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ABSTRACT
The shared last-level caches in CMPs play an important role in
improving application performance and reducing off-chip memory
bandwidth requirements. In order to use LLCs more efficiently, re-
cent research has shown that changing the re-reference prediction
on cache insertions and cache hits can significantly improvecache
performance. A fundamental challenge, however, is how to best
predict the re-reference pattern of an incoming cache line.

This paper shows that cache performance can be improved by
correlating the re-reference behavior of a cache line with aunique
signature. We investigate the use of memory region, program
counter, and instruction sequence history based signatures. We also
propose a novel Signature-based Hit Predictor (SHiP) to learn the
re-reference behavior of cache lines belonging to each signature.
Overall, we find that SHiP offers substantial improvements over the
baseline LRU replacement and state-of-the-art replacement policy
proposals. On average, SHiP improves sequential and multipro-
grammed application performance by roughly 10% and 12% over
LRU replacement, respectively. Compared to recent replacement
policy proposals such as Seg-LRU and SDBP, SHiP nearly doubles
the performance gains while requiring less hardware overhead.

Categories and Subject Descriptors
B.8.3 [Hardware]: Memory Structures

General Terms
Design, Performance
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1. Introduction
The widespread use of chip multiprocessors with shared last-

level caches (LLCs) and the widening gap between processor and
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memory speeds increase the importance of a high performing LLC.
Recent studies, however, have shown that the commonly-usedLRU
replacement policy still leaves significant room for performance
improvement. As a result, a large body of research work has fo-
cused on improving LLC replacement [5, 10, 15, 16, 17, 20, 27,
29, 31, 32]. This paper focuses on improving cache performance
by addressing the limitations of prior replacement policy proposals.

In the recently-proposed Re-Reference Interval Prediction (RRIP)
framework [10], cache replacement policies base their replacement
decisions on aprediction of the re-reference (or reuse) pattern of
each cache line. Since the exact re-reference pattern is notknown,
the predicted re-reference behavior is categorized into different
buckets known asre-reference intervals. For example, if a cache
line is predicted to be re-referenced soon, it is said to havea near-
immediate re-reference interval. On the other hand, if a cache line
is predicted to be re-referenced far in the future, it is termed to have
a distant re-reference interval. To maximize cache performance,
cache replacement policies continually update the re-reference in-
terval of a cache line. The natural opportunity to predict (and up-
date) the re-reference interval is on cache insertions and cache hits.

The commonly-used LRU replacement policy (and its approx-
imations) predict thatall cache lines inserted into the cache will
have anear-immediate re-reference interval. Recent studies [10,
27] have shown that always predicting anear-immediate re-reference
interval on cache insertions performs poorly when application ref-
erences have adistant re-reference interval. This situation occurs
when the application working set is larger than the available cache
or when the application has a mixed access pattern where some
memory references have anear-immediate re-reference interval
while others have adistant re-reference interval. For both of these
access patterns, LRU replacement causes inefficient cache utiliza-
tion. Furthermore, since LLCs only observe references filtered
through the smaller caches in the hierarchy, the view of re-reference
locality at the LLCs can be skewed by this filtering of upper-level
caches.

In efforts to improve cache performance, many studies have pro-
posed novel ideas to improve cache replacement [5, 15, 16, 17, 20,
31]. While these proposals address the limitations of LRU replace-
ment, they either require additional hardware overhead or require
significant changes to the cache structure. Alternatively,studies
have also shown that simply changing the re-reference prediction
on cache insertions [10, 27, 29, 32] can significantly improve cache
performance at very low hardware overhead. However, a funda-
mental challenge today is how to best design a practical mechanism
that can accurately predict the re-reference interval of a cache line
on cache insertions.

Recent proposals [10, 27, 32] use simple mechanisms to predict
the re-reference interval of the incoming cache line. Specifically,
thes mechanisms predict thesame re-reference interval for the ma-



Table 1: Common Cache Access Patterns.
Recency-Friendly (a1, ..., ak−1, ak, ak, ak−1, ..., a1)

N

Thrashing (k > C) (a1, ..., ak−1, ak)N

Streaming (k = ∞) (a1, ..., ak−1, ak)

Mixed (k < C, m > C) [(a1, ..., ak)APǫ(b1, ..., bm)]N

C represents the cache set associativity.
ai represents a cache line access.
(a1, a2, ..., ak−1, ak) is a temporal sequence ofk unique
addresses to a cache set.
(a1, a2, ..., ak−1, ak)N represents a temporal sequence that
repeatsN times.
Pǫ(a1, a2, ..., ak−1, ak) is a temporal sequence that occurs
with some probabilityPǫ.

jority of cache insertions and, as a result, make replacement deci-
sions at a coarse granularity. While such proposals are simple and
improve cache performance significantly, we show that thereis op-
portunity to improve these predictions. Specifically, we show that
re-reference predictions can be made at a finer granularity by cate-
gorizing references into different groups by associating asignature
with each cache reference. The goal is that cache referencesthat
have the same signature will have a similar re-reference interval.

This paper investigates simple, high performing, and low over-
head mechanisms to associate cache references with a uniquesig-
natureand to predict the re-reference interval for that signature. We
propose a Signature-based Hit Predictor (SHiP) to predict whether
the incoming cache line will receive a future hit. We use three
unique signatures to predict the re-reference interval pattern: mem-
ory region signatures (SHiP-Mem), program counter signatures
(SHiP-PC), and instruction sequence history signatures (SHiP-ISeq).
For a given signature, SHiP uses a Signature History CounterTa-
ble (SHCT) of saturating counters tolearn the re-reference inter-
val for that signature. SHiP updates the SHCT on cache hits and
cache evictions. On a cache miss, SHiP indexes the SHCT with the
corresponding signature to predict the re-reference interval of the
incoming cache line.

