
Locomotive: Optimizing Mobile Web Traffic Using Selective Compression

Themis Melissaris
Princeton University

themis@cs.princeton.edu

Kelly Shaw
University of Richmond
kshaw@richmond.edu

Margaret Martonosi
Princeton University
mrm@princeton.edu

Abstract—Mobile web traffic and application data demands
are growing at a rapid rate and are at odds with resource-
constrained, data-capped, wireless mobile devices. Data com-
pression can be used to reduce web traffic, save energy, and
make network transfers faster. Compression can, however, hurt
performance if not used judiciously. We propose Locomotive,
a library that improves the performance of network transfers
in wireless mobile networks by employing selective compression
based on data type and network conditions. We demonstrate that
Locomotive improves performance of web transfers by roughly
12-24% while reducing data usage by 39%.

I. INTRODUCTION

Increases in mobile device counts, improved network infras-
tructure and the broad adoption of mobile services and appli-
cations have led to an explosion in mobile data traffic. Mobile
traffic is overtaking other network traffic and is expected to
increase nearly threefold from 2015 to 2020 [5]. In fact, two-
thirds of the total IP traffic by that time will be generated by
wireless and mobile devices due to an increase in the number
of available connected mobile devices as well as growth in
the devices’ capabilities and data consumption. Energy is a
primary constraint in designing applications and systems for
mobile devices and wireless communication accounts for a
significant portion of the total energy budget, often dominating
that of computation or other factors [4], [18]. With traffic and
energy usage expected to surge, one technique proven to be
efficient in managing the energy consumption and the traffic
volume of wireless mobile devices is compression [13].

Recently, the rise of the Internet of Things (IoT) has led
to the emergence of an ecosystem of networked devices, sup-
porting services, and new applications across many different
domains [10]. Application areas such as smart surveillance,
traffic services, and mobile sensing, rely on data collected
at the “edge” (e.g. on smartphones or other mobile devices,
rather than wired devices or cloud infrastructure) followed by
low-latency analysis of the data [9]. To support these data-
intensive applications, our focus is on selectively using on-
edge-device compression to reduce transferred bytecounts and
improve communication efficiency.

Data compression and decompression are widely available
on commodity servers and can also be used at the edge to
reduce the data exchanged in the network, sometimes reducing
network latencies as well. Compression, however, needs to be
used correctly; otherwise it can add unnecessary latency and
energy overhead. Whether compression is beneficial or not is
determined by several factors outlined below.

First, different mobile services generate different types of
content, which vary in size and compressibility. The type of
traffic generated on edge devices can change dynamically
based on the users’ interaction with the devices and the
applications in use. Traffic is usually comprised of scripts,
plaintext, multimedia and markup documents. Such data can

vary significantly in how compressible it is. For example,
multimedia data items (e.g. audio, traffic and video) are usually
already provided in a compressed format, preventing additional
transfer-time compression from yielding large benefits.

Second, network behavior can significantly alter the effect
compression has on data exchanged over the network. In cases
of low network throughput, compression can reduce the dura-
tion of data transfers significantly. Alternatively, compression
can stay in the application’s critical path and introduce un-
necessary overhead when the data compression rate is slower
than the network data transfer rate.

To exploit the benefits of compression while mitigating
its potential negative impact, we propose Locomotive (La-
tency Optimizations using COmpressed MObile Transfers In
Variable Environments). Locomotive is a tool that allows
mobile applications to handle compression intelligently. It
dynamically evaluates the data to be transferred and the net-
work conditions and automatically reasons about compression
trade-offs. Based on this evaluation, it leverages selective
compression and makes an informed compression decision in
order to improve the performance of mobile web transfers.

As the edge increasingly includes data-intensive and la-
tency sensitive applications, the bandwidth and performance
of wireless mobile devices become key design challenges.
Intelligently compressing data going to and from wireless
mobile edge devices can aid in improving their functionality.

