
Optimizing IoT and Web Traffic Using Selective Edge Compression

Themis Melissaris
Princeton University

themis@cs.princeton.edu

Kelly Shaw
Williams College

kshaw@cs.williams.edu

Margaret Martonosi
Princeton University
mrm@princeton.edu

Abstract—Internet of Things (IoT) devices and applications
are generating and communicating vast quantities of data, and
the rate of data collection is increasing rapidly. These high
communication volumes are challenging for energy-constrained,
data-capped, wireless mobile devices and networked sensors.
Compression is commonly used to reduce web traffic, to save
energy, and to make network transfers faster. If not used judi-
ciously, however, compression can hurt performance. This work
proposes and evaluates mechanisms that employ selective com-
pression at the network’s edge, based on data characteristics and
network conditions. This approach (i) improves the performance
of network transfers in IoT environments, while (ii) providing
significant data savings. We demonstrate that our library speeds
up web transfers by an average of 2.18x and 2.03x under
fixed and dynamically changing network conditions respectively.
Furthermore, it also provides consistent data savings, compacting
data down to 19% of the original data size.

I. INTRODUCTION

Internet of Things (IoT) environments include elements for
sensing, actuation, and communication, as well as data analysis
and computation. IoT ecosystems promise to change the ways
we interact with our homes and cities and to provide new
solutions in industrial settings as well. As domains continue to
benefit from nascent IoT technologies, they further contribute
to the expanding availability and diversity of IoT devices.

Increases in edge device counts, improved network infras-
tructure and the broad adoption of services and applications
have led to an explosion in mobile and IoT data traffic, which
is expected to increase nearly threefold from 2015 to 2020
[8]. In fact, two-thirds of the total IP traffic by 2020 will
be generated by wireless and mobile devices; this is due
to an increase in the number of available connected mobile
devices, adoption of wireless IoT devices, as well as growth
in the devices’ capabilities and data consumption. Energy is
a primary constraint in designing applications and systems
for edge devices and wireless communication accounts for a
significant portion of the total energy budget, often dominating
that of computation or other factors [6], [34]. With traffic and
energy usage expected to surge, one technique proven to be
efficient in managing the energy consumption and the traffic
volume of wireless mobile devices is compression [28].

IoT’s rise has led to the broader emergence of an ecosystem
of networked devices, supporting services, and new applica-
tions across many different domains [19]. Application areas
such as smart surveillance, traffic services, and mobile sensing
rely on data collected at the “edge” (e.g. on smartphones
or other mobile devices, rather than wired devices or cloud
infrastructure) followed by communication of the data to-
wards hub or cloud aggregators for analysis, often with tight

latency requirements [18]. To support these data-intensive
applications, our focus is on selectively using on-edge-device
compression to reduce transferred bytecounts and improve
communication efficiency.

Data compression and decompression are widely available
on commodity servers and can also be used at the edge to
reduce the data exchanged in the network, sometimes reducing
network latencies as well. Compression, however, needs to
be used correctly to avoid overheads; if overused, it can add
unnecessary latency and energy overhead to communications,
instead of reducing them. Whether compression is beneficial
or not is determined by several factors outlined below.

First, different mobile and IoT applications generate differ-
ent types of content, which vary in size and compressibility.
The type of traffic generated on edge devices can change
dynamically based on the users’ interaction with the devices
and the applications in use. Mobile web traffic is typically
comprised of scripts, plaintext, multimedia and markup doc-
uments. IoT traffic includes sensor data that can vary signifi-
cantly depending on the application and its usage. Variations
in communicated data can mean significant variations in how
compressible the data is. For example, multimedia data items
(e.g. audio, traffic and video) are usually already provided
in a compressed format, preventing additional transfer-time
compression from yielding large benefits.

Second, network behavior can significantly alter the effect
compression has on data exchanged over the network. In cases
of low network throughput, compression can reduce the dura-
tion of data transfers significantly. Alternatively, compression
can stay in the application’s critical path and introduce un-
necessary overhead when the data compression rate is slower
than the network data transfer rate.

To selectively exploit the benefits of compression while
intelligently avoiding its potential negative impact, this work
proposes and evaluates the IoTZip approach. IoTZip is a tool
that allows mobile and IoT applications to handle compres-
sion intelligently. Based on characterizations of the data to
be transferred and estimates of the network conditions, it
automatically reasons about compression trade-offs. It then
predicts whether selective compression will pay off or not,
and adaptively decides whether to use it to improve the
performance of network transfers and reduce data usage. Our
evaluation demonstrates that IoTZip achieves the stated goals
in a very lightweight manner, which provides an opportunity
for adoption of selective edge compression based approaches
in resource constrained IoT environments.

As the edge increasingly includes data-intensive and



latency-sensitive applications, the bandwidth and performance
of wireless mobile devices become key design challenges.
Intelligently compressing data going to and from IoT and wire-
less mobile edge devices can improve system functionality.