SHiP is not limited to a specific replacement policy, but rather
can be used in conjunction with any ordered replacement policy.
SHiP is a more sophisticated cache insertion mechanism thatmakes
more accurate re-reference predictions than recent cache insertion
policy proposals [10, 27, 32]. Our detailed performance studies
show that SHiP significantly improves cache performance over prior
state-of-the art replacement policies. Of the three signatures, SHiP-
PC and SHiP-ISeq perform the best across a diverse set of se-
quential applications including multimedia, games, server, and the
SPEC CPU2006 applications. On average, with a 1 MB LLC, SHiP
outperforms LRU replacement by 9.7% while existing state-of-the-
art policies like DRRIP [10], Seg-LRU [5] and SDBP [16] improve
performance by 5.5%, 5.6%, and 6.9% respectively. Our evalua-
tions on a 4-core CMP with a 4 MB shared LLC also show that
SHiP outperforms LRU replacement by 11.2% on average, com-
pared to DRRIP (6.5%), Seg-LRU (4.1%), and SDBP (5.6%).

2. Background and Motivation
Increasing cache sizes and the use of shared LLCs in CMPs has

spurred research work on improving cache replacement. Innova-

tions in replacement policies include improvements in cache inser-
tion and promotion policies [10, 27, 32], dead block prediction [15,
16, 18, 20], reuse distance prediction [10, 14, 17], frequency-based
replacement [19] and many more [1, 2, 6, 11, 24, 28, 30, 31].

To better understand the need for more intelligent replacement
policies, a recent study [10] summarized frequently occurring ac-
cess patterns (shown in Table 1). LRU replacement (and its approx-
imations) behaves well for both recency-friendly and streaming ac-
cess patterns. However, LRU performs poorly for thrashing and
mixed access patterns. Consequently, improving the performance
for these access patterns has been the focus of many replacement
policy proposals.

Thrashing occurs when the application working set is largerthan
the available cache. In such cases, preserving part of the working
set in the cache can significantly improve performance. Recent
proposals show that simply changing the re-reference predictions
on cache insertions can achieve this desired effect [10, 27].

Mixed access patterns on the other hand occur when a frequently
referenced working set is continuously discarded from the cache
due to a burst of non-temporal data references (calledscans). Since
these access patterns are commonly found in important multimedia,
games, and server applications [10], improving the cache perfor-
mance of such workloads is of utmost importance.

To address mixed access patterns, a recent study proposed the
Dynamic Re-Reference Interval Prediction (DRRIP) replacement
policy [10]. DRRIP consists of two component policies: Bimodal
RRIP (BRRIP) and Static RRIP (SRRIP). DRRIP uses Set Duel-
ing [27] to select between the two policies. BRRIP is specifically
targeted to improve the performance of thrashing access patterns.
SRRIP is specifically targeted to improve the performance ofmixed
access patterns. DRRIP performance is shaped by how well it per-
forms on the two component policies.

The performance of the SRRIP component policy is dependent
on two important factors. First, SRRIP relies on the active working
set to be re-referenced at least once. Second, SRRIP performance is
constrained by the scan length. Table 2 illustrates scan access pat-
terns using the scan notation from Table 1, and their performance
under SRRIP. For short scan lengths, SRRIP performs well. How-
ever, when the scan length exceeds the SRRIP threshold or when
the active working set has not been re-referenced before thescan,
SRRIP behaves similarly to LRU replacement. We focus on de-
signing a low overhead replacement policy that can improve the
performance of mixed access patterns.

3. Signature-based Hit Predictor
Most replacement policies attempt to learn the re-reference in-

terval of cache lines by always making thesame re-reference pre-
diction for all cache insertions. Instead of making thesame re-
reference predictions for all cache insertions, we associate each
cache reference with a distinctsignature. We show that cache re-
placement policies can be significantly improved by dynamically
learning the re-reference interval of each signature and applying
the information learned at cache insertion time.

3.1 Signature-based Replacement
The goal of signature-based cache replacement is to predictwhe-

ther the insertions by a given signature will receive futurecache
hits. The intuition is that if cache insertions by a given signature

Table 2: n-bit SRRIP Behavior with Different Mixed Access Patterns
Mixed Access Patterns [(a1, a2, ..., ak−1, ak)APǫ(b1, b2, ..., bm)]N Example
Short Scan m <= (C − K) ∗ (2n − 1) andA > 1 (a1, a2), (a1, a2), b1, b2, b3, (a1, a2), ...
Long Scan m > (C − K) ∗ (2n − 1) andA > 1 (a1, a2), (a1, a2), b1, b2, b3, b4, b5, b6, (a1, a2), ...
Exactly One Reuse A = 1 regardless ofm (a1, a2), b1, b2, b3, b4, (a1, a2), ...
m: the length of a scan;C: the cache set associativity;K: the length of the active working set.



Figure 1: (a) SHiP Structure and (b) SHiP Algorithm.

Figure 2: (a) Memory region signature: 393 unique 16KB address regions are referenced in the entirehmmer program run. The
most-referenced regions show high data reuse whereas the other regions include mostly cache misses. (b) Instruction PCsignature:
reference counts per PC forzeusmp

are re-referenced, then future cache insertions by the samesigna-
ture will again be re-referenced. Conversely, if cache insertions by
a given signature do not receive subsequent hits, then future inser-
tions by the same signature will again not receive any subsequent
hits. To explicitly correlate the re-reference behavior ofa signature,
we propose aSignature-based Hit Predictor (SHiP).

To learn the re-reference pattern of a signature, SHiP requires
two additional fields to be stored with each cache line: the signature
itself and a single bit to track theoutcome of the cache insertion.
Theoutcome bit (initially set to zero) is set to one only if the cache
line is re-referenced. Like global history indexed branch predictors
[33], we propose aSignature History Counter Table (SHCT) of sat-
urating counters to learn the re-reference behavior of a signature.
When a cache line receives a hit, SHiP increments the SHCT entry
indexed by the signature stored with the cache line. When a line
is evicted from the cache but has not been re-referenced since in-
sertion, SHiP decrements the SHCT entry indexed by the signature
stored with the evicted cache line.

The SHCT value indicates the re-reference behavior of a signa-
ture. A zero SHCT value provides a strong indication that future
lines brought into the LLC by that signature will not receiveany
cache hits. In other words, references associated with thissigna-
ture always have adistant re-reference interval. On the other hand,
a positive SHCT counter implies that the corresponding signature
receives cache hits. The exact re-reference interval is unknown be-
cause the SHCT only tracks whether or not a given signature is
re-referenced, but not its timing.