II. RELATED WORK

Characterizing Mobile Web Traffic & Applications: One
category of related prior work pertains to mobile web traffic
characterization. The measurement study in [7] discusses
mobile traffic composition and investigates the performance
and energy efficiency of TCP transfers. Butkiewicz et al. [3]
studies parameters that affect web page load times across web-
sites, whereas WProf [16] performs in-browser performance
profiling. In contrast to our work, these papers do not study
compression, nor how the performance of a web transfer is
affected by compressing data of varying data sizes and types.

Optimizing Mobile Web Traffic: Various techniques have
been proposed to optimize mobile web transfers for perfor-
mance and data usage. For example, Procrastinator [12] de-
cides when to prefetch objects in order to manage application
data usage depending on a user’s connectivity and data plan
limitations. Other techniques like Polaris [11] and Shandian
[17] use fine grained dependency tracking to identify and
eliminate the intrinsic inefficiencies in the page load process.

Additionally, compression proxies like Flywheel [1] and
Flexiweb [14] offer data savings by leveraging compression.
These approaches, however, channel mobile content through
a proxy server. Such rerouting raises privacy and security
concerns if the proxy is untrusted and potentially latency978-1-5386-2723-5/17/$31.00 c©2017 IEEE

Compressed
File Size

Estimation

Compression
Latency

Estimation

Tradeoff
Resolution

Network
Connection

Module

File Type
Compression

Ratio
Predictor

Policy

Training

Fi
le

 T
yp

e

Fi
le

 S
iz

e

A
PI

 C
al

l

M
ea

su
re

d
Th

ro
ug

hp
ut

Compression Compression
 Decision

Yes

No

Web Transfer

Payload

Header
Parsing

Headers

Payload
IN OUT

Throughput
Estimation

Compression Latency

Estimated File Size

Compression
Latency
Predictor

Network
Throughput

Update

St
at

e
C

ha
ng

e

Throughput Estimation

Prediction
Model

Prediction
Model

Training
Set

Derive
Model

Offline
Concurrent

Fig. 1. Presentation of the Policy, Training, Throughput Estimation modules
and execution overview in Locomotive.

concerns as well. Locomotive runs on mobile devices and
mitigates such concerns.

Recently, industry has developed compression algorithms,
like Brotli [8], specifically designed for mobile traffic data
savings and performance. Prior work has demonstrated that
custom compression algorithms can achieve significant energy
and performance gains [13]. Using state of the art compression
algorithms for mobile web traffic could complement network
adaptive approaches such as Locomotive.

Our Approach: This paper presents Locomotive, a library
that optimizes web traffic transfers to mobile edge devices
through selective compression. Locomotive dynamically de-
cides whether to compress based on file type characterizations
and network conditions. Locomotive is non-browser specific
and therefore capable of enhancing all types of mobile appli-
cations and mobile traffic. Section III presents Locomotive’s
architecture, Section IV describes our methodology and Sec-
tion V presents results on performance and data savings.

III. LOCOMOTIVE LIBRARY

Overview: This section describes Locomotive’s usage and
design. Locomotive eases IoT and mobile traffic optimiza-
tion by providing hooks for application programmers to use.
Mobile applications can invoke the library, abstracting away
compression decisions and consideration of the type of mobile
traffic and network conditions. Locomotive focuses on uplink
traffic where compression happens on the edge device. To
enable Locomotive, a component that responds to Locomotive
requests and handles data decompression is running in the
cloud. Locomotive uses Android HTTP primitives, but can be
extended easily to accommodate other protocols.

Locomotive Policy: For all data transfers, Locomotive
makes a two-step compression decision. First, a threshold
determines if some requests should not be considered for
compression based on compressibility. For small transfer sizes
and file types that are encoded such as multimedia, data
compressibility is low. Locomotive next determines if the
estimated transfer latency is less with or without compression.

