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In today’s computers, heterogeneous processing is used to meet performance targets at manageable power.
In adopting increased compute specialization, however, the relative amount of time spent on communica-
tion increases. System and software optimizations for communication often come at the costs of increased
complexity and reduced portability. The Decoupled Supply-Compute (DeSC) approach offers a way to attack
communication latency bottlenecks automatically, while maintaining good portability and low complexity.
Our work expands prior Decoupled Access Execute techniques with hardware/software specialization. For a
range of workloads, DeSC offers roughly 2× speedup, and additional specialized compression optimizations
reduce traffic between decoupled units by 40%.
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1. INTRODUCTION

The deceleration in Moore’s Law and Dennard scaling have over the years led to
the rise first of on-chip parallelism [33, 46] and subsequently of specialization and
heterogeneity [14, 35]. From data centers to embedded systems, computing devices
now all employ mixes of general purpose cores, specialized cores, and accelerators [43,
55]. Effective use of heterogeneity and specialization can, however, be complex. First,
from an Amdahl’s Law point of view, as specialized accelerators speed up computations,
the communication or memory operations that feed them represent even more of the
remaining performance slowdown [31, 54]. Thus, the long-troubling “memory wall”
becomes even more challenging in accelerator-oriented designs.

A second challenge in accelerator-oriented design lies in tailoring software-managed
communication to reduce communication cost; software complexity often increases and
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Fig. 1. DeSC overview.

performance predictability and portability usually decreases. For example, for a loosely
coupled accelerator [14, 15] with scratchpad memory, transfers in and out of it are typ-
ically tightly tailored to the scratchpad size. In addition to blocking computations to fit
the scratchpad, programmers must also work to maximize the overlap of computation
and communication. Even worse, small variations in such storage’s capacity or port
count can require designs and codes to be rewritten or reoptimized.

Relative to scratchpads, cache memories can seem preferable in terms of program-
mer effort and software portability, but many issues remain. For example, caches still
require programmer effort to balance computation and communication. In addition,
by exposing variable communication latency to the accelerator, caches can end up re-
quiring a more conservative hardware design, either regarding computation speed or
regarding the use of at-accelerator data buffering. Finally, a cache’s demand-fetched
and line-at-a-time nature can incur performance overhead when compared to a care-
fully managed scratchpad memory system.

In order to attack the aforementioned challenges, our work seeks to improve the
performance, programmer effort, and software portability of heterogeneous systems.
Decoupled Supply-Compute (DeSC) is a communication management approach that
aims to provide the performance and energy efficiency of scratchpad memory, while
offering programmability similar to a cache-based approach. Inspired by the Decou-
pled Access/Execute (DAE) architecture model initially proposed by Smith [50], DeSC
employs compiler techniques to automatically separate data access and address cal-
culations from value computations. Once separated, each slice is targeted at different
hardware—either general-purpose cores or specific accelerators tailored to their role.

Figure 1 shows an overview of the proposed framework. DeSC decouples host data
memory access, performed by a Supplier Device (SuppD), from value computation per-
formed by a Computation Device (CompD) using an LLVM-based compile-time frame-
work. Program source code is input to the DeSC compiler, which then divides the
original program stream into the communication slice on the SuppD device and the
computation slice on the CompD device.

In running the communication slice, the SuppD fetches and provides necessary mem-
ory data to the CompD running the computation slice. On the other side, the CompD
receives input data from the SuppD, performs value computations, and where needed,
pushes output back to the SuppD to be stored in memory.

Decoupling communication from computation has several advantages. First, the
SuppD can be tailored to the needs of address computation and memory access. Units
can be appropriately sized for a memory-heavy workload, and the SuppD need not in-
clude floating point units, for example. Second, the SuppD can run ahead of the CompD
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Table I. Decoupled Code Example

Original AP slice EP slice
for (i=0; i<100; i++) {

v1 = LOAD(&a[i]);
v2 = LOAD(&b[i]);
val = v1 + v2 * k;
STORE(&c[i], val);

}

for (i=0; i<100; i++) {
v1 = LOAD(&a[i]);
PRODUCE(v1);
v2 = LOAD(&b[i]);
PRODUCE(v2);
STORE ADDR(& c[i]);

}

for (i=0; i<100; i++) {
v1 = CONSUME();
v2 = CONSUME();
val = v1 + v2 * k;
STORE VAL(val);

}

to hide memory latency. Third, a chip can be provisioned with arbitrary mixes of Sup-
pDs and CompDs to strike a good balance for an expected workload. Having evaluated
DeSC using LLVM and Sniper, our contributions are:

• We propose a DeSC framework that automates and optimizes communication for
heterogeneous systems.

• We improve the original DAE by introducing hardware/compiler support to ben-
efit from out-of-order communication and out-of-order commit of terminal loads
(Section 3).

• We introduce novel architectural support and compiler optimizations to avoid Loss
of Decoupling events (Section 5).

• We present a compression scheme to reduce traffic between the supplier device
and the compute device, which allows DeSC to be deployed in more bandwidth-
constrained scenarios (Section 6).

• We evaluate the optimized DeSC approach with modern accelerator workloads and
explore specialization opportunities (Section 7).

• We use DeSC to significantly improve on-chip accelerator performance compared to
a baseline accelerator with its own cache (Section 8).

2. MOTIVATION

2.1. Decoupled Access/Execution (DAE)

DAE architecture model was proposed by Smith [50] in an early attempt to over-
come memory wall issues while retaining implementation simplicity. DAE divides a
program into two independent streams, one containing all memory-related instruc-
tions (including address calculation and memory accesses) and another containing all
compute-related instructions. A pair of Access Processor (AP) and Execute Processor
(EP), connected by several First-In, First-Out (FIFO) queues, are responsible of exe-
cuting both streams. DAE improves memory latency tolerance, since the AP can run
ahead of the EP while overlapping data accesses with computation.

Table I shows an example of program code split into access and execute portions.
Data items a[i] and b[i] must be accessed from memory and then passed over to the
execute side for computation. While different implementations vary, in some DAE-
style systems, specific instructions such as PRODUCE and CONSUME would support this,
and DeSC adopts this approach. The code example also illustrates that in DeSC, a
STORE instruction in the original program is split into STORE_ADDR and STORE_VAL to
decouple address computation and value computation.

Prior work has explored many different aspects of the DAE approach [1, 4, 16, 29, 50],
but they do not specifically focus on data supply challenges for heterogeneous systems.
Our work more fully embraces today’s specialization trends by assuming that the
CompD has no direct access to memory (much like current loosely-coupled accelerators
or DySER [24]) and that the SuppD is specialized for data supply.
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Fig. 2. Motivational example for DeSC. For the code in Table I, the dynamic instruction schedules are
shown for several architecture models. Some instructions (address computation/stores) were omitted for
clarity. Arrows represent a data communication between both sides on decoupled cases. ROB size of 4- and
2-issue width are assumed for OoO cores. Outstanding loads are limited to 4. Each column can be understood
as the occupancy of either the ROB (OoO cases) or the MSHRs (in-order case).

2.2. Challenges in Out-of-Order DAE

Figure 2 motivates our work by showing execution timelines for the same operations
(following the example code in Table I) on different architectures. Using small ROB and
MSHR sizes, the figure illustrates key bottlenecks that different approaches experience
or overcome. DeSC’s goal is to reduce or tolerate different types of memory or execution
latencies to run programs faster and use hardware more efficiently.

In-order DAE architectures (Figure 2(b)) were originally envisioned as a lower-
complexity latency tolerance alternative to out-of-order processors (Figure 2(a)).
However, they are not exclusive approaches. In fact, Figure 2(c) shows them as
complementary latency-tolerance techniques. One limitation with both approaches in
Figures 2(b) and 2(c) is that all communications need to happen in order. The original
DAE idea [50]—striving for simplicity compared to then-nascent OoO ideas—had to
perform communication in-order, because the computation device was an in-order
core with only access to the head of a queue. On the other hand, an out-of-order DAE
architecture (as in Figure 2(c)) still requires in-order (commit time) communication to
avoid propagating mis-speculated data. In such cases, even if a later load (in program
order) has lower memory latency, its data cannot be passed to the EP until all earlier
loads are completed.

One way of achieving out-of-order communication in an OoO DAE is simply insert-
ing data into communication queues at issue time (i.e., out-of-order) as in Figure 2(d).
This speculative approach can communicate data earlier at the expense of propagat-
ing mis-speculated data, making it necessary to flush communication queues on all
mispredicted branches. As we will show later, DeSC (Figure 2(e)) overcomes this limi-
tation by supporting out-of-order communication without complex speculation recovery
mechanisms.

Even with out-of-order communication, Figure 2(d)’s design still fails to achieve
significant performance improvement. This is because its instruction commit happens
in-order. For example, in Figure 2(d), after communicating a short-latency Load B,
another load cannot be issued, since the long-latency Load A blocks the commit of
Load B and its ROB entry cannot be freed. A similar argument applies to the in-
order core case. While the original DAE assumed fixed memory latency and thus all
memory requests naturally returned in-order without extra structures (e.g., load queue,
MSHRs), modern memory systems with variable memory latency require structures,
like the load queue and MSHRs, to buffer returned data values to insert them into
the communication queue in program order. This requirement of non-speculative, in-
order communication (or commit) and resource constraints form a bottleneck. DeSC
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Table II. Code examples incurring in LoD events.

Case (a) Case (b) Case (c)
for (i=0;i<10;i++)

a[i] = a[i]*x;
v = a[5] * y;

v = a[i] * x;
if (v>0.5)

d = b[i];

v = a[i] * x;
d = b[(int)v];

(Figure 2(e)) overcomes this second problem by allowing out-of-order commit for certain
load instructions with architectural/compiler support (Section 3.2).

2.3. Loss of Decoupling Events in DAE

DeSC also improves on general DAE performance by attacking several of the loss of de-
coupling (LoD) events (as termed in [4, 19, 57]) that limit DAE performance. LoD events
occur when the data or control flow of the AP depends on results coming from the EP,
which limits AP run-ahead distance. There are three primary categories of inter-core
dependences that cause LoD events as described below. Our work on DeSC reexamines
DAE approaches with additional hardware/software support to reduce LoDs.
(a) Data Aliasing occurs when data is computed, stored to memory and then later re-
loaded from memory. In this case, the AP may or may not stall depending on the distance
between the preceding store address instruction and following load instruction. If the
value was not computed by the time a dependent load happened, then the AP must stall
until the value is computed by the EP and passed back to the AP. DeSC, alternatively,
uses a novel hardware optimization technique that enables store-to-load forwarding
within a decoupled scenario as we will explain in Section 5.1.
(b) Computation Dependent Control Flow occurs when a computed result deter-
mines the AP’s control flow (e.g., a conditional exit). This happens in applications where
a computed value must be communicated back to the AP to determine a branch out-
come. In such applications, the AP should stall until it receives the computed value
from the EP. DeSC uses a compiler transformation introduced in Section 5.2 to mitigate
this.
(c) Computation Dependent Data Address occurs when a computed result is used
as an address for a subsequent data load. This behavior is seen in some scientific codes
where a computed result is quantized (e.g., histogram, interpolation). In such cases,
the AP must stall until it receives the address from the EP. Section 5.3 describes our
software approach to mitigate this.

2.4. DAE AP-EP Bandwidth Consumption Challenge

One of the notable costs in employing DAE architectures such as DeSC is that they
incur significant amounts of data traffic between the AP and EP. In such approaches,
the EP does not have a cache-like structure to allow it to reuse data that the SuppD
has supplied. As a result, the AP must re-supply a data item every time the EP needs
something not present in its extremely limited local storage (e.g., register file).

AP-EP traffic can be substantial and therefore can significantly affect a system’s
performance and power. When both the AP and the EP are placed on the same die, the
AP-EP traffic exerts considerable pressure on a network-on-chip. On the other hand,
if the AP and the EP are placed on different dies (e.g., off-chip accelerator working as
the EP), this traffic places stress on often-limited off-chip bandwidth. Both of these
scenarios can easily lead to performance degradation of the overall system. To make
matters worse, as DeSC improves the performance of the data supplier with respect
to the conventional DAE, it leads to higher AP-EP bandwidth consumption compared
to DAE. Figure 3 shows that DeSC AP-EP bandwidth consumption exceeds 5GB/s in
certain applications (refer to Section 7 for evaluation details).

Fortunately, the characteristics of DeSC AP-EP traffic offer hints at ways to reduce it.
First, since the EP has no cache, data items supplied from the AP to the EP often have
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Fig. 3. DeSC AP-EP BW consumption.

Fig. 4. Hardware implementation of DeSC.

relatively high value temporal locality. That is, the exact same value is communicated
multiple times. Second, on some of the accelerator-friendly workloads, the data supplied
from the AP to the EP can have high value spatial locality. That is, the differences
within some values sent from the AP to the EP are small. To reduce the traffic between
the AP and the EP by exploiting these two characteristics, Section 6 explores a simple
and effective compression technique targeting these patterns.

3. DeSC ORGANIZATION

DeSC communication management consists of two specialized hardware units: an
SuppD and a CompD, along with a hardware-software interface for their interac-
tions and compiler techniques for targeting them. Where DAE primarily envisioned
two instruction-programmable processor cores with different roles, our work is open
to more specialization. That is, both SuppD and CompD could be either processors or
accelerators, or (as we discuss here) processors with tailoring to each of their roles.

Figure 4 shows DeSC’s hardware implementation. Grey boxes represent an ab-
stracted view of the hardware modules that either calculate the memory addresses
or compute the output values. Here, SuppD is a nearly general-purpose core—an out-
of-order pipeline with ROB, RegFile, and a number of integer functional units for
calculating memory addresses—but sizing choices are tailored to its role and no float-
ing point functional units are needed. Likewise, CompD can be another out-of-order
core or a specialized hardware accelerator for a particular application. Either way, the
CompD is tailored to its role by removing memory hierarchy access while the SuppD
supplies it with data as needed.
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Table III. ISA Extensions for DeSC

Supplier Device Computation Device
PRODUCE(Reg) Reg=CONSUME()

LOAD PRODUCE(Addr)

STORE ADDR(Addr) STORE VAL(Reg)

For data supply, a Communication Queue (CommQ) interconnects SuppD to CompD,
and feeds into a Communication Buffer (CommBuf) from which value lookup can be
performed. The SuppD also includes a Store Address Buffer for updating the mem-
ory hierarchy when a computed value is returned. Finally, Table III lists the added
instructions on both sides to support DeSC.

3.1. Communication Mechanism

The CommQ is logically a FIFO hardware queue for interconnecting SuppD and
CompD. Data items are placed into the CommQ by a PRODUCE instruction executed
on SuppD. In addition to a data value, each entry in CommQ also holds a program-
order id assigned at a PRODUCE instruction’s dispatch. In an out-of-order SuppD, data
is inserted at commit, thus guaranteeing that no mis-speculated data can pollute the
queue. Therefore, there is no need for a recovery/flush mechanism. From there, data
are transmitted to CommBuf as space is available. The CommQ size dictates the max-
imum run-ahead distance allowed between SuppD and CompD. Our evaluations use a
512-item queue. Physically, this queue can be implemented as RAM, with storage on
both SuppD and CompD sides. If CompD is a hardware accelerator, then the queue can
also be logically mapped into the CompD’s scratchpad memory.

The CommBuf is a CAM-based array on the CompD side. In addition to a data value,
each entry in CommBuf holds a program-order id originated on SuppD and propagated
from the CommQ. This id allows a CONSUME instruction (which also gets program-order
id at dispatch) to find the data produced by its counterpart. Because we do not al-
low speculative data in the queue, for every producing instruction on the SuppD side
there will be a consuming counterpart on the CompD side. If the CONSUME is dispatched
before its data arrives to the CommBuf (rare), then it remains in the CompD’s instruc-
tion window, waiting for its data to arrive. Whenever a new data is moved into the
CommBuf, the id and value are reported to the instruction window, which eventually
wakes-up the CONSUME. This CAM buffer enables data to be consumed out-of-order for
better performance, but the entry is not released until commit (enforcing that no mis-
speculated CONSUME instructions could evict any item). The CommBuf size limits the
degree of out-of-order data consumption and load reordering (we used a 64-entry buffer
for our evaluation). Compared to a single large searchable buffer, the combination of
CommQ and CommBuf lets DeSC benefit from OoO data consumption with lower area
and energy consumption.

3.2. Exploiting Terminal Loads

Decoupled execution has highest leverage when the SuppD side remains well ahead
of the CompD. To support that, the goal is to insert data into the queue as soon as
possible. Inserting speculative data to the CommQ could achieve that but would incur
large overhead when speculation turns out to be wrong. On the other hand, forcing
queue insertion to wait until traditional commit time often kills the benefit of out-of-
order processing. To overcome those limitations, DeSC allows an out-of-order commit
for limited cases called terminal loads while preserving the benefit of out-of-order
processing.
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Table IV. Code Example for Terminal Loads

Original DeSC SuppD DeSC CompD
for (i=0; i<100; i++) {

idx = LOAD(&a[i]);
tmp = LOAD(&v[idx]);
val = tmp * c;
STORE(&b[i], val);

}

for (i=0; i<100; i++) {
idx = LOAD(&a[i]);
LOAD PRODUCE(&v[idx]);
STORE ADDR(&b[i];

}

for (i=0; i<100; i++) {
tmp = CONSUME();
val = tmp * c;
STORE VAL(val);

}

Fig. 5. Out-of-order commit for terminal loads.

Terminal loads are defined as loads in which the fetched value is going to be used
only on the CompD side for computational purposes. One unique feature we will exploit
is that they have no dependent instructions on the SuppD core, which enables an early
commit as explained next. Note that in traditional processors, a load instruction will
typically have subsequent users of the data, and thus terminal loads would be rare
or non-existent. However, they frequently appear in a decoupled architecture where
a load’s consumer is commonly part of the CompD instruction stream. To the best of
our knowledge, DeSC is the first approach that exploits the specific characteristics
of terminal loads to avoid unnecessary stalls in the SuppD core due to long latency
loads and thus preventing stalls due to lack of space in the SuppD ROB. In DeSC,
terminal loads are determined at compile-time (Section 4) and thus need relatively
modest hardware support. The compiler marks them using a special LOAD_PRODUCE
instruction (on the SuppD side) that combines the original load request together with
a PRODUCE into one single instruction.

Table IV shows a code example for a terminal load. In this example, LOAD(&a[i])
is not terminal, because its value will be reused for the next instruction. On the other
hand, LOAD(&v[idx]) is a terminal one, because its value will be only used for compu-
tation purposes (on the CompD). Thus, the compiler transforms the latter load into a
LOAD_PRODUCE instruction on the SuppD slice.

Figure 5 illustrates the hardware aspects of the terminal load optimization. A
LOAD_PRODUCE instruction that reaches the head of the ROB is allowed to “partially”
commit if it is already issued. Note that partial commit happens even if it has not
completed yet (e.g., upon a cache miss still awaiting to be serviced). It is then retired
from the ROB and moved to a separate Terminal Load Buffer, a CAM-based structure,
where it will remain until the data value is received and then inserted into the CommQ.
At that point, the terminal load can fully commit, out-of-order. (Section 3.5 discusses
exception handling and consistency.) On the CompD side, its CONSUME counterpart will
eventually receive the value on a successful value lookup in the CommBuf.

It is important to note that any load in the Terminal Load Buffer is non-speculative,
since it reached the head of the ROB, and so we still enforce that no mis-speculated
data can pollute CommQ/CommBuf (similarly as for PRODUCE instructions). Second,
there are no dependent instructions on the SuppD waiting for the loaded value, so
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no special actions need be taken when the commit occurs. Because this optimization
directly enqueues the value to be passed to the CompD, it does not use either registers
or an extra instruction unnecessarily on the SuppD side. Even more, it also allows later
loads to proceed, so the SuppD ROB does not fill waiting on this load to finish.

Summarizing, even with a relatively small Terminal Load Buffer (32 entries), this
technique efficiently reduces stalls, providing significant speedup as we will show in
Section 7.

3.3. Memory Update Mechanism

After computing a value, CompD might need to communicate it back to the SuppD side,
which is the interface to the memory hierarchy. To manage that, a Store Address Buffer
(SAB) is needed on the SuppD side (Figure 4). This structure keeps information about
all in-flight store instructions in program order. Similar to the LSQ’s store queue in a
conventional processor, the SAB is a FIFO structure that supports associative searches
of a memory address to (i) detect memory dependences and (ii) allow decoupled store-
to-load forwarding (Section 5.1).The size of SAB limits the number of stores a SuppD
device can perform without waiting for CompD to generate value of the store. Our
evaluation uses a 128-entry SAB.

In DeSC, a store from the original instruction stream is split into two: one for the
SuppD in charge of providing the address and another for the CompD device providing
the data to be stored. In the SuppD, a STORE_ADDR reserves an empty entry in the
SAB at dispatch time, which holds the destination address when it becomes ready.
When this instruction reaches the head of the ROB, it can safely retire from the SuppD
regardless of whether the value on the CompD side has been computed or not. At that
point, the “awaiting” bit (see Figure 4) is set to indicate there is an outstanding store
waiting for the data to arrive from the CompD.

Note that a STORE_ADDR instruction is always paired (in program order) with a
STORE_VAL instruction on the CompD side. The STORE_VAL instruction communicates
the value back to the oldest entry (head entry) in the SAB at commit time, which checks
the “awaiting” bit. If set (which is the common case), then the entry can be freed and the
value is submitted to the memory hierarchy (and the store completes). In the rare case
of finding the “awaiting” bit not set (CompD has temporary surpassed the SuppD core),
the CompD core is stalled until the STORE_ADDR pair commits (setting the “awaiting”
bit), and we can submit the value to memory and release the SAB entry.

3.4. Control Flow Management

Different from previous DAE-based approaches that communicated branch outcomes
between access/execute processors through separate queues, the proposed DeSC frame-
work lets each side manage its own control flow independently. This is a desired prop-
erty, since DeSC is aimed at decoupled heterogeneous systems where the CompD side
could be implemented as a specialized computing accelerator with its own internal
control flow management (or as a general-purpose core with a traditional branch pre-
dictor). The SuppD side will typically implement a conventional branch predictor and
its corresponding recovery mechanism.

Two key points allow DeSC to act asynchronously in terms of control flow. First, Com-
mQs never contain mis-speculated data, a condition enforced by the SuppD commit-
time insertion policy used by PRODUCEs and LOAD_PRODUCEs. Second, the CommBuf’s
commit-time deletion policy avoids wrong evictions by mis-speculated CONSUME instruc-
tions (recall this does not prevent CompD from reading data from the buffer out-
of-order). As a result, as long as commited PRODUCEs and CONSUMEs follow matching
sequences, DeSC allows for control flow divergences with the guarantee that a mispre-
dicted path on either SuppD or CompD side will be eventually flushed, transparently
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to the other side, affecting neither the correctness of the communication nor the com-
putation.