Figure 1 illustrates the SHiP structure and SHiP pseudo-code.
The hardware overhead of SHiP includes the SHCT and the two
additional fields in each cache line: signature and outcome.SHiP
requires no changes to the cache promotion or victim selection poli-
cies. To avoid the per-line overhead, Section 7.1 illustrates the use
of set sampling [27] to limit the hardware overhead to only a few
cache lines for SHCT training.

SHiP can be used in conjunction with any ordered replacement

policy. The primary goal of SHiP is to predict the re-reference in-
terval of an incoming cache line. For example, on a cache miss,
the signature of the missing cache line is used to consult theSHCT.
If the corresponding SHCT entry is zero, SHiP predicts that the
incoming line will have adistant re-reference interval, otherwise
SHiP predicts that the incoming line will have anintermediate re-
reference interval. Given the re-reference prediction, the replace-
ment policy can decide how to apply it. For example, LRU re-
placement can apply the prediction ofdistant re-reference interval
by inserting the incoming line at the end of the LRU chain (instead
of the beginning). Note that SHiP makes re-reference predictions
only on cache insertions. Extensions of SHiP to update re-reference
predictions on cache hits are left for future work.

For our studies, we evaluate SHiP using the SRRIP replacement
policy. We use SRRIP because it requires less hardware than LRU
and in fact outperforms LRU [10]. In the absence of any external in-
formation, SRRIP conservatively predicts that all cache insertions
have anintermediate re-reference interval. If the newly-inserted
cache line is referenced quickly, SRRIP updates the re-reference
prediction tonear-immediate; otherwise, SRRIP downgrades the
re-reference prediction todistant. In doing so, SRRIP learns the
re-reference interval for all inserted cache lines upon re-reference.
SHiP on the other hand explicitly and dynamically predicts the re-
reference interval based on the SHCT. SHiP makes no changes to
the SRRIP victim selection and hit update policies. On a cache
miss, SHiP consults the SHCT with the signature to predict the re-
reference interval of the incoming cache line. Table 3 summarizes
the cache insertion and hit promotion policies for the 2-bitSRRIP
and 2-bit SHiP schemes.

Table 3: Policies for the 2-bit SRRIP and SHiP.
SRRIP SHiP

Insertion always 2 if (SHCT[Signature] == 0) 3; else 2;
Promotion always 0 always 0



Figure 3: Example of Encoding Instruction Sequence History

3.2 Signatures for Improving Replacement
While there are many ways of choosing a signature for each

cache reference, we evalaute SHiP using the following threesig-
natures.

• Memory Region Signature: Cache references can have sig-
natures based on the memory region being referenced. Specif-
ically, the most significant bits of the data address can be
hashed to form a signature. Figure 2(a) illustrates the reuse
characteristics forhmmer. The x-axis shows a total of 393
unique 16KB memory regions referenced in the entire pro-
gram (ranked by reference counts) while the y-axis shows
the number of references in each region. Data references to
certain address regions have “low-reuse” and always resultin
cache misses. On the other hand, references to other address
regions are reused more often. A memory-region-based sig-
nature can generate accurate re-reference predictions if all
references to a given memory region have a typical access
pattern (e.g. scans).

• Program Counter (PC) Signature: Cache references can be
grouped based on the instructions which reference memory.
Specifically, bits from the instruction Program Counter (PC)
can be hashed to form a signature. Figure 2(b) illustrates the
reference counts per instruction PC for a SPEC CPU2006 ap-
plication,zeusmp. The x-axis shows the 70 instructions that
most frequently access memory (covering 98% of all LLC
accesses), while the y-axis shows the reference counts. The
bars show, under LRU replacement, whether these memory
references receive cache hits or misses. Intuitively, SHiPcan
identify the frequently-missing instructions (i.e. instructions
1-4) and predict that all memory references by these instruc-

tions have adistant re-reference interval. A PC-based sig-
nature can generate accurate re-reference predictions if most
references from a given PC have similar reuse behavior.

• Instruction Sequence History Signature: Cache references
can also be grouped using an instruction sequence history for
that memory reference. We define instruction sequence his-
tory as a binary string that corresponds to the sequence of
instructions decoded before the memory instruction. If a de-
coded instruction is a load/store instruction, a ‘1’ is inserted
into the sequence history, else a ‘0’ is inserted into the se-
quence history. Figure 3 illustrates this using an example.
Instruction sequences can capture correlations between refer-
ences and may be more compact than PC-based signatures.

4. Experimental Methodology
4.1 Simulation Infrastructure

We evaluate SHiP using the the simulation framework released
by the First JILP Workshop on Computer Architecture Competi-
tions [12]. This Pin-based [22] CMP$im [8] simulation framework
models a 4-way out-of-order processor with a 128-entry reorder
buffer and a three-level cache hierarchy. The three-level cache hi-
erarchy is based on an Intel Core i7 system [7]. The L1 and L2
caches use LRU replacement and our replacement policy studies
are limited to the LLC. Table 4 summarizes the memory hierarchy.

For the SHiP scheme, we use a default 16K-entry SHCT with
3-bit saturating counters1 SHiP-PC uses the 14-bit hashed instruc-
tion PC as the signature indexing to the SHCT. SHiP-ISeq uses
the 14-bit hashed memory instruction sequence as the signature.
The instruction sequence is constructed at the decode stageof the
pipeline. Like all prior PC-based schemes, the signature isstored
in the load-store queue and accompanies the memory reference
throughout all levels of the cache hierarchy. SHiP-Mem usesthe
upper 14-bit of data addresses as the signature. Table 3 summa-
rizes re-reference predictions made by SHiP upon cache insertion.

4.2 Workload Construction
Our evaluations use both sequential and multiprogrammed work-

loads. We use 24 memory-sensitive applications from multime-
dia and PC games (Mm.), enterprise server (Srvr.), and the SPEC
1Each SHCT entry is a measure of confidence. When the entry is
zero, it gives high confidence that the corresponding references will
not be re-referenced.

