
Optimized Surface Code Communication in Superconducting
Quantum Computers

Ali Javadi-Abhari
Princeton University

ajavadia@princeton.edu

Pranav Gokhale
University of Chicago

pranavgokhale@uchicago.edu

Adam Holmes
University of Chicago

adholmes@uchicago.edu

Diana Franklin
University of Chicago

dmfranklin@cs.uchicago.edu

Kenneth R. Brown
Georgia Institute of Technology
ken.brown@chemistry.gatech.edu

Margaret Martonosi
Princeton University
mrm@princeton.edu

Frederic T. Chong
University of Chicago

chong@cs.uchicago.edu

ABSTRACT
Quantum computing (QC) is at the cusp of a revolution.
Machines with 100 quantum bits (qubits) are anticipated to
be operational by 2020 [30, 73], and several-hundred-qubit
machines are around the corner. Machines of this scale have
the capacity to demonstrate quantum supremacy, the tipping
point where QC is faster than the fastest classical alternative
for a particular problem. Because error correction techniques
will be central to QC and will be the most expensive compo-
nent of quantum computation, choosing the lowest-overhead
error correction scheme is critical to overall QC success. This
paper evaluates two established quantum error correction
codes—planar and double-defect surface codes—using a set
of compilation, scheduling and network simulation tools. In
considering scalable methods for optimizing both codes, we
do so in the context of a full microarchitectural and com-
piler analysis. Contrary to previous predictions, we find that
the simpler planar codes are sometimes more favorable for
implementation on superconducting quantum computers, es-
pecially under conditions of high communication congestion.

CCS CONCEPTS
• Hardware → Quantum computation; Quantum error cor-
rection and fault tolerance;

KEYWORDS
Quantum Computing, ECC, Design-Space Exploration

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123949

ACM Reference format:
Ali Javadi-Abhari, Pranav Gokhale, Adam Holmes, Diana Franklin,
Kenneth R. Brown, Margaret Martonosi, and Frederic T. Chong.
2017. Optimized Surface Code Communication in Superconducting
Quantum Computers. In Proceedings of MICRO-50, Cambridge,
MA, USA, October 14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3123949

1 INTRODUCTION
Major academic and industry efforts are underway to build
scalable quantum computers, which can have significant ap-
plications in solving currently intractable problems in areas
as diverse as AI [33], medicine [47] and security [72]. They
will also profoundly impact our understanding of the nature
of computation itself [1].

Owing to considerable theoretical successes over the past
two decades [3, 27, 31, 45] and successful small-scale physical
demonstrations [43, 76], the main challenges now relate to
scaling. This includes building more and longer-lived qubits,
while simultaneously reducing the number of qubits and time
required to run a given application. This paper focuses on
the latter. We propose optimizations that reduce the number
of qubits and clock cycles (the space-time resource usage),
especially due to qubit communication requirements. We then
discuss criteria that should be considered in choosing the
lowest-overhead error correcting code.

Our focus on quantum error correction (QEC) stems from
its importance in large-scale QC. Although it is expected
that computers with 50-100 qubits will be built in a few years
(and surpass classical computing capabilities due to expo-
nentially increasing information state space), they will likely
not sustain lengthy computations. This is due to the fragility
of quantum states and the imprecisions of quantum control.
Thus, in the long term, QEC is a necessity. However, QEC is
the most resource-consuming component of QC, predicted to
utilize up to 90% of qubits in the system [39, 41]. Any design
should therefore aggressively optimize QEC, and also choose
the best code among different possible schemes [18, 27, 46].
This paper hints at how this may be achieved.

https://doi.org/10.1145/3123939.3123949
https://doi.org/10.1145/3123939.3123949

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

In this paper, we study the most promising proposal for
building large-scale quantum computers: surface code QEC
on superconducting quantum technology [22]. These are being
targeted in most industry efforts [30, 67, 73]. Superconduct-
ing technology relies on qubits created from electrical circuits
cooled to very low temperatures. They have the advantage of
being both low error and fast. Surface codes are a family of
codes that protect information using a simple 2-dimensional
layout of redundant qubits with desirable scaling properties
and high error resilience. Our study quantitatively compares
two variations of the surface code in the context of a compre-
hensive microarchitectural and compiler analysis. Considering
issues like locality, concurrency, and congestion, our evalua-
tion is informed by classical microarchitectural techniques,
while bringing quantitative clarity to the most important QC
design decisions.

The key challenge of this paper is to frame quantum com-
puting problems, which look very different from traditional
architecture problems, in a manner that allows us to apply
computer architecture techniques. This application-system-
technology co-design is crucial if the scarce quantum resources
are to be used effectively. In particular:

(1) Surface code error correction has traditionally involved
statically scheduling “braids” by hand in a 3D space-
time volume for very small quantum circuits [19, 26].
Leveraging the property that program inputs are of-
ten fully-determined in QC applications, we map the
problem from a set of 3D topological transformations
to a 2D static routing problem, over-constraining it to
allow scalability to very large circuits. We show that
using proper heuristics, this approximation can still
achieve near-optimal performance.

(2) Surface code “braids” have been greatly favored in the
quantum computing community because they appear
latency insensitive (an entire braid can be implemented
in 1 cycle, regardless of length). Yet we find that highly
parallel quantum programs scale poorly because si-
multaneous braids can neither cross nor be prefetched,
causing a form of contention scaling not previously ana-
lyzed. We show that in such cases, “teleportation-based”
communication is more desirable as it is prefetchable.
(Quantum resources can be pre-communicated, allow-
ing any contention to be diffused over time prior to the
point of use.)

(3) We incorporate (1) and (2) into an extensive software
toolchain that performs end-to-end synthesis from high-
level quantum programs to physical layout and circuits.
This automated framework allows us to map the design
space parameterized by application characteristics, er-
ror correction scheme, and device reliability. We show
the importance of (2) by plotting optimal space-time
design points as device reliability evolves with better
technology.

The rest of this paper is organized as follows: Section 2
is an overview of the relevant background, and Section 3
discusses related prior work. Sections 4 and 5 discuss the

micro-architectural details of various QEC implementations,
and the software stack designed for evaluations of the design
space. Section 6 discusses optimizations on braid-based com-
munications, and Section 7 shows our results. Section 8 offers
broader discussions including options for other communica-
tion optimizations, and Section 9 concludes the paper.

2 BACKGROUND
This section presents a brief overview of the relevant back-
ground on quantum computation, theory of error correction,
and physical technologies.

2.1 Principles of Quantum Computation
Quantum bits (qubits) are the principal units of information
in quantum computers. Unlike classical bits, their states are
not confined to two deterministic binary values. Instead, a
generic quantum state exists in a probabilistic yet simultane-
ous superposition of the |0⟩ and |1⟩ states. Manipulation of
probabilities is equivalent to changing the state, and can be
achieved through the application of various quantum oper-
ations. When observed (measured), a qubit collapses into a
classical binary state (either 0 or 1), in accordance with the
prior probabilities of the quantum state. Expressed in alge-
braic terms, quantum states are unit vectors in the Hilbert
space. Quantum operations rotate these vectors, while quan-
tum measurements project them onto a lower dimension.

While this means that there are theoretically infinite possi-
ble quantum states, and infinite valid operations to transition
between those states (any small degree of rotation is per-
missible), it can be proven that a small set of operations is
sufficient to approximate all possible operations [4, 44]. These
universal operations are akin to a classical instruction set.

The power of quantum computation comes from its ex-
ponentially increasing state space: 𝑛 qubits are represented
by a 2𝑛-dimensional state vector. Furthermore, quantum
states can interfere, owing to their dual nature as particles
and waves, further allowing manipulations that surpass the
power of classical computers. The key idea behind designing
quantum applications is to initialize qubit states to encode a
given problem, orchestrate interferences to eliminate unde-
sired answers from the state space, and finally measure the
qubits, obtaining (with high probability) the answer to the
query.

2.2 Theory of Quantum Error Correction
When a quantum application is designed, it assumes noise-
free computation. In practice, however, the computation can
deviate from the intended path due to noise, interaction
of qubits with the environment, and imprecise operations.
Fortunately, if the noise level is within specific bounds, this
deviation can be corrected through constant monitoring and
error detection [3].

As with any type of error resilience, redundant information
is used to protect fragile states. Although we cannot simply
copy the state of one qubit into multiple qubits and later take
a majority vote (due to quantum no-cloning constraints [82]),

Optimized Surface Code Communication in Quantum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

we can still use redundant qubits to create a code space
where valid code words are safely separated, immune to noise
perturbations. The idea is similar to classical error correction:
more redundancy will result in a larger code distance (d),
increasing error tolerance. Small corruptions of data would
place the data’s state into an orthogonal error subspace, which
can be immediately detected and corrected. The higher-level
encoded quantum state is called the logical qubit, while its
comprising fundamental qubits (including redundant bits)
are called physical qubits.

One complicating factor in checking logical qubits for errors
is that we cannot directly observe their comprising physical
qubits—observing a qubit collapses its state superposition,
yielding a simple classical bit. This necessitates the use of
extra “helper” qubits, known as ancillas. Ancillas are inter-
acted with data for syndrome measurement—learning just
enough about the encoded block to detect and fix errors
without measuring the full state of the encoded block. Even
though quantum states are analog, and errors can occur in
arbitrary amounts, syndrome measurement has the effect of
projecting the qubit state onto the basis vectors of the error
subspace, thereby quantizing errors. Such quantized errors
can then be corrected using simple corrective operations: a
bit-flip operation, a phase-flip operation, or both.

