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Abstract—Electricity bills of large-scale Internet services
are a major component in overall operating costs [3]. As a
result, it is increasingly important to identify cost-reduction
approaches, either through reducing energy consumption or
by strategically avoiding periods or data centers with the
highest electricity costs. The first group of approaches based
on reduction of energy consumption has been explored for
many years. However, approaches that exploit various types
of electricity price variability have been recently proposed.
There is a need for a holistic optimization framework to explore
various strategies to mitigate exposure to price variation. While
prior work has considered independently aspects of spatial
price variability (through an intelligent request distribution
for multi-site Internet services) and temporal price variability
(via energy storage), ours is the first to do both. In this
paper, we propose battery-oriented techniques in combination
with geographically-distributed request routing, in order to
fully optimize the electricity costs of multi-site Internet ser-
vices exposed to both types of electricity price variations.
Furthermore, we present an optimization based framework
designed to analyze the cost-saving leverage afforded by the
combination of these techniques. By exploring a range of design
decisions, such as battery capacity and service level agreement
(SLA) requirements, and operating conditions such as common
power pricing policies and price variability, we identify which
strategies are most effective and under what conditions. For
example, across a range of SLAs, our results show that batteries
offer roughly 7% additional savings in multi-site environments
already implementing intelligent request distribution.

I. INTRODUCTION

Electricity bills of large-scale Internet services are a

major component in overall operating costs [3]. For large

data centers, monthly electricity costs can reach as high

as 1M USD [3]. Accordingly, there has been considerable

research addressing data center electricity usage as well as

resulting expenses. Early work in this field aimed to decrease

overall energy consumption in order to reduce the electricity

bills [5], [7], [8], [14], [15]. Recently, new proposals have

appeared that reduce the electricity costs without decreasing

energy consumption. These approaches exploit spatial and

temporal electricity price variability.

Spatial price variability is simply the fact that electricity

prices vary with geography. The variance can occur due

to differences in ease of generation and delivery, power

demand, government regulation, or other factors. For an

Internet service with several geographically-distributed data

centers, each may have quite different electricity prices at

any moment. Such large-scale services are supported by

multiple data centers to ensure high availability and low

response time. Their front-end devices assign user requests

to geographically-distributed data centers. Typically, these

services route requests to the geographically-nearest avail-

able data center, but other options are available. Request

distribution policies that exploit difference in price, energy

type, or other characteristics among geographically dis-

tributed systems have already been proposed [13], [16]. They

dynamically move demand (user requests) to data centers

with lower price to reduce energy costs.

Temporal price variability occurs at a single site when

electricity providers charge electricity rates that vary with

time of day or other patterns. While some very large ISPs are

able to lock in entirely-fixed power rates, the vast majority

of data centers must operate with pricing schemes that

have some variability either with time-of-day (peak vs. non-

peak), with power demand, or other factors. Furthermore,

with different time zones causing peak electricity demand

to be staggered at different locations, ISPs with data cen-

ters around the world experience richly varied spatial and

temporal trends in electricity pricing. Techniques have also

been proposed to exploit temporal price variability within a

single data center by leveraging energy storage. Tradition-

ally, Uninterruptible Power Supply (UPS) units have been

used in data centers to store energy needed in the case of

a power outage. Nevertheless, these UPS batteries can be

used to store cheaper energy or reduce peak power draw,

rather than simply at the onset of a power outage. Different

battery recharging/discharging strategies have been proposed

depending on the electricity billing model [10], [18].

These two types of electricity price variability have been

investigated separately. We argue that there is a need for

a holistic approach that combines all available leverages.

Accordingly, we propose a new request distribution and

power management policy for large-scale Internet services.

Furthermore, our simulation framework is used to evaluate

the potential of this holistic approach across all electricity

billing schemes commonly found in practice.

In this paper, we pose these questions: In addition to



the previously-evaluated opportunities afforded individually

by cross-data-center request distribution or by within-data-

center energy storage, what cost savings might ISPs achieve

by composing these techniques together? We investigate

whether and how much UPS batteries can help in electricity

bill reduction in a geographically-distributed environment

where cost-aware request distribution already improves the

service operational costs. The use of request off-loading

driven by lower electricity price is constrained by the agreed

service level agreement (SLA) due to network latency.

However, it is not clear how SLA affects the use of stored

energy. Can infrastructures deploying energy storage achieve

better SLAs under the same cost as when only request

off-loading to centers with currently lower prices is used?