Table 4: Architectural parameters of the simulated system.
L1 Inst. Caches 32KB, 4-way, Private, 1 cycle MSHR 32 entries allowing up to 32 outstanding misses
L1 Data Caches 32KB, 8-way, Private, 1 cycle LLC 1MB per-core, 16-way, Shared, 30 cycles
L2 Caches 256KB, 8-way, Private, 10 cycles Main Memory 32 outstanding requests, 200 cycles

Figure 4: Cache Sensitivity of the Selected Applications.



Figure 5: Performance comparison of DRRIP, SHiP-PC, SHiP-ISeq, and SHiP-Mem.

Figure 6: SHiP miss count reduction over LRU.

CPU2006 categories. From each category, we select eight bench-
marks for which the IPC performance doubles when the cache size
increases from 1MB to 16MB. Figure 4 shows the cache sensitiv-
ity of the selected applications. The SPEC CPU2006 workloads
were collected using PinPoints [25] for the reference inputset while
the other workloads were collected on a hardware tracing platform.
These workloads were run for 250 million instructions.

To evaluate shared LLC performance, we construct 161 hetero-
geneous mixes of multiprogrammed workloads. We use 35 het-
erogeneous mixes of multimedia and PC games, 35 heterogeneous
mixes of enterprise server workloads, and 35 heterogeneousmixes
of SPEC CPU2006 workloads. Finally, we create another 56 ran-
dom combinations of 4-core workloads. The heterogeneous mixes
of different workload categories are used as a proxy for a virtual-
ized system. We run each application for 250 million instructions
and collect the statistics with the first 250 million instructions com-
pleted. If the end of the trace is reached, the model rewinds the
trace and restarts automatically. This simulation methodology is
similar to recent work on shared caches [4, 9, 10, 21, 32].

5. Evaluation for Private Caches
Figures 5 and 6 compare the throughput improvement and cache

miss reduction of the 24 selected applications. For applications that
already receive performance benefits from DRRIP such asfinal-
fantasy, IB, SJS, andhmmer, all SHiP schemes further im-
prove performance. For these applications, performance gains pri-
marily come from SHiP’s ability to accurately predict the re-refere-
nce interval for incoming lines.

More significantly, consider applications, such ashalo,excel,
gemsFDTD, andzeusmp, where DRRIP provides no performance
improvements over LRU. Here, SHiP-PC and SHiP-ISeq can pro-
vide performance gains ranging from 5% to 13%. The performance
gains is due to the 10% to 20% reduction in cache misses. The re-
sults show that SHiP-PC and SHiP-ISeq both dynamically correlate
the current program context to an expected re-reference interval.

In particular, SHiP-PC and SHiP-ISeq are especially effective in
managing a commonly found access pattern in applications such
ashalo, excel, gemsFDTD, andzeusmp. Figure 7 captures a
stream of memory references to a particular cache set ingemsFDTD.
For this particular cache set, addressesA, B, C, andD are brought
into the cache by instructionP1. Before getting re-referenced again,
A, B, C, andD are evicted from the cache under both LRU and DR-
RIP because the number of distinct interleaving referencesexceeds
the cache associativity. As a result, the subsequent re-references to
A, B, C, andD by a different instructionP2 result in cache misses.

However, under SHiP-PC, the SHCT learns the re-reference in-
terval of references associated to instructionP1 asintermediate and
the re-reference interval of other references asdistant. As a result,
when the initial referencesA, B, C, andD are inserted to the LLC at
P1, SHiP predicts these to have the intermediate re-referenceinter-
val while other interleaving references have the distant re-reference
interval. This example illustrates how SHiP-PC and SHiP-ISeq can
effectively identify the reuse pattern of data brought intothe LLC
by multiple signatures.

Regardless of the signature, SHiP outperforms both DRRIP and
LRU. Though SHiP-Mem provides gains, using program context
information such as instruction PC or memory instruction sequence
provides more substantial performance gains. Among the three,
SHiP-PC and SHiP-ISeq perform better than SHiP-Mem. On aver-
age, compared to LRU, SHiP-Mem, SHiP-PC and SHiP-ISeq im-
prove throughput by 7.7%, 9.7% and 9.4% respectively while DR-
RIP improves throughput by 5.5%. Unless mentioned, the remain-
der of the paper primarily focuses on SHiP-PC and SHiP-ISeq.

5.1 Coverage and Accuracy
To evaluate how well SHiP identifies the likelihood of reuse,this

section analyzes SHiP-PC coverage and prediction accuracy. Table
5 outlines the five different outcomes for all cache references under
SHiP. Figure 8 shows results for SHiP-PC. On average, only 22% of
data references are predicted to receive further cache hit(s) and are



Figure 7: Cross-instruction reuse pattern: SHiP-PC can learn and predict that referencesA, B, C, andD brought in by instruction P1
receive cache hits under a different instructionP2. SHiP learns the data references brought in byP1 are reused byP2 and, therefore,
assigns an intermediate re-reference interval toA, B, C, and D. As a result, the second occurrences ofA, B, C, and D by P2 hit in the
cache whereas, under either LRU- or DRRIP-based cache,A, B, C, andD all miss in the cache.

inserted to the LLC with theintermediate re-reference prediction.
The rest of the data references are inserted to the LLC with the
distant re-reference prediction.

The accuracy of SHiP’s prediction can be evaluated by compar-
ing against the actual access pattern. For cache lines filledwith the
distant re-reference (DR) interval, SHiP-PC is consideredto make a
misprediction if a DR-filled cache line receives further cache hit(s)
during its cache lifetime. Furthermore, a DR-filled cache line under
SHiP-PC could have received cache reuse(s) if it were filled with
the intermediate re-reference interval. To fairly accountfor SHiP-
PC’s misprediction for DR-filled cache lines, we implement an 8-
way first-in-first-out (FIFO) victim buffer per cache set2. For cache
lines that are filled with thedistant re-reference prediction, Figure
8 shows that SHiP-PC achieves 98% prediction accuracy. Few DR-
filled cache lines see further cache reuse after insertion. Consider
applications likegemsFDTD andzeusmp for which SHiP-PC of-
fers large performance improvements. Figure 8 shows that SHiP-
PC achieves more than 80% accuracy for cache lines predictedto
receive further cache hit(s).