After encoding, any computation must be performed di-
rectly on encoded data, since decoding and encoding again
would be too error prone. Performing encoded versions of
some operations are harder than others. In particular, most
proposals for performing the T operation require the use
of even more extra qubits. The extra qubits must first be
prepared into one specially encoded quantum state (called
“magic state” due to its distinctive properties [9, 29, 54]),
and then interacted with the original data to perform the T
operation.

Unfortunately, the work required to achieve proper error
resilience is quite costly, since there is a wide gap between reli-
ability requirements of non-trivial quantum applications and
reliability rates supported by quantum technologies (called
logical error rates (𝑝𝐿) and physical error rates (𝑝𝑃) respec-
tively). It is typical to have 10 − 15 orders of magnitude
difference between 𝑝𝐿 and 𝑝𝑃 . The application imposes a
far more stringent error-per-operation expectation than the
technology can support. 𝑝𝐿 and 𝑝𝑃 are dictated by the size of
computation (i.e. total number of pre-QEC logical operations
that must be executed) and the noise level in the physical
technology, respectively. Longer computation has a higher
chance of corruption, thus requiring more reliable operations.
For example, an application that executes a total of 1012

logical operations must ensure that per-operation errors do
not exceed 0.5 × 10−12, if it wants to accurately perform
its computation at least half the times it is executed. 50%
is a typical correctness target, which we also assume. On
the other hand, current superconducting technology is able
to perform operations with reliabilities of 99.99 − 99.999%—
equivalent to physical error rates of 10−2 − 10−3. A main
goal of this paper is to optimize QEC in a way that we do not

(a) Planar (b) Double-Defect

Figure 1: One encoded logical qubit, using the (a) planar and
(b) double-defect surface code variations. Ancilla qubits (small
black) are used to continuously monitor data qubits (large
white). The planar encoding uses fewer physical qubits for
the same encoding strength.

lose more resources to it than necessary. In addition, we also
suggest the least resource-intensive QEC code for a range of
logical-to-physical error gaps, as this parameter looks very
different for various applications and technologies.

2.3 Surface Codes
Surface codes are a family of promising, low-overhead QEC
codes [27], where logical qubit information is encoded in the
topology of a two-dimensional lattice of physical qubits [64].
A surface code lattice alternates data and ancilla qubits
(white and black circles in Figure 1). Data qubits collectively
encode the logical state, while ancillas continuously collect
syndrome measurements from their neighboring data. It can
be shown that the lattice as a whole acts as an encoded qubit.
A larger lattice is a stronger encoding (larger code distance
𝑑).

Intuitively, surface codes are so fault tolerant because they
employ a “soft decoding” scheme in which error syndromes
are measured and recorded over an extended time period,
and then a minimum-weight perfect-matching algorithm [25]
is used to identify errors after the fact (and then the errors
are post-corrected due to commutativity of the correction
operations).

2.3.1 Planar vs. Double-Defect Encodings. In this paper
we investigate the two main flavors of surface codes: pla-
nar [10, 18] and double-defect [27] encodings. In the planar
encoding (Figure 1a), a single lattice (or “plane”) represents
a single logical qubit. To introduce extra logical qubits to the
system, it suffices to build separate lattices. In this scenario,
the system can be seen as a collection of planar tiles. In
contrast, the double-defect implementation (Figure 1b) intro-
duces holes (or “defects”) into the lattice, which are locations
where the syndrome measurements are turned off. This cre-
ates a standalone qubit between the two defects (the lattice
boundary is no longer needed), and thus a monolithic lattice
is now able to accommodate multiple connected double-defect
tiles of this type.

As discussed previously, detecting bit-flips and phase-flips
is sufficient to correct arbitrary qubit errors. Therefore, ancil-
las are alternately designated as those that measure bit-flip

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

phase-flip		
error	

?m
e	

space	

+	

-	+	

-	

+	+	

-	-	 bit-flip		
error	

(a) Planar

?m
e	

space	

phase-flip		
error	

+	

-	+	

-	

+	+	

-	-	 bit-flip		
error	

(b) Double-Defect

Figure 2: (a) Surface code error detection. A matching algo-
rithm over anomalous syndromes can determine the location
of faulty qubits. (b) Defects that are stretched through space-
time create “braids” — 3D pipes used to operate on the en-
coded logical qubit.

syndromes and those that measure phase-flip syndromes from
their surrounding data (shown as orange and blue interactions
in Figure 1). By recording a history of syndrome measure-
ments, we are able to detect (in classical software) anomalous
syndromes and trace their cause to specific qubit corruptions.
This collection of syndrome histories can be thought of as
a 3D space-time volume; the bottom area being the lattice,
and the vertical height the progress in time. This is shown
in Figure 2.

2.4 Superconducting Technology
A number of technologies have been proposed for implement-
ing qubits. Ongoing experimental physics research seeks to
create a technology that can accommodate large numbers of
stable qubits, operations with high fidelity, and the ability to
easily address and control the system’s many qubits. In this
work we focus on superconducting technology as one promis-
ing step towards those goals. Owing to fast clock speeds
and low error rates [5, 15, 66], superconducting qubits have
become the leading candidate for large-scale QC. This tech-
nology has a good prospect of scaling up to a large number
of qubits [21], and operation clock rates are in the high range
of quantum technology, currently on the order of 10-100
MHz [58, 79]. The qubits in this technology are difficult to
move, and thus only interact over short distances with nearby
qubits. The implications of this on qubit communication is
discussed in Section 4. Superconducting systems meeting the
necessary criteria to run surface codes have already been
demonstrated [5].

3 RELATED WORK
Several prior works have estimated quantum resources using
simple tallying of logical qubits and operations, and multi-
plying them by the number of resources necessary to correct
one qubit and one operation [27, 41, 75]. This “spreadsheet”
model simplifies several crucial constraints—for example, that
distant qubits cannot arbitrarily interact. In this work we per-
form a more rigorous evaluation of the details of mapping to
the architecture, taking into account data dependencies, qubit
layouts, and contentions in communication. This exposes new
opportunities; for example we find that communication-aware
scheduling saves up to ∼7𝑋 in total execution time by re-
ducing braid congestion.

The initial assignment of the program’s logical qubits to the
chip’s physical qubits is an important optimization which can
positively impact performance, if done correctly. Prior work
has considered this problem, although several shortcomings
exist. For example, some methods are manual or non-scalable,
some only consider 1-dimensional architectures, and some
ignore error correction or only consider concatenated error
correction [12, 14, 23, 48, 49, 62, 63, 65, 68, 69, 81]. For the
first time, we optimize two-dimensional surface code map-
pings by applying graph partitioning techniques to quantum
programs to both achieve scalability and to reduce communi-
cation distance and congestion.

Furthermore, we examine the sensitivity of results to the
characteristics of the high-level application and reliability of
the low-level technology, parameters which evolve over time.
While prior work has often relied on optimizing a particular
QEC/technology choice [27, 41, 77], our work provides in-
sights into the conditions where such choices are warranted.
In a rapidly-moving field, this end-to-end toolflow is partic-
ularly important since it allows one to change approaches
fluidly to try new methods as technologies or assumptions
evolve.

Double-defect codes have been the favored QEC option in
the literature [27, 28, 41, 59]. This is due to simplicity of its
uniform control and the fact that a monolithic lattice can in
theory be made as large as needed. In addition, this encoding
uses braids for communication, which are very fast forms
of interacting distant qubits. However, we find that under
certain conditions planar codes are actually better, owing to
two properties: first, planar tiles are smaller (i.e. fewer qubits
needed for the same code distance). Second, planar tiles
communicate through teleportations, which are prefetchable
(a major advantage in high-contention scenarios).

Recent work has begun addressing the issue of braiding
automation by performing automated constructions of 3D
topological pipes [57, 59, 60]. However scalability and extend-
ing to all operations remains an area of future work in these
methods. Our proposed alternative is to use more scalable
2D networking methods. Several recent papers have proposed
optimized qubit layouts on 2D grids [24, 48, 68]. However,
this problem has not been studied in the context of surface
codes or in larger scales. Our work fills this gap.

Optimized Surface Code Communication in Quantum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Finally, this work demonstrates the importance of paying
attention to the high-level application when choosing the
best type of error correction, a factor that has received little
attention in prior work. Patil et al.’s study [61] similarly
reveals that high-level application characteristics must be
taken into account when choosing the right implementation
of a quantum library subroutine, in the event that many
implementations of it are available.

4 MICROARCHITECTURAL DESIGN
In this section, we describe the microarchitectural compo-
nents necessary to support computation on qubits encoded
in the planar and double-defect schemes. In this section, we
focus on logical qubits and in later sections will implement
these logical qubits with multiple physical qubits in our eval-
uation. We begin by discussing several important factors that
must guide microarchitectural design, and then discuss our
evaluated microarchitectures.