We also explore how the saving opportunities change under

different electricity pricing models.

Our work makes the following contributions. First, we

propose a new policy that minimizes the multi-site Internet

service electricity costs by implementing both request rout-

ing and energy storage in a manner driven by the electricity

billing scheme. Second, an optimization framework from

prior work was extended to evaluate the energy storage bene-

fits in a distributed environment and especially its interaction

with cost reduction through request off-loading. Third, as a

result of previous two, we draw the following conclusions.

With tighter SLAs, the savings potential from geographic

demand redirection rapidly decreases, while strategic use

of energy storage (e.g., in UPS batteries) can more stably

provide an additional cost reduction of about 7% over

various SLAs. In markets with high price variability these

savings are 10% or more of the monthly bill. These results

were obtained for the electricity prices derived from spot

markets. We also show how the battery capacity and different

billing models affect the utility of energy storage approaches

for multi-site services. While batteries can provide further

cost reduction even for an On/Off peak billing contract, we

find that their potential benefit is significantly reduced in

multi-site environments that are billed based on peak power

(rather than total energy), because an intelligent request

distribution can already avoid excessive power peaks.

The remainder of this paper is structured as follows. In

the next section we offer background material on electricity

pricing and on UPS batteries. Section III presents our opti-

mization framework for electricity cost reduction, together

with a proposed policy for using it. Section IV first gives

the methodology used in this paper, and then our results and

evaluations. Section V discusses additional related issues,

and Section VI discusses related work. Finally, we present

our conclusions in Section VII.

II. BACKGROUND

Before we discuss the details of our optimization frame-

work and its results, this section presents background infor-

mation on two specific sub-topics related to this work.

A. Electricity Billing Schemes

Various electricity pricing schemes are found in practice.

Nowadays, data centers are exposed to rich electricity price

variability worldwide. The well-known on- and off-peak

pricing charges two different per-KWh prices depending

on the time of the day. There are also scenarios where

in addition to per-KWh pricing, there are also additional

surcharges based on the peak power draw seen at any point

in a given billing period. For some data centers, the peak

component can account for as much as 40% of the bill [10].

In other pricing schemes, electricity charges are even more

variable, drawing entirely from pricing on a spot market [6].

Though electricity spot markets function at the wholesale

level, spot prices reflect on eventual retail rates. In some

states with advanced demand-side management, retail rates

for large customers such as data centers may be based on

a direct pass through of the hourly wholesale spot prices.

Even if they are not directly passed through, spot prices are

related to the eventual retail rates [6].

Our work assumes day-ahead energy markets, in which

energy producers offer energy consumers a 24-hour-advance

“menu” of per-hour energy prices. Since electricity is not

directly storable, prices are much more likely to be driven

by spot demand than any other good. Furthermore, price

spikes may be motivated by disruption in transmission,

generation outages, extreme weather, or a conjunction of

these circumstances [9]. Figure 1 shows, however, an April,

2008 example of how electricity prices show quite repetitive

behavior [1]1. In this price trace, we remarked that there are

normally two price peaks per day, one around 11 am and

another at 9 pm.
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Figure 1. PJM - day ahead market: Hourly energy price for April 2008
shows repetitive behavior.

B. UPS Units

The UPS units contain batteries that are used to bridge

the time between a power failure and availability of diesel

generators’ power. After a failure, generators typically take

10-15 seconds to start and produce enough power for full

load [3]. However, UPS units are designed to sustain a

minimum of 8-10 minutes of peak load [10]. In practice,

the batteries can power the data center much longer. In

1Prices are obtained from PJM that operates the world’s largest compet-
itive wholesale electricity market and one of of North America’s largest
power grids.



part, this is because data centers are normally underutilized,

consuming less than peak power draw. Furthermore, data

centers may also be overprovisioned with UPS batteries in

order to provide redundancy in case of UPS unit failures, or

to allow data center upgrades over time.

Using UPS batteries for cost-savings, in addition to their

original purpose, may raise some concerns which we address

here. First, since the UPS units should protect data center

availability, our optimization framework can be set up to

allow a safety margin of stored battery energy sufficient

for safe transition to generator power in the case of a

failure. A second issue is that battery lifetime may be

affected by extra charges and discharges, and by the depth

of discharge. Since batteries are used both for cost savings

and for power outages, the number of charging cycles can

increase. Furthermore, deeper battery discharges lead to

shorter battery lifetimes. Thus, our framework allows one

to set parameterized limits on the number of discharges per

day. Our default setup uses limits of 2 discharges per day

allowing for a battery lifetime of 4 years [10].