On average, for the cache lines filled with theintermediate re-

2A victim buffer is used for evaluating SHiP prediction accuracy.
It is not implemented in the real SHiP design. The per-set FIFO
victim buffer stores DR-filled cache lines that have not received a
cache hit before eviction.

reference (IR) prediction, SHiP-PC achieves 39% prediction ac-
curacy. SHiP-PC’s predictions for cache lines that will receive
no further cache reuse(s) are conservative because the mispredic-
tion penalty for DR-filled cache lines is performance degradation,
while the misprediction penalty for IR-filled cache lines isjust the
cost of missing possible performance enhancement. For the mis-
predicted IR-filled cache lines, SHiP learns that these cache lines
have received no cache hit(s) at their eviction time and adjusts its
re-reference prediction accordingly. Consequently, SHiP-PC trains
its re-reference predictions gradually and more accurately with ev-
ery evicted cache line.

Over all the evicted cache lines, SHiP-PC doubles the applica-
tion hit counts over the DRRIP scheme. Figure 9 illustrates the
percentage of cache lines that receive at least one cache hitduring
their cache lifetime. For applications such asfinal-fantasy,
SJB, gemsFDTD, andzeusmp, SHiP-PC improves the total hit
counts significantly. This is because SHiP-PC accurately predicts
and retains cache lines that will receive cache hit(s) in theLLC.
Consequently, the overall cache utilization increases under SHiP-
PC. A similar analysis with SHiP-ISeq showed similar behavior.

5.2 Sensitivity of SHiP to SHCT Size
The SHCT size in SHiP should be small enough to ensure a prac-

tical design and yet large enough to mitigate aliasing between un-

Table 5: Definition of SHiP accuracy.
Re-Reference Interval Prediction Outcome Definition

Distant Re-Reference (DR)
accurate DR cache lines receive no cache hit(s) before eviction.
inaccurate DR cache lines receive cache hit(s) before eviction.
inaccurate DR cache lines receive cache hit(s) in the victim buffer.

Intermediate Re-Reference (IR)
accurate IR cache lines receive cache hit(s) before eviction.
inaccurate IR cache lines receive no cache hit(s) before eviction.

Figure 8: SHiP-PC coverage and accuracy.



Figure 9: Comparison of application hit counts under DRRIP and SHiP-PC.

Figure 10: SHCT utilization and aliasing under the SHiP-PC scheme.

related signatures mapping to the same SHCT entry. Since thede-
gree of aliasing depends heavily on the signature used to index the
SHCT, we conduct a design tradeoff analysis between performance
and hardware cost for SHiP-PC and SHiP-ISeq separately.

Figure 10 plots the number of instructions sharing the same SHCT
entry for a 16K-entry SHiP-PC. In general, the SHCT utilization is
much lower for the multimedia, games, and SPEC CPU2006 appli-
cations than the server applications. Since the instruction working
set of these applications is small, there is little aliasingin the 16K-
entry SHCT. On the other hand, server applications with larger in-
struction footprints have higher SHCT utilizations.

For SHiP-PC, we varied the SHCT size from 1K to 1M entries.
Very small SHCT sizes, such as 1K-entries, reduced SHiP-PC’s
effectiveness by roughly 5-10%, although it always outperforms
LRU even with such small table sizes. Increasing the SCHT beyond
16K entries provides marginal performance improvement. This is
because the instruction footprints of all our workloads fit well into
the 16K-entry SCHT. Therefore, we recommend an SCHT of 16K
entries or smaller.

Given the same 16K-entry SHCT size, SHiP-ISeq exhibits a dif-
ferent utilization pattern because it uses the memory instruction se-
quence signature to index to the SHCT. For all applications,less
than half of the 16K-entry SHCT is utilized. This is because certain
memory instruction sequences usually do not occur in an applica-
tion. Hence, this provides an opportunity to reduce the SHCTof
SHiP-ISeq.

Instead of using the 14-bit hashed memory instruction sequence
to index to the SHCT directly, we further compress the signature
to 13 bits and use the compressed 13-bit signature to index an
8K-entry SHCT. We call this variation SHiP-ISeq-H. Figure 11(a)
shows that the utilization of the 8K-entry SHCT is increasedsignif-
icantly. While the degree of memory instruction sequence aliasing
increases as well, in particular for server workloads, thisdoes not
affect the performance as compared to SHiP-ISeq. Figure 11(b)
compares the performance improvement for the selected sequential

applications under DRRIP, SHiP-PC, SHiP-ISeq, and SHiP-ISeq-
H over LRU. While SHiP-ISeq-H uses the 8K-entry SHCT (half of
the default 16K-entry SHCT), it offers a comparable performance
gain as SHiP-PC and SHiP-ISeq and improves performance by an
average of 9.2% over LRU.

6. Evaluation for Shared Caches
6.1 Results for SHiP-PC and SHiP-ISeq

For shared caches, on average, DRRIP improves the performance
of the 161 multiprogrammed workloads by 6.4%, while SHiP-PC
and SHiP-ISeq improve the performance more significantly by11.2%
and 11.0% respectively. For an in-depth analysis, we randomly se-
lected 32 multiprogrammed mixes of sequential applications repre-
sentative of the behavior of all 161 4-core workloads3. With the de-
fault 64K-entry SHCT scaled for the shared LLC, Figure 12 shows
that the performance improvement of the selected workloadsunder
SHiP-PC and SHiP-ISeq is 12.1% and 11.6% over LRU respec-
tively while it is 6.7% under DRRIP. Unlike DRRIP, SHiP-PC and
SHiP-ISeq performance improvements are primarily due to fine-
grained re-reference interval predictions.

Section 5.2 showed that aliasing within a sequential application
is mostly constructive and does not degrade performance. How-
ever, for the multiprogrammed workloads, aliasing in the SHCT
becomes more complicated. In a shared SHCT, aliasing not only
comes from multiple signatures within an application but italso
stems from signatures from different co-scheduled applications. Con-
structive aliasing helps SHiP to learn the correct data reuse patterns
quickly because the multiple aliasing signatures from the different
applications adjust the corresponding SHCT entry unanimously.
Consequently, SHiP’s learning overhead is reduced. On the other
hand, destructive aliasing can also occur when the aliasingsigna-

3The performance improvement of the randomly selected work-
loads is within 1.2% difference compared to the performanceim-
provement over all 161 multi-programmed workloads (Figure12).