4.1 Handling Data Movement
A requirement of universal quantum computing is long-range
interaction of logical qubits. First, because an algorithm
needs to operate on physically-remote qubits. Second, this is
required since magic states are prepared in dedicated regions
of the hardware, yet need to be communicated to the point
of use when a T operation is needed. Many technologies,
including superconductors, do not allow easy transport of
qubits. However, two methods exist to communicate the data
in surface-encoded logical qubits: teleportation for planar
qubits [8], and braiding for double-defect qubits [27].

Teleportation is a technique for long-distance communica-
tion of exact quantum states. It works by qubit entanglement,
which causes operations on one qubit to affect the state
of another entangled qubit, even if the two are no longer
physically close. When the source and destination qubits of
the communication are both entangled to an intermediary
qubit, they are “linked,” even when far apart. However, this
does not entirely solve the problem of data movement. In
order to establish a virtual link, two qubits can become en-
tangled while physically together, but they must then be
physically transported to the desired source and destina-
tion locations of the communication. This is known as EPR
distribution—supplying pairs of qubits placed in a special
EPR state [7, 8, 54]. Fortunately, since EPR pairs are inde-
pendent of data, they may be entangled and distributed (i.e.
prefetched) in advance and in fairly latency-tolerant manner.

Swapping is another suitable method for physical move-
ment of quantum data from one location to another. Since
superconducting qubits may only interact with close-range
qubits, a chain of swaps can be used to achieve the same
effect as long-distance mobility. Swapping is an expensive op-
eration. Not only does the travel time increase substantially
with distance, but the channels that are used for movement
also consume extra “dummy” qubits, who exist only for the
purpose of facilitating swaps. However, once EPRs are dis-
tributed, teleportation only has a small constant latency,

Table 1: Summary of tradeoffs in communication efficency
among the two main flavors of the surface code.

Communication
Method

Space
(Qubits)

Time
(Latency)

Pre-
fetchable?

Planar Teleportation Low High Yes

Double-Defect Braiding High Low No

independent of distance. The parameters of swaps and tele-
portations have been derived in [56].

While planar codes can use teleportation to communicate,
double-defect codes use an alternate communication form
known as braiding. Braiding consists of extending defects
through space (turning off all syndrome measurements along
the way). The source and destination of the braid will become
entangled, and the braid can then shrink back to its original
starting defect. The advantage of braids is that their exten-
sion and shrinkage only takes one cycle, regardless of the
distance. Their disadvantage, however, is that they cannot
cross, and they cannot be prefetched—each communication
must occur at the point it is needed since there are no sepa-
rate communication ancillas involved. To summarize, Table 1
shows the main differences in how the two communication
methods behave.

4.2 Differences to Classical Communication
While the problem of communicating qubits may seem sim-
ilar to a classical networking problem, in fact several key
distinctions call for new approaches. First, quantum data is
physical—it cannot exist in two places at once and cannot be
copied. This puts more pressure on QEC since any corrupted
or lost data cannot simply be retransmitted. Second, commu-
nication not only has a time overhead, it also incurs a space
overhead in terms of ancillas. Third, quantum applications
are almost always specialized to concrete problem inputs (e.g.
factoring a 2048-bit number). This means that the execution
trace and therefore the point of each communication is known
in advance. This global knowledge yields opportunities for
aggressive optimization.

More specifically, the two surface code communication op-
tions discussed present new challenges. Teleportation is a
non-traditional 2-step communication process, where step
1 may cause collision but is prefetchable. The goal of the
optimizer must be to orchestrate this highly flexible step.
Namely, do not distribute EPRs too early since they may
cause traffic, and do not distribute too late since they may
stall computation. A smooth, low-contention “just-in-time”
distribution can be achieved with full knowledge of the pro-
gram path. In braiding, there is no actual transmission of
information (only expansion of lattice defects). So a braid
can stretch all the way in 1 error correction cycle. However,
these defects cannot physically co-exist close by, prohibiting
crossing, buffers or virtual channels. The static availabil-
ity of communication points again facilitates optimization
heuristics to reduce traffic.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

4.3 Ancilla Generation
In addition to the physical ancillas required for syndrome

measurement on the surface code lattice, we also need ancillas
at the logical level. In particular, a steady supply of magic
states and EPR states are needed for performing T operations
and teleportations, respectively.

We use so-called “ancilla factories” [39, 41, 74, 78] to ded-
icate specialized regions of the architecture to continuously
prepare and supply ancillas. This creates more communica-
tion pressure: for every T operation and every teleportation,
the relative ancillas are produced in factories and consumed
at the location of data. Furthermore, ancilla factories can be
large—every magic state factory consumes 12 encoded qubits
(and much more on a faultier device) [41]. Previous studies
have found that a factory-to-data footprint of almost 10:1 is
needed if ancilla generation is to be taken off of the critical
path[39]. Conversely, saving more space will cost more in time.
In our empirical model, we have found that a good space-time
balance is achieved with a 1:4 ancilla-to-data ratio.

4.4 Multi-SIMD Architecture for Planar QEC
An advantage of planar codes, beside their smaller size, is that
applying a logical operation on the plane amounts to applying
identical bitwise operations on individual physical qubits
inside the plane, and qubit communication can occur through
bitwise interactions between two planes (Figure 3a). This
suggests that a SIMD-style architecture is suitable. We use the
Multi-SIMD architecture proposed by [35], which combines
qubit-level parallelism with operation-level parallelism: many
qubits undergoing the same operation are clustered in one
SIMD region, and multiple (reconfigurable) SIMD regions
can accommodate heterogenous types of operations at any
cycle. There is well-established technological support for this:
microwave broadcasts can be used to operate simultaneously
on many superconducting qubits [52, 53].

Figure 3a depicts the different regions at use: a checker-
board layout of SIMD and memory regions allows for easy
access for qubit computation and storage. Movement is a nat-
ural consequence of this architecture. We use teleportation
as it decouples the hard part of communication (the network
congestion) from the data communication itself. The former
is done on EPRs and the latter on data qubits. In this sense,
only EPRs use the communication mesh, whereas data and
magic states get teleported to where they are needed.

The bitwise coupling of planar qubits—needed for 2-qubit
operations and swap channels—has traditionally been diffi-
cult in superconductors, because it requires 3D connections
between non-adjacent qubits. Recent work in developing air-
bridge crossovers [13], vias [5] and flip-chip crossovers [2]
has, however, mitigated this problem. These connections
can connect medium-distance qubits and are protected from
cross-talk by shielding methods [11]. Also importantly, the
development of low-loss, 3D connections seem to be neces-
sary even in double-defect codes, because of the need for

off-chip control and measurement. Other possible 3D archi-
tectures to couple medium-range planar qubits have also been
described [36].

4.5 Tiled Architecture for Double-Defect QEC
The double-defect code defines all qubits on one large, mono-
lithic lattice. The tiled architecture in Figure 3b assigns one
tile per qubit, and opens channels between them to allow
for communication braids. Similar to the Multi-SIMD archi-
tecture, we reserve some tiles for continuous generation of
magic states, to be braided to various points of use. No EPR
factory is needed, since no teleportation occurs.

5 TOOLFLOW AND APPLICATIONS
This section presents our comparative evaluation method-
ology, including the studied quantum applications and the
end-to-end toolflow developed for this purpose.

5.1 Overall Toolflow
Designing a quantum computer is a complex task. Automated
tools play an invaluable part in highlighting the tradeoffs of
the design, and ensuring that every step is optimized such
that quantum resources are used as efficiently as possible.
Suppose, for example, that we wish to run a particular ap-
plication on a given hardware. First, the application must
be analyzed for its parallelism potential, and this must be
matched with the microarchitecture and hardware’s support
for parallelism. Second, points of qubit communication during
the program run must be identified, and the overhead due to
network congestion accurately analyzed. Third, challenging
space-time tradeoffs must be evaluated which go beyond mere
qualitative reasoning. For example, in designing quantum ap-
plications it is typical to trade qubits for time [34]. However,
these two parameters also affect each other. If we decrease
qubits, time will be increased which causes more error accu-
mulation, which may force us to compensate with stronger
error correction which will in turn increase the qubits. In
summary, a design toolflow must model all of these pieces,
yielding a resource and performance estimate informed by
application characteristics (e.g. parallelism), technology char-
acteristics (e.g. clock speeds, reliability rates, mobility of
qubits), and communication characteristics (e.g. contention,
teleportation vs. braiding models, straight moves vs. turns).

Our toolflow’s integration allows for analysis of program
graphs through multiple stages and application of various
optimization heuristics. It also facilitates iterative designs
through feedback capabilities. For example, the overhead of
downstream error correction can often depend on the degree
of code inlining in earlier compilation stages, which can be
optimized iteratively (as discussed in Section 7). Finally, the
toolflow also enables sensitivity studies such as in Section 7.3).
Figure 4 depicts our overall toolflow.