TABLE I
LOCOMOTIVE OPTIMIZATION MODEL

(I)
SCompressed

NThroughput
+ LCompression >

SOriginal

NThroughput

(II) SCompressed(SOriginal, T) =
SOriginal

compressibility(T)

(III) LCompression(SOriginal, T) = α(T) · SOriginal + β(T)

As shown in Equation (I), Locomotive resolves the trade-
off for each request based on the compression latency
LCompression, the size of the request payload data before
(SOriginal) and after (SCompressed) compression as well as
the estimated network throughput, NThroughput. NThroughput

changes over time and is periodically estimated by the Net-
work Connection Module.

Compression Size & Time Estimation: Locomotive per-
forms estimations on the data type T and data size of the
original data using two separate statistical linear regression
based statistical models. In order to estimate the data size after
compression, we use a model as described in equation (II) ,
where compressibility is the ratio between the data size of
the original data over the compressed. In order to estimate
the data compression latency, equation (III) is used. Latency
is a linear function of the data size and the coefficients α, β
are functions of the data type, acquired offline via training.
In order to determine model parameters for compressibility
and compression latency for equations (II), (III), Locomotive
performs training during an initialization period that happens
after installation. As data patterns and network conditions vary
over time, it is important to adapt to these changes. Our model
parameters can be updated with an online approach such as
stochastic gradient descent using linear regression. However,
adaptation to variation is beyond the scope of this paper.

Network Throughput Estimation: Another estimate used
is the current network throughput, NThroughput. For this, we
use the open source Network Connection Class library [6].
This library runs concurrently and notifies Locomotive when-
ever there is a significant change in network throughput. This
library uses a moving average approach to adjust to changes
in network throughput based on the sampling it performs.
The moving average approach allows the library to gradually
adjust to changes in network conditions, eliminating bursty
behavior. As a result, Locomotive can sample the network
throughput less frequently in order to keep performance and
energy overheads low. In order to generate network throughput
estimates, we provide samples to the Network Connection
Class [6]. To achieve that, we log the time the data takes
to get transferred to the receiving end, from the first to the
last byte. After logging the size of the data, these samples are
returned to the edge device and used by Locomotive clients
in the Network Throughput module.

IV. EVALUATION METHODOLOGY

We now present our evaluation methodology and implemen-
tation of Locomotive on mobile edge devices.

Edge implementation: In order to evaluate Locomotive, we
capture and replay web traffic on mobile devices using a test
application that invokes Locomotive. Locomotive generates
HTTP requests, which transfers previously collected real traffic
data discussed later in this section. Processing via Locomotive
proceeds as described in Section III. Once Locomotive has
made a compression decision, the processed data will then be
used to generate an HTTP request. Locomotive is intended to

TABLE II
AVERAGE COMPRESSIBILITY AND PERCENTAGE OF FILES IN THE DATASET

FOR EACH DATA TYPE ARE PRESENTED.
Alexa Top 200 characteristics

File Type Average Compressibility Content Distribution
Images 1.021 32.07%
HTML 4.177 7.32%
CSS 4.555 10.25%
Javascript 3.388 38.36%
Other 1.172 8.74%

handle arbitrary data transfers. For the purpose of this work,
we focus on HTTP, but other data transfer protocols could also
benefit similarly. The Locomotive client is implemented on
Android and is run on Samsung Galaxy Nexus I9250 phone.

Cloud setup: To enable Locomotive, our infrastructure in
the cloud is using a web server capable of responding to HTTP
requests and decompressing the compressed data. For our
evaluation, we vary network conditions in a controlled manner
using Linux traffic shaping tools. The network throughput
settings used are 2 Mbps, 5 Mbps and 10Mbps.

Benchmarks: To evaluate Locomotive, we collected web
traffic to replay on mobile platforms. Collection of the mobile
web traffic was performed offline using Fiddler [15], a web
debugging proxy, which captures the raw payload of each
request. To emulate real mobile traffic, we generate HTTP
requests to transfer captured web traffic data as the request
payload. We captured the traffic from mobile versions of the
top 200 most popular websites according to the Alexa list [2].
For each of the mobile web pages to load, multiple HTTP
requests are generated. The size of the dataset is 350MB and
consists of 25 different data formats, including scripts (e.g.
HTML, Javascript), text formats (e.g. .txt files, JSON and
XML formatted text) and multimedia (e.g. jpeg, png images,
audio files). We chose the Alexa Top 200 list as the list
contains a broad spectrum of data sizes and data types. (To the
best of our knowledge, there are no alternative benchmarks
available capable of capturing traffic representative of the
whole spectrum of edge devices.) Table II characterizes the
Alexa Top 200 dataset per data type and focuses on data
compressibility and content distribution by data size.

To study Locomotive’s behavior on different levels of com-
pressibility, we created two test sets using traffic from 50 dif-
ferent websites. Test set A includes the 25 most compressible
websites (average compressibility 3.07) and test B includes the
25 least compressible websites (average compressibility 1.23)
of the Alexa Top 200 list. For our selection, we eliminated
web sites that were either very small in size (order of a few
tens of Kilobytes) or contained a small number of files. The
remaining 150 websites comprise our training set, which we
use to train Locomotive’s models.

In the experiments performed, we compare Locomotive
against other approaches using the aforementioned bench-
marks. As the applications and the target hardware vary
significantly, we are not using mobile web browsers for our
evaluation; instead, we focus on the total time required for a
benchmark to complete the transfer over the network as well as
the compression and decompression latency at the endpoints.

Performance Evaluation: For the purpose of performance
evaluation, we compare Locomotive against a policy that
performs all data transfers uncompressed (denoted as Un-
compressed), an approach that compresses all data before
they get transferred (denoted as Compressed) and against an
oracle (denoted as Oracle). The oracle always makes a correct

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 Mbps A 10 Mbps B 5 Mbps A 5 Mbps B 2 Mbps A 2 Mbps B

R
el

at
iv

e
P

er
fo

rm
an

ce

Uncompressed Compressed Locomotive Oracle

Fig. 2. Locomotive results across different throughput settings and test
sets. Uncompressed refers to performing all data transfers uncompressed,
Compressed refers to compressing all data without selectivity and the Oracle
always answers the question whether to compress or not correctly. Test set A
has high and test set B has low compressibility. Performance is normalized
to the Oracle.

decision when reasoning about the compression decision as
it is constructed by choosing the minimum request latency
between compressing data and leaving it uncompressed for
each individual web data transfer.

For the library’s performance evaluation, we use the Alexa
test set discussed previously. For each of those websites, there
are multiple requests required to be completed in order for a
page to be fetched and loaded on the client. In our test set, each
website contains multiple files in the range of 2 to 200. In our
experiments, we replay HTTP requests for each data file that
is captured as part of the website. The resulting time required
to transfer a website is the aggregate time of individual data
transfer times. Locomotive’s evaluation spans across both test
sets and across different fixed network settings.

V. LOCOMOTIVE EVALUATION

This section presents Locomotive’s evaluation. More specif-
ically, we compare the performance of Locomotive against
the (i) Uncompressed, (ii) Compressed and (iii) Oracle ap-
proaches. In addition, we present statistics that showcase Loco-
motive’s efficiency and discuss the most significant prediction
errors that affect its accuracy. We perform all experiments
under controlled network settings, as discussed previously.

Figure V presents the comparison of the aforementioned
approaches using bandwidth thresholds at 2Mbps, 5Mbps and
10Mbps. The benchmarks used are distributed across two
different test sets, A and B, with different compressibility
characteristics as described in Section IV. In Figure V, we
present relative performance of Locomotive, as indicated by
averaging the transfer times of all data requests for each of
the benchmarks. The averaged times for each approach are
shown normalized relative to Oracle—an ideal scenario in
which Locomotive makes decisions correctly across all web
data. Oracle is plotted at an ideal of 1, and other techniques
seek to approach it; higher is better.

Figure V indicates that Locomotive performs on average
better than the Compressed and Uncompressed approaches
regardless of the network conditions or the benchmarks used.
When comparing results across different network conditions,
Locomotive performs better relative to the Uncompressed ap-
proach when the available bandwidth is low. That is expected
since network transfers become gradually more expensive as
bandwidth declines. Compression makes better use of limited
bandwidth, both in terms of sending less data to begin with,
and also in terms of requiring fewer retries. Similarly, Locomo-
tive performs better as the network throughput increases, com-
pared against the Compressed approach. Using compression
when the network is fast can be inefficient, as the additional
compression latency can outweigh the benefits of transferring

TABLE III
OVERVIEW OF PERFORMANCE AND ACCURACY STATISTICS FOR

LOCOMOTIVE ACROSS DIFFERENT NETWORK CONDITIONS. COMPARISON
TO THE Uncompressed, Compressed AND Oracle APPROACHES PRESENTS
THE PERCENTAGE OF BENCHMARKS SPED UP WITH LOCOMOTIVE, THE

RESPECTIVE AVERAGE SPEEDUP AND THE LIBRARY’S OVERHEAD.
Network conditions

2 Mbps 5 Mbps 10 Mbps
Percentage win over Compressed 76% 86% 86%
Percentage win over Uncompressed 92% 88% 90%
Speedup vs Uncompressed 1.78 1.56 1.53
Speedup vs Compressed 1.12 1.19 1.24
Locomotive overhead 0.26% 0.36% 0.56%
Slowdown vs Oracle 0.84 0.81 0.86

less data. Locomotive shows performance advantages against
both the Compressed and Uncompressed approaches.

By dividing the test sets according to compressibility,
we can compare Locomotive’s advantages in two distinct
scenarios. Test set A (more compressible) provides better
performance than test set B, since there are more opportunities
to reduce network transfer times when utilizing compression.
Test set B contains data with low compressibility, which
Locomotive often chooses to leave uncompressed, and often
due to the file size and type threshold criteria. This approach
proves to be beneficial in the case of low throughput at
2Mbps and 5Mbps. When throughput is low, compressing is
the common case, as savings from network transfers are more
significant. Therefore, Locomotive makes fewer errors on test
set B and has less slowdown against the Oracle compared to
test set A. However, that does not hold for 10Mbps, where
Locomotive performs marginally better on test set A.

Table III presents statistics about Locomotive’s performance
across different network settings. First, the table presents the
percentage of benchmarks for which Locomotive outperforms
the Compressed and Uncompressed approaches. The table
presents results at a per-benchmark granularity, comparing
between the aggregate network transfer time of each website
per approach. In addition, the table depicts the average speedup
of Locomotive across both test sets for the Uncompressed
and Compressed approaches and its performance relative to
the oracle. It also presents Locomotive’s average overhead,
which ranges from 0.26% to 0.56% of the total transfer
time of a request. Because the overhead is low, it enables
using Locomotive to reason about every network transfer.
The average speedup of Locomotive against the Compressed
approach is ranging from 1.1× at 2Mbps to 1.2× at 10Mbps,
whereas it ranges from 1.5× at 10Mbps to almost 1.8× at
2Mbps when compared to the Uncompressed approach. When
compared to the oracle, Locomotive is on average 14.5%-
19.9% slower.

Locomotive is designed to inherently provide data savings,
as it bases its approach on compression. We measured the
different data savings the library provides across different
network conditions. Locomotive saves roughly 40% at 2, 5,
and 10Mbps, while providing applications with performance
speedup. The majority of data savings originates from large
transfers of highly compressible data. Since the theoretical
bound for data savings is calculated at 43.4% using gzip,
Locomotive demonstrates results close to the theoretical best.

The performance results comparing Locomotive to the
Uncompressed and Compressed policies are on par with
Locomotive’s prediction accuracy, as depicted in Table IV.
These results demonstrate the accuracy of Locomotive across
different network conditions. For this comparison, an oracle is

TABLE IV
CHARACTERIZATION OF THE MOST SIGNIFICANT PREDICTION ERRORS

FOR LOCOMOTIVE USING AN ORACLE AS GROUND TRUTH.
Network conditions 2 Mbps 5 Mbps 10 Mbps
Correct Prediction 74.66% 74.36% 77.07%
False positives 3.41% 4.90% 4.34%
False negatives 21.93% 20.74% 18.59%

used as ground truth. Locomotive is hindered by two different
kinds of errors: when it decides to compress when it should not
(false positives) and when it fails to identify that compression
is beneficial (false negatives). The most significant source of
error is false negatives, which are responsible for the majority
of incorrect predictions, ranging between 18.6%-21.9%. We
observe that the false negative error rate decreases as the
bandwidth increases. In addition, false positives range between
3.4% and 4.9%.

VI. CONCLUSION

This paper presented Locomotive, a library for optimiz-
ing mobile web traffic. Locomotive implements selective
compression—using it only when it is likely to benefit per-
formance. To support this, the Locomotive approach uses
compression latency and network throughput estimates to
reason about the compression decision of each web transfer.

We find that Locomotive performs consistently better
than uniform policies requiring either all-compressed or all-
uncompressed data. Its prediction accuracy is above 70% and
its resulting runtime latency outperforms these naı̈ve policies
more than 76% of the time. Furthermore, it also approaches
the oracle policy in many cases.

Overall, Locomotive represents an important building block
towards broader implementation of traffic-reduction techniques
that can improve latency, save energy, and reduce the band-
width requirements for mobile applications and devices.

REFERENCES

[1] V. Agababov et al. Flywheel: Google’s data compression proxy for the
mobile web. In NSDI’15, 2015.

[2] Alexa list web page. http://www.alexa.com/topsites.
[3] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding Website

Complexity: Measurements, Metrics, and Implications. In IMC ’11.
ACM, 2011.

[4] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In USENIX ATC’10, 2010.

[5] Cisco Visual Networking Index: Forecast and Methodology, 2015-2020.
[6] Facebook Network Connection Class.

https://code.facebook.com/projects/1547113495553528/network-
connection-class/.

[7] H. Falaki et al. A First Look at Traffic on Smartphones. In IMC ’10,
2010.

[8] Google. Brotli Compression Format. https://github.com/google/brotli.
[9] K. Hong et al. Mobile Fog: A Programming Model for Large-scale

Applications on the Internet of Things. In MCC ’13, 2013.
[10] R. Khan et al. Future Internet: The Internet of Things Architecture,

Possible Applications and Key Challenges. In FIT ’12, 2012.
[11] R. Netravali et al. Polaris: Faster Page Loads Using Fine-grained

Dependency Tracking. In NSDI ’16, 2016.
[12] L. Ravindranath et al. Procrastinator: Pacing Mobile Apps’ Usage of

the Network. In MobiSys ’14, 2014.
[13] C. M. Sadler and M. Martonosi. Data Compression Algorithms for

Energy-constrained Devices in Delay Tolerant Networks. In SenSys
’06, 2006.

[14] S. Singh et al. Flexiweb: Network-aware compaction for accelerating
mobile web transfers. In MobiCom ’15, 2015.

[15] Telerik Fiddler Debugging Proxy. http://www.telerik.com/fiddler.
[16] X. S. Wang et al. Demystifying Page Load Performance with WProf.

In NSDI ’13, 2013.
[17] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding up Web

Page Loads with Shandian. In NSDI’ 16, 2016.
[18] P. Zhang et al. Hardware Design Experiences in ZebraNet. In SenSys

’04, 2004.