Figure 11: SHiP-ISeq-H (a) utilization and aliasing in SHCT(b) performance comparison with SHiP-ISeq.

tures adjust the same SHCT entry in opposite directions. This can
affect SHiP accuracy and reduce its performance benefits.

To investigate the degree of constructive versus destructive alias-
ing among the different co-scheduled applications, we evaluate three
different SHCT implementations: the unscaled default 16K-entry
SHCT, the scaled 64K-entry SHCT, and the per-core private 16K-
entry SHCT for each of the four CMP cores. The former two de-
signs propose a monolithic shared SHCT for all four co-scheduled
applications while in the latter design, each core has its own private
SHCT to completely eliminate cross-core aliasing.

6.2 Per-core Private vs. Shared SHCT
Figure 13 illustrates the sharing patterns among all co-scheduled

applications in the shared 16K-entry SHCT under SHiP-PC. The
No Sharer bars plot the portion of the SHCT used by exactly one
application. TheMore than 1 Sharer (Agree) bars plot the portion
of the SHCT used by more than one application but the prediction
results among the sharers agree. TheMore than 1 Sharer (Dis-
agree) bars plot the portion of the SHCT suffering from destructive
aliasing. Finally, theUnused bars plot the unused portion of the
SHCT. The degree of destructive aliasing is fairly low across all
workloads: 18.5% for Mm./Games mixes, 16% for server mixes,
only 2% for SPEC CPU2006 mixes, and 9% for general multipro-
grammed workloads.

Figure 14 compares the performance improvement for the three
SHCT implementations in the SHiP-PC and SHiP-ISeq schemes.
Although destructive aliasing does not occur frequently inthe shared
16K-entry SHCT, multimedia, games, and server workloads still
favor the per-core 16K-entry SHCT over the other shared SHCT
designs. This is because, as shown in the private cache perfor-
mance analysis, multimedia, games, and server applications have
relatively larger instruction footprints. When the numberof con-
current applications increases, the SHCT utilization increases as

well and aliasing worsens. This problem can be alleviated byscal-
ing the shared SHCT from 16K-entry to 64K-entry. However, the
per-core private SHCT is the most effective solution.

Unlike the multimedia, games, and server workloads, the mul-
tiprogrammed SPEC CPU2006 application mixes receive the most
performance improvement from the shared SHCT designs. As dis-
cussed in Section 5.2, a significant portion of the 16K-entrySHCT
is unused for any SPEC CPU2006 application alone. When more
SPEC CPU2006 applications are co-scheduled, the utilization of
the shared SHCT increases but the shared 16K-entry SHCT is still
sufficient. While the per-core private 16K-entry SHCT eliminates
destructive aliasing completely, it improves the performance for the
SPEC CPU2006 workloads less because of the learning overhead
each private SHCT has to pay to warm up the table.

Overall, for the shared LLC, the two alternative SHCT designs,
the shared 16K-entry SHCT and the per-core private 16K-entry
SHCT, perform comparably to the shared 64K-entry SHCT in the
SHiP-PC and SHiP-ISeq schemes.

7. SHiP Optimization and Compari-
son with Prior Work

While the proposed SHiP scheme offers excellent performance
gains, to realize a practical SHiP design, we present two techniques
to reduce SHiP hardware overhead: SHiP-S and SHiP-R. Instead of
using all cache sets in the LLC, SHiP-S selects a few cache setsam-
ples to train the SHCT. Then, in the SHiP-R scheme, we explorethe
optimal width of the saturating counters in the SHCT. Finally, we
compare the performance of all SHiP variants with the three state-
of-the-art cache replacement policies: DRRIP, Segmented LRU
(Seg-LRU), and Sampling Dead Block Prediction (SDBP) and dis-
cuss the design tradeoff for each of the schemes.

Figure 12: Performance comparison for multiprogrammed workloads under DRRIP, SHiP-PC, and SHiP-ISeq.



Figure 13: Utilization and aliasing for the shared 16K-entry SHCT under SHiP-PC.

Figure 14: Performance comparison for per-core private vs.
shared SHCT.

7.1 SHiP-S: Reducing Per-line Storage
Using every cache line’s reuse outcome for SHiP training re-

quires each cache line to store two additional information,14-bit
signature_m and 1-bitoutcome, for the SHCT to learn the
reuse pattern of the signature. We propose to use set sampling
to reduce the per-cache line storage overhead of the defaultSHiP-
PC and SHiP-ISeq schemes. SHiP-PC-S and SHiP-ISeq-S selecta
number of cache sets randomly and use cache lines in the selected
cache sets to train the SHCT.

For the private 1MB LLC, using 64 out of the total 1024 cache
sets is sufficient for SHiP-PC-S to retain most of the performance
gain from the default SHiP-PC scheme. This reduces SHiP-PC’s to-
tal storage in the LLC from 30KB to only 1.875KB. For the shared
4MB LLC, more sampling cache sets are required for SHCT train-
ing. Overall, 256 out of the total 4096 cache sets offers a good
design point between performance benefit and hardware cost.Fig-
ure 15 shows that with set sampling, SHiP-PC and SHiP-ISeq re-
tain most of the performance gains while the total per-line storage
overhead is reduced to less than 2% of the entire cache capacity.

7.2 SHiP-R: Reducing the Width of Saturat-
ing Counters in the SHCT

We can further reduce SHiP hardware overhead by decreasing
the width of SHCT counters. In the default SHiP scheme, SHCT
uses 3-bit saturating counters. Using wider counters requires more
hardware but ensures higher prediction accuracy for SHiP because
only re-references with a strongly-biased signature are predicted
to have thedistant re-reference interval. On the other hand, using
narrower counters not only requires less hardware but it also accel-
erates the learning time of the signatures.