3.5. Potential Issues and Solutions

Precise Exceptions. DeSC supports precise exceptions for most of the instructions
but there are few exceptions. If any instruction (including a terminal load) in the SuppD
ROB causes a fault, then precise exceptions are supported by letting all ongoing loads
in the Terminal Load Buffer first complete and retire (note that all instructions in
the Terminal Load Buffer are older than any instruction in the ROB) before the fault
can be serviced. On the other hand, in the case of a faulting terminal load already in
the Terminal Load Buffer, the evaluated implementation of DeSC does not support a
precise exception. Alternatively, in a processor where a fault can be guaranteed to be
detected in certain fixed cycles from the issue time, precise exceptions on terminal loads
can be supported by letting a terminal load move to the Terminal Load Buffer only after
that amount of cycles has passed since its issue time. For example, precise exceptions
can be supported for page faults by letting a terminal load move to the Terminal Load
Buffer only upon a TLB hit (recall that partial commits happen when a terminal load
reaches the head of the ROB and by that cycle the TLB has been commonly proved),
otherwise forcing the terminal load to continue in the ROB.
Deadlock Prevention. To save on area and power, the CommBuf has limited size
(assume N), and thus CompD can only consume from the N oldest (in program order)
instructions that were inserted into the CommQ. If the out-of-order commit aggres-
sively reorders many terminal loads, then it might allow N or more younger terminal
loads (or produce) to pass an older one. If those younger N fill up the CommBuf, then
it is possible (though unlikely) that none of the CompD’s in-flight CONSUME instructions
would be able to find their data (if they all were waiting for older terminal loads). In
that case, both the CompD and SuppD would stall, resulting in a deadlock.

To prevent this, our deadlock avoidance mechanism limits the degree of reordering
(i.e., how many younger terminal loads or produce can “pass” a given terminal load). The
mechanism works as follows: each new terminal load buffer entry resets its “counter”
field to zero (see Figure 5). When a LOAD_PRODUCE fully commits, all older terminal
load’s counters are incremented. Similarly, when a PRODUCE commits, all terminal load’s
counters are incremented. If the oldest entry’s counter ever reaches N-1, then it must
commit before other entries. This mechanism guarantees at least one item in the
CommBuf to be the oldest data that has not been consumed, thus, avoiding deadlocks.
Note, however, that the CompD still has N-1 out-of-order items in the CommBuf to feed
from. Our experiments (CommBuf with N = 64) show this mechanism has negligible
performance impact for almost all workloads.
Memory Consistency. As explained in Section 3.2, DeSC benefits from out-of-order
commit for terminal loads. By doing so, we give up the capability of supporting load-
to-load ordering and store-to-load in hardware for better performance. On the other
hand, DeSC guarantees store-to-store ordering (with in-order memory update) and
load-to-store ordering (store can only be visible when both STORE_ADDR and STORE_VAL
commits). This results in a unique memory consistency model that is stronger than
some weak memory models (e.g., ARM, POWER) but weaker than stronger memory
models (e.g., x86-TSO). If a stronger consistency model is desired for some instructions,
then the Instruction Set Architecture (ISA) additions could include additional ordering
enforcement constructs.

4. DESC COMPILER SUPPORT

The communication slice is responsible for all loads; it supplies required data to the
computation slice using PRODUCE or LOAD_PRODUCE instructions. The communication
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Table V. Input for the Slice Construction Algorithm

Slice Starting Set Operands Not Tracked Disallowed Instruction
Communication Slice Load and Store Value operand of Store Fadd, Fmul, Fdiv, and so on

Computation Slice Store Addr operand of Store Load

slice is also responsible for all address calculations for both loads and stores. Store
instructions in the original code are split into a STORE_ADDR instruction for the SuppD
and a STORE_VAL pair for the CompD.

The computation slice has the following characteristics. First and foremost, since it
has no direct memory system access, it cannot have load or store instructions. Instead
of loads, it uses a CONSUME instruction to receive the data from a communication slice.
In addition, the computation slice performs all of the program’s value computations.
Where those are to be stored to memory, the CompD calculates the data values and
asks the SuppD to handle their storage using the STORE_VAL instruction. To generate
the code slices, the compiler goes through three primary steps as discussed here.
1. Slicing: Using a fairly standard compiler slicing approach [58], a backward slice is
constructed for SuppD and another for CompD. In each case, the algorithm extracts a
subset of the program based on propagations backwards from the starting set given in
Table V. If it encounters a disallowed instruction during the process, then the propaga-
tion stops. Instead, values needed at these points will be received from the other slice
through special instructions that are inserted in later compiler stages.
2. Communication: The second compiler stage inserts decoupling instructions to
appropriately link SuppD and CompD value communications. Within this stage, all
load instructions from the original program must be replaced by a PRODUCE instruction
inserted into the communication slice and a corresponding CONSUME instruction in the
computation slice. Compiler dependence analysis identifies terminal loads by checking
for dead values on the SuppD after the point of the load. In such cases, the LOAD_PRODUCE
instruction is used instead of a PRODUCE, to indicate terminality and allow for commit
optimizations.

Similarly, store instructions must be handled as well. All stores in the communication
slice are replaced with the STORE_ADDR, while the store counterparts in the computation
slice are replaced with the STORE_VAL instruction. For rare cases when a communication
slice needs to receive the value from a computation slice, a special identifier (or magic
address) is used to indicate that this store is for CompD to SuppD communication. Thus,
STORE_ADDR(MagicAddr) and Load(MagicAddr) are inserted into the SuppD slice while
a STORE_VAL instruction is added to the CompD slice.
3. Integrating Control Flow: Finally, a third phase of compilation handles control
flow issues, particularly between the SuppD and the CompD. By default, both slices in-
clude all instructions that terminate basic blocks (branch, jump, etc.) from the original
source code. On each side, the compiler then removes redundant instructions, because
some control flows are only useful in on one side or the other. From this simplified
set of control instructions, two backward control slices are constructed for SuppD and
CompD. In some cases, this may cause additional disallowed instructions (Table V) to
return to the code; if so, the compiler’s second step (Communication transformations)
is re-run to adjust for these.

5. LoD OPTIMIZATIONS FOR DeSC

5.1. Decoupled Store-to-Load Forwarding

To address the data alias LoD event (Figure 2(a)), this section presents a novel hard-
ware optimization that enables a decoupled store-to-load forwarding mechanism. In
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traditional DAE, the AP must stop whenever it sees a Load instruction dependent on
a previous Store whose value the EP has yet to calculate. This conservative approach
stalls the AP until the data arrives back from the EP. However, in case of being a
“terminal load” (i.e., LOAD_PRODUCE) waiting for a store value on the CompD, we can
exploit another feature: as the only purpose of the terminal load is to insert data into
the CommQ for the CompD, and the value will be originated (computed) in the latter,
there is no reason to stall the SuppD. Furthermore, the consumer of the LOAD_PRODUCE
(on the CompD) may need the data much later if both devices are decoupled enough
(or it might not even been dispatched yet). Instead of blocking the execution of the
dependant LOAD_PRODUCE on the SuppD, we let it proceed into the CommQ, eventually
reaching the CompD side, as any other PRODUCE or LOAD_PRODUCE, but carrying an index
to its producing store rather than the value itself. Once the value is computed, the
index allows the CONSUME pair to find its data on CompD.

To support this technique, a Store Value Buffer (SVB) is used to hold computed values
on the CompD side (Figure 4) in case they need to be forwarded to upcoming dependent
loads. The SVB is implemented as a FIFO array, and it is the counterpart to the SAB
(that holds addresses on the SuppD side). A STORE_VAL executed by CompD reserves
an entry in the SVB at dispatch time (to preserve the program order). It updates the
data field after the value has been calculated. In addition, a pair of global counters
are needed (one on each side) to track the number of removed entries for each SAB
and SVB buffer. By adding the number of older entries in SAB/SVB to these counters,
we can define an unique st_id per entry. Each of these global counters must be large
enough to guarantee that st_ids are always unique for in-flight instructions.

The matching mechanism works as follows. Every LOAD_PRODUCE checks the SAB for
a matching preceding STORE_ADDR. If found, then the st_id is inserted into the CommQ
(instead of a data value) and the “Fwd” bit is set. On the CompD side, the CONSUME pair
will check the “Fwd” bit for a forwarded item. If so, then it subtracts the SVB’s global
counter value from the st_id (in the data field) to obtain the entry in the SVB from
which the CONSUME will get the computed data.

Finally, a value in the SVB must be kept long enough to handle any upcoming
forwarded LOAD_PRODUCE. To precisely know when an SVB entry can be released, a per-
entry counter (“Cnt” in Figure 4) is needed on both SAB and SVB buffers to track the
number of forwarded items as follows. In the SuppD, each time a LOAD_PRODUCE finds a
match in the SAB, the entry’s “Cnt” is incremented. When a STORE_ADDR commits and
leaves the SAB, its counter is sent to the STORE_VAL pair in CompD. There, every time a
forwarded item uses the value in SVB, the counter is decremented. When the oldest SVB
entry’s counter becomes zero, it can be safely released. Sending the counter value for ev-
ery Store does not incur much overhead, since the counter can be very small (e.g., 4bit).

5.2. Conditional Branch Optimization

As stated in Section 2.3, a conditional branch depending on computation causes the
SuppD to stall until the computed value returns (Figure 2(b)). However, if executing
both paths of a branch is not as expensive as waiting until the data value returns, it
can be more beneficial to simply execute both branch paths.

To take advantage of such a case, we propose a compiler transformation with archi-
tectural support. Table VI shows the example case where this technique is beneficial.
In the base decoupled code, as the val variable depends on computation, the SuppD
has to wait until val is provided by the STORE_VAL instruction. Then, the branch will
be evaluated and both LOAD_PRODUCE and STORE_ADDR instructions will be executed if
it is taken. However, in this case, unconditionally executing the branch can be much
more beneficial than waiting for the CompD to provide the value. Thus, from the com-
munication slice, the branch and those instructions required to calculate the branch
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Table VI. Conditional Branch Optimization Example

Base Decoupled Base Decoupled Transformed Transformed
Original Code (SuppD) (CompD) (SuppD) (CompD)

val = a[i]-b[i];
if(val > 0.1)
{

tmp = LOAD(&k);
tmp = tmp + 1;
STORE(&k, tmp);

}

STORE ADDR(*);
val = LOAD(*);
if (val > 0.1) {

LOAD PRODUCE(&k);
STORE ADDR(&k);

}

val = a[i]-b[i];
STORE VAL(val);
if (val > 0.1) {

k = CONSUME();
k++;
STORE VAL(k);

}

LOAD PRODUCE(&k);
STORE ADDR(&k);

val = a[i]-b[i];
k = CONSUME();
if (val > 0.1) {

k++;
STORE VAL(k);

}
else

STORE INV();

Fig. 6. Conditional branch optimization target.

outcome are removed. Then, instructions from the branch target address are executed
unconditionally.

To adjust to these changes in the SuppD slice, the CompD slice is also transformed.
All CONSUME instructions inside the branch are moved to the point just before the branch.
In addition to these, for every STORE_VAL instruction inside the branch, a STORE_INV
instruction is added to the other path of the branch. This way, every extra STORE_ADDR
instruction executed in the communication slice will be invalidated accordingly. Note
that this transformation can potentially lead to a load exception. When an exception is
found in LOAD_PRODUCE, SuppD stalls and delay its processing until matching CompD
instruction is executed. Depending on the matching CompD instruction, the exception
can be processed (if matching CompD inst is STORE_VAL) or ignored (if matching CompD
inst is STORE_INV).

Currently, our compile framework performs this optimization for triangle and dia-
mond patterns, as shown in Figure 6 but it is also possible to apply this transformation
for more complex patterns. To avoid the potential performance degradation from con-
verting a large conditional basic block to an unconditional one, our framework only
performs this optimization when a conditional basic block contains few instructions.
More advanced heuristics based on cost-benefit analysis are also possible.

5.3. Optimizations for Computed Address

A data address that depends on computation can cause a stall, as mentioned earlier
(Section 2.3c). If the time is sufficiently large, however, between when the CompD
generates a data item and when the SuppD consumes it, then the SuppD may not need
to stall, because data may have already been updated to memory by the time SuppD
reads it. Therefore, the effect of this LoD can be reduced by using compiler techniques
that try to compute the address as early as possible, with sufficient spacing before its
use. In addition, for loops, some transformations that reduce the temporal locality of a
computed address can reduce the effect of this LoD. The most representative example
is Loop Distribution [57]. If a data address is computed and used in the same loop, then
the loop can be distributed at a point between data address computation and a load
using computed data address. When a loop is sufficiently large, this is often enough to
avoid the LoD.
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Fig. 7. DeSC SuppD-CompD Traffic Compression Overview.

Fig. 8. Block diagram for Compression and Decompression Units.

6. DeSC INTERNAL TRAFFIC COMPRESSION

6.1. Base Scheme Design and Operation

Figure 7 shows an overview of the DeSC SuppD-CompD traffic compression scheme. A
compression unit and a decompression unit (both in hardware) are placed on the SuppD
and the CompD, respectively. The compression unit compresses data in the communica-
tion queue and sends compressed data over the link, which connects the SuppD and the
CompD. The decompression unit decompresses data received from the link and passes
this data to the communication buffer on the CompD. For simplicity, this diagram omits
minor components, such as a small extra buffer or SerDes if serial link is used.
Base Compression Scheme (Figure 8(a)). In order to exploit the value locality
present in DeSC SuppD-CompD traffic, a new hardware component named Frequent
Value CAM (FVC) is introduced on the SuppD side. It is a SRAM CAM-based structure
similar to a read-only associative cache except for the fact that it uses a value for
addressing and does not have a separate data field. When the compression unit on the
SuppD receives a new value to be sent to the CompD, it checks if this value is already
in the SuppD FVC by comparing its tag to the tags of existing values in a set. If so,
then this value is encoded to a smaller-width number representing its location in the
FVC (i.e., set_id * associativity + location in a set) and the encoded value is sent to the
CompD. If the value is not present in the FVC, then it simply replaces a Least-Recently
Used (LRU) (or pseudo LRU) entry in a set and the unencoded value is sent. For both
cases, a single bit indicating whether it is compressed or not is sent through a separate
link. Assuming a 2n-entry FVC (n = 4 has been used for our experiments), the encoded
value will use (n + 1)-bits (including a single-bit compression indicator).
Base Decompression Scheme (Figure 8(b)). As a counterpart to the FVC on the
SuppD side, a new structure named Frequent Value Table (FVT) is introduced on the
CompD side. It has the same size and set structure as the FVC on the SuppD side, but
the FVT does not perform any tag search. Instead, when data is received from the link, it
determines whether this data is compressed or not by checking the single bit indicator.
If the data is compressed, then it simply reads the FVT using the compressed value,
which is an index to the FVT. Otherwise, if the data is not compressed, it updates the
FVT by replacing a LRU (or pseudo LRU) entry in a set with the newly received value.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 16, Publication date: June 2017.



Decoupling Data Supply from Computation for Latency-Tolerant Communication 16:15

6.2. Extended Scheme Design and Operation

While the base design is sufficient to capture the temporal value locality, this alone
often results in limited FVC hit rate. In order to further increase the effectiveness of
the approach, we present an extended scheme that also targets spatial value locality.
Capturing Integer Value Spatial Locality. The key goal of this design is to utilize
limited FVC spaces to cover a wide range of values. For integer values, simply dis-
carding last k bits (k = 6 has been used for our experiments) of a value and caching
the remaining bits in the FVC achieves this goal effectively. On a FVC hit, the dis-
carded last k bits are concatenated to the encoded bits and sent over the link for the
CompD. Then, on the CompD side, the encoded bits are used to read the FVT and later
appended to the last k bits to recover a full value. While this extension changes the
encoded value’s bit length by k bits, it increases the hit rate of the FVC by increasing
the coverage of each entry in FVC.
Capturing Floating Point Value Spatial Locality. For floating point (FP) values,
the range of values are not represented by the last k bits of a value, which correspond to
the mantissa portion of FP values. Instead, a range of values are more aptly represented
by the sign and exponent portion, which correspond to the first 9 bits in a single-
precision FP value. However, caching these 9 bits for a n-entry FVC often brings limited
benefit, since an encoded value will still have n (= log2 2n) bits. Therefore, we add an
even smaller four-entry FVC dedicated to compressing the 9 bits representing the
FP sign and exponent. When the compression unit receives an FP value, it extracts
the first 9 bits and checks whether it hits in the four-entry FVC. In parallel, a full
32-bit FP value is sent to the original FVC to check its presence. Upon a hit in the
original FVC, the compression scheme works as in the base case. When it misses in
the original FVC but its sign and exponent portion hits in the four-entry FVC, its sign
and exponent portion is encoded to 2 bits, while the mantissa remains uncompressed.
On the CompD side, upon receiving a compressed FP value, the decompression unit
uses the indicator bits to decide whether the whole FP number is compressed or only
the sign and exponent part, and then it decompresses them accordingly. The extended
scheme also requires a 2-bit indicator noting the type of compression. For example, 00
can indicate no compression; 01 integer compression; 10 whole FP compression; and
11 sign and exponent only compression.

7. DeSC EVALUATION: CMP

7.1. Evaluation Methodology

For cycle-level simulations of DeSC, we use a modified version of Sniper [7]. Specifically,
we extended Sniper’s cycle-level out-of-order processor model (instruction window-
centric [8]) to support DeSC’s extended ISA and proposed hardware components. Ta-
ble VII summarizes the baseline simulation parameters used. Our experiments are
run on 16 workloads from the Parboil [53] and Rodinia [10] suites. In each case, the
compiler pass operates on the regions-of-interest as marked by the suite developers
(with start-timer calls). Some benchmarks from these suites (e.g., bfs, b+tree, tpacf,
MummerGPU) are so communication-bound—with insufficient value computation to
overlap—that we do not address them. Without value computation to balance against,
DeSC is no better than a single SuppD. The compiler passes can identify imbalanced
benchmarks and only employ DeSC when promising. In addition, we excluded few
computation-intensive benchmarks to avoid redundancy while keeping three as rep-
resentative cases for them. In addition, three workloads were not included to the
experiment due to incompatibilities with the our simulation framework.

For the 16 studied workloads, Figure 9 compares the baseline performance on a
standard OoO processor to that same processor with perfect L1 cache. From this, we
classify them into four categories based on memory-boundedness.
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Table VII. Architectural Simulation Parameters

CPU 2.0Ghz 4-Way OoO Cores
32-entry Instr. Window / 32-entry ROB

L1 Cache 32KB / 4-way / 2ns Latency
L2 Cache 1024KB / 8-way / 10ns Latency

MSHR 16 MSHRs
DRAM 12.8GB/s Bandwidth / 60ns access latency

(excl. contention)
DeSC Interface 512-item Comm. Queue / 1 cycle Push Lat.

64-entry Comm. Buffer / 1 cycle Read Lat.
CommQ to CommBuf / 1 cycle Latency

128-entry SAB / SVB
DeSC Internal

Traffic
16-entry (32 bits each) / 4-way FVC and FVT

4-entry (9 bits each) / 4-way FVC and FVT
Compression (for FP sign and exponents)

Fig. 9. Workload categorization.

Fig. 10. Performance of DeSC system across different degrees of optimization compared against perfect
L1/L2 cache case. Memory-bound workloads use right Y-axis.

Workloads that get less than 5% speedup from the perfect cache configuration are
categorized as computation-bound. Workloads with 5% to 50% speedup are categorized
as moderately computation-bound. Workloads that get more than 50% but less than
100% speedup are categorized as moderately memory-bound. Last, workloads with
more than 100% speedup are categorized as memory-bound.

7.2. DeSC Performance Results

Figure 10 shows DeSC’s speedup with varying degrees of optimizations. For each work-
load, the first bar represent the baseline case where single core is running a workload.
The next three bars show DeSC (a baseline OoO core for SuppD/a baseline OoO core for
CompD) speedups for the different optimizations. The baseline DeSC (second bar) gets
little to no speedup over a single core. In particular, for workloads with LoD events,
performance was much worse than baseline case. After applying specific LoD opti-
mizations (Sections 5.1, 5.2, 5.3) for each workload with LoD event, those workloads
get significant performance improvement (third bar) compared to the case before LoD
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Fig. 11. DeSC runtime distribution graph (from left to right: base, SuppD, CompD).

optimizations were applied (second bar). The key to better performance is out-of-order
commit for Terminal Loads (Section 3.2). As shown by the fourth bar, with the Terminal
Load optimization, around 70% speedup is achieved for moderately compute-bound or
memory-bound workloads and 200% speedup is achieved for memory-bound workloads.
Since compute-bound workloads are not limited by memory performance, they see less
speedup from DeSC.

It is natural to consider comparing DeSC against other memory latency tolerance
optimizations, and with that in mind, the rightmost two bars in Figure 10 shows the
performance comparison between DeSC and perfect L1 or L2 cache cases. Perfect L2
cache (fifth bar) can be interpreted as a realistic upper bound for existing work on
prefetching techniques, which typically fetch to the L2. Similarly, perfect L1 cache
(sixth bar) can be interpreted as an extreme upper bound for prefetching techniques.
DeSC performs better than perfect L2 cache in most cases. Where perfect L2 cache
performed better (e.g., stencil), DeSC is, in fact, limited by memory bandwidth, which
does not affect the perfect cache. In cases such as spmv or backprop, histogramming
behavior or other value dependencies mean that DAE-based prefetching would not
approach these perfect L2 cache speedups due to latency on their critical path. We also
note that DeSC sometimes outperforms perfect L1. This occurs where DeSC benefits
from (i) offloading of address computation-parallelization; and (ii) lower CommBuf
access delay compared to the L1 cache.

Figure 11 shows the distribution of runtime for either baseline or SuppD and
CompD. As expected, compute-bound workloads spend most of the runtime on com-
putation while memory bound workloads spend most of the runtime on memory ac-
cesses. For many workloads, however, DeSC removes almost all the communication
time. In memory-bound workloads, where it cannot, this is either, because the sys-
tem is bandwidth-bound (nw, stencil), or because memory latency is exposed, because
the application limits run-ahead distance (path, spmv, backprop). Despite these lim-
its, memory-bound workloads still show huge speedup, because DeSC eliminates large
portion of the time spent on communication. Finally, in some computation-bound work-
loads (mriq, lavamd, cfd, hotspot), SuppD stalls frequently due to a full CommQ. In
cases like this where CompD’s data consumption speed is low, the SuppD could be
power-gated based on CommQ occupancy.

Figure 12 compares DeSC performance against a baseline OoO core with varying de-
gree of reorder buffer sizes. On compute-bound workloads, DeSC performs similarly to
the baseline with a 32-entry ROB, because its computing ability is limited by the small
CompD’s ROB size (just 32 entries). For moderately compute/memory-bound work-
loads, DeSC performance is similar to the baseline with 4× or 8× ROB sizes. Finally,
for memory-bound workloads, DeSC performs much better than even a baseline with a
256-entry ROB, because it can benefit more from its superior latency hiding capability.

Figure 13 shows DeSC speedup against a baseline OoO core with varying ROB sizes.
However, for this experiment, DeSC SuppD’s ROB size was fixed to 32 while CompD’s
ROB sizes were matched to the baseline OoO core. Speedup is pretty insensitive to
ROB sizes for the first three workload categories. In these cases, a SuppD core with a
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Fig. 12. Average DeSC performance (per category) compared against baseline with larger ROB.

Fig. 13. Average DeSC performance (per category) across varying ROB sizes. Memory-bound workloads use
right Y-axis.

32-entry ROB is enough to maintain the benefit of DeSC, achieving a performance close
to a baseline with perfect L1. On the other hand, for memory-bound workloads, the
average speedup decreases with increasing ROB size. This is because (i) SuppD with
ROB = 32 fails to supply enough data for increased CompD capability; and (ii) external
factors such as memory bandwidth (or issue width) that limits the increase in perfor-
mance (resulting decrease in relative speedup). However, note that DeSC still shows
1.6×–3× speedup over a single OoO core with varying ROB sizes for memory-bound
workloads.

7.3. DeSC Runahead Distance Analysis

Figure 14 shows the average occupancy of both the CommQ and the CommBuf (i.e.,
average number of items residing in either communication structure) at run time for
each workload. This is often a good indicator for the SuppD runahead distance. As
shown in the figure, most of non-memory bound workloads have occupancy close to the
theoretical maximum (512 in our setup). Two exceptions are cutcp and srad, where
their runahead distance is limited by LoD events and the Store Address Buffer (SAB)
size. These high queue occupancies indicate that the SuppD’s data supply rate exceeds
the CompD’s data consumption rate. On the other hand, most memory bound workloads
exhibit low CommQ and CommBuf occupancy. This indicates that their data supply
rate (even with DeSC Optimizations—Section 3.2, 5) is acting as the bottleneck for
DeSC performance.

On the other hand, Figure 15 shows the average lifetime of supplied data. This shows
the average time a data value spends inside the CommQ and the CommBuf. Usually,
this metric is highly correlated with the CommQ and CommBuf occupancy shown
in Figure 14. The key difference is that this metric shows the runahead distance
in a time scale, rather than in the number of PRODUCE instructions executed in the
runahead region. For example, while workloads like lud, kmeans, and sgemm exhibit
high queue occupancy, they show relatively lower supplied data lifetime, because the
data consumption rate on the CompD is high (i.e., less computation between CONSUME
instructions).
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Fig. 14. Average CommQ+CommBuf Occupancy.

Fig. 15. Average Supplied Data Lifetime.

Fig. 16. DeSC Performance Sensitivity to the CommQ+CommBuf Size. Performance is normalized to the
base case where CommQ+CommBuf size is 512. Note that Y-axis starts from 0.85.

Another interesting analysis is to determine how DeSC performance is depen-
dent on CommQ size. To that end, Figure 16 shows DeSC performance with varying
CommQ+CommBuf sizes. For this experiment, the CommBuf size has been fixed to 64-
entry (as in Table VII) and CommQ size is varied accordingly. As shown in the figure,
in 10 of 16 workloads, the performance difference across varying CommQ+CommBuf
sizes were less than 1%. Even in the worst case (kmeans), the performance for 64-entry
case is within 12% of the performance for 512-entry case.

Basically, the size of the CommQ+CommBuf determines the maximum runahead
distance. By scaling them down, the maximum runahead distance becomes smaller
than the previous baseline case. First, this does not really affect memory bound
workloads, because their average runahead distance is low (as shown in Figure 14).
Since they do not achieve maximum runahead distance anyway, reducing or increasing
communication queues size does not really affect DeSC performance. On the other
hand, most of the compute-bound workloads operate at near-maximum runahead
distance, because their data production rate exceeds their data consumption rate.
In such cases, their average runahead distance in time (as shown in Figure 15) is
limited by CommQ+CommBuf size (i.e., maximum runahead distance). For example,
when CommQ+CommBuf size becomes one-eighth (64) of the base case (512), lavamd’s
average runahead distance in time (Figure 15) changes from 1.6us to 200ns. Since
this runahead distance is still large enough to avoid load latency being exposed to the
CompD, lavamd’s performance is not affected. For the same reason, the performance
of most of the compute-bound applications is not significantly affected by a reduced
CommQ+CommBuf size. Still, there are some exceptional cases, because the runa-
head distance changes dynamically during execution time. For example, if the data
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Fig. 17. DeSC Traffic w/ Compression (left to right: no compression, base compression, extended compress.).

consumption rate temporarily exceeds the production rate on a compute-bound
workload (e.g., a long-latency load is found), having a large maximum runahead (i.e.,
having more data ready in the CommQ/CommBuf) can avoid data supply disruptions
being exposed to the CompD. For this reason, a workload (e.g., lbm) performance can be
sensitive to CommQ/CommBuf size even though its average runahead distance is high.

7.4. DeSC Internal Traffic Compression Analysis

Figure 17 shows how DeSC SuppD-CompD traffic changes with the compression
scheme presented in Section 6. For each benchmark, three stacked bars represent:
(i) traffic w/o compression; (ii) traffic with the base compression scheme; (iii) traffic
with the extended compression scheme. Overall, both base compression and extended
compression schemes are effective in reducing the traffic between the SuppD and the
CompD. On average, the base scheme reduces 35% of the original traffic and the ex-
tended scheme reduces 38% of the traffic. However, the schemes’ effectiveness varies
greatly with the workload. For example, compression schemes are particularly effec-
tive for lbm, nn, and lavamd, reducing traffic by nearly a factor of 3× compared to the
original traffic. The extended compression scheme works better than base compression
scheme in 10 of 16 workloads. The extended compression scheme shows it potential for
exploiting value spatial locality but some workloads lack such locality (e.g., lavamd,
mriq); or simply the base scheme works sufficiently well just with value temporal
locality (e.g., path). In such cases, either the extra bit overhead of the extended scheme
or the limited maximum integer compression rate make it perform slightly worse than
the base compression scheme.

The next question is whether the use of a compression scheme, which incurs in
an extra latency, can hurt DeSC performance. Our experiments show that compres-
sion has no impact on DeSC performance across all workloads, even with arbitrarily
large compression/decompression latencies (e.g., 512 cycles—due to space limits, we
do not include graphs showing the negligible performance loss). The reason is the la-
tency tolerance inherent in DeSC: neither compression or decompression (in addition
to CommQ-to-CommBuf latency) is on the critical path for the SuppD or the CompD.
Thus, it does not affect the data supply/consumption rate of the SuppD/CompD. The
increased communication time between the SuppD and the CompD is pipelined and,
therefore, it is equivalent to the CompD starting a few cycles later than the SuppD.
Thanks to the inherent latency tolerance in DeSC SuppD-CompD communication, traf-
fic compression schemes can be applied at no performance overhead. In contrast, in
prior works compression and decompression happen on a likely-critical path (e.g., be-
tween processor and memory [3, 47, 56, 59]).

Finally, Figure 18 shows the effect of FVC/FVT size on DeSC internal traffic. Chang-
ing the size of the FVC/FVT has two contrasting effects on internal traffic compression
rate. First, increasing the FVC/FVT size naturally increases hit rate for FVC/FVT. As
a result, more data ends up being compressed and thus it reduces the total amount
of traffic. On the other hand, increasing the FVC/FVT size makes encoded/compressed
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Fig. 18. DeSC Internal Traffic Compression Scheme Sensitivity to the FVC/FVT size.

results wider. For example, when a 256-entry FVC/FVT is used, a compressed outcome
has 8-bit width. Analogously, for a 16-entry FVC/FVT the compressed outcome has 4-bit
width, achieving 2× better compression rate. Because of these two contrasting effects,
each workload’s traffic shows different trends with varying FVC/FVT size. While larger
FVC/FVT sizes have their own merits and drawbacks, we concluded that a 16-entry
FVC/FVT perform reasonably well across most workloads at a significantly lower cost
than larger alternative, especially with the extended compression scheme (Section 6.2),
which exploits spatial value locality.

8. DeSC EVALUATION: ACCELERATORS

DeSC on CPUs clearly offers significant performance benefits. This section explores
DeSC’s performance potential for CompDs implemented as specialized hardware ac-
celerators.

8.1. Methodology

Detailed modeling of hardware accelerator behavior is very challenging, and most exist-
ing accelerator synthesizers or modelers (e.g., see Reference [48]) do not directly connect
to the CPU simulator we require for the SuppD side. To explore the design space, we
approximate the behavior of a hardware accelerator by deeply modifying Sniper.

The core idea is to mimic the behavior of nearly-perfect operation scheduling that
would occur in a non-instruction accelerator, with performance primarily limited by
true data dependencies. In essence, this is approximated by using an OoO simulator
with as few resource constraints as possible. Thus for the performance of our kernels to
be run as if on an accelerator, we make the issue/dispatch/commit width of the processor
very large (e.g., 256), and we likewise make the ROB unrealistically large as well
(e.g., 16K). We assume perfect ICache and Branch Predictor behavior, and we change
the instruction latency to match the assumed computation latency for an accelerator
(e.g., 1ns @ 1Ghz as in Aladdin). We unroll important loops by a certain factor to
allow considerable parallelism within the kernel. Finally, to enclose the “accelerated
instructions” as if in specialized hardware, we simulate a Sync instruction just before
and after the accelerated kernel, which forces them to complete without any overlap
with preceding or following instructions.

While this model for accelerated kernels is approximate, it has sufficient fidelity to
support our goal of broad exploration of SuppD and CompD tradeoffs for accelerator-
style usage. In order to validate our approach, we compared our results against the
state-of-the art pre-RTL hardware accelerator simulator Aladdin.

Figure 19 shows these validation results for four SHOC kernels [18] that ship with
Aladdin. Across different loop unrolling factors, the validation shows that while our
Sniper approach is not highly accurate (30% on average), the accelerator execution
times are within sufficient accuracy for our design goals here.

Note that our experiments are not entirely dependent on an absolute accuracy of the
model, because we compare two cases (an accelerator with a cache hierarchy vs a DeSC
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Fig. 19. Accelerator model validation.

Fig. 20. Speedup of a accelerator CompD with varying SuppD designs over an accelerator with cache.

system consisting of a CompD accelerator and a SuppD) where both sides use the same
model.

8.2. DeSC with Hardware Accelerator CompD

Figure 20 explores the case where the CompD is a hardware accelerator. Here, the
baseline design assumes an accelerator having its own cache hierarchy (identical to
the one assumed in the OoO core). DeSC bars assume a computing accelerator having
no memory hierarchy or access (as previously described), but rather a CommQ and
CommBuf with a SuppD supplying data for it. The second bar assumes a baseline
DeSC configuration where the SuppD is a small OoO core whose parameters are as
in Table VII. Remaining bars give the SuppD more resources. On average, a baseline
DeSC performs better than cache-based accelerators in more than 60% of the evalu-
ated workloads. In the end, DeSC provides more than 50% average speedup for three
workload categories and provides around 30% for computation-bound workloads. One
interesting thing to note is that even originally computation-bound workloads can no-
ticeably benefit from communication optimization with hardware accelerators. This
is because a computation hardware accelerator, as expected, accelerates computation
greatly while leaving communication mostly intact.

There are few exceptional cases where DeSC performs worse than cache-based ac-
celerators such as spmv. Hardware accelerators integrated with the cache can issue all
independent loads between synchronization points while OoO based SuppD can only
detect independent loads within the instruction window. As SPMV has non-terminal
loads, SuppD often had limited effective instruction window, because non-terminal load
frequently blocked the head of ROB. On the other hand, hardware accelerators were
able to utilize higher levels of parallelism for loads in that case. However, as men-
tioned, this is not a general case. Usually, DeSC provides more performance benefit,
mainly because it utilizes the SuppD communication queue to dynamically manage
the communication in a fine granularity rather than relying on static coarse grained
communication synchronization planned by hardware designers.

9. RELATED WORK

Decoupled Access Execute Architecture: DAE architectures attack memory la-
tency by decoupling a program’s access and execute streams and letting them run
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largely independently while communicating data through architectural queues [39, 50,
51]. Subsequent DAE work explored implementation details [23], analyzed LoD events
[4], analyzed communication/computation balance [30], provided compiler frameworks
[57], and extended to vector processors [20]. More recent work utilizes DAE for various
purposes such as optimizing indirect loads [16], efficient DVFS [29, 34], and energy-
efficient graphics pipelines [1]. In all these articles, DAE aimed to hide memory latency
and was often viewed as a potentially simpler alternative to superscalar processors.
Our work offers an updated DAE perspective aimed not just at latency tolerance,
but also as a solution to the data-supply problem for heterogeneous or accelerator-
based processors. In addition, DeSC unifies and exploits both out-of-order and DAE
techniques.
Decoupled Architecture for Accelerators: Recent works have also explored the
possibility of applying decoupled architecture for accelerator-based systems [11, 26].
These works suggests an idea of utilizing specialized hardware accelerator for energy-
efficient data supplier. On the other hand, our work presents a lightweight extension
to an existing OoO core that enables OoO core to work as a high-performance data
supplier.
Helper Thread & Runahead for Prefetching: In addition to the split streams
used in DAE, other work has envisioned helper threads either constructed by hand
[13], compiler [32, 38], dynamic compilation [37, 60], or hardware [12], which run in
parallel with a main thread. Helper threads speculatively prefetch some of the data
that the main thread may (or may not) use, to reduce memory latencies seen by the
main thread. Similarly, Runahead execution [40], Performance-correctness explicitly
decoupled architecture [22] and Dual core execution [61] utilizes idle/extra hardware
resources to prefetch useful data before main thread needs it. While DeSC and helper
threads/runahead share latency reduction and tolerance as a goal, they operate spec-
ulatively and heuristically as prefetchers. In contrast, DeSC offers a true data-supply
solution that obviates the need for memory connections from the CompD.
Automatic Parallelization Techniques: DeSC relates to some automatic paral-
lelization research, most notably DSWP [44, 45]. DSWP parallelizes the program to
increase its memory latency tolerance utilizing a hardware-aided inter-thread commu-
nication mechanism called a synchronization array. A core difference between DSWP
and DeSC is that DSWP still targets a system where all cores have access to the
memory system while we assume only some cores able to access it, which allows us to
encompass loosely-coupled accelerators.
Out-of-order Commit for latency tolerance: Continual flow pipeline [52], Kilo-
instruction processor [17], a Flexible heterogeneous multicore architecture [42] and
simultaneous speculative threading [9] tries to avoid ROB-blocking on long-latency
loads by allowing out-of-order commits or offloading for loads and its dependent in-
structions. While the exact implementation varies, most utilize relatively high-cost
mis-speculation recovery mechanisms such as checkpointing. In DeSC, we get the ben-
efits of OoO commit of terminal loads, but our hardware is much simpler, because ter-
minal loads have no SuppD dependents and because no speculation recovery is needed.
Automated Accelerator Design: In part thanks to high-level synthesis tools [5, 6, 21,
36, 41], accelerator-centric design is easier and more widely-used than ever before. How-
ever, the burden of communication management for accelerators still primarily lies on
programmers or library writers. DeSC enables portable, low-effort, high-performance
data supply approaches.
Communication Management: Other related research has studied automating and
optimizing data communication between CPU and GPU [27, 28] or in distributed mem-
ory systems [2, 49]. While similar in motivation to DeSC, they study distinct scenarios,
such as larger memories or looser compute-memory couplings.
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Link Compression: Link compression has been one of the popular, traditional topics
in computer architecture. Most of the previous works [3, 47, 56, 59] explore how data
traffic can be compressed to reduce processor (or GPU)—memory link bandwidth. On
the other hand, our work studies how a scheme derived from such works can be applied
for a different type of traffic (i.e., DeSC SuppD-CompD) communication without any
performance degradation.

10. CONCLUSIONS

This article envisions and evaluates the DeSC framework. In its decoupling of mem-
ory and compute, DeSC is inspired by DAE, but has been updated and expanded for
modern, heterogeneous processors. With modest hardware and compiler support, DeSC
offers significant speedups both for general-purpose and homogeneous scenarios as well
as for more specialized or accelerator-centric cases. DeSC improves traditional DAE
approaches by (i) optimizing terminal loads on the supply device, (ii) offering hard-
ware and software extensions to avoid loss-of-decoupling events, and (iii) using traffic
compression schemes to reduce bandwidth consumption between the SuppD and the
CompD. These optimizations allow DeSC’s SuppD to run ahead of the CompD and avoid
exposing load latencies to the computation device. By doing so, DeSC offers average
speedups of 2.04× on CMP and 1.56× on accelerators across the evaluated workloads.
Furthermore, the use of a compression scheme reduces DeSC SuppD-CompD traffic by
around 40%, thereby allowing DeSC to be deployed for more bandwidth-constrained
scenarios. DeSC strikes an important balance in terms of “specialized generality”; DeSC
has enough specialization to offer significant performance advantages, while still being
general enough to port well across different implementations.
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