Our results show that IoTZip offers performance improve-
ments of up to 3.78x (roughly 2x on average) and data size
reductions of up to 81%. Interestingly, the IoT datasets we
experiment on show more uniformity in size and data type than
the mobile web datasets. Nonetheless, selective compression is
still useful even for predictable IoT datasets, because it allows
systems to adapt to varying network conditions as well.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work, in order to further establish
the motivation for IoTZip. Section III describes the basic
IoTZip functionality and Section IV gives the methodology
and configuration information for its use in our experiments.
Section V presents our experimental results and Section VI
offers conclusions.

II. RELATED WORK

Characterizing Mobile Web Traffic & Applications: One
category of related prior work pertains to mobile web traffic
characterization. The measurement study in [14] discusses
mobile traffic composition and investigates the performance
and energy efficiency of TCP transfers. Butkiewicz et al. [5]
studies parameters that affect web page load times across web-
sites, whereas WProf [32] performs in-browser performance
profiling. In [25], the usage of bandwidth and energy in mobile
web browsing is studied in detail using traffic collection and
analysis tools, whereas [3] and [31] focus on analyzing the
energy consumption of mobile devices’ communication, par-
ticularly mobile web browsing. In contrast to our work, these
papers do not study compression, nor how the performance of
a web transfer is affected by compressing data of varying data
sizes and types.

Optimizing Mobile Web Traffic: Various techniques have
been proposed to optimize mobile web transfers for perfor-
mance and data usage. For example, Procrastinator [26] de-
cides when to prefetch objects in order to manage application
data usage depending on a user’s connectivity and data plan
limitations. Other techniques like Polaris [23] and Shandian
[33] use fine grained dependency tracking to identify and
eliminate the intrinsic inefficiencies in the page load process.
Klotski reprioritizes the delivery of web content in a dynamic
fashion in order to improve the user experience [4]. While
their focus is on improving performance and user experience
in mobile web browsing, these approaches do not reduce data
usage as we do.

Compression-based approaches have also been proposed in
related work to reduce data usage and improve performance.
Locomotive [22] presents a methodology for determining at
runtime whether compression is beneficial for data transmis-
sions on mobile phones. Our work systematically studies the
effect of compression on devices’ web transfers at the Edge
and builds a library that allows IoT applications to auto-
matically adapt to dynamically changing network conditions

and data heterogeneity. Additionally, compression proxies like
Flywheel [1], Baidu TrafficGuard [20] and Flexiweb [29] offer
data savings by leveraging compression. These approaches,
however, channel mobile content through a proxy server. Such
rerouting raises privacy and security concerns if the proxy is
untrusted and potentially latency concerns as well. Our work
runs on mobile devices, performs compression at the Edge and
therefore mitigates such concerns.

Other works study how the use of different communication
protocols affect the performance of mobile web transfers.
The study in [11] compares HTTP 1.1 and SPDY (recently
proposed HTTP alternative) performance in practice, show-
ing no clear alternative advantage of the latter over cellular
networks. In [27], the authors present Lithe, a lightweight
implementation of the CoAp protocol for the Internet of
Things using compression to improve data usage and energy
efficiency. This approach, despite its clear advantages, is
restricted to low power wireless technologies (LoWPAN) and
communication over CoAp. Recently, efforts in the industry
has developed compression algorithms, like Brotli [13], [17],
[10], specifically designed for mobile traffic data savings
and performance. Prior work has demonstrated that custom
compression algorithms can achieve significant energy and
performance gains [28]. Using state of the art compression
algorithms for IoT and mobile web traffic could complement
network adaptive approaches such as IoTZip.

Correctness, Security and Privacy: Related work also
focuses on correctness, security and privacy aspects of IoT
applications. OKAPI [21] identifies correctness deficiencies
and bugs in IoT applications and introduces tools that enforce
correctness guarantees. Other works [15] focus on security
implications such as misuse of application privileges in IoT
settings and develop privacy preserving solutions leveraging
data protection and access control mechanisms [16].

Our Approach: With IoTZip, application developers can
optimize web traffic transfers from mobile and IoT devices
through selective compression automatically. IoTZip dynami-
cally decides whether to compress based on data characteriza-
tions and network conditions. IoTZip is device and application
agnostic and therefore capable of enhancing all types of
Internet of Things and mobile applications and benefit under
heterogeneous traffic and under changing network conditions.
Although IoTZip is provided as a library for application
development, it can also be easily implemented as a browser
plugin or extension. Section III presents IoTZip’s architecture,
Section IV describes our methodology and Section V presents
results on performance and data savings.

III. IOTZIP LIBRARY

Overview: IoTZip facilitates IoT and mobile traffic opti-
mization by providing hooks allowing application program-
mers to use selective compression easily. Applications can
invoke the library, abstracting away compression decisions.
IoTZip focuses on uplink traffic where compression happens
on the edge device. This is because uplink traffic is par-
ticularly latency- and energy-intensive for constrained IoT



Fig. 1. IoTZip Overview. Compression trade-offs are dynamically assessed
during web transfers at the Edge. Whenever compression is estimated to be
effective by the Policy module, data is compressed and transferred over the
network. Network conditions are estimated using the Throughput Estimation
module. The statistical models used for estimating compression time and size
are generated offline in the Predictive Model Creation module. The tradeoff
is resolved at runtime in the Tradeoff Resolution module.