Figure 15 compares the performance of the default SHiP-PC and
SHiP-PC-R2 based on 2-bit saturating counters in the SHCT. For
the private LLC (Figure 15(a)), the default SHiP-PC and the SHiP-
PC-R2 schemes perform similarly while SHiP-PC-R2 uses 33%

less hardware for the SHCT. We see a similar trend for the default
SHiP-ISeq and SHiP-ISeq-R2.

For the shared LLC, using the 2-bit saturating counters in the
SHCT accelerates SHiP’s learning of signature reuse patterns. As
a result, SHiP-PC-R2 and SHiP-ISeq-R2 both perform better than
the default SHiP-PC and default SHiP-ISeq schemes.

7.3 Comparison with Prior Work
In addition to DRRIP, we compare the proposed SHiP scheme

with two recently proposed cache management techniques,
Segmented-LRU (Seg-LRU) [5] and Sampling Dead Block Predic-
tion (SDBP) [16]. DRRIP, Seg-LRU, and SDBP are the top three
best-performing cache replacement policies from JILP Cache Re-
placement Championship Workshop. Among the three, SDBP also
uses additional information, such as instruction PCs, to assist its
LLC management.

Figure 16 compares the performance improvement for sequen-
tial applications under DRRIP, Seg-LRU, SDBP, and our proposed
SHiP schemes. For applications such asSJS, the additional in-
struction level information in SDBP, SHiP-PC, and SHiP-ISeq helps
improve LLC performance significantly over the LRU, DRRIP, and
Seg-LRU schemes. While SDBP, SHiP-PC, and SHiP-ISeq all im-
prove performance for applications, such asexcel, SHiP-PC and
SHiP-ISeq outperforms SDBP for other applications, such asgems-
FDTD andzeusmp. Furthermore, while SDBP performs better
than DRRIP and Seg-LRU, its performance improvement for se-
quential applications varies. For example,SP andgemsFDTD re-
ceive no performance benefits under SDBP. Although SDBP and
SHiP use instruction-level information to guide cache lineinser-
tion and replacement decisions, SHiP-PC and SHiP-ISeq improve
application performance more significantly and more consistently
by an average of 9.7% and 9.4% over LRU while SDBP improves
performance by only 6.9%. For the shared LLC, SHiP-PC and
SHiP-ISeq outperforms the three state-of-the-art cache replacement
schemes by 11.2% and 11.0% over the LRU baseline while DR-
RIP, Seg-LRU, and SDBP improve performance by 6.4%, 4.1%,
and 5.6%.

7.4 Sensitivity to Cache Sizes
To evaluate the effectiveness of SHiP-PC and SHiP-ISeq for var-

ious cache sizes, we perform a sensitivity study for both private and
shared LLCs. We find that larger caches experience less contention,
so the differences in replacement approaches are reduced. How-
ever, both SHiP-PC and SHiP-ISeq still continue to improve se-
quential application performance over the DRRIP and LRU schemes.
For a typical 4MB shared LLC on a 4-core CMP system, SHiP-
PC improves the performance of all 161 multiprogrammed work-
loads by an average of 11.2% over the LRU scheme while DR-



Figure 15: Performance comparison of SHiP realizations andprior work.

Figure 16: Comparing SHiP with DRRIP, Seg-LRU, and SDBP.

RIP improves the performance by 6.3%. As the shared cache sizes
increase, SHiP-PC and SHiP-ISeq performance improvement re-
mains significant. For a shared 32MB cache, the throughput im-
provement of SHiP-PC (up to 22.3% and average of 3.2%) and
SHiP-ISeq (up to 22% and average of 3.2%) over LRU still dou-
bles the performance gain under the DRRIP scheme (up to 5.8%
and average of 1.1%).

7.5 Comparison of Various SHiP Realizations:
Performance and Hardware Overhead

In summary, this paper presents a novel Signature-based HitPre-
dictor (SHiP) that learns data reuse patterns of signaturesand use
the signature-based information to guide re-reference prediction as-
signment at cache line insertion. The full-fledged SHiP-PC im-
proves sequential application performance by as much as 34%and
by an average of 9.7% over LRU.

In addition to the detailed performance analysis for the proposed
SHiP scheme, we present two techniques that lead to practical SHiP
designs. Figure 15 compares the performance improvement for the
various implementations for SHiP-PC and SHiP-ISeq. Among the
SHiP-PC variants, while using much less hardware, set sampling
(SHiP-PC-S) reduces SHiP-PC performance gain slightly. Overall,
SHiP-PC-S and SHiP-PC-S-R2 still outperform the prior art.The
various SHiP-ISeq practical designs show similar trends.

Furthermore, while reducing the hardware overhead from 42KB
for the default SHiP-PC to merely 10KB for SHiP-PC-S-R2, SHiP-
PC-S-R2 can retain most of SHiP-PC’s performance benefits and
improve sequential application performance by as much as 32%
and by an average of 9%. Table 6 gives a detailed comparison of
performance improvement versus hardware overhead for the var-
ious cache replacement policies investigated in this paper. Over-

all, for a diverse variety of multimedia, games, server, andSPEC
CPU2006 applications, the practical SHiP-PC-S-R2 and SHiP-ISeq-
S-R2 designs use only slightly more hardware than LRU and DR-
RIP, and outperform all state-of-the-art cache replacement policies.
Furthermore, across all workloads, the simple and low-overhead
SHiP-PC-S-R2 and SHiP-ISeq-S-R2 schemes provide more con-
sistent performance gains than any prior schemes.

8. Related Work
While we cannot cover all innovations in cache replacement re-

search [1, 2, 3, 6, 10, 11, 14, 16, 18, 19, 20, 24, 26, 27, 28, 30,31],
we summarize prior art that closely resembles SHiP.

8.1 Dead Block Prediction
Lai et al. [18] proposed dead block correlating prefetchers(DBCP)

that prefetch data into dead cache blocks in the L1 cache. DBCP
encodes a trace of instructions for every cache access and relies on
the idea that if a trace leads to the last access for a particular cache
block the same trace will lead to the last access for other blocks.
The proposed DBCP scheme can identify more than 90% of dead-
blocks in the L1 cache for early replacement; however, a recent
study [16] shows that DBCP performs less well at the last-level
cache of a deep multi-level memory hierarchy.

Instead of using instruction traces to identify cache deadblocks,
Liu et al. [20] proposed Cache-Burst that predicts dead blocks
based on the hit frequency of non-most-recently-used (non-MRU)
cache blocks in the L1 cache. Similarly, cache blocks that are
predicted to have no more reuses become early replacement can-
didates. Cache-Burst, however, does not perform well for LLCs
because cache burstiness is mostly filtered out by the higher-level
caches. In addition, Cache-Burst requires a significant amount of



Table 6: Performance and hardware overhead comparison for prior work and SHiPs.
LRU DRRIP Seg-LRU[5] SDBP[16] SHiP-PC* SHiP-ISeq*

For 1MB LLC 8 4 8+7.68 8+13.75 4+6 4+6
Total Hardware (KB) 8 4 15.68 21.75 10 10
Selected App. 1 1.055 1.057 1.069 1.090 1.086
All App. 1 1.021 1.019 1.024 1.036 1.032
Max. Performance 1 1.28 1.21 1.33 1.32 1.33
Min. Performance 1 0.94 0.87 0.95 1.02 1.02
SHiP-PC* and SHiP-ISeq* use 64 sampling sets to train its SHCT with 2-bit counters (S-R2).

meta-data associated with each cache block.
To eliminate dead cache blocks in the LLC, Khan et al. [16]

proposed Sampling Dead Block Prediction (SDBP) which predicts
dead cache blocks based on the last-referenced instructions and re-
places the dead blocks prior to the LRU replacement candidate.
SDBP implements a three-level prediction table trained by agroup
of sampled cache sets, called sampler. Each cache block in the sam-
pler remembers the last instruction that accesses the cacheblock.
If the last-referenced instruction leads to a dead block, data blocks
associated with this instruction are likely to be dead in theLLC.

A major shortcoming of SDBP is that its deadblock prediction
relies on a low-associativity LRU-based sampler. AlthoughKhan
et al. claim that the LRU-based sampler is decoupled from theun-
derlying cache insertion/replacement policy, our evaluations show
that SDBP only improves performance for the two basic cache re-
placement policies, random and LRU. SDBP also incurs significant
hardware overhead.

One can potentially describe SDBP as a signature-based replace-
ment policy. However, the training mechanisms of both policies are
fundamentally different. SDBP updates re-reference predictions on
the last accessing signature. SHiP on the other hand makes re-
reference predictions based on the signature that inserts the line
into the cache. Correlating re-reference predictions to the “inser-
tion” signature performs better than the “last-access” signature.

Finally, Manikantan, Rajan, and Govindarajan proposed NU-
cache [23] which bases its re-use distance prediction solely on in-
struction PCs. In contrast, SHiP explores a number of different sig-
natures: instruction PC, instruction sequence, and memoryregion.
Furthermore, while NUcache results in performance gains across a
range of SPEC applications, this paper shows that there are signifi-
cantly fewer unique PCs in SPEC applications (10’s to 100’s)than
in multimedia, games, and server workloads (1,000’s to 10,000’s).
This hinders NUcache’s effectiveness for these workloads.

While NUcache is relevant to SHiP, NUcache requires signifi-
cant modification and storage overhead for the baseline cache or-
ganization. Furthermore, SHiP’s reuse prediction SHCT, onthe
other hand, is elegantly decoupled from the baseline cache struc-
ture. Overall, SHiP requires much less hardware overhead. Last but
not least, this work explores three unique signatures to train SHiP.
Instruction sequence is a novel signature, and others like instruction
PC and memory address are novel in how they are applied.

8.2 Re-Reference Prediction
Instead of relying on a separate prediction table, Hu et al. [6]

proposed to use time counters to keep track of the liveness ofcache
blocks. If a cache block has not been referenced for a specified pe-
riod of time, it is predicted to be dead. These “dead” blocks become
the eviction candidates before the LRU blocks [6, 31] for cache uti-
lization optimization or can be switched off to reduce leakage [13].
In addition to the LRU counters, the proposed scheme keeps addi-
tional coarser-grained counters per cache line, which incurs more
hardware requirement than SHiP.

Jaleel et al. [10] proposed SRRIP and DRRIP to learn reuse pat-

tern of incoming cache blocks. Instead of storing the recency with
each cache line, both SRRIP and DRRIP store the re-referencepre-
diction with each cache line. Both use simple mechanisms to learn
the re-reference interval of an incoming cache line. They doso by
assigning the same re-reference prediction to the majorityof cache
insertions andlearning the re-reference interval on subsequents.
While simple, there is no intelligence in assigning a re-reference
prediction. SHiP improves re-reference predictions by categoriz-
ing references based on distinct signatures.

Gao and Wilkerson [5] proposed the Segmented LRU (Seg-LRU)
replacement policy. Seg-LRU adds a bit per cache line to observe
whether the line was re-referenced or not. This is similar tothe
outcome bit stored with SHiP. Seg-LRU modifies the victim selec-
tion policy to first choose cache lines whoseoutcome is false. If no
such line exists, Seg-LRU replaces the LRU line in the cache.Seg-
LRU also proposes additional hardware to estimate the benefits of
bypassing modifications to the hit promotion policy. Seg-LRU re-
quires several changes to the replacement policy. On the other hand
SHiP is higher performing, only modifies the insertion policy, and
requires less hardware overhead.

9. Conclusion
Because LLC reference patterns are filtered by higher-levelcaches,

typical spatial and temporal locality patterns are much harder to
optimize for. In response, our approach uses signatures—such as
memory region, instruction PC, or instruction path sequence—to
distinguish instances where workloads are mixes of some highly
re-referenced data (which should be prioritized) along with some
distant-reuse data. In this paper we have presented a simpleand ef-
fective approach for predicting re-referencing behavior for LLCs.
The proposed SHiP mechanism, which accurately predicts there-
reference intervals for all incoming cache lines, can significantly
improve performance for intelligent cache replacement algorithms.
Over a range of modern workloads with high diversity in data and
instruction footprint, we have demonstrated performance that is
consistently better than prior work such as Seg-LRU and SDBP
with much less hardware overhead. Although we evaluated our
method on top of SRRIP, the re-reference predictor is a general
idea applicable to a range of LLC management questions.
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