5.2 Applications
As input to our toolflow we use a set of applications of vary-
ing size, characteristics, and functions. Table 2 summarizes

Optimized Surface Code Communication in Quantum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Global	
Memory	

SIMD	
Compute	
Region	

SIMD		
Magic	
State	
Factory	

SIMD	EPR	
Factory	

Teleport	
Buffer	

(a) Multi-SIMD Architecture

Magic	
State	
Factory	

(b) Tiled Architecture

Figure 3: Microarchitectural designs with zoomed-in physical layers. (a) Multi-SIMD architecture for planar QEC. SIMD regions
(blue) are used to apply similar operations to many planar qubits in parallel. Distributed memory regions (red) store idle
data. Dedicated SIMD regions are used as ancilla factories, for steady generation of magic states and EPRs. Each region is
surrounded by a teleport buffer (grey), that entangle EPRs to data to be teleported. EPR distribution occurs through planar
swaps—numbered qubits in the zoomed-in figure show bitwise couplings needed to perform swaps. (b) Tiled architecture for
double-defect QEC. Braid channels (red) connect tiles (black), and also pass between the double defects in every tile. Dedicated
factories supply magic states to surrounding tiles.

Mapping-Level	
Communica?on	Reduc?on	

Compila?on	Frontend	 Op?miza?on	and	Simula?on	Backend	

Lo
gi
ca
l	O

p.
	E
s?
m
at
e	

M
od

ul
e	
	F
la
a
en

in
g	

Ex
tr
a	
A
nc
ill
as
:		

Sy
nd

ro
m
es
	Q
ub

it
s,
	

	M
ag
ic
	S
ta
te
s,
	E
PR

s	

Q
ua

nt
um

	P
ro
gr
am

	

Physical-Level	
Redundancies	

Lo
gi
ca
l	A

ss
em

bl
y	

Q
ub

its
	

Pipelined	EPR	
Distribu?on	to	
Reduce	Conflicts	

Interac?on-Based	
Qubit	Layout	to	

Reduce	Braid	Lengths	

Locality-Based	SIMD		
Scheduling	to	Reduce	

Teleporta?ons	

Network-Level	
Conges?on	Reduc?on	

Priority-based	
Braiding	to	

Reduce	Conflicts	

Logical-Level	
Analysis	

Pa
ra
lle
lis
m
	E
s?
m
at
e	

Ti
m
e	

Lo
gi
ca
l	S
ch
ed

ul
e	

N
et
w
or
k	
Si
m
ul
a?

on
	

Ba
nd

w
id
th
	

Target	Logical	Error	(pL)	
Physical	Opera9on	Latencies,	Physical	Error	Rate	(pP)	

Technology	
Characteris.cs	

Figure 4: Overview of our toolflow. The frontend performs logical compilation, and is based on [40]. The backend performs
mapping to and optimizations on the relevant microarchitecture. The top optimization path pertains to teleportation-based
communication in planar codes; the bottom path concerns braid-based communication in double-defect codes (Section 6).

these. Of particular interest is the parallelism potential of
applications, which affects the performance of optimization
protocols, and therefore the tradeoffs between the different
QEC and communication methods we consider. We evaluate

two highly-parallel applications (IM and SHA-1) and two
mostly-serial applications (SQ and GSE).

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

Table 2: Summary of studied quantum applications. Paral-
lelism factor is average number of logical operations that can
be concurrently executed, were hardware resources not a con-
straint (ideal parallelizability).

Application Purpose Parallelism
Factor

Ground State
Estimation (GSE)

Compute ground state energy
for molecule of size m [80] 1.2

Square Root (SQ) Find square root of an n-bit
number [32] 1.5

SHA-1 Decryption
(SHA-1)

SHA-1 decryption of 𝑛-bit
message [55] 29

Ising Model (IM) Finding ground state for ising
model on n-qubit spin chain [6] 66

5.3 Compilation Frontend
We use the ScaffCC compiler [40] as the frontend to our
toolflow, lowering high-level descriptions of quantum algo-
rithms to a standard logical-level ISA known as QASM (quan-
tum assembly) [16, 17].

The frontend performs logical-level resource and paral-
lelism estimations. They guide the backend network opti-
mization policy, as well as choice of code distance to meet
the logical reliability requirements. That is, the resource esti-
mation helps discover the number of logical operations that
must be executed (size of computation), which is inversely
proportional to the target logical error (𝑝𝐿). This, in con-
junction with the physical error rate (𝑝𝑃) furnished by the
technology characteristics, helps determine the strength of
surface code error correction that is needed (𝑑).

5.4 Optimization and Simulation Backend
The backend is responsible for adding physical-level redun-
dancies to ensure error tolerance, as well as performing opti-
mizations and simulations to calculate the final space-time
overhead. Optimizations occur at two levels: mapping-level
reduction of total communication needs through exploitation
of data locality, and network-level improvements in the over-
head of remaining communications through optimizing the
network load.

Mapping-level communication reduction is an important
optimization stage: error correction is expensive, and a re-
duced operation count yields multiplicative benefits. First,
fewer operations must be protected against errors, and sec-
ond, those that do need to be protected can afford a weaker
form of correction since the overall program is smaller. We
apply the mapping approach of [35] to the Multi-SIMD archi-
tecture, which reduces unnecessary teleportations between
regions. Network-level optimizations on the Multi-SIMD ar-
chitecture consist of pipelining EPR distributions to avoid
high congestion, discussed in Section 8. The next section will
discuss novel mapping- and network-level optimizations in
the context of braids on the tiled architecture.

6 OPTIMIZED BRAIDING
In this section, we describe a scalable yet efficient solution
to the braiding problem, which is the main method of com-
putation and communication in double-defect surface codes.
Section 6.1 lays out our general method, while Sections 6.2
and 6.3 propose mapping- and network-level optimizations.
This corresponds to the optimization flow on the bottom
path of Figure 4.

6.1 Braid Simulation using Message Passing
Figure 5 shows how a simple 2-qubit logical operation may be
performed between two distant double-defect logical qubits.
As discussed previously, this becomes a braiding operation
that amounts to topological pipes in the 3D space-time vol-
ume (Figure 5a). Traditionally, such volumes have been com-
pressed by hand to decrease space and time [20, 26, 28]. For
example, [19] creates a game in which players try to manu-
ally compress 3D “pipes” using topological transformations.
Although these techniques achieve very good results on small
problems, they are difficult to scale. Instead, we propose an
automated braid synthesis and optimization approach that
is much more scalable, and yet achieves good performance.
We do this by tracing the state of the 2D lattice over various
vertical time slices in the 3D volume. As such, the problem
is reduced to simulating a mesh network, with braids as mes-
sages in this network. Figures 5b-5f show how the 3D volume
can be broken down into five snapshots of braid opening and
closing (i.e. message passing). We call each stage an “event”.

This translation of the problem is an overconstraining,
since not all possible topological transformations can be
captured in this way (e.g. contrary to network messages,
3D topological pipes can be morphed back in time too).
However, we demonstrate that with appropriate heuristics,
we can reclaim much of the efficiency of optimal solutions,
with the advantage of staying scalable (Sections 6.2 and 6.3).
Our approach relies on performing dynamic routing for a
static problem. The reason network routing works well here
is that our applications have parallelism that is not too high
and not too low. That is, we can afford to overconstrain the
problem and still resolve most conflicts since there aren’t too
many, but we can’t be too naive about it. Manual approaches
try to solve every conflict as optimally as possible, but that is
not necessary in practice and not scalable. In fact, our tools
are what allow us to obtain these insights. Since we replay
the dynamic schedule as a static one at execution time on the
quantum computer, we need not worry about deadlock and
livelock. We only have to use heuristics to find a deadlock-
and livelock-free solution at compile time. This is much easier
than guaranteeing deadlock- and livelock-freedom at runtime
in truly dynamic schemes.

Braids differ from conventional messages in several ways:
(a) braids travel 𝑛 hops all the way from source to destination
in one cycle, (b) some braids have to remain stable for 𝑑
(code distance) cycles to stabilize syndrome measurements,
(c) routers cannot buffer braids and (d) virtual channels
cannot be used as braids cannot physically use the same

Optimized Surface Code Communication in Quantum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

(a) Time-space volume of a
2-qubit logical operation

(b) 𝑡𝑖𝑚𝑒 = 0
Intialize Ancilla

(c) 𝑡𝑖𝑚𝑒 = 𝑑
Braid Part 1

(d) 𝑡𝑖𝑚𝑒 = 𝑑+1
Stabilize

(e) 𝑡𝑖𝑚𝑒 = 2𝑑
Braid Part 2

(f) 𝑡𝑖𝑚𝑒 = 2𝑑+1
Stabilize/Measure Ancilla

Figure 5: Logical operation between two qubits (light blue shade for clarity) of a six-qubit setup, arranged in a 2x3 tiled
architecture. (a) depicts the entire space-time volume (time goes up vertically)—the topological method used in traditional
optimizations. (b-f) each represent a slice in time, called an “event.” From a network perspective, black defects are messages
routed in the mesh, and the tile corners are routers.

channel. For these reasons, we use a circuit-switched network.
The 𝑛 hop/cycle property means that a braid claims the
route’s resources (nodes and links) at once when opened,
and releases them when closed. We use a greedy approach of
trying to place as many braids as possible, in order to reduce
overall cycles.