TABLE I
EQUATION (I) RESOLVES THE PERFORMANCE TRADEOFFS OF

INTRODUCING COMPRESSION. EQUATIONS (II) AND (III) ESTIMATE DATA
SIZE AFTER COMPRESSION AND COMPRESSION LATENCY, RESPECTIVELY.

(I)
SCompressed

NThroughput
+ LCompression >

SOriginal

NThroughput

(II) SCompressed(SOriginal, T ) =
SOriginal

compressibility(T )

(III) LCompression(SOriginal, T ) = α(T ) · SOriginal + β(T )
i

devices. IoTZip uses Android HTTP primitives, but can be
extended easily to accommodate other protocols. In addition,
a component that responds to IoTZip requests and handles data
decompression runs in the cloud. The architecture of IoTZip
is presented in Figure 1.

IoTZip Policy: For all data transfers, IoTZip makes a two-
step compression decision. First, a threshold determines if
compression should be ruled out for some requests, based
on size and compressibility. For small transfer sizes and
for file types that are typically already compressed—such as
multimedia—data compressibility can be low and the time
spent compressing the data is likely to outweigh any benefits
achieved. Selective compression avoids compressing in such
cases.

IoTZip next determines if the estimated transfer latency is
less with or without compression. As shown in Equation (I),
IoTZip resolves the tradeoff for each request based on the com-
pression latency LCompression, the size of the request payload
data before (SOriginal) and after (SCompressed) compression
as well as the estimated network throughput, NThroughput.
NThroughput changes over time and is periodically estimated
by the Network Connection Module.

Compression Size & Time Estimation: IoTZip estimates

Fig. 2. Cumulative Distribution Function (CDF) for the data size of all
evaluated datasets. Alexa Top 200 is the most diverse in terms of data sizes,
whereas the Air Quality and RToF Measurements are narrow and contain data
small in size. Activity Recognition contains MB sized data.

compression size and time using two linear-regression-based
statistical models whose input includes the data type T
and data size of the original data. To estimate the data
size after compression, we use equation (II)’s model, where
compressibility is the ratio between the data size of the
original data versus the compressed. Equation (III) estimates
the data compression latency, as a linear function of the data
size and the coefficients α, β; the coefficients are functions
of the data type, and are acquired offline via training. To
determine model parameters for equations (II), (III), IoTZip
performs training during an initialization period that happens
once at install-time. Since data patterns may vary over time,
our model parameters can be updated with an online approach
such as stochastic gradient descent using linear regression, but
such adaptation is beyond the scope of this paper.

Network Throughput Estimation: IoTZip policy accounts
for the dynamic behavior of network throughput NThroughput

while selectively applying compression in network transfers.
IoTZip samples the network periodically in order to provide
accurate estimates in the face of fluctuations in network
throughput, which achieves better accuracy. To acquire net-
work throughput samples, IoTZip leverages an open source
connection quality library and modifies the web server in the
cloud, which are described in more detail in Section IV.

Tradeoff Resolution: IoTZip puts all the estimates together
in the Tradeoff Resolution module to determine whether the
web transfer savings of compressed data warrant incurring
the additional compression latency. Once a decision has been
reached, the data is compressed if necessary and a request is
generated.

IV. EVALUATION METHODOLOGY

Edge implementation: We evaluate our work using mobile
web traffic, as well as IoT and sensor data found in related
work. We replay web traffic on mobile phones using a test
application that invokes IoTZip. IoTZip generates HTTP re-
quests, which transfer web traffic data, as discussed later in



TABLE II
PRESENTATION OF AVERAGE DATA COMPRESSIBILITY AND DATA TYPE

DISTRIBUTION FOR FOUR DIFFERENT INTERNET OF THINGS AND MOBILE
DATASETS.

Dataset Data Type Compressibility Content Distribution
Activity Recognition Text 4.12 100%

Air Quality Text 1.04 100%
RToF Measurements Text 5.42 100%

Alexa Top 200 Javascript 3.39 38.36%
Images 1.02 32.07%

CSS 4.56 10.25%
HTML 4.18 7.32%
Other 1.17 8.74%

this section. Once a compression decision has been made,
the processed data will then be used to generate an HTTP
request. IoTZip is intended to handle arbitrary data transfers.
For the purpose of this work, we focus on HTTP, but other
data transfer protocols could also benefit similarly. The client
is implemented on Android and is run on a Samsung Galaxy
S5 phone.

Cloud setup: To enable selective compression, our cloud in-
frastructure uses a web server capable of responding to HTTP
requests. We vary network conditions in a controlled manner
using Linux traffic shaping tools. The network throughput
settings are 2 Mbps, 5 Mbps and 10 Mbps.

Benchmarks: We use three datasets to represent a range
of IoT application domains. Activity Recognition [7] contains
data taken from a wearable accelerometer and is collected from
participants performing a range of activities. Air Quality [9]
contains hourly responses of a gas multisensor device deployed
on the field in a city in Italy. RToF Measurements [24] includes
Round-trip time-of-flight (RToF) and magnetometer measure-
ments from 30 deployed stationary anchors in a supermarket
indