

Approximation
methods should not
cause essential states
to be skipped.

PPU
Yes

MIS assigns a timer to
each scope and prevents
the PC from getting
stuck.

PC, SP, and BP are refreshed
periodically. But SW level
variables are neglected.

All parent scopes are
visited but child
scopes might be
skipped.

Argus

Yes

Timers are applied to
basic blocks. But getting
stuck in a loop is still
possible

Signatures could be assigned
to persistent variables to
protect them. However,
signatures are not fully
reliable.

Proper signatures
might be helpful to
satisfy this property.

ERSA Yes
SRC does not let RRCs to
get stuck. But the system
as a whole might get
stuck.

Persistent variables in SRC
are error-free. But this is not
necessarily true for
persistent variables in RRCs.

In case the system
does not get stuck,
application-based
sanity checks are
helpful for satisfying
this property.

than noise. The reader can listen to different sounds for different error rates here:
http://youtu.be/2XhZxbNz7Lk.

8. RELATED WORKS

We now discuss some of the related works in reliable system design using redun-
dancy, error correction, recovery, and other methods. We then discuss the efficacy of
the provided protection mechanisms in terms of satisfying the reliability properties of
progress, ephemeral effect of errors, and executing essential states (Table III).

8.1. Error-Resilient Hardware

The error-resilient designs protect hardware against errors by either preventing the
transient error from happening or by detecting and correcting all those errors. Storage
units, such as SRAM, are protected by ECC [Alameldeen et al. 2011]. Logic units, on
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the other hand, might be protected by using larger transistors or higher voltages or
through error correction [Kuhn et al. 2011; Mukherjee 2011]. Razor detects timing
errors in the critical paths by redundant shadow latches [Ernst et al. 2003].

DIVA: DIVA is an example of an error-resilient processor that uses error detection
techniques. In this work, the whole processor is protected against errors by adding a
reliable checker immediately preceding the commit stage [Austin 1999]. The checker is
fed with the operands and the op-code of each instruction to replicate the computation.
In case of inconsistency in the results, the failing instruction is repeated. In this way,
all errors in the computation are caught and corrected.

Reliability Properties in DIVA: The main advantage of error-resilient computa-
tions is reliability. Designs that use error-resilient computations can target all types of
applications regardless of the applications’ error-tolerance. However, protecting against
all errors may be expensive in terms of the area, power, and delay overhead.

8.2. Error-Tolerant Data Flow

The requirement of achieving perfectly correct results can be relaxed for inherently
error-tolerant applications, such as media. Leveraging this feature, error-tolerant ac-
celerators incur lower overhead cost while adequately handling computational errors.
For instance, Algorithmic Noise Tolerant (ANT) accelerators mitigate data errors by
adding estimator blocks to the error-prone computational units [Hegde and Shanbhag
1999]. Alternately, N-Modular Redundancy (NMR) diminishes error probability by
leveraging redundancy. In this method, the output is the majority vote of N identical
units processing the same input [Kim and Shanbhag 2012].

Additionally, some processors let errors propagate in their data flow while keeping
the control flow error-resilient.

EnerJ: EnerJ is an example of a processor with error-tolerant data flow [Sampson
et al. 2011]. EnerJ proposes a new programming language (EnerJ) that isolates the
precise part of the computation from the approximate part. This allows the approximate
part to be run on error-prone hardware. To avoid control errors, they do not let control
flow elements, such as pointers, be approximate.

Reliability Properties in EnerJ: EnerJ satisfies the progress property by relying
on error-free control flow. It can additionally satisfy the ephemeral effect of errors
property by marking the persistent variables as precise. Since EnerJ runs the precise
computations on reliable hardware, the persistent variables would be protected. EnerJ
also satisfies the execution of essential states if the approximation mechanisms never
include removing essential states. Otherwise, this property might be violated since
EnerJ does not verify the accuracy of the approximate part of the data flow.

8.3. Error-Tolerant Data and Control Flow

Control flow is generally less error-tolerant than data flow since even a single error
in the control flow can cause catastrophic effects. Control error-tolerant processors,
like PPU, include architectural mechanisms that protect against fatal errors while
permitting potentially tolerable errors.

Argus: In Argus, error is injected and propagated in both data and control flow
[Meixner et al. 2007]. To protect the processor, errors are detected and corrected apply-
ing the following methods: (i) Argus prevents wrong transitions in the CFG by declar-
ing the boundary of basic blocks before the runtime. (ii) Argus leverages signatures
in computations, where signatures are reliable estimations of respective variables and
are computed at compile time. (iii) Argus protects memory elements using parity bits.

Comparison with PPU: (i) PPU does not prevent wrong transitions in the CFG;
however, it forces the right order of scope retirement. (ii) PPU also leverages compile-
time computed static information in the MIS table (e.g., base pointer and stack pointer
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values at the beginning of each scope) for supervising the control flow. (iii) PPU does
not use parity checking.

Reliability Properties in Argus: The protection schemes in Argus do not fully
protect essential elements of the control flow, such as PC or loop counters. Therefore,
Argus might violate progress. On the other hand, the signature mechanism in this work
is promising for satisfying essential states and ephemeral properties. The accuracy of
persistent variables could be tracked by assigning signatures to those variables. Also,
by using proper signatures, visiting essential states could be verified. However, it is
not a fully reliable mechanism since signatures are built on the error-prone hardware.

ERSA: ERSA is another processor with error-tolerant control flow [Cho et al. 2012].
ERSA runs the main control flow on an error-free core (SRC), which assigns the compu-
tational tasks to cores with error-prone data and control flow (RRCs). (i) SRC supervises
the RRCs and reboots them in case of hangs or crashes. (ii) SRC also verifies the ac-
curacy of RRC computations by applying application-based sanity checks. In case of
unacceptable results, SRC reschedules the corresponding task.

Comparison with PPU: (i) The MIS in PPU terminates the scopes in case of hangs
or crashes. (ii) PPU supervises the control flow to achieve the best-effort results. It does
not verify the accuracy of the results with application-based tests.

Reliability Properties in ERSA: Although SRC prevents RRCs from getting stuck
by rebooting them, ERSA might still violate the progress property as a whole system.
The counter example is when all RRCs keep failing in completing a task. In that case,
SRC has to reschedule the remaining task infinitely, which violates both progress and
the essential states properties. However, in addition to this case, ERSA makes sure of
executing essential states by providing sanity checks before accepting the result of each
RRC task. As for the ephemeral effect of errors, ERSA does not protect any persistent
variable at the RRC level. However, since SRC is error-free, the persistent variables
in that core are error-free. We formally verified the reliability properties on ERSA’s
programming model using a model checker [Golnari et al. 2015].

8.4. Approximate Computing

In approximate computation, the programmer decides which part of the program can
be approximated and which parts should be precise. This type of processor usually
consists of both error-prone (and efficient) units and reliable units. The critical regions
of the computation are executed on the reliable hardware while the approximate part
might be assigned to the error-prone part of the architecture. There are many works in
the literature to help the programmer with defining the boundary, mapping the critical
parts of the program to reliable hardware, and applying approximation to the rest of
the computations [Esmaeilzadeh et al. 2012a; Liu et al. 2012; Sampson et al. 2011;
Misailovic et al. 2014]. The EnerJ system provides an example of such a processor.

Applying approximation techniques, such as approximating functions at runtime
[Baek and Chilimbi 2010], skipping loop iterations [Sidiroglou-Douskos et al. 2011],
replacing deterministic units with a neural network [Esmaeilzadeh et al. 2012b], and
many other approximations techniques [Mittal 2016; Xu et al. 2016], are beneficial
in terms of energy performance. However, all these approximation techniques cause
inaccuracy in the result.

Generally, in these processors, error in the computation arises from applying ap-
proximation and using error-prone hardware. The effects of errors caused by utilizing
error-prone hardware are similar to hardware error effects in error-tolerant computing,
and, therefore, the same protection mechanisms could be applied. However, in approx-
imate computing, the programmer can decide which parts to run on the reliable part.
Therefore, it is usual to keep the control flow elements error-free in these processors
and let the error propagate in certain parts of the data flow.
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9. CONCLUSION

Emerging research in reliable computer architecture is relaxing the requirement that
processors strictly meet their ISA specification. However, they do not provide an alter-
nate specification beyond best-effort. In this article, we suggest a set of basic desired
properties for such processors to provide useful results. We show that these properties
need to be met at both the hardware and software levels and provide for a formal
system modeling and property specification for use with model checking. Based on
these requirements, we propose PPU, a novel architecture that can survive in the pres-
ence of architecturally visible errors using coarse-grained management of application
execution. The minimal microarchitectural support of PPU allows streaming applica-
tions to run on an unreliable processor with low protection overheads and still provide
good output quality. Our experimental results characterize the frequency and type
of catastrophic errors and the efficacy of the proposed protection mechanisms. Our
output quality analysis on JPEG and MP3 shows that for MTBE of less than ≈ 107

instructions, the output SNR is on par with the quality effects seen by mildly lossy
compression. The output quality is 14dB and 7dB, respectively, if the mean is 256k
instructions, and the example visual and aural datasets provide further subjective
support.

Additionally, we show how to construct a system model that includes the fault-
free behavior of PPU, the fault effects, and the protection and recovery mechanisms
provided by PPU. Finally, we use model checking to verify the reliability properties of
PPU. Furthermore, the property failures suggest ways of augmenting the design so as
to overcome this limitation. These results point to the value of this methodology in the
design of such future systems.
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