In our braiding algorithm, we maintain a ready queue of
operations whose dependencies have been met, and execute as
many of them as possible in each cycle. Each event pertains to
an open or close braid, and has a timer corresponding to how
long the braid should remain in case error syndromes need to
be extracted. To improve forward progress in a busy network,
we add route adaptivity to a dimension-ordered route and a
drop/re-inject mechanism, both after certain timeouts. Note
that we are using a dynamic mechanism (network routing)
to find a static schedule (which will be replayed during the
execution of our quantum program). This means that our
protocols do not need to be deadlock- or livelock-free. If
we encounter lack of forward progress, our mechanisms just
backtrack and try again. There will be no cost at execution
time, since failed schedules are not recorded and used.

6.2 Optimizing Qubit Arrangement
The first step to reduce braid contention is applying mapping-
level optimizations to the placement of qubit tiles on the
2D mesh. Our goal is to map logical tiles which interact
frequently close to each other. Specifically, the optimized
arrangement of qubit tiles attempts to minimize the sum
of Manhattan distances between pairs of tiles involved in
non-local, braiding operations. We do this through iterative
calls to a graph partitioning library, METIS [42], to separate
the qubits (each represented as a vertex on a graph of qubit
interactions) into two partitions, such that the weight of
crossing edges is small. Relative to a naive arrangement of
qubits, the optimized qubit arrangement reduces the lengths
of braids, hence reducing the chance of braid collisions.

6.3 Optimized Braid Priorities
∙ Policy 0: No optimization. All operations and events

in program order.
∙ Policy 1: Interleave: Allow individual events to be in-

terleaved, but keep operations in program order.
∙ Policy 2: Interleave + layout: Optimize initial qubit

layout for interaction distances.
∙ Policy 3: Interleave + layout + criticality: Sort opera-

tions by highest criticality first.
∙ Policy 4: Interleave + layout + length: Sort braids by

longest first.
∙ Policy 5: Interleave + layout + type: Sort by closing

braids first, opening braids next.
∙ Policy 6: Combines Policy 1–5: Interleave, optimize

initial layout, sort closing braids first, sort by criticality,
sort short-to-long for highest-criticality braids, sort
long-to-short for lower criticality braids.

In our braiding algorithm, when multiple braids are eligible
to be scheduled but not all of them fit on the mesh, the choice
of priorities can have a significant impact on performance. We
have devised heuristic policies to prioritize “more important”
braids. It must be noted that such policies are only essential
in highly-parallel applications (SHA-1 and IM), where there
is an initially large discrepancy between the schedule length
and critical-path length, due to communication conflicts. Low
parallelism reduces the need for interference optimization
from the start.

The metrics we use to assess priority are the criticality
of the braid (how many future operations depend on it), its
length, and its type (whether it is a closing or opening braid).
Our prioritization policies are summarized below:

Policy 1 (event interleaving) allows for multiple braids to
progress concurrently and at different rates. Policy 2 is the
same layout localization heuristic of Section 6.2. To these,
Policies 3 through 5 each add one important metric by which
the importance of a braid may be judged: criticality, length,
type. Policy 6 combines all of the metrics above. Here, we give
higher priority to those braids that are closing rather than

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

0	

2	

4	

6	

8	

10	

12	

Po
lic
y	
0	

Po
lic
y	
1	

Po
lic
y	
2	

Po
lic
y	
3	

Po
lic
y	
4	

Po
lic
y	
5	

Po
lic
y	
6	

Po
lic
y	
0	

Po
lic
y	
1	

Po
lic
y	
2	

Po
lic
y	
3	

Po
lic
y	
4	

Po
lic
y	
5	

Po
lic
y	
6	

Po
lic
y	
0	

Po
lic
y	
1	

Po
lic
y	
2	

Po
lic
y	
3	

Po
lic
y	
4	

Po
lic
y	
5	

Po
lic
y	
6	

Po
lic
y	
0	

Po
lic
y	
1	

Po
lic
y	
2	

Po
lic
y	
3	

Po
lic
y	
4	

Po
lic
y	
5	

Po
lic
y	
6	

GSE	 SQ	 SHA-1	 IM	

Av
er
ag
e	
M
es
h	
U
.l
iz
a.

on
	

Br
ai
d	
sc
he

du
le
	le
ng
th
	/
	c
ri.

ca
l	p
at
h	
le
ng
th
	

Policy	Applied	to	Applica.on	

Schedule	Length	to	Cri?cal	Path	Ra?o	
Avg	Mesh	U?liza?on	

Figure 6: Braid simulation results for the double-defect sur-
face code. Blue bars show schedule length can be reduced
by up to ∼7𝑋, to within ∼70% of the critical path for
highly-parallel applications (SHA-1 and IM), where risk of
contention is high. Serial applications (GSE and SQ) already
achieve close-to-critical-path schedules. Red curves show the
increase in network utilization when using these policies, up
to about 22%. These improvements are achieved through
interaction-aware qubit placements and priority-aware braid
placements.

opening (so they can release network resources), and those
that have higher criticality (to remove the bottleneck). If two
braids have the same criticality, we decide based on length:
shorter braids for the most critical operations, because we
want to accomplish as many as possible, and longer braids
for lower-criticality operations, because we want to conclude
the toughest braids ahead of time.

Figure 6 shows our results. The blue bars (associated
with the left vertical axis) show how the above prioritization
policies improve performance by reducing the gap between
the braid schedule lengths and critical path lengths. Our
results show that evaluated individually, braid type causes
the largest improvement, while improvements due to length
and criticality are smaller.

The most successful policy, Policy 6, is able to reduce
schedule length by up to ∼7𝑋, from 12X longer than the
critical path, to within 70% of it. The red curves (right vertical
axis) shows network utilization rate (i.e. percentage of busy
links). It demonstrates that better prioritization results in
an almost 8-fold increase in network utilization—up to about
22%. This is an acceptable range for this highly scalable
approach, comparable to similar circuit-switched networks.

7 RESULTS
In the context of our microarchitectures, technology, and
tools, we can now compare our QEC methods for each bench-
mark application.

We begin by quantifying some absolute values for the num-
ber of qubits and time required to run a quantum application,

and then proceed to evaluate the effect of QEC choice on per-
formance. These results can help determine the most suitable
type of error correction and microarchitecture for a particular
application (𝑝𝐿) on a particular physical technology (𝑝𝑃).

7.1 Scaling Effects on Space and Time
Figure 7 shows concrete values for the number of qubits and
amount of time needed to execute a fully-error-corrected
SQ application. The graphs are plotted for various input
problem sizes, each of which directly determines the size of
computation (inversely proportional to target logical error
rate (𝑝𝐿)). Superconductors are fast, and we see that small
instances of the problem can execute in under one second.
Increasing the problem size, however, can greatly increase
time of computation. The number of qubits does not rise
as sharply, but it still illustrates the scaling needs of future
computers: in order to run even modest problem sizes, around
1000 qubits are needed. The main increases in qubit usage
occur when the code distance (𝑑) must be increased to sup-
port larger computations. Other applications exhibit similar
scaling trends.

Although Figure 7 is useful for obtaining a sense of absolute
overheads, it does not depict the difference between different
encodings well—the lines are close to each other due to the
logarithmic axes. Next, we look at the ratios of double-defect
to planar resource usage.

7.2 Effects of Encoding
We now explore the differing overheads when using planar
and double-defect encodings in two applications, SQ and
IM, specifically chosen for their parallelism characteristics
(Figure 8b). Our metric is resource usage (qubits and time),
normalized to planar codes as a baseline.

SQ is largely serial, whereas IM is highly parallel. In both
applications, when the computation size is small, planar
codes fare better. This is due to the smaller size of planar
lattices. However, once the computation size exceeds a certain
amount (indicated as the “cross-over point”), double-defect
codes become better, due to the efficiency of braids compared
to slower swaps. Favorability cross-over occurs where the
space-time ratio (𝑞𝑢𝑏𝑖𝑡𝑠 × 𝑡𝑖𝑚𝑒) crosses 1.

Comparing Figures 8a and 8b we find that the cross-over
point in IM occurs much later than SQ (at a larger compu-
tation size). This is directly due to the high parallelism of
the IM application. Parallelism causes braid congestions in
double-defect codes, but the EPRs in planar codes can still
be pipelined in a way to avoid congestion. Therefore, planar
qubits remain better for longer. Furthermore, the Multi-SIMD
architecture of planar codes supports data and instruction
parallelism, again improving the performance of planar codes
which can use parallel bitwise operations in this architecture.
Note that these results pertain to the fundamental difference
in braiding versus teleportation, and even though we have
evaluated them in the context of specific architectures, our
observations apply to other proposed architectures [50, 51]
(which, in fact, are more favorable to planar codes).

Optimized Surface Code Communication in Quantum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

1.E-09	

1.E-07	

1.E-05	

1.E-03	

1.E-01	

1.E+01	

1.E+03	

1.E+05	

1.E+07	

1.E+09	

Ph
ys
ic
al
	C
om

pu
ta
.o

n	
Ti
m
e	
(s
ec
on

ds
)	

Size	of	Computa.on	(1/PL)	

Double-Defect	Code	

Planar	Code	

(a) Time

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

Ph
ys
ic
al
	Q
ub

it	
U
sa
ge
	

Size	of	Computa.on	(1/PL)	

Double-Defect	Code	

Planar	Code	

(b) Qubits (Space)

Figure 7: Absolute resource usage in (a) time and (b) space to run error corrected SQ applications of varying sizes. In these
simulations we assume 𝑝𝑃 = 10−8 and single-qubit operations are 10X faster than 2-qubit operations.

7.3 Sensitivity Analysis

Having established how a cross-over occurs from the fa-
vorability of planar codes to the favorability of double-defect
codes, we can now plot this point for a full sweep of physical
and logical error rates for all applications. Figure 9 shows this
graph. Each line on this graph is a collection of cross-over
points, showing their sensitivity to changing physical error
rates from 𝑝𝑃 = 10−8 (future optimistic) to 𝑝𝑃 = 10−3 (cur-
rent [70, 71]). For each application, the line demarcates the
boundary of designs where planar codes should be used (be-
low) and where double-defect codes should be used (above).

Such lines are application- and technology-dependent, due
to the entirely different models of computation (bitwise vs.
braids) and communication (teleportation vs. braids) in these
codes, which must be simulated in order to yield accurate
contention rates. We observe that boundaries are generally
higher for more parallel applications, suggesting that these
applications would benefit more from using planar codes. We
have used two variations of the IM application—with medium
and maximal inlining. More code inlining creates more paral-
lelism, consistent with the upward boundary movement.

In summary, our results suggest that although double-
defect codes have been considered the standard method of
error correction on superconducting computers before [5, 27],
subtleties related to communication contention and applica-
tion parallelism may alter this view. As device error rates
continue to improve (left in Figure 9), a shift to planar en-
coding may be warranted (bigger area under the curves).

8 DISCUSSION
8.1 Pipelined EPR Distribution
In the communication technique referred to as teleportation,
the physical interconnection network does not directly move
the data qubits themselves, but instead carries EPR qubits

that facilitate the communication of entangled qubits at a
distance.

Because of the delay-tolerant nature of the distribution of
EPRs, they are not bound by stringent data dependencies,
and they can be prefetched at arbitrary points in time. Our
goal is to achieve “just-in-time” distribution by smoothing the
network load to reduce congestion. This can have favorable
effects on both space and time: the number of EPR qubits
will be reduced as they are consumed (and recycled) shortly
after being introduced to the network; latency will be reduced
since EPRs are present when they are needed, and hence do
not stall teleportations.

Given the specialized nature of quantum applications, we
have perfect static knowledge of when each EPR will be
needed. Hence, walking the dependency graph, we use look-
ahead windows to anticipate usage points, and launch their
communication with appropriate lead time. Such approaches
achieve good performance across all applications, with up
to ∼24𝑋 savings in qubit cost and only a maximum of ∼4%
extra latency. The choice of lead time (“window size”) is im-
portant to achieve just-in-time distribution. Smaller window
sizes cap qubit usage at the expense of starving data qubits
in need of teleportation. In contrast, large windows release
more EPRs into the network than necessary. Suitable window
sizes depend on application size, but degree of application
parallelism has little effect, since ancillas do not follow regular
data dependencies.

8.2 Alternative Communication Methods
While this paper has discussed teleportation and braiding as
two main communication methods, recent work has investi-
gated lattice surgery [38] as a hybrid scheme that combines
the low qubit overheads of the planar code with nearest-
neighbor-only interactions. Communication in lattice surgery
occurs using merge and split operations: two adjacent planar

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

0	

1	

2	

3	

4	

5	

6	

7	

1.
E+
00
	

1.
E+
02
	

1.
E+
04
	

1.
E+
06
	

1.
E+
08
	

1.
E+
10
	

1.
E+
12
	

1.
E+
14
	

1.
E+
16
	

1.
E+
18
	

1.
E+
20
	

1.
E+
22
	

1.
E+
24
	

N
or
m
al
iz
ed

	R
es
ou

rc
e	
U
sa
ge
	

Do
ub

le
-D
ef
ec
t	R

el
aM

ve
	to

	P
la
na

r	B
as
el
in
e	

ComputaMon	Size	(1/PL)	

qubits	

?me	

cross-over	
point	

(a) SQ Application (Serial)

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

1.
E+
00
	

1.
E+
02
	

1.
E+
04
	

1.
E+
06
	

1.
E+
08
	

1.
E+
10
	

1.
E+
12
	

1.
E+
14
	

1.
E+
16
	

1.
E+
18
	

1.
E+
20
	

1.
E+
22
	

1.
E+
24
	

N
or
m
al
iz
ed

	R
es
ou

rc
e	
U
sa
ge
	

Do
ub

le
-D
ef
ec
t	R

el
a.

ve
	to

	P
la
na

r	B
as
el
in
e	

Computa.on	Size	(1/PL)	

qubits	

?me	

cross-over	
point	

(b) IM Application (Parallel)

Figure 8: Comparing resource usage in double-defect and pla-
nar codes, for a range of problem sizes in the (a) SQ and
(b) IM applications. Lower is better, and overall preference is
given to the QEC method that has a smaller 𝑞𝑢𝑏𝑖𝑡×𝑡𝑖𝑚𝑒 prod-
uct. In both (a) and (b), planar codes are better at smaller
sizes but at some cross-over point, double-defect codes be-
come better. However, the cross-over point occurs at a much
larger computation size for IM, compared to SQ. This is
due to high braid congestion in the highly parallel IM app,
which causes planar (teleport-based) codes to remain better
for longer. Figure shown for a technology with error rate
𝑝𝑃 = 10−8.

encoded qubits are merged by turning on syndrome mea-
surements at their connecting boundary, creating a larger
continuous plane. Similarly, turning those syndromes off again
will split the two planes into their original form. Repeated
applications of these operations in a chain can cause distant
planes to interact. Optimal lattice surgery is an NP-hard
problem [37], and scalable heuristics remain as an area of
future work. Crucially in the context of this study, the chain
of merges and splits does not have the benefits of braids

1.E+00	

1.E+02	

1.E+04	

1.E+06	

1.E+08	

1.E+10	

1.E+12	

1.E+14	

1.E+16	

1.E+18	

1.E+20	

1.E-08	 1.E-07	 1.E-06	 1.E-05	 1.E-04	 1.E-03	

Si
ze
	o
f	C

om
pu

ta
.o

n	
(1
/p
L)
	

Physical	Error	Rate	(pP)	

GSE	
SQ	
SHA-1	
IM_Semi_Inlined	
IM_Fully_Inlined	

Figure 9: Comparison of double-defect vs. planar surface
codes, across the range of possible physical and logical error
rates. Higher y-axis value (up) means more logical operations
in the application. Higher x-axis values (right) mean faultier
technology. Design points under the curves work better with
planar codes. Each line delineates the cross-over boundary for
a particular application. The curve is higher for more parallel
applications (SHA-1, IM), since congestion hurts braids more.

(fast movement) nor teleportation (prefetchability). There-
fore, we instead focused on two more promising forms of
communication.

9 CONCLUSIONS
This paper has focused on optimizing qubit communications

as a major source of latency in quantum computers. Focusing
on surface code error correction in superconducting qubits,
the leading candidate to implement a future quantum com-
puter, we investigate teleportation-based and braid-based
communications. We present optimization algorithms that
achieve near-critical-path performance, while staying scalable
to problem sizes of more than 1020 operations. Our design-
space exploration allows us to plot favorability curves such
as Figure 9, which is useful as a guide in QC design. For
example, it shows us that for near-term superconductor error
rates of 10−4–10−3, planar encoding is better for serial appli-
cations of shorter than ∼104 logical operations and parallel
apps of shorter than ∼108 logical operations. We believe the
large gains from running a quantum application is such that
each real quantum machine will likely be dedicated to solving
a specific task; e.g. breaking large encryption keys or finding
the ground state of large molecules. It is therefore suitable
to pick design parameters based on the intended application.
Similarly, we have shown that the physical device characteris-
tics (i.e. error rate) must play a role in choosing suitable error
correction codes and microarchitectures. This paper therefore
argues for a co-design of applications, microarchitectures and
physical hardware in building future quantum computers.

REFERENCES
[1] Scott Aaronson. 2005. Guest column: NP-complete problems and

physical reality. ACM Sigact News 36, 1 (2005), 30–52.

Optimized Surface Code Communication in Quantum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[2] David W Abraham, Jerry M Chow, Antonio D Corcoles Gonzalez,
George A Keefe, Mary E Rothwell, James R Rozen, and Matthias
Steffen. 2015. Removal of spurious microwave modes via flip-chip
crossover. (Dec. 22 2015). US Patent 9,219,298.

[3] D. Aharonov and M. Ben-Or. 1997. Fault-tolerant quantum
computation with constant error. In STOC. ACM.

[4] Adriano Barenco, Charles H Bennett, Richard Cleve, David P
DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A
Smolin, and Harald Weinfurter. 1995. Elementary gates for quan-
tum computation. Physical Review A 52, 5 (1995), 3457.

[5] R Barends, J Kelly, A Megrant, A Veitia, D Sank, E Jeffrey,
TC White, J Mutus, AG Fowler, B Campbell, Y Chen, Z Chen,
B Chiaro, A Dunsworth, C Neill, P. J. J O’Malley, P Roushan,
A Vainsencher, J Wenner, A. N Korotkov, A. N Cleland, and
John M Martinis. 2014. Superconducting quantum circuits at
the surface code threshold for fault tolerance. Nature 508, 7497
(2014), 500–503.

[6] R Barends, A Shabani, L Lamata, J Kelly, A Mezzacapo, U
Las Heras, R Babbush, AG Fowler, B Campbell, Yu Chen, Z
Chen, B Chiaro, A Dunsworth, E Jeffrey, A Lucero, A Megrant,
JY Mutus, M Neeley, C Neill, P. J. J O’Malley, C Quintana, P
Roushan, D Sank, A Vainsencher, and J Wenner. 2016. Digitized
adiabatic quantum computing with a superconducting circuit.
Nature 534, 7606 (2016), 222–226.

[7] John S Bell. 1964. On the Einstein Podolsky Rosen paradox.
Physics 1, 3 (1964), 195–200.

[8] Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard
Jozsa, Asher Peres, and William K Wootters. 1993. Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical review letters 70, 13 (1993), 1895.

[9] Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum com-
putation with ideal Clifford gates and noisy ancillas. Physical
Review A 71, 2 (2005).

[10] Sergey B Bravyi and A Yu Kitaev. 1998. Quantum codes on a
lattice with boundary. arXiv preprint quant-ph/9811052 (1998).

[11] Teresa Brecht, Wolfgang Pfaff, Chen Wang, Yiwen Chu, Luigi
Frunzio, Michel H Devoret, and Robert J Schoelkopf. 2015. Multi-
layer microwave integrated quantum circuits for scalable quantum
computing. arXiv preprint arXiv:1509.01127 (2015).

[12] Amlan Chakrabarti, Susmita Sur-Kolay, and Ayan Chaudhury.
2011. Linear nearest neighbor synthesis of reversible circuits by
graph partitioning. arXiv preprint arXiv:1112.0564 (2011).

[13] Zijun Chen, Anthony Megrant, Julian Kelly, Rami Barends, Joerg
Bochmann, Yu Chen, Ben Chiaro, Andrew Dunsworth, Evan
Jeffrey, JY Mutus, et al. 2014. Fabrication and characterization
of aluminum airbridges for superconducting microwave circuits.
Applied Physics Letters 104, 5 (2014), 052602.

[14] Byung-Soo Choi and Rodney Van Meter. 2011. On the effect
of quantum interaction distance on quantum addition circuits.
ACM Journal on Emerging Technologies in Computing Systems
(JETC) 7, 3 (2011), 11.

[15] Jerry M Chow, Jay M Gambetta, AD Córcoles, Seth T Merkel,
John A Smolin, Chad Rigetti, S Poletto, George A Keefe, Mary B
Rothwell, JR Rozen, et al. 2012. Universal quantum gate set
approaching fault-tolerant thresholds with superconducting qubits.
Physical review letters 109, 6 (2012), 060501.

[16] I Chuang. 2016. Quantum Architectures: Qasm2Circ. (March
2016). http://www.media.mit.edu/quanta/qasm2circ/

[17] Andrew W. Cross. [n. d.]. qasm-tools. ([n. d.]). http://www.
media.mit.edu/quanta/quanta-web/projects/qasm-tools

[18] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill.
2002. Topological quantum memory. J. Math. Phys. 43, 9 (2002),
4452–4505.

[19] Simon J Devitt. 2016. Programming quantum computers using
3-D puzzles, coffee cups, and doughnuts. XRDS: Crossroads, The
ACM Magazine for Students 23, 1 (2016), 45–50.

[20] Simon J Devitt, Ashley M Stephens, William J Munro, and
Kae Nemoto. 2013. Requirements for fault-tolerant factoring
on an atom-optics quantum computer. Nature communications 4
(2013).

[21] Michel H Devoret and Robert J Schoelkopf. 2013. Superconducting
circuits for quantum information: an outlook. Science 339, 6124
(2013), 1169–1174.

[22] David P DiVincenzo. 2009. Fault-tolerant architectures for super-
conducting qubits. Physica Scripta 2009, T137 (2009), 014020.

[23] Mohammad Javad Dousti and Massoud Pedram. 2012. Minimizing
the latency of quantum circuits during mapping to the ion-trap

circuit fabric. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe. EDA Consortium, 840–843.

[24] Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram.
2014. Squash: a scalable quantum mapper considering ancilla
sharing. In Proceedings of the 24th edition of the great lakes
symposium on VLSI. ACM, 117–122.

[25] Jack Edmonds. 1965. Maximum matching and a polyhedron with
0, 1-vertices. Journal of Research of the National Bureau of
Standards B 69, 125-130 (1965), 55–56.

[26] Austin Fowler. 2012. Time-Optimal Quantum Computation.
arXiv preprint quant-ph/1210.4626 (2012).

[27] Austin G. Fowler. 2012. Surface codes: Towards practical large-
scale quantum computation. Physical Review A 86, 3 (2012).
https://doi.org/10.1103/PhysRevA.86.032324

[28] Austin G Fowler and Simon J Devitt. 2012. A bridge to lower
overhead quantum computation. arXiv preprint arXiv:1209.0510
(2012).

[29] Austin G Fowler, Ashley M Stephens, and Peter Groszkowski.
2009. High-threshold universal quantum computation on the
surface code. Physical Review A 80, 5 (2009), 052312.

[30] Jay M Gambetta, Jerry M Chow, and Matthias Steffen. 2015.
Building logical qubits in a superconducting quantum computing
system. arXiv preprint arXiv:1510.04375 (2015).

[31] Daniel Gottesman. 1998. Theory of fault-tolerant quantum com-
putation. Physical Review A 57, 1 (1998), 127.

[32] Lov K. Grover. 1996. A fast quantum mechanical algorithm for
database search. In STOC. 8.

[33] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quan-
tum algorithm for linear systems of equations. Physical review
letters 103, 15 (2009), 150502.

[34] Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias
Troyer. 2014. Improving quantum algorithms for quantum chem-
istry. arXiv preprint arXiv:1403.1539 (2014).

[35] Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel
Kudrow, Kenneth R Brown, Diana Franklin, Frederic T Chong,
and Margaret Martonosi. 2015. Compiler management of com-
munication and parallelism for quantum computation. In Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM.

[36] Ferdinand Helmer, Matteo Mariantoni, Austin G Fowler, Jan von
Delft, Enrique Solano, and Florian Marquardt. 2009. Cavity grid
for scalable quantum computation with superconducting circuits.
EPL (Europhysics Letters) 85, 5 (2009), 50007.

[37] Daniel Herr, Franco Nori, and Simon J Devitt. 2017. Optimization
of Lattice Surgery is Hard. arXiv preprint arXiv:1702.00591
(2017).

[38] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney
Van Meter. 2012. Surface code quantum computing by lattice
surgery. New Journal of Physics 14, 12 (2012), 123011.

[39] Nemanja Isailovic, Mark Whitney, Yatish Patel, and John Kubia-
towicz. 2008. Running a quantum circuit at the speed of data. In
ISCA. IEEE Computer Society.

[40] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey
Lvov, Frederic T Chong, and Margaret Martonosi. 2014. ScaffCC:
A framework for compilation and analysis of quantum comput-
ing programs. In Proceedings of the 11th ACM Conference on
Computing Frontiers. ACM, 1.

[41] N Cody Jones, Rodney Van Meter, Austin G Fowler, Peter L
McMahon, Jungsang Kim, Thaddeus D Ladd, and Yoshihisa Ya-
mamoto. 2012. Layered architecture for quantum computing.
Physical Review X 2, 3 (2012), 031007.

[42] George Karypis and Vipin Kumar. 1999. A Fast and Highly Qual-
ity Multilevel Scheme for Partitioning Irregular Graphs. SIAM
Journal on Scientific Computing 20, 1 (1999), 359–392.

[43] Julian Kelly, R Barends, AG Fowler, A Megrant, E Jeffrey, TC
White, D Sank, JY Mutus, B Campbell, Yu Chen, et al. 2015. State
preservation by repetitive error detection in a superconducting
quantum circuit. Nature 519, 7541 (2015), 66–69.

[44] A Yu Kitaev. 1997. Quantum computations: algorithms and
error correction. Russian Mathematical Surveys 52, 6 (1997),
1191–1249.

[45] A Yu Kitaev. 2003. Fault-tolerant quantum computation by
anyons. Annals of Physics 303, 1 (2003), 2–30.

[46] Emanuel Knill, Raymond Laflamme, and Wojciech H Zurek. 1998.
Resilient quantum computation: error models and thresholds. In
Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, Vol. 454. The Royal Society,
365–384.

http://www.media.mit.edu/quanta/qasm2circ/
http://www.media.mit.edu/quanta/quanta-web/projects/qasm-tools
http://www.media.mit.edu/quanta/quanta-web/projects/qasm-tools
https://doi.org/10.1103/PhysRevA.86.032324

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Javadi-Abhari et al.

[47] Daniel A Lidar and Haobin Wang. 1999. Calculating the thermal
rate constant with exponential speedup on a quantum computer.
Physical Review E 59, 2 (1999), 2429.

[48] Chia-Chun Lin, Amlan Chakrabarti, and Niraj K Jha. 2014.
FTQLS: Fault-tolerant quantum logic synthesis. IEEE Trans-
actions on very large scale integration (VLSI) systems 22, 6
(2014), 1350–1363.

[49] Chia-Chun Lin, Susmita Sur-Kolay, and Niraj K Jha. 2015.
PAQCS: Physical design-aware fault-tolerant quantum circuit
synthesis. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 23, 7 (2015), 1221–1234.

[50] Tzvetan S. Metodi et al. 2005. A Quantum Logic Array Microar-
chitecture: Scalable Quantum Data Movement and Computation.
In MICRO. IEEE Computer Society, 305–318.

[51] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz,
L.-M. Duan, and J. Kim. 2012. Large Scale Modular Quantum
Computer Architecture with Atomic Memory and Photonic Inter-
connects. arXiv:quant-ph/1208.0391 (2012).

[52] JE Mooij, TP Orlando, L Levitov, Lin Tian, Caspar H Van der
Wal, and Seth Lloyd. 1999. Josephson persistent-current qubit.
Science 285, 5430 (1999), 1036–1039.

[53] Yu Nakamura, Yu A Pashkin, and JS Tsai. 1999. Coherent control
of macroscopic quantum states in a single-Cooper-pair box. Nature
398, 6730 (1999), 786–788.

[54] Michael A Nielsen and Isaac L Chuang. 2010. Quantum compu-
tation and quantum information. Cambridge University Press.

[55] National Institute of Standards and Technology. 2012. FIPS
PUB 180-4: Secure Hash Standard (SHS). U.S. Department of
Commerce.

[56] Mark Oskin, Frederic T Chong, Isaac L Chuang, and John Kubia-
towicz. 2003. Building quantum wires: The long and the short of
it. In Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on. IEEE, 374–385.

[57] Adam Paetznick and Austin G Fowler. 2013. Quantum circuit
optimization by topological compaction in the surface code. arXiv
preprint arXiv:1304.2807 (2013).

[58] Hanhee Paik, DI Schuster, Lev S Bishop, G Kirchmair, G Cate-
lani, AP Sears, BR Johnson, MJ Reagor, L Frunzio, LI Glazman,
Steven M Girvin, Michel H Devoret, and Robert J Schoelkopf.
2011. Observation of high coherence in Josephson junction qubits
measured in a three-dimensional circuit QED architecture. Phys-
ical Review Letters 107, 24 (2011), 240501.

[59] Alexandru Paler, Simon J Devitt, and Austin G Fowler. 2016.
Synthesis of Arbitrary Quantum Circuits to Topological Assembly.
arXiv preprint arXiv:1604.08621 (2016).

[60] Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J Devitt.
2015. A compiler for fault-tolerant high level quantum circuits.
arXiv preprint arXiv:1509.02004 (2015).

[61] Shruti Patil, Ali JavadiAbhari, Chen-Fu Chiang, Jeff Heckey,
Margaret Martonosi, and Frederic T Chong. 2014. Characterizing
the performance effect of trials and rotations in applications that
use Quantum Phase Estimation. In Workload Characterization
(IISWC), 2014 IEEE International Symposium on. IEEE, 181–
190.

[62] Massoud Pedram and Alireza Shafaei. 2016. Layout Optimization
for Quantum Circuits with Linear Nearest Neighbor Architectures.
IEEE Circuits and Systems Magazine 16, 2 (2016), 62–74.

[63] Paul Pham and Krysta M Svore. 2013. A 2D nearest-neighbor
quantum architecture for factoring in polylogarithmic depth.
Quantum Information & Computation 13, 11-12 (2013),
937–962.

[64] Robert Raussendorf. 2007. Fault-Tolerant Quantum Computation
with High Threshold in Two Dimensions. Physical Review Letters
98, 19 (2007). https://doi.org/10.1103/PhysRevLett.98.190504

[65] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. 2011. Synthe-
sis of quantum circuits for linear nearest neighbor architectures.
Quantum Information Processing 10, 3 (2011), 355–377.

[66] Daniel Sank, Evan Jeffrey, JY Mutus, TC White, J Kelly, R
Barends, Y Chen, Z Chen, B Chiaro, A Dunsworth, A Megrant,
P. J. J O’Malley, C Neill, P Roushan, A Vainsencher, J Wen-
ner, A. N Cleland, and John M Martinis. 2014. Fast Scalable
State Measurement with Superconducting Qubits. arXiv preprint
arXiv:1401.0257 (2014).

[67] Eyob A Sete, William J Zeng, and Chad T Rigetti. 2016. A func-
tional architecture for scalable quantum computing. In Rebooting
Computing (ICRC), IEEE International Conference on. IEEE,
1–6.

[68] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2013. Op-
timization of quantum circuits for interaction distance in linear
nearest neighbor architectures. In Proceedings of the 50th Annual
Design Automation Conference. ACM, 41.

[69] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2014. Qubit
placement to minimize communication overhead in 2D quantum
architectures. In Design Automation Conference (ASP-DAC),
2014 19th Asia and South Pacific. IEEE, 495–500.

[70] Sarah Sheldon, Lev S Bishop, Easwar Magesan, Stefan Filipp,
Jerry M Chow, and Jay M Gambetta. 2016. Characterizing
errors on qubit operations via iterative randomized benchmarking.
Physical Review A 93, 1 (2016), 012301.

[71] Sarah Sheldon, Easwar Magesan, Jerry M Chow, and Jay M
Gambetta. 2016. Procedure for systematically tuning up cross-
talk in the cross-resonance gate. Physical Review A 93, 6 (2016),
060302.

[72] Peter W Shor. 1994. Algorithms for quantum computation: Dis-
crete logarithms and factoring. In Foundations of Computer
Science, 1994 Proceedings., 35th Annual Symposium on. IEEE,
124–134.

[73] Tom Simonite. 2016. Google’s quantum dream machine. TECH-
NOLOGY REVIEW 119, 2 (2016), 17–19.

[74] Andrew Steane. 1997. Space, time, parallelism and noise require-
ments for reliable quantum computing. arXiv preprint quant-
ph/9708021 (1997).

[75] M. Suchara, J. Kubiatowicz, A. Faruque, F. T. Chong, C. Y. Lai,
and G. Paz. 2013. QuRE: The Quantum Resource Estimator tool-
box. In 2013 IEEE 31st International Conference on Computer
Design (ICCD). 419–426. https://doi.org/10.1109/ICCD.2013.
6657074

[76] Maika Takita, AD Córcoles, Easwar Magesan, Baleegh Abdo,
Markus Brink, Andrew Cross, Jerry M Chow, and Jay M Gam-
betta. 2016. Demonstration of weight-four parity measurements
in the surface code architecture. Physical Review Letters 117, 21
(2016), 210505.

[77] Darshan D. Thaker, Tzvetan S. Metodi, Andrew W. Cross, Isaac L.
Chuang, and Frederic T. Chong. 2006. Quantum Memory Hierar-
chies: Efficient Designs to Match Available Parallelism in Quantum
Computing. In ISCA. IEEE Computer Society, 378–390.

[78] Rodney Van Meter, Thaddeus D Ladd, Austin G Fowler, and
Yoshihisa Yamamoto. 2010. Distributed quantum computation
architecture using semiconductor nanophotonics. International
Journal of Quantum Information 8, 01n02 (2010), 295–323.

[79] Andreas Wallraff, David I Schuster, Alexandre Blais, L Frunzio,
R-S Huang, J Majer, S Kumar, Steven M Girvin, and Robert J
Schoelkopf. 2004. Strong coupling of a single photon to a super-
conducting qubit using circuit quantum electrodynamics. Nature
431, 7005 (2004), 162–167.

[80] James D. Whitfield, Jacob Biamonte, and Alan Aspuru-Guzik.
2010. Simulation of electronic structure Hamiltonians using quan-
tum computers. Molecular Physics 109, 5 (2010), 735.

[81] Mark Whitney, Nemanja Isailovic, Yatish Patel, and John Ku-
biatowicz. 2007. Automated generation of layout and control
for quantum circuits. In Proceedings of the 4th international
conference on Computing frontiers. ACM, 83–94.

[82] William K Wootters and Wojciech H Zurek. 1982. A single
quantum cannot be cloned. Nature 299, 5886 (1982), 802–803.

https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1109/ICCD.2013.6657074
https://doi.org/10.1109/ICCD.2013.6657074

	Abstract
	1 Introduction
	2 Background
	2.1 Principles of Quantum Computation
	2.2 Theory of Quantum Error Correction
	2.3 Surface Codes
	2.4 Superconducting Technology

	3 Related Work
	4 Microarchitectural Design
	4.1 Handling Data Movement
	4.2 Differences to Classical Communication
	4.3 Ancilla Generation
	4.4 Multi-SIMD Architecture for Planar QEC
	4.5 Tiled Architecture for Double-Defect QEC

	5 Toolflow and Applications
	5.1 Overall Toolflow
	5.2 Applications
	5.3 Compilation Frontend
	5.4 Optimization and Simulation Backend

	6 Optimized Braiding
	6.1 Braid Simulation using Message Passing
	6.2 Optimizing Qubit Arrangement
	6.3 Optimized Braid Priorities

	7 Results
	7.1 Scaling Effects on Space and Time
	7.2 Effects of Encoding
	7.3 Sensitivity Analysis

	8 Discussion
	8.1 Pipelined EPR Distribution
	8.2 Alternative Communication Methods

	9 Conclusions
	References