Another aspect of battery usage is energy loss. A certain

amount of energy is lost while discharging: about 10-15%

for lead-acid batteries [18]. Furthermore, the battery can be

leaky so that the level of stored energy decreases over time.

For simplicity, our work is similar to prior work in assuming

there are no energy losses, but these could be added to the

optimization framework as well.

III. OPTIMIZATION PROBLEM

A. Problem Overview

Figure 2 depicts an example of an Internet service with a

front-end and three data centers geographically distributed.

The front-end gets electricity prices for the next 12 intervals

(one scheduling period) from the electricity market and

predicts the number of requests for each interval. It solves

an optimization problem and decides about the fractions of

load to be directed to each data center for each of the inter-

vals. The front-end also determines battery charge/discharge

schedules. After 12 intervals, the whole process is repeated

for the next scheduling period.

Figure 2. Request distribution: Over an interval t, data center i receives
fi(t) fraction of all requests to serve. Over the same interval, the data
center discharges/recharges its batteries for Di(t)/Ri(t) amount of energy.

The goal of our request distribution policy is to minimize

the electricity cost of a multi-site Internet service under the

constraint that the SLA is satisfied. Besides the electricity

price variability across different data centers, it exploits

temporal price variability within a data center storing energy

in UPS batteries.

B. Optimization Problem Formulation

Given the problem and optimization goals described in the

previous subsection, Table I gives optimization problem vari-

ables and their meaning. Namely, we aim to minimize the

total ElectricityCost given by the equation from Figure 3.

This function is the total electricity bill paid by the Internet

service. It represents the sum of per-data-center, per-interval

costs that consist of the cost to execute requests assigned

to the data center and the cost to power the data center.

While i denotes the data center, t indicates time intervals.

The first part of the costs corresponds to the dynamic energy

consumption due to request processing ((fi(t)LT (t)Ei),

whilst the other represents the energy consumed by powered-

on equipment whether idle or busy (BaseEi(offeredi(t))).
We refer to the second type of energy consumption as base

energy. Since the request policy estimates the load that will

be directed to each data center during an interval, this is

used to power only servers sufficient to serve the predicted

load during the interval plus a safety margin of 20%.

Furthermore, the cost to recharge batteries is also added to

ElectricityCost and the savings due to battery discharges

are taken into account ((Ri(t) − Di(t))Batteryi)). The

energy drawn from the grid over an interval at a given data

center is multiplied by the price corresponding to the interval

and the data center (EnergyPricei(t)).
The objective function is minimized subject to the con-

straints 1-9 given in Figure 3. Constraints 1 and 2 ensure

that each data center gets a non-negative number of requests

and that all user requests are distributed (and served). Each

data center has its load capacity measured in the number of

requests it can process per second. This number must not be

violated (constraint 3). Constraint 4 specifies that the SLA

must be satisfied. That is, the percentage of requests that

complete within L time must be at least P . Constraints 5

and 6 regulate how much and how often the batteries can

be charged/discharged since the function sign gives value

0 when the argument is zero and 1 for positive arguments.

Over an interval, batteries of a data center can not be si-

multaneously recharged and discharged (constraint 7). Note

that batteries of a data center can be recharged while they

are discharged in another data center. The amount of stored

energy is determined by the battery recharges/discharges

(constraint 8). Finally, the data center’s load computed in

constraint 9 is used to determine request completion times

and base energies.

Since electricity prices from a day-ahead market are given

on hourly basis, we determine request distribution fractions



Symbol Description

fi(t) The portion of requests to be forwarded to center i in interval t
(value between 0 and 1)

Ri(t) The portion of battery capacity that will be recharged in center i over interval t
(value between 0 and 1)

Di(t) The portion of battery capacity that will be discharged in center i over interval t
(value between 0 and 1)

Batteryi Total battery capacity found in center i (in Wh)

Y i
min Safety minimum given as battery capacity fraction below which batteries in center i are not discharged

(value between o and 1)
Yi(t) Battery charge level in center i at the end of interval t
Ncycles The allowed number of charging/discharging cycles per scheduling period
LCi Load capacity of center i (reqs/sec)
LT (t) Expected total service load for interval t (number of reqs)
LR(t) Expected peak service load rate for interval t (reqs/sec)

offeredi(t) Expected peak load assigned to center i for interval t (reqs/sec)
SLA(L,P ) SLA given as a percentage P of request that must have latency not higher than L
CDFi(L, l) Expected percentage of requests sent to center i that complete within L time

given l load
Ei Energy to execute a request in center i due to

dynamic power consumption (in Wh)
BaseEi(l) Base energy consumed over interval t in center i under load l

due to static power consumption (in Wh)
EnergyPricei(t) Energy price over interval t for center i ($/Wh)

Table I
VARIABLES AND PARAMETERS USED WITHIN THE POLICY (fi(t), Ri(t) AND Di(t) ARE DECISION VARIABLES).

Objective function:

ElectricityCost =
∑

t

∑

i

(fi(t)LT (t)Ei +BaseEi(offeredi(t)) + (Ri(t)−Di(t))Batteryi) ∗EnergyPricei(t)

Problem constraints:
1. ∀t∀i fi(t) ≥ 0 i.e. each fraction cannot be negative
2. ∀t

∑
i
fi(t) = 1 i.e. the fractions need to add up to 1

3. ∀t∀i offeredi(t) ≤ LCi i.e. a data center should not be overloaded
4.

∑
t

∑
i
(fi(t)LT (t)CDFi(L, offeredi(t)))/

∑
t
LT (t) ≥ P i.e. the SLA must be satisfied

5. ∀t∀i 0 ≤ Ri(t) ≤ 1 − Yi(t) , 0 ≤ Di(t) ≤ Yi(t) − Y i
min i.e. battery cannot be recharged more than its capacity is, neither it can

be discharged over the security limit
6. ∀i

∑
t sign(Ri(t)) ≤ Ncycles ,

∑
t sign(Di(t)) ≤ Ncycles i.e. batteries of a data center can be recharged/discharged a limited

number of times
7. ∀t∀i sign(Di(t)) ∗ sign(Ri(t)) = 0 i.e. over an interval batteries of a data center can be either recharged or discharged
8. ∀t∀i Yi(t+ 1) = Yi(t)−Di(t) +Ri(t) i.e. battery level depends on the recharge/discharge amount and its previous state
9. ∀t∀i offeredi(t) = fi(t)LR(t) i.e. the peak load expected in a data center is the assigned fraction of the total peak service load

Figure 3. The optimization problem formulation.

on an hourly basis as well. Hence, an interval duration

corresponds to an hour. Examining the energy price traces,

we conclude there are two price peaks per day on average.

With this in mind, we solve the optimization problem for the

next 12 intervals (hours), though other lookahead windows

are possible. One charging/discharging cycle is permitted per

data center and problem solution, allowing for a maximum

of two charging/discharging cycles per day. In this way, the

battery lifetime is not endangered (Section II-B).

Our implementation of the policy uses Simulated Anneal-

ing [11] to solve the problem as in previous work [13]. This

presents a light overhead for the front-end, occurring only

twice per day.

IV. EVALUATION

A. Methodology

We simulate an Internet service that includes a single

front-end that distributes user requests among three data

centers located on the East Coast, West Coast and in

Europe. The front-end is assumed to be on the East Coast.

The simulator takes as input electricity price and request

traces. It first solves the optimization problem described in



previous section. The optimization problem is solved for

next scheduling period based on predicted load. Predicted

load for each of the intervals of next scheduling period

is needed to solve the optimization problem. Workload

prediction done in this work is explained below. Once the

problem is solved, the simulator gets request fractions and

battery charging/discharging schedule. These values are used

to simulate the policy and resulting costs using the actual

load. The default simulation settings are given in Table II.

Electricity Price Trace. We have obtained hourly energy

prices from PJM day-ahead market [1] that correspond to

prices on the US East coast in April 2008 (when the request

trace was obtained, see below). For the other two data

centers, this electricity price trace has been shifted for time

zone differences. In this way, each data center has the same

electricity price trace. However, in a given moment, each of

the data centers may have a different electricity price.

Workload Trace. The request trace represent a 1-month-

long real trace from a commercial search engine, Ask.com.

The trace corresponds to a fraction of requests the service

received during April 2008. The load capacity of each

data center was assumed to be 250 requests/sec. This load

capacity was set to match the intensity of our request trace.

While the energy prices are known in advance from the

day-ahead markets, request load prediction is used while

solving the optimization problem. We use Auto-Regressive

Integrated Moving Average (ARIMA) [4] modeling to pre-

dict loads. The modeling combines both seasonal and non-

seasonal components additively. The non-seasonal compo-

nent involves 3 auto-regressive parameters and 3 moving

average parameters (corresponding to the past three hours)

while the seasonal component involves 1 auto-regressive an

1 moving average parameter that corresponds to the same

hour of the previous week. This method accurately predicts

the load [13].

For simplicity, we assume that all requests are of the same

type and can be served by all data centers. Also, we assume

that a request takes 400 ms to process on average. The

default SLA used in simulations requires that 90% of the

requests complete in 500 ms or less, but we also perform

sensitivity experiments for different SLAs. The SLA is to

be satisfied at the end of scheduling period (12 hours), in

all simulations.

Network Latencies. Real experiments with servers lo-

cated in the 3 previously mentioned regions have been

performed to generate a realistic distribution of data center

response times [13]. The requests were made to last 400

ms on average at a remote server, according to a Poisson

distribution, and they were issued from a client on the US

East Coast. The server’s response time was measured at 4

utilization levels (20%, 40%, 60% and 80%) to instanti-

ate CDFi tables. The time between consecutive requests

issued by the client followed a Poisson distribution with

the appropriate average for the utilization level. The results

showed that higher utilization has only a small impact on the

response time. Average measured response times were: 412

ms (East Coast), 485 ms (West Coast) and 521 ms (Europe).

With respect to our default SLA (500 ms, 90%), only the

East Coast server can complete more than 90% of requests

within 500 ms. The other can only reply within 500 ms 76%

(West Coast) and 16% (Europe) of the time.

Energy Usage Model. In the default case, we assume

energy-proportional data centers [2]. An energy-proportional

server does not consume base energy i.e. BaseEi = 0.
Thus far, servers are not yet perfectly energy-proportional,

but base energy is expected to decrease significantly in the

next few years because of strong industrial and academic

initiatives [2], [14].

Battery Capacity. Battery capacity is considered in terms

of the number of requests that can be processed out of the

energy stored in the batteries. We evaluate battery capacities

of 200K, 400K, 600K, 800K and 900K requests. With the

load capacity of 250 requests per second, the data center

load capacity is 900 000 requests per hour. Accordingly, the

energy to serve 200,000 requests corresponds to the energy

consumed over 13.3 minutes at the peak load. The highest

evaluated battery capacity (900K) means that the battery

is sufficient to run the entire data center at peak load for

an hour. Since these capacities might be higher than ones

available in data centers, we discuss the amortization of the

excess battery capacity in Section V. The given capacities

are assumed to be entirely available for electricity cost

reduction, i.e. the safety amount of energy necessary for

power outages has been subtracted. This is also covered in

Section V. Note that all storage capacities are given per data

center and that each of the three data centers is assumed to

have the same storage capacity in one simulation run.

B. Results

In this section we evaluate UPS battery potential for

electricity cost reduction in a distributed environment in

which an intelligent request distribution is already done

to reduce the electricity costs. The evaluation is given

for various scenarios including different pricing schemes,

battery capacities and SLAs.

1) Battery Capacity and Price Variability : It has been

shown that in a single data center environment, the bat-

tery’s ability to exploit electricity price variability depends

significantly on battery capacity [18]. However, it is not

clear how battery capacity affects the costs in a distributed

environment where requests can also be directed to a center

with low electricity price. Success also depends on the price

difference between when the energy is stored and when it

is consumed. Price variability is not the same in all spot

energy markets, nor in all seasons. In our trace, the highest

price difference over the entire trace is a factor of 3.9X.

The average daily minimum price of 39.66 $/MWh and the

average maximum 99.54 $/MWh give the daily variation



Setting SLA Base Power LCi Billing Scheme Interval Duration Scheduling Period

Default Value (500ms,90%) 0 250 req/s day-ahead market 1 hour 12 intervals

Table II
DEFAULT SIMULATION PARAMETERS.

factor of 2.5X. Higher price variation observed was reported

in the related work [16], [18], reporting variations as much

as 10X from one hour to the next [16]. Here, we explore a

range of variabilities by scaling only the peak prices by 2

and 5 to obtain approximate daily price variation of 5X and

12.5X respectively.

Figure 4 gives the electricity cost with our request dis-

tribution policy for different battery capacities and price

variation traces. The electricity cost is normalized with

respect to the case with no energy storage and corresponding

price variation.
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Figure 4. Cost dependence on battery capacity (from 200K requests to
900K) and price variability (original prices, peak prices scaled by 2 and 5).

For the original price trace, using a small battery capacity

(200K) that sustains the peak data center load for less than

15 min gives 2% of savings. The results show that for

each 15-min-increase in battery capacity the electricity cost

is further reduced by slightly more than 1.5%. Assuming

batteries that can run the data center for an hour leads

to the cost reduction of 6.7%. We tested the policy for a

single data center set-up with appropriate load capacity and

found this cost reduction to be 6.2%. Hence, batteries can

achieve savings even in multi-site environments where data

centers with lower electricity prices can be exploited through

intelligent request distribution. Moreover, these savings are

slightly higher in the multi-site environment since the total

number of requests served from stored energy is not limited

to 2 hours per day as in the single data center scenario but

to 6 hours (though with lower load capacities).

Rather high price variation when peak prices are scaled

by 5 leads to the savings of 15%. Cost reduction of 10%

is possible if the electricity prices fluctuate similarly to [18]

(the case when peak prices are scaled by 2). These results

show that exploiting batteries makes the most sense when

price variation is quite high. Also, we evaluated an unlimited

case in which all three data centers have infinite load

capacities and there is no SLA constraint. In this scenario,

energy storage can reduce further the costs obtained with

request off-loading by 7.6% with the batteries of 900K.

Hence, the savings from stored energy are more limited by

battery constraints and price variability.

2) Other Electricity Billing Models: So far we assumed

electricity prices from day-ahead markets. In this section we

look at the other two most common pricing models. With on-

peak/off-peak pricing, there are two energy prices, one for

on-peak hours (weekdays from 8am to 8pm) and another for

off-peak hours (weekdays from 8pm to 8am and weekends).

Figure 5(a) shows the saving potential under this pricing

model. Here we assume, the off-peak price of half of the

on-peak price.
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Figure 5. Normalized cost for different electricity billing.

With this billing scheme, our optimization framework can

reduce the cost through energy storage by 4.7%. Taking into

account the total amount paid by data centers every month

on electricity costs, this still represents substantial savings.

Again, if the price difference between on-peak and off-peak

hours were even higher, there would be greater savings.

Furthermore, in this scenario, the energy price increases

once per day meaning that batteries are recharged/discharged

only once per day. This is important taking into account the

battery lifetime concerns.

Finally, we look at one more electricity billing scheme that

we refer to as peak-based. Namely, utilities might bill data

centers separately for the peak power drawn over the month.

This component of the bill is added to the cost for energy

consumed. The peak over the month is the maximum power

observed over any shorter interval (e.g. 30 minutes). We had

to modify the solver to optimize the electricity cost under

this billing scheme. The electricity cost function defined in

Section III-B was increased by the sum of peak power draw

components for each data center,
∑

i PiPricei, where Pi

represents the peak (maximal) value of power draw averaged



over a given duration in the i − th data center and Pricei
is a price to be paid for each Watt of the peak draw ($/W).

The problem constraints from Section III-B stayed the

same. Again, the policy optimizes the cost locally, for each

of 12-hour durations of a scheduling period. Requests are

distributed such that spikes in demand directed to any of

the data centers are avoided. In the case of battery usage,

the optimization policy recharges them when low load is

assigned to the corresponding data center and discharges

under high load intensity.

In our work, we look at average power over 1-hour

durations and track the peak hourly average. The electricity

price and the price to be paid in USD per MW of the peak

power draw are set in the following way. We assume that

the peak draw component of the total bill accounts for 40%

of the total electricity bill if the data center half of the time

draws the peak power and the rest of the time half of the

peak power (based on the analysis from [10]). Note that peak

power is tracked for each data center separately and the total

bill includes the peak power costs of all data centers.

Achieved savings are much lower than for other two

billing models. They range from 1% to 2% as shown in

Figure 5(b), though the peak draw component of the cost

accounts for 34% of the bill in the non-battery case. Since we

limit battery discharges to one hour over 12-hour durations,

only the highest peak can be shaved. As there might be more

similar peaks, the second highest will determine the cost. It

is also important not to generate a new power draw peak

due to recharging batteries of large capacity.

Figure 6 depicts request distribution and battery manage-

ment for the peak-based billing scheme. In Figure 6(a) we

can see how the number of requests for each data center

forms a smooth line when no batteries are used, meaning

that the intelligent request distribution avoids peaks in load

within a data center. In Figure 6(b) where batteries of the

smallest capacity are assumed, there are peaks in the load

that are shaved through battery discharges. However, we

were not able to substantially reduce the cost that was

achieved through request off-loading. We can conclude that

for this billing model, the request distribution already min-

imizes the cost, leaving little space for battery management

to improve it.

3) Varying SLA Strictness: When SLAs are stricter, they

restrict the gains possible from geographic request distri-

bution, because sending requests to a far away data center

increases latency. On the other hand, shifting power draw

via UPS battery storage within a data center does not affect

the response time. Thus, batteries may offer better leverage

in scenarios with strict SLAs. To test this, we independently

vary both SLA parameters, latency and percentage, while

applying our policy. Figure 7(a) shows electricity costs for

the cases without batteries and with the battery capacity

sufficient to run data center’s load for an hour. The costs

are given for different latencies, normalized to the cost with
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(a) No battery case: SLA (500 ms, 90%)
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(b) Battery case - 200K: SLA (500 ms, 90%)

Figure 6. Number of requests assigned to each data center for peak draw
based billing.

the default SLA (500ms, 90%) without batteries.
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Figure 7. Cost dependence on SLA.

We also varied the percentage condition of SLA. Electric-

ity cost for different values of the SLA percentage parameter

(assuming target latency of 500 ms) are given in Figure 7(b).

Here, the rightmost columns represent the costs for the most

strict SLA that requires 92% of requests to be processed

within 500 ms.
Looking only at the non-battery results, we can see how

much a stricter SLA affects the efficiency of off-loading.

When our default latency of 500 ms is increased to 550 ms,

the cost drops 15.7%. These results show that savings based

only on request distribution highly depend on the SLA.

However, for all SLAs the energy storage gives additional

savings over the ones achieved by request off-loading since

it does not necessarily require demand routing to possibly far

away data centers. For all observed SLAs, batteries reduce

the electricity bill obtained with request offloading by 6%

to 7% meaning that absolute savings through batteries are

higher for stricter SLAs.
Energy storage can be used to impose a tighter SLA while

paying the same costs. For instance, for the 90% SLA the

latency requirement of 525 ms can be set to a more strict

one, 500 ms, for the same cost by introducing the battery

management (see Figure 7(a)).
4) Energy Proportionality: Here we analyze effects of

servers’ energy-proportionality. While success of the load



offloading approach highly depends on the amount of energy

consumed by servers that is load independent [13], [16], the

energy storage approach for pricing models different from

the peak based should not be very sensitive to the servers’

energy-proportionality. Recall that all results we discussed

so far assumed no base energy and that we assume that in

each data center there are as many active servers as sufficient

to serve the expected load plus a margin of 20%.
Figures 8 shows the electricity cost as a function of the

amount of base power. Base power of 75 W and 150 W

is considered. Since we assumed a dynamic power range

of 150 W, the case of base power of 150 W roughly

represents today’s servers. The cost are normalized to those

of the non-battery policy and the corresponding base power

consumption. Results are given assuming battery capacities

sufficient to sustain 15 min, 30 min and 1 hour of a

completely loaded data center. Note that for each of the base

energy scenarios the amount of energy that can be stored in

batteries differs.
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Figure 8. Normalized cost for different base energy.

The results show little difference across different base en-

ergy scenarios. An energy-proportional system (that enables

complete power draw distribution through request distribu-

tion) benefits slightly more than a system with significant

idle/static power consumption. With batteries sufficient to

run data centers for an hour, the energy proportional system

(base power = 0 W) achieves 2% higher savings than the

system with high base power (150W). This difference comes

from impossibility to redirect base energy consumption to

the data center currently run on batteries (a fraction of the

battery benefit is achieved through request off-loading to

the currently battery run data centers). This suggests that

when servers become more energy-proportional, distributed

systems will benefit slightly more from the energy storage

than they would today.

V. DISCUSSION

In our evaluation we have used battery capacities higher

than the ones normally found in data centers, but our analysis

in this section shows that the cost of this battery capacity

can be recouped by the electricity price savings it allows. As

we explained (see Section II-B), data centers are normally

provisioned to run at least for 10 minutes of peak load on

UPS batteries though much less time is needed in the case

of power outage.

In the case of higher price variability, such as when peaks

from the PJM price trace were scaled by 2 or 5, even

small battery capacities achieved substantial savings of at

least 5%. However, for lower price variability, 40 minutes

of battery capacity is necessary to have 5% of gains. Data

centers that are not provisioned with this much capacity

could invest into additional batteries. We estimate the time

needed to recover from such an investment and to start to

save through intelligent battery management. The recover

time is computed based on the following equation:

Ppeak ∗AdditionalCapacity ∗BatteryPrice =

Savings ∗ Pavg ∗ ElectricityPrice ∗ RecoverTime

where Ppeak is the peak data center’s power consump-

tion while Pavg represents the average data center’s power

consumption. AdditionalCapacity is the bought battery

capacity given in terms of the time over which it can power

the data center at peak load. Savings represents the cost

reduction achievable with the total capacity (after purchase).

Table III gives the recover time in years for pairs of the

previous battery capacity and the capacity after the upgrade.

The results are given for lead-acid batteries, the most com-

mon battery type today in data centers. In the calculation

it was assumed that 5 minutes of batteries are kept for a

potential power outage. The battery price used is 100 $/KWh

and the electricity price is assumed to be 10 c/KWh [10].

Also, we estimate the average power consumption to be 50%

of the peak power consumption. These results are given for

the case of original price traces with lower price variability.

Total capacity after battery purchase
400K 600K 800K 900K

Existing 10 min 2.29 2.56 2.78 3.12
capacity 20 min 1.23 1.83 2.21 2.55
before 30 min 0.17 1.09 1.63 1.98

purchase 40 min 0 0.36 1.05 1.42

Table III
AMORTIZATION TIME (IN YEARS) TO RECOUP ADDITIONAL BATTERY

COSTS AND TO START TO SAVE; ESTIMATIONS ARE GIVEN FOR THE

CONSERVATIVE CASE OF LOW ELECTRICITY PRICE VARIATION.

For instance, if a data center with battery capacity of 20

minutes is upgraded to battery capacity sufficient for 400K

requests plus 5 minutes for power outages, the time it takes

to recover from the investment and to start to save is 1.23

years. Note that for higher battery capacity longer time to

recover is needed but afterwards savings are higher. Since

the average lifetime of this type of battery is 3-5 years [10],

all of these recover times mean that after a certain point the

additional investment would lead to savings.



VI. RELATED WORK

There has been considerable research on energy conserva-

tion in data centers [7], [8], [15]. These works dynamically

determine how many servers are required to serve the current

load and turn the others off to eliminate idle system power

consumption. The problem of idle power consumption can

be also tackled through DVFS and low-power modes [14],

[17].

Recently, approaches that exploit geographical and tempo-

ral electricity price variability have been proposed. Multi-site

Internet services can leverage geographical price variability

through demand redirection to data centers with lower elec-

tricity price [12], [16]. Another policy that routes demand

of a multi-site Internet service to reduce the electricity costs

taking into account brown energy caps has been designed

[13].
Another way to intelligently schedule power draw taking

into account the pricing model is by using UPS batteries

[10], [18]. Urgaonkar et al proposed an optimization based

algorithm to minimize the electricity bill by storing energy in

UPS batteries when the electricity price is lower and using it

when the price is high [18]. Price variability comes from an

energy spot market. Govindan et al proposed to use batteries

for peak shaving with a peak based pricing scheme. Over

slots with high load energy from batteries is used to reduce

the peak billing component [10]. In both works, the authors

look only at a single data center. Hence, it was not clear

how much energy storage can contribute in a large-scale

distributed system where request distribution can be used to

shave both price and load peaks that increase the bill.

VII. CONCLUSIONS

In this paper, we presented a framework to investigate

the effects of various design decisions and operating condi-

tions on the electricity costs of multi-site Internet services.

Furthermore, we proposed an optimization-based request

distribution and battery management policy that exploits

both geographical and temporal electricity price variability

to reduce the electricity bill. An extensive set of simulation

experiments based on real traces was performed to evaluate

the potential of this holistic approach for different battery ca-

pacities, electricity price variabilities, SLAs, pricing schemes

and servers’ energy proportionality.

Based on our results, we conclude that in order to further

reduce the electricity costs in a distributed environment

through energy storage either higher capacity batteries or

higher temporal price variability are needed. While the

energy storage approach is especially effective for billing

schemes derived from spot markets, in multi-site environ-

ments it is less effective for peak power draw based billing.

Also, we found that the absolute cost reduction of this

leverage is higher for stricter SLAs when the possibility

for requested off-loading to currently cheaper data centers

is limited. Furthermore, batteries can be used to impose a

stricter SLA for the same electricity costs as when only

spatial price variability is exploited.
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