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Abstract—With the proliferation of mobile devices, an increasing number of sensing applications are using mobile sensor networks.

These mobile networks are severely energy-constrained, and energy usage is one of the most common causes of failure in their

deployments. In these networks, nodes that exhaust their energy before the targeted system lifetime degrade system performance;

nodes that run past the system lifetime cannot fully utilize their stored energy. Although much work has focused on policies to reduce

and regulate energy usage in fixed and dense networks, intermittently connected networks have been largely overlooked. Due to

variations in hardware, software, node mobility, and environment, it is especially difficult for intermittently connected mobile networks to

improve operations collectively in a dynamic environment. Here, we present and evaluate Collaborative Adaptive Targeted System

Lifetime (CA-TSL), an adaptive policy that enforces a system-wide targeted lifetime in an intermittently connected system by adapting

node energy usage to an estimated desired energy profile. For evaluation, we present both real-system and large-scale simulated

results. Our approach improves sink data reception by an average of 50 percent, and an additional 30 percent when a density

estimation technique is also employed. In addition, it reduces system lifetime variations by up to 5:5�.

Index Terms—Mobile sensor networks, energy budgeting, intermittently connected networks, recharged networks, parameter

estimation.

Ç

1 INTRODUCTION

SENSOR nodes, especially sparse mobile sensor nodes, are
subject to highly unpredictable and varied conditions

that can significantly affect their energy profile. Many
external factors, such as weather conditions, unknown
movement patterns, and inherent low-level hardware
variations, can affect a node’s energy consumption and
charging patterns. These variations create performance
variations, and thus, energy consumption variations. This
results in premature system performance degradation when
nodes exhaust their energy before the intended end of the
system deployment, or when nodes waste energy by lasting
beyond the desired lifetime of the deployment.

A predictable system lifetime allows a deployment to be
properly planned and maintained. Battery or node replace-
ment can be planned as part of deployment planning, and
thereby, reduce deployment cost. In addition, the system
will have improved performance during deployment time.

To enhance not just node, but also system performance,
system variations need to be reduced or controlled.
However, coupled with the intermittent connectivity of a
sparse network, these variations make it extremely difficult
to predict and control the energy profile of one node, and

seemingly impossible to predict the behavior of many nodes
in order to meet a particular system performance goal.

Past deployments of both fixed [6], [21], sparse mobile
sensor networks [25], and our experience with ZebraNet
[30] have shown that energy is one of the most common
failure points. The system functionality is degraded as
nodes lose power due to unpredictable lifetimes. These
deployments also make clear that merely reducing energy
consumption is insufficient. Accurate projections of system
lifetime are needed for properly planning deployment
maintenance and data gathering. In addition, well-balanced
energy usage within the system improves system function-
ality by maintaining more nodes up to the system lifetime.
Thus, our goal is to improve the predictability of system
lifetime, as well as improve node performance.

While there are adaptive methods that can reduce
variations in node performance, and hence, variations in
lifetime, they rely on real-time node collaboration [25], [30].
Hence, they require extensive real-time communication
through the entire network, and therefore, are not feasible
in intermittently connected systems. Furthermore, most
methods focus on extending, rather than achieving, a given
system lifetime. In contrast, our goal is to enable nodes to
target a particular global system lifetime efficiently, locally,
and independently of unpredictable variations in a variety
of network situations. We discuss related work in more
detail in Section 6.

This paper presents the collaborative adaptive targeted
system lifetime (CA-TSL), an efficient and effective node-
level distributed policy aimed at sparse Delay-Tolerant
Networks (DTNs). CA-TSL also allows nodes to make real-
time estimates of system-wide parameters as well as adapt
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based on node level and precalculated information. In order
to estimate global parameters in sparse and intermittently
connected DTNs (such as system energy and system
density) in real time, the system uses prediction, selection,
and combinations of opportunistic neighboring information
to make system-wide estimates. The system then uses the
estimates to adjust a node’s energy consumption dynami-
cally, thereby achieving a fixed global system lifetime even
in very sparse, intermittently connected sensor networks,
such as the real-world deployment of ZebraNet [30].

In particular, CA-TSL makes the following contributions:

. Adapts to a specified system lifetime to the
assumptions of the designer.

. Accurately predicts system parameters (such as
energy and density) in intermittently connected
networks.

. Improves data-to-sink packet delivery by up to
50 percent without prediction of system parameters,
and an additional 30 percent with such prediction.

. Reduces data delay by more than a factor of 2 for
intermittently connected mobile nodes due to pre-
dictive energy usage.

This paper is organized as follows: Section 2 provides the
details of our system. Section 3 shows results from
implementation of CA-TSL on ZebraNet hardware in an
intermittently connected situation. Section 4 shows exten-
sive Monte Carlo simulation results for charged and
uncharged networks based on parameters measured in
ZebraNet nodes under various situations. Section 5 dis-
cusses related work, and Section 6 gives our conclusions.

2 SYSTEM DESCRIPTION

This section gives an overview of CA-TSL. Our goal is to let
the overall, possibly disconnected, mobile sensor network
collaboratively agree on and target a particular system
lifetime. CA-TSL is designed to be a flexible approach,
responding both to node-level and system-level energy
variations that make the lifetime of mobile networks
unpredictable. While this collaborative technique can apply
to other aspects of the system, this paper focuses on
targeting a predetermined lifetime, especially important in
our application of ZebraNet [30]. In addition, it is designed
to be easily implementable and to function in a variety of
networks, particularly very sparse, intermittently con-
nected, mobile sensor networks.

Fig. 1 shows the overview of CA-TSL, which provides
information to the scheduling or routing layer on each
node. Designers summarize their lifetime and energy
expectations using the global expected energy usage curve
(Section 2.1). A node’s energy budgeting module uses this
input and the measurement of a node’s available energy to
determine the energy budget (Section 2.2). The energy
controller then schedules the node’s applications using the
energy budget as a reference to change the schedule
through lower layers or through application support
(Section 2.3). The actual energy consumed by the applica-
tion, combined with other uncontrollable variables, in turn,
affects the current node energy. Finally, predictive system
parameters are used to adjust the expected usage curve to
adapt to current system environments (Section 2.4).

Below are its major characteristics:

. The policy allows each node to automatically adjust
to obtain a fixed system lifetime by adapting to
predefined system energy usage target. This fixes the
target system lifetime while reducing the variation of
node lifetimes around the system lifetime.

. By using a shared energy usage target, this policy
limits the need to flood node information through
the system and thereby reduces overhead. We
discuss the overhead of our system in Section 3.2.

. In response to the policy suggestions, each local node
adjusts its energy usage in a variety of ways under its
local control. These include adjusting how often it
communicates data with other nodes, varying how
often it turns on sensing and other devices, or other
energy adjustments. It works along with other
energy-saving and energy-balancing algorithms,
such as routing and radio optimizations. This
property allows the policy to be implemented easily
in existing systems, and it allows additional improve-
ments to be developed for different hardware
peripherals offer opportunities for energy control.

. The policy uses local feedback to achieve a global
goal and adapts to an expected usage curve defined
by the designer, regardless of topology or density.
This allows the designer to explicitly control the
deployment energy usage and properly plan the
deployment.

. The policy only requires hardware to monitor total
energy and infers other information from system
peripherals. This allows easy implementation on
many platforms.

Fig. 2 shows an example of the collaborative adaptive

targeted system lifetime (CA-TSL) controlling system

communications. It shows two nodes with different amount

of energy both trying to follow the energy profile and

accumulating energy units that cannot be used.

2.1 Expected Energy Usage Curve

In order for a sensor network to achieve a long operational
lifetime, the node policy must have a global view. Yet, for a
very sparse, intermittently connected, mobile network, it is
impossible for individual nodes to achieve this through

communications alone. Therefore, in order for distributed
nodes to achieve a targeted global lifetime, all nodes target a
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Fig. 1. Block diagram of CA-TSL, which provides information to the
scheduling or routing layer on each node. With a globally defined energy
expectation (Section 2.1), the node budget (Section 2.2), and then
control the schedule through the application or the routing layers
(Section 2.3). Global information is processed to improve understanding
of its surroundings (Section 2.4).



designer-defined expected energy usage curve, which
defines the expected time-varied system energy usage.
Curves could be picked at design time or can be collabora-
tively adjusted based on a global predefined algorithm as the
system runs. The system designer defines the basis of this
curve in advance by basing it on the expectation of the
particular sensor application. CA-TSL then automatically
modifies it by incorporating predicted global parameters.

A variety of energy curves can be defined, depending on

the application. Fig. 3 shows examples of various cases. To

allow the network to achieve consistent performance

throughout the system lifetime, a linear expected usage

curve (Fig. 3a) with starting point equal to the initial energy

budget can be used. In charged systems, a constant (Fig. 3b)

can be used. In periodically charged systems, a sawtooth

curve (Fig. 3c) can be used to allow for different charge rates

during day and night. Curves need not be linear. The

introduction of an expected energy curve simplifies the

system design for different applications, since only this

curve needs to be changed and the system will adapt. This

centralizes energy use goals of the system and allows for the

stable estimated global parameter incorporation described

later.

2.2 Energy Budgeting Module

CA-TSL’s energy budgeting module runs and allocates

energy on each node during each time frame. The example

shown in Fig. 2 demonstrates the energy units allocated in

each time frame, based on the difference between the

expected energy curve and the actual node’s current energy.
Deployed sensor networks can exhibit large energy

variations, even within the same deployment. These large
variations make it difficult for many control algorithms to
react quickly and maintain stability. To mitigate this
problem, we implement a step feedback method, where
several different thresholds set the quantity of change in
energy budget. With this method, when the node’s current
energy state exceeds certain thresholds around the expected
energy usage, the node sets its allowable energy budget
corresponding to that threshold. The current energy state,
that corresponding to the difference from the desired
energy level, is calculated as shown in (1):

E ¼ E �EcðtÞ þ Iapp: ð1Þ

Here, E is the energy measured, EcðtÞ is the function

describing the expected energy reserve at a given time, and

Iapp is the application importance input described later.

Budgeted energy Eb is discontinuous and is calculated

by (2).

Eb ¼ Eo

XN
i¼0

uðE � ElðiÞÞ; uðaÞ ¼ 0; a < 0;
1; a > 0:

�
ð2Þ

Here, Eo is the maximum total amount of energy that all

applications can consume in a given time frame, uðaÞ is the

step function, ElðiÞ is the threshold energy for each energy

level, and N is the maximum number of energy levels.
The energy budget module is the decision center for the

control loop of CA-TSL (Fig. 1). This one-cycle control

method has some characteristics of both on/off control and

proportional control. While providing smoother feedback

than on/off control, it does not exhibit stability issues

related to continuous proportional control. In addition, with

maxðElðiÞ=2Þ away from the optimal energy budget, it

allows a closer approximation to the optimal energy budget

than does simple on/off control. Furthermore, when the

energy status changes, this approach gives a rapid transi-

tion to the optimal operating range with negligible over- or

undershoot. With N set to a low number, this calculation is

quick, only consisting of addition and if statements.
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Fig. 2. CA-TSL policy adapting to an energy usage curve. In this

example, node A meets another node first and uses its allocated energy.

Then, node A meets node B, and node A uses all its allocated energy

while node B does not. Later, Node B uses its energy with another node.

Fig. 3. Some possible options for the expected energy usage curve; L
is the targeted lifetime for noncharged systems. (a) Expected usage
for a noncharged system. (b) Simplistic usage for a charged system.
(c) Expected usage for a solar-charged system.



CA-TSL requires knowledge of the current node’s energy
level in order to determine the energy budget; a battery
gauge is used for this purpose. While battery gauges have
been known to be inaccurate, their performance in this
respect has recently improved. After initial battery pack
calibration, some lithium ion battery gauges are able to
maintain an accuracy as high as 99 percent even after
months of use [22].

2.3 Energy Control Module

During each time frame, the energy control module receives a
energy budget; it then controls the energy usage of the node it
resides on using two control methods, shown in Fig. 4,
depending on the environment and the node design. One
method is duration management, which modifies the length
of time for which a peripheral can execute. For example, the
radio is given different maximum bandwidths in order to
alter its energy profile. Another method is operation rate
modification, which modifies how often the application runs
[2], [10]. Both of these methods apply to typical sensor node
peripherals such as radios and sensors. We use these methods
in our experiments in Sections 3 and 4. Our framework is
general enough, however, to employ other energy modifica-
tion approaches offered by other hardware.

Multiple applications can be present on each node, such
as GPS data gathering, other sensing, and radio commu-
nication. Within each time frame, the control module runs
multiple applications based on a predetermined schedule
for serialized applications. The energy budget in this case is
used to determine the number of times the application will
run in each time frame. The controller uses a fixed ratio to
share energy between applications that run in parallel, but
priority-based schemes are also possible. Each fraction of
the energy budget is then used to determine the run
schedule of the application as in the serial case.

Variations in the network can prevent nodes from using
up their energy budget. For example, in the communication
module, nodes may not always have neighbors to commu-
nicate with and thereby use their energy. To account for
this, unused energy in CA-TSL nodes is rebudgeted, and so
it accumulates in each budget cycle until it can be used. The
actual communication window for the radio application is
also limited by the minimum window between the sender
and the receiver. In addition, this method also places the
overhead on the higher energy node. Nodes that have more
energy will turn on and attempt to discover neighbors,
while nodes with lower energy do not turn on. This ensures
fairness by minimizing energy consumption by lower
energy nodes.

2.4 System Parameter Estimation and Integration

In this section, we first discuss the delay-tolerant collabora-
tive technique used in the external information processor to

estimate system parameters in general (Fig. 1), and then we
use this technique in the next section to provide an example
of density estimation and its integration into CA-TSL.
Although many applications can take advantage of system
information, we focus on producing an automatic energy
target profile of CA-TSL.

The delay-tolerant collaboration technique is designed
especially for sparse intermittently connected networks,
such as DTNs. Devices in these networks rarely encounter
neighbors, making continuous direct communication
among them impossible. Furthermore, the movement of
these devices is often unpredictable and uncontrollable, so
communications cannot be prescheduled. Despite these
issues, it is desirable to obtain a best effort method for
aggregating knowledge about the network’s parameters, as
well as offering confidence levels for our estimates. This is
accomplished by not only storing information received
from previous encounters but also providing measurements
to predict parameter changes actively. Using this technique,
as shown in Fig. 5, a device/node waits for a period of time
before updating predictions of the current estimates of
system parameters. Then the nodes search for neighbors in
order to obtain new information, and this information is
then filtered for independence from the current predictions.
Finally, the information is used to update the current
predictions. Each of these steps is described in more detail
in the following paragraphs. In addition, an implementation
of CA-TSL is presented in Section 2.5.

The prediction maintains the estimation for the device
during long periods of disconnected operation. It extends
the usefulness of the received information beyond the
immediate reception time and enables delayed collabora-
tion. In this phase, the device makes a new prediction of the
parameter based on its current value and its sensor
readings. When a neighboring device with new information
comes into range, the system enters the filter phase.

The transform prevents repeated incorporation of the
same or outdated information when nodes remain in
communication range for several communications. This
phase prepares the new information for inclusion into the
new estimate. When a neighbor is found and new
information is received, the filter compares it with pre-
viously received information and determines whether it is
new information, replicated information, or an update of
previous information (time stamp and ID). Repeated
information is removed, while new and update information
is labeled and passed to the update phase.

The update reduces estimation error that accumulates
during the prediction phase. This phase adds the new
information to existing estimations, and thereby, improves
the latter. While different applications can implement this
phase differently, they should all combine newer informa-
tion based on their likelihood of accuracy.
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Fig. 4. Two methods to vary the energy profile: (left) duration
modification, where length of operation is modified; (right) rate
modification, where some operations are skipped depending on
available energy.

Fig. 5. External information processor: after each time period, the
system goes through a prediction phase, a filter phase, and then an
update phase to incorporate all new information acquired from its
communication with neighbors, if there are any.



2.5 Parameter Estimation Example

This delay-tolerant collaborative technique can be applied
in many situations involving system parameters such as
system energy, node density, sensor calibration, and data
routing. Application to system energy and density estima-
tion is presented below and evaluated in Section 4.3.

2.5.1 Global Energy Estimation

Global system energy usage varies with respect to time.

Below we present the detail of the steps of how CA-TSL

estimates global energy.
Prediction. In the delay-tolerant collaborative implemen-

tation, the prediction phase for system power estimation is
accomplished by tracking the rate of battery discharge. A
node tracks its average battery discharge rate by averaging
the 100 most recent energy usage measurements, which are
recorded after each communication attempt. When neigh-
boring nodes are found, energy levels and average dis-
charge rates are also exchanged. During the prediction
phase, nodes simply reduce the energy of each observation
according to the predicted rate.

Transform. If a neighbor is found, the nodes exchange
their local logs of energy estimations and discharge rates.
The filter phase processes each received energy log. The
log’s discharge and energy information is filtered to ensure
that only the more recent information from each node is
passed to the update phase, whereas repeated and outdated
entries are discarded.

Update. The update phase takes the data from pre-
viously unseen nodes and incorporates them into the log. In
addition, it takes new update information from previously
seen nodes in order to replace the existing entry. To restrict
system memory usage, the energy log records the energy
and the discharge rate for the 10 most recent node
measurements. Average system energy estimation is per-
formed by averaging the energy levels of the log entries.
Furthermore, each entry is weighted by the reciprocal of the
time elapsed since its measurement.

2.5.2 Global Density Estimation

CA-TSL energy estimation functions not only estimate

global energy usage but also the likelihood of using energy

with global density estimations. For communication or

other functions that require the radio, as the system density

decreases, the likelihood of using the allocated energy for

communication becomes low. If the system statically

allocates energy usage as the node enters a sparse area,

there will tend to be a large amount of energy left unused at

the end of the desired lifetime. Information about the

likelihood of energy use allows CA-TSL to predict expected

delays in energy use and preallocate energy budgets given

the estimated density. This is especially useful in data

passing with the radio peripheral, as energy usage is

limited by the existence of neighbors.
In density estimation, the prediction phase simply

calculates the average of periods between previous en-

counters. When nodes encounter each other, they exchange

density measured by the the neighbors and the transform

phase will only reject old or duplicated data. Finally, the

update phase updates the internal table for averaging.

2.5.3 Targeting Lifetime with Global Estimation

With collaborative estimations, the node can estimate the
probability of meeting a neighbor as described above, and
then estimate the likelihood of energy use, and finally,
modify the expected use curve. In order to alter the curve
based on this new information, we must first explore the
relationship between density and system lifetime. Here, we
assume a charged system with a constant expected energy.
Lifetime in this context refers to the operational time that is
required after charge is removed (e.g., overcast days for
solar charging). This section thus provides a comparison
between expected lifetime with density. The calculations
here can easily be extended to other types of systems.

Following the steps described before, the nodes can
collaboratively obtain the probability of meeting each other
(p). Therefore, the probability of a given session having no
connections is 1� p or q. Thus, the expected lifetime of any
node is

EðlifetimeÞ ¼ time on reserve threshold
þ time on energy above threshold:

When the system falls below the reserve battery threshold
(Ec), the system goes into conservation mode. This mode can
support minimum communications and some data sam-
pling. Since the discharge is low, we assume it to have a
roughly constant discharge rate (Rs). Therefore, time operat-
ing on the reserve battery capacity is roughly fixed at Ec=Rs.

However, time operating on extra energy above the
reserve threshold is not fixed. This is because at any time,
this can be used by communication with an encountered
neighbor. So this time is calculated by

pðN periodsÞ ¼ p � ð1þ q þ q2 � � � þ qNÞ; ð3Þ

which simplifies to

pðN periodsÞ ¼ 1� qNþ1: ð4Þ

Knowing the probability of connections, we can solve for
the number of additional periods contributed by the energy
above the threshold. Solving this equation requires the
system to compute logarithms, which is processor intensive
and unsuitable for most sensor network nodes. Therefore,
an approximation can be used in order to reduce processing
overhead. The expected value can be used to approximate
the additional lifetime due to the extra energy available
from infrequent connections:

EðextraÞ ¼ pþ 2 � p � q þ 3 � p � q2 þ � � � þ ðN þ 1Þ � p � qN:
ð5Þ

Here, N denotes the maximum time period considered for
the expected extra lifetime. A closed form can be obtained
by calculating

EðextraÞ � q � EðextraÞ ¼ p � ð1þ q þ q2 � � � þ qNÞ: ð6Þ

The right-hand side gives the form shown in (3). Solving
this equation yields the results for (5), in closed form:

EðextraÞ ¼ 1� qNþ1

1� q : ð7Þ
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Approximating the expected lifetime and setting this
lifetime to infinity, we obtain

EðextraÞ ¼ lim
N!1

1� qNþ1

1� q ¼ 1

p
: ð8Þ

This calculation requires only one division, and is further
simplified by measuring the periods between connections
instead of calculating the connection frequency (that is,
measure 1=p directly). Therefore, no division is needed with
this estimation.

However, the lifetime of this system is in fact finite, and
there is a limit on how long the system can operate even
without connection to other nodes due to power used in
conservation mode. This is taken into account by adding a
cap to the possible extra lifetime. Therefore, the true
expected extra lifetime value is

EðextraÞ ¼ min 1

p
;
100%� Ec

idlerate

� �
; ð9Þ

and total lifetime is

EðlifetimeÞ ¼ Ec
Rs
þmin 1

p
;
100%� Ec

idlerate

� �
: ð10Þ

Since the expected lifetime after charge disconnection

(EcRs
) is constant, we can allow the system to adjust (Ec).

Given the solution shown above, this method adjusts Ec,

corresponding to changes of 1
p , while keeping EðlifetimeÞ

constant. By doing so, more battery capacity is allocated to

communications as density decreases. This increased com-

munication energy budget reduces the time during which

the battery remains fully charged, allowing more energy to

be scavenged. To understand the effectiveness of this

process, we evaluate this estimation in Section 4.3.

3 CA-TSL: REAL SYSTEM PROTOTYPING

To validate the CA-TSL policy, test its real in-system
performance, and collect simulation parameters, we de-
signed and implemented CA-TSL on ZebraNet nodes used
in our second Kenyan deployments [26]. We estimate and
adjust system lifetime by modulating software’s use of the
radio. The radio used is the XTend OEM RF Module [17],
with in-system power consumption of 4.1 W in transmit
mode, 0.4 W in receive mode, and 10 mW in idle mode. The
system generates 32 packets of 64 bytes every two minutes.
The second generation of ZebraNet nodes incorporates a
battery module with a battery gauge BQ27000 [23] paired
with a 2 amp-hour Li-ion battery; the battery gauge has an
energy reading accuracy within 5 percent [23]. In this
implementation, eight possible run schedules correspond-
ing to different energy levels are managed by CA-TSL. In
order to reduce the experimentation time, the expected
lifetime of the system is set to 60 hours.

3.1 Periodically Connected Nodes

Our test example involves intermittent connectivity with
four nodes in order to evaluate the general effectiveness of
CA-TSL. In this experiment, nodes 2 and 4 were sensors that
generate data, while nodes 1 and 3 were forwarders. The
nodes were connected as shown in Fig. 6, with node 2 able

to forward data through both nodes 1 and 3, while node 4
could forward data only through node 3. At start time, the
system ran normally in steady state. Then node 3 was
physically moved out of range, leaving node 4 without a
communication link to the base station; node 4 then stored
data to be sent later. Node 3 was restored after some time,
and the backlogged data from node 4 flowed through it to
the base station.

Fig. 7a shows the battery energy in each node. Node 1
and node 2 followed the desired discharge profile because
they were able to maintain and adjust their communication.
Energy for nodes 3 and 4 dropped at a much slower rate
when node 3 was out of range because it had no useful way
of using communication energy. At t1, node 3 was moved
away and energy stopped dropping. As expected, once
node 3 was moved back at t2, CA-TSL allocated more of the
unused energy, to get the node back on the targeted lifetime
schedule. Fig. 7b compares this to tuned-energy reduction
(tuned-ER) in which a fixed schedule is selected to achieve
the desired lifetime, Tuned-ER does not attempt to “catch
up” on communication after a disconnection, and thus,
transmits at a slower rate during this time [21], [30]. Fig. 7b
shows that both methods accumulated data at the same rate
but backlogged data moved quickly out of node 4 and
finished data transfer at time t3, compared to a finish at t4
under tuned-ER.

CA-TSL greatly improves the transfer rate of backlogged
data in intermittently connected systems. In this experi-
ment, the maximum delay was reduced by more than 2�
with only eight energy levels. The backlogged delay would
have decreased further in this experiment if the maximum
bandwidth was higher. The opportunistic nature of CA-TSL
is most beneficial for sparse mobile networks, where rare
connections can be short-lived.

We feel that this implementation on ZebraNet hardware
is indicative of the sparse intermittently connected mobile
networks, and that this implementation can easily be ported
to other platforms. The parameters collected from the
hardware are used as simulation parameters for larger
scale experimental results in the next section.

3.2 System Overhead

Because it is a local, low-overhead approach, CA-TSL only
very modestly increases processor overhead. The adaptive
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Fig. 6. System configuration diagram of periodically connected tests.



policy implemented in our experiments requires 238 bytes of
code, 174 bytes of RAM for schedule generation, energy use
curve generation, a 16-entry parameter table, and the
adaptive policy code. Most of the code is run once when
the system starts. At scheduling points, the system needs
only to calculate the expected energy value, which takes
36 �s on a 4 MHz MSP430. This is a very small overhead even
for a low-capability processor. In addition, parameter
sharing requires an additional 2 bytes of transmission and
is incorporated in the handshaking packets in this imple-
mentation.

4 CA-TSL PERFORMANCE

A full evaluation of CA-TSL performance requires it to be
evaluated at scale, and in a realistic environment. While the
previous section demonstrates small-scale, real-system
performance, this section presents results of large-scale
simulation based on the parameters collected in the
previous section. We focus on intermittently connected,
mobile networks, for which it is difficult to predict the
connection pattern and preset the nodes accordingly. Due to
frequent changes in connections and neighbors, these
systems are more susceptible to the unexpected energy
profile variations that CA-TSL targets.

These Monte Carlo experiments were performed using
the measured power consumption data from the ZebraNet
nodes, which consume 4.1 W when the system is in transmit
mode, 0.4 W in receive mode, and 10 mW when idle [30].
Simulated node behavior (energy, hardware, mobility, etc.)
was based on observations of nodes in the field [26].

Our Monte Carlo experiments were run on a grid of 100�
100 km with 10, 100, or 1,000 nodes. Each node had a radio
communication range of 2 km, giving the average neighbor
density shown in Table 1. We use both random walk and the
zebranet model. At the beginning of each communication
slot, each node used one packet for peer discovery. If no
neighbors were found, the node shut off. During each
communication session, the energy budget was translated
into a packet count. This max-data-count was set to be the
maximum sum of RX and TX packets. Nodes exchanged

sensor data with their neighbors until the max-data-count
was reached for the node with the least count, accounting for
the energy of both the RX and TX nodes. Energy usage was
normalized to the transmit energy usage of the ZebraNet
node. Each node used one unit of energy to transmit a packet
and 0.1 unit of energy to receive each packet [17]. The node
with more energy was penalized by an additional 0.1 unit of
energy to reflect the time required to time out after the other
node had stopped communicating upon reaching the
communication limit imposed by CA-TSL. In all these cases,
data flowed opportunistically in the network and traveled
only one hop per communication slot. Although other
communication protocols exist for mobile networks, we
focused here on flooding since our networks are sparse
enough that other ad hoc routing techniques cannot provide
a data rate significantly better than nonnetworked systems.
However, since this technique is routing protocol indepen-
dent, other protocols can be used.

Similar to the ZebraNet deployment, nodes have the
opportunity to perform sensing and/or communication
every eight minutes. The expected lifetime is set to 1,080 com-
munication attempts or six days starting with sufficient
energy to send 15,000 packets for noncharged systems with
CA-TSL. Each solar-charged node has a reservoir, with
maximum energy sufficient to send 1,500 packets. Any
charging beyond the maximum energy level is lost. A node is
considered dead when it does not have enough energy to
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TABLE 1
Average Number of Neighbors per Communication Slot

for Each Node in Our Sparse Network Experiments
over a 100 km� 100 km Field and Radio Range of 2 km

Fig. 7. Results for four periodically connected nodes when a critical node is moved away. The data show CA-TSL’s fast data upload speed for an
intermittently connected node. (a) Battery state of charge. (b) Accumulated data.



both transmit and receive one packet. In these experiments,
we defined actual system lifetime as the time during which
more than 50 percent of the nodes were operational. While in
some systems 50 percent can still be considered sufficient, in
our experiences with sparse deployments, this is generally
the point at which systems can no longer function as
expected.

In noncharged experiments, we selected a linear expected
energy use curve, similar to Fig. 3a. Energy started at
95 percent and crossed 0 at the targeted lifetime of six days.
In the system where batteries recharged continuously (for
example, from solar cells), we set the lifetime to infinity. Each
charged node used a discharge curve that was, on average,
horizontal and piecewise linear due to day-night cycles, as
shown in Fig. 3c. We selected these discharge curves because
they were typical of the expectations that system designers
usually have for real-world sensor networks.

Due to the lack of prior work on system-wide policies
that can function at such low node densities, we compared
CA-TSL with the tuned-ER method, which is widely used in
today’s system deployments [30], [21]. We also compared it
to a collaborative method based on a price-bidding strategy,
which entails communication overhead and manual tuning
of price in these sparse systems. To test the effectiveness of
this approach in a variety of system environments, we used
both random walk with uniform distribution over the
maximum zebra movement speed of 7 km per hour and
also a movement model based on collected ZebraNet GPS
traces [26].

Based on its energy, each node in the experiment could
select from 16 possible communication bandwidths, each
with a different max-data-count. The minimum max-data-
count was 16 packets per communication slot and this
increased by 16 packets at a time, up to a total of 256 packets
per communication slot. With the tuned-ER method, in
contrast, the nodes attempted to communicate every
communication slot, but the packets per slot were fixed.

To compare fairly between the two methods, the max-data-
count for tuned-ER was set at 62 packets per communica-
tion slot. This led to an average system lifetime similar to
that of CA-TSL.

4.1 Noncharged Mobile Networks

In this first experiment, we evaluated the performance of
CA-TSL on battery-operated mobile nodes. These nodes
had an initial energy supply and could not be recharged.
This is often the case in many mote-based or mobile phone-
based networks. We first simulated an ad hoc mobile
network of 100 nodes using the simulation parameters just
presented. With an average of only 0.24 neighbors, this
network is not dense enough to have a reliable link to the
data sink. Instead, data are transmitted to the sink via
opportunistic pairwise data transfers. We used the random
walk mobility model in the first experiment to simulate a
purely random memory less movement pattern.

4.1.1 Variation Reduction

CA-TSL is compared first with tuned-ER, where nodes have
a fixed bandwidth that is tuned over multiple runs to give the
desired performance. The graph in Fig. 8a shows that both
CA-TSL and tuned-ER achieved the same system lifetime of
6.93 days. CA-TSL, however, retained almost all of its nodes
up until the end of the system lifetime. This allowed its nodes
to achieve better success rates in data delivery than tuned-
ER. The graph in Fig. 8b shows the data transmitted over the
course of the experiment. The system bandwidth for tuned-
ER was greatest at the beginning. CA-TSL, in comparison,
had a more uniform system bandwidth throughout its
targeted lifetime. At the maximum, the CA-TSL approach
had approximately 40 percent more nodes operating than
tuned-ER, resulting in better connectivity.

Next, we examined variations between different rando-
mized runs of the system under the same conditions. This
experiment shows the likelihood that a particular deploy-
ment will have a lifetime close to the target. Table 2 shows
the resulting system lifetime from 100 simulations. While
the two methods are designed to yield the same median
lifetime, 50 percent of CA-TSL lifetimes had a range of
0.13 days and 100 percent had a total range of 0.32 days,
whereas tuned-ER gave 0.5 and 2.01, respectively. The
range in lifetime for CA-TSL was lower than that of tuned-
ER by a factor of 5. This variance reduction is by design: we
wanted to define system lifetime more accurately, and
hence, plan better for deployment. Table 3 shows the
number of packets the sink received at the end of the system
lifetime; the number of packets shown was normalized to
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Fig. 8. Results for 100 nodes over a 100 km� 100 km area, averaged
over 100 runs. (a) Percentage of nodes operating. (b) Average packets
transmitted. The data show CA-TSL reduced lifetime variability
compared to the tuned method.

TABLE 2
Q1 and Q3 Represent the First and Third Quartiles

The table shows system lifetime and its ranges in days, and they
indicate an approximately five times increase in the predictability of the
system lifetime.



the median number of packets received in the tuned-ER
case. Due to the enhanced system connectivity, CA-TSL
increases the amount of data received at the sink by more
than 50 percent in nearly all quartiles.

4.1.2 High-Density Experiment

We also explore cases where node density cannot be
determined beforehand, for example, deployments that are
affected by such logistical factors as multiround deploy-
ments. We simulated 1,000 nodes with an average of
2.45 neighbors per communication (a 10� increase in node
density compared to the previous experiment), and we ran
both CA-TSL and tuned-ER with the same parameters as
described above. Fig. 9 shows operation with 1,000 nodes. The
tuned-ER lifetime was greatly reduced due to the increase in
the amount of sensing data from the 900 additional nodes.
The top graph shows that the lifetime of the tuned-ER method
reduced 5.5 days with a mean lifetime of 1.3 days compared to
the 100-node experiment. In contrast, with CA-TSL, lifetime
changed by only 0.8 day to 6.1 days, an improvement of more
than 5:5� compared to tuned-ER.

4.1.3 ZebraNet Movement Traces

We used the ZebraNet movement model to test the adaptive
energy policy performance under a realistic and highly
correlated movement model [26]. This model is based on GPS
location traces collected in the 2005 ZebraNet deployment.

Due to animal feeding patterns, nodes in the ZebraNet
model tend to remain static for long periods of time, causing
an even lower apparent neighbor density of 0.16. Fig. 10 plots
operating nodes in these experiments. In this case, under
tuned-ER, the system lifetime increased by 12 days from the
random movement lifetime of 6.9 days to 19 days. CA-TSL,
in contrast, was more stable in the face of mobility changes,
deviating by only 3-10 days. There is less communication
than under a more mobile network. This is reflected in a
much slower node die-off with both CA-TSL and tuned-ER
methods, as shown in the top graph of Fig. 10. More
importantly, the bottom graph shows that the communica-
tion bandwidth was more stable for CA-TSL, whereas tuned-
ER produced a peak transfer and then fell. This means that
CA-TSL is more likely to return a steady stream of sensor
data representative of the entire experiment. In this case, CA-
TSL was able to reduce lifetime variation by 4� when faced
with unanticipated connection patterns caused by unknown
mobility patterns.

4.1.4 Comparison with an Adaptive Bidding Policy

While the results with CA-TSL are impressive compared to
tuned-ER, it is also important to compare our method with
more sophisticated approaches. We compared the CA-TSL
policy with a policy based on a price-bidding approach in
which nodes decide how and when to relay data by bidding
on resources. In this bidding policy, “price” is set based on
remaining node energy and willingness to pay is set by the
amount of data stored by a node similar to [32]. Because of
the sparseness of the system, price change policies cannot be
communicated throughout the system, but are instead
constant and obtained through multiple experiments. We
assumed the best-case scenario in which the bidding policy
does not incur a handshaking overhead to communicate its
pricing information. Fig. 11 shows the percentage of
operating nodes and the amount of data sent. The top graph
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TABLE 3
Q1 and Q3 Represent the First and Third Quartiles

For packets received by the sink entries in the table, values are
normalized to the median of tuned-ER. The table shows a roughly
50 percent improvement in median packet reception.

Fig. 9. Results for 1,000 nodes over a 100 km� 100 km area, averaged
over 100 runs. (a) Percentage of nodes operating. (b) Average packets
transmitted. The data show CA-TSL greatly reduced lifetime variability to
varying node densities when compared with the tuned method.

Fig. 10. Results for 100 nodes on a 100 km� 100 km using ZebraNet
movement traces, averaged over 100 runs. (a) Percentage of nodes
operating. (b) Average packets transmitted. The figure shows CA-TSL
adapting to the affect of node connection variability due to different
movement patterns.



shows that the lifetime of the two policies is similar, with CA-
TSL at 6.9 and bidding at 7.2 days. The bottom graph shows
that the number of packets communicated is also similar.

While it appears that CA-TSL performs only slightly
better than the more complicated global bidding policy,
CA-TSL has a few important advantages over bidding. The
bidding policy relies on communications to establish an
agreement on resource use. However, because we did not
have a real-world implementation of the bidding policy, we
removed this potentially significant extra overhead. More
importantly, due to the lack of neighbors, pricing informa-
tion cannot be set across multiple nodes, making competi-
tive bidding difficult. Therefore, in order for the bidding
policy to maintain stability, tuning has to be carried out
over multiple runs in order to find the globally optimal
pricing structure. Despite the experiment designed to be a
best-case scenario for the bidding policy, CA-TSL was still
able to perform closer to system expectations than the much
more complex global policy.

4.2 Solar Charged Mobile Sensor Networks

Thus far, we have focused on uncharged systems in which
the battery level drops monotonically during the node
lifetime. In a charged system, additional challenges arise
due to variations in charging conditions. For example, in a
solar-charged system, the charge is variable due to day-
night cycles as well as weather conditions and shading. For
these charged systems, it is desirable to maintain node
energy at a specific level. If the steady-state energy level is
too low, nodes will be susceptible to frequent failure when
the charging condition varies. On the other hand, if the
steady-state energy level is too high, extra charge energy
that cannot be stored is wasted, reducing the energy
available for the system to exploit. These situations are

especially undesirable if the time between node connections

is long, as in sparse mobile networks.
Variation reduction. In this experiment, we test the

mobile system’s ability to maintain maximum connectivity
when it experiences changes in day-night charging in the
case of solar charging. The top graph of Fig. 12 shows the
node availability for both CA-TSL and tuned-ER methods
with 100 nodes. Under tuned-ER, the system drops to only
50 percent availability every night, before charge resumes.
In contrast, our adaptive method was successful in
confining the failure rate to less than 5 percent throughout
the simulation, corresponding to 10� fewer failures than
with the tuned-ER method. The bottom graph of Fig. 12
shows that CA-TSL was able to maintain a more stable
bandwidth while also providing better connectivity.

Sparse networks. In this experiment, we test the case of

sparse charged networks, where 10 nodes are spread over a

100 km� 100 km area with an average of only 0.02 neighbor

per attempted communication. In such systems, it is

especially difficult to revisit nodes once deployed; therefore,

a conservative low-rate ER method is often used. We

simulated sparse networks using 1) CA-TSL, 2) tuned-ER,

and 3) a low-rate ER with connectivity similar to that of CA-

TSL. As seen in the top graph of Fig. 13, because connections

are infrequent, nighttime node failure is not as prevalent as in

the previous case. However, a simulated 5-day rainy period,

during which charging was not possible, caused 45 percent

node failure in the tuned-ER case. In contrast, CA-TSL and

the low-rate ER achieved a 4:5� improvement with only

10 percent node failure. The bottom graph shows that while

the low-rate ER case had similar numbers of operating nodes,

the amount of data passed was much lower than with CA-

TSL because CA-TSL was able to capture more charge during

long idle periods. This experiment shows that the CA-TSL

method can maintain high connectivity with near-optimal

data transfer rates.
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Fig. 11. Results for 100 nodes on a 100 km� 100 km area comparing
CA-TSL with a bidding policy, averaged over 100 runs. (a) Percentage
of nodes operating. (b) Average packets transmitted. The figure shows
CA-TSL has similar performance to high-communication overhead
bidding policies.

Fig. 12. Results for 100 solar-charged nodes using random walk on a
100 km� 100 km area, averaged over 100 runs. (a) Percentage of
nodes operating. (b) Average packets transmitted. The figure shows
CA-TSL is resilient to different charging patterns.



4.3 Dynamic System Parameter Estimation

We next implement and evaluate a variant policy in which
collaborative techniques estimate both system power and
system density. We compare this to existing policies used to
gain knowledge of averages for connected neighboring
nodes. The implementation is based on the three major
phases outlined in Sections 2.4 and 2.5.

4.3.1 System Power Estimation

Figs. 14 and 15 illustrate experimental results for system
power with sparse collaborative estimation. These graphs
show the percentage of functioning nodes on the left axis,
and the estimation error as calculated with respect to
total available energy on the right axis. The 25th and
75th percentiles for the error are also shown as error bars.
We see in Fig. 14 that as time progresses and the node’s
energy levels diverge, the median error and error range
both increase until nodes begin to exhaust their energy
under the existing policy. In contrast, the sparse collabora-
tive estimation technique, shown in Fig. 15, does not exhibit
large changes as time progresses. Furthermore, the sparse

collaborative technique has an error range as narrow as �3
to 0 percent. In contrast, the existing policy achieved errors
between �10 and 10 percent. This corresponds to a nearly
7� improvement in estimation error. Variation in estima-
tion is also greatly reduced in this sparse network. While an
error range of 20 percent with the existing technique is not
acceptable in most applications, the sparse collaborative
policy has a maximum error of 3 percent from the true
value. This opens up possibilities for many higher level
techniques to be applied in very sparse networks.

This experiment shows that system energy cannot be
estimated reliably using existing dense network policies,
whereas it can be predicted reliably with the sparse
collaboration policy.

4.3.2 Density Estimation

We also apply the sparse estimation technique to estimate the
density of the sparse network. This information is especially
useful in estimating the likelihood of communication, and
hence, energy use. Density is difficult to estimate due to the
unpredictable nature of node communications in intermit-
tently connected networks. Yet knowing this parameter can
increase the flexibility of various system policies. We show its
impact on CA-TSL in Section 4.3.3.

In density estimation, each node maintains a log for
density estimation. Each entry contains the estimation from
other nodes (L), as well as the time (T) when the information
was first measured from the original node. The estimation is
weighted by the reciprocal of the time since information was
received. For example, if the estimated density predicts that
a meeting is due every a cycles, on average, and it is n �
aþ x cycles (where x < a) since the most recent information
was received, this information will be multiplied by 1=n.
However, because this method is intended to be implemen-
ted on a 4 MHz integer processor where division is
expensive, we constrain 1/n to be a power of 2. In this
context, m is defined as the minimum number of times that
T needs to be shifted until all entries of T are less than 1.
Then, L is shifted left m times to obtain an intermediate
value S ¼ L� m. The estimation is then obtained by
SUMðAll S in logÞ
SUMðAll T in logÞ .

Prediction. The prediction phase predicts the certainty of
the log entries based on the number of meetings predicted.
Since certainty is determined by the time elapsed since the
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Fig. 13. Results for 10 solar-charged nodes using random walk on a
100 km� 100 km area, averaged over 100 runs. (a) Percentage of
nodes operating. (b) Average packets transmitted. The figure shows
CA-TSL is resilient to different densities and charging patterns.

Fig. 14. Energy estimation without collaboration. Dots in the center
indicate median of the error, vertical lines connect the 25th percentile
and 75th percentile of the error, and bars indicate the number of nodes
still operational in the system.

Fig. 15. Energy estimation with collaboration. Dots in the center
indicate median of the error, vertical lines connect the 25th percentile
and 75th percentile of the error, and bars indicate the number of nodes
still operational in the system.



data were received, certainty decreases during each cycle by
T ¼ T þ 1.

Transform. Similar to the power estimation technique
described before, if a neighbor is found, the nodes exchange
their local logs of density estimations and time elapsed
since information was first received.

Update. The update phase takes the data from pre-
viously unseen nodes and incorporates them into the log. In
addition, it takes update information from previously seen
nodes and replaces the existing entry. All information is
capped by the size of the log.

Fig. 16 shows the accuracy of the density estimation at
different densities. The experiment places 100 nodes in a
square field with different sizes. We see that accuracy is
roughly constant except when density is high enough that
nodes have neighbors during all communication attempts
(left). The error with only local information is greater at a
range of between 10 and 20 percent. However, collaborative
estimation provides better results, with a maximum error of
only 4 percent. The results show that the collaborative
method successfully predicts density with an acceptable
error. We use this estimation in the next section, for
dynamically selecting expected energy levels of CA-TSL.

4.3.3 CA-TSL in Dynamic Environments

With accurate estimation of system parameters even in
sparse networks, CA-TSL can measure and account for
system characteristics. This section evaluates the perfor-
mance of CA-TSL using density estimation to adjust the
expected energy curve of CA-TSL as described in Section 2.1.

In each experiment, nodes were given a radio range of
1 km and a square field within which the nodes could
move. The movement model used was a random walk with
a uniform distribution from 0 to 1 km and a random
direction. One hundred nodes were used in each experi-
ment, and they were charged periodically, with charging
during 10 cycles and no charging during 190 cycles.

Lifetime. Many charged systems exhibit periodic char-
ging behavior and possible periodic charge loss. The reason
for keeping battery reserves is to maintain system function-
ality during periods of no charging. These experiments are
designed to show how different policies respond to changes
in density. In these experiments, we compare performance
of CA-TSL with global density estimation against the same
policy without parameter estimation (using different
assumption of density).

Fig. 17 compares lifetimes of the system after charge loss
at different densities. Each experiment was set up with
different sizes for the square area where the nodes could
roam. CA-TSL was compared with local CA-TSL with
reserves of 50 percent and 0 percent battery capacity for the
assumption of high and low density, respectively. We see
from the graph that while the 50 percent battery capacity
maintained a reasonable lifetime at high densities, it kept
the level high at different densities as well. Whereas the no-
reservoir case had an unacceptably short lifetime at high
densities, the collaboration method provided the same
lifetime at lower densities. On the other hand, as density
dropped, the lifetime of CA-TSL approached that of the no-
reservoir case and lifetime was artificially inflated. This
result was not surprising because CA-TSL lowers the
reserve as connections become sparse. This shows that
the collaboration policy provides an acceptable lifetime for
various densities.

Data received. While system lifetime is an important
factor in system performance, the amount of data passed in
the system is an important indicator of system capability.
This section examines the data throughput of CA-TSL.

In a charged system, the amount of charge obtained
determines the maximum amount of data that can be
passed in the system. Fig. 18 shows the total data passed in
the system normalized to the CA-TSL policy. We have seen
that the no-reservoir policy can pass the most data because
it can accumulate the most energy. Since it maintains no
reserve, it is able to maintain a maximum reservoir for
charging and obtain maximum energy when charge is
available. However, Fig. 17 shows that while the amount of
data transmitted by a no-reservoir fixed policy is impress-
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Fig. 16. Error of connection period estimation comparing local and
collaborative estimation with 100 nodes on fields of different edge sizes.

Fig. 17. Cycles when system reaches 50 percent working nodes after
charge is removed. The experiment featured 100 nodes in fields of
different sizes.

Fig. 18. Total data received by all nodes in the system. The experiment
had 100 nodes on fields of different sizes, charged for 10 cycles and not
charged for 190 cycles.



ive, the resulting system has an unacceptably short lifetime
when charge is unavailable. Fig. 18 also shows that a
50 percent reservoir, on the other hand, passes the least
amount of data, because it can charge much less due to
capacity remaining in the battery. CA-TSL maintains a
reservoir to maintain a lifetime requirement when density
is high (left), similar to the 50 percent reservoir. Yet as
density is reduced, the data bandwidth of CA-TSL
approaches the no-reservoir case, the data bandwidth of
the collaboration method improves by a factor of nearly 3.

Communication in a sensor system is often intended for
one destination, such as a common data sink. The data sink is
commonly connected to a constant power supply and does
not depend on charging. Systems are designed to pass their
data to the data sink on connection and to ignore the energy
budget. Fig. 19 shows the data received by the data sink of
both collaborative and local CA-TSL. The collaborative
policy is able to pass more data to the sink. At the high-
density end (left), it is able to maintain a battery level similar
to the 50 percent reservoir case and it can transmit data to the
sink. At the low-density end (right), it is able to maintain
additional reserve energy, allowing it to transmit more data
than in the 0 percent reservoir case. Furthermore, due to the
dynamic nature of each node’s surroundings, the local
system estimate enables the node to adapt dynamically to
conditions that vary over time, allowing more data to be
transmitted. In addition, each node has more data available
to it and can forward more data to the data sink. This results
in up to 30 and 37 percent more data received over the no-
reservoir case and 50 percent over the reservoir case.

This section has shown that CA-TSL significantly im-
proves system functionality, both by maintaining system
lifetime and increasing data transferred to the data sink.
Through collaboration, accurate system information is
obtained and can be reliably used locally by each device.
This information both increases data capacity and maintains
system lifetime in a sparse, intermittently connected network.

5 DISCUSSION

CA-TSL simplifies application support by using discontin-
uous control that only requires applications to have a
bounded execution time that is small compared to the
lifetime, and per-cycle energy use that is small compared to
the battery capacity [31]. To prevent unintended application
errors, CA-TSL does not interfere during application execu-

tion. Therefore, each run of the application must finish within
a fixed time, which means that many applications can be
incorporated without modification. However, other applica-
tion design considerations need to be taken into account.

Data delay. CA-TSL introduces no additional data delay
for networks that have ample energy for the needed packets
per slot. When a node’s actual energy drops below the
energy usage target, it reduces communication, and thus,
may delay some packets in order to pursue the targeted
system lifetime. Once the node is able to transmit again,
different application policies can choose whether to forward
the delayed data, or drop it in favor of fresher sensor
readings. However, as shown in Section 3, in a sparse mobile
network for which CA-TSL is designed, the opportunistic
nature of this design significantly reduces data delay in the
common case, especially when networks are sparse.

Multiple applications. Another design consideration is
when there are multiple applications and peripherals to
control (e.g., Sensing and Communications). The previous
section describes how the energy budgeting module would
allocate total energy for all applications. In addition, the
applications can adapt further and split the available
budget. For example, it can reduce communication energy
relative to sensing energy when the energy budget is low.

6 RELATED WORK

There is a wide range of research on constraining variable
system lifetimes. Areas relevant to our work include energy
minimization to increase system lifetime, routing algo-
rithms to increase data balance, and adaptive methods to
increase lifetime. In this section, we discuss some of the
previous work and contrast it with our own.

Energy reduction methods. Most of the previous sensor
deployments tackle the targeted system lifetime problem by
using a fixed schedule based on a conservative energy
profile estimate. This method is the simplest one, but unlike
CA-TSL, it ignores long-term variations inherent in the
system. An energy reduction method based on a very low
duty cycle and a conservative estimate of the energy budget
was used in [9], [15], [21], [24]. However, in these
deployments, node lifetimes varied due to unexpected
changes in conditions. Solar-charged network deployments
[6], [30] also have trouble maintaining full node operation
due to long-term variations in charging. Other work ignores
the variation problem by changing the nonrechargeable
batteries [27], but this is not always possible in remotely
deployed systems. CA-TSL, due to its adaptive nature, can
handle both expected and unexpected long-term harvesting
variations by using a linear energy prediction model.

Smart routing algorithms. In a dense static network, node
redundancy and special network topologies can also be
exploited [1], [4], [11], [12], [13], [16], [20], [28], [29]. While
these special topologies make route discovery easier and
reduce overhead, they are limited to fixed topologies and are
not usable for mobile networks, thus, not suitable in
application targeted by CA-TSL. Other bidding-style meth-
ods have been developed to balance data and energy, where
a number of metrics could be used to determine the price of
the transaction in a virtual currency [3], [19], [32]. While
these can be used in a dense and limited mobile network,
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Fig. 19. Data received by the destination normalized to the CA-TSL. The
experiment had 100 nodes on fields of different sizes, charged for
10 cycles and not charged for 190 cycles.



overhead costs for these types of routing scheme are
unfortunately high, especially in a sparse mobile network
described in this paper. Furthermore, they are difficult to
implement in intermittently connected mobile networks,
since nodes are not always connected. Furthermore, Unlike
CA-TSL, these schemes also do not take into account
differences between energy profiles of other peripherals for
the nodes, nor do the schemes gain system parameter
information when nodes are disconnected, due to their
inability to predict and track system parameters.

Hardware variation considerations. An approach has
been developed to change the duty cycle according to node
availability and to use energy harvesting variations for
fixed networks [14]. This method is different from CA-TSL
because it requires knowledge of the amount of energy
already harvested, in addition to knowing the total energy.
Obtaining this requires the addition of either an energy
harvest learning algorithm, or a monitor to measure and
store charging current. This makes these types of methods
impractical, since they require additional hardware compo-
nents to deal with any change in hardware or topology.

Other analytical methods have been investigated to
achieve fixed lifetimes for clustered fixed networks [8],
[18]. Unlike CA-TSL, these methods assume invariant power
consumption of the nodes and do not adapt to achieve a
certain lifetime. Instead, they assume a fixed network that
consists of nodes with invariant energy consumption and
that is fitted with different hardware or bandwidth
characteristics to account for topological differences.

Other domains. Other works related to this research exist
in more general-purpose domains. For example, research has
been carried out on mobile laptops in order to set targeted
battery life and allow the operating system to adapt to the
lifetime expectations of the user [7]. Laptops, however, are
subject to different requirements and limitations than mobile
ad hoc sensor networks; they do not usually need to
cooperate with other laptops, whereas CA-TSL allows
cooperation among the nodes to improve functionality.
These different challenges and limitations prevent imple-
mentation of these techniques in sensor network nodes.

7 CONCLUSION

In this paper, we have shown that CA-TSL reduces
deviation of node lifetime from the targeted lifetime by
up to 5:5�, it increases the efficiency of energy use by
passing up to 50 percent more packets, and it reduces node
failures by up to 10 times for charged nodes. Results further
show that in very dynamic environments, dynamic para-
meter estimation not only accurately predicts system
parameters but also further increases the number of packets
received by 35 percent.

The delay-tolerant CA-TSL offers effective energy adap-
tation and reduces the effects of the many sources of energy
profile variations in sparse mobile sensor systems. CA-TSL
enables more efficient use of energy, and therefore, better
functionality in the system. Collaborative adaptation is
effective in enhancing functionality and increasing system
efficiency, which would otherwise be impossible in low-
density systems. Furthermore, these results demonstrate
that by adapting to global information, the system is more
efficient than it would be with energy reduction or local
adaptation alone. CA-TSL improves not only node perfor-

mance, but also system functionality and longevity. More

broadly, we think that this work offers an effective and

easy-to-implement policy for a wide range of sparse, high-

variation, energy-constrained, and mobile sensor networks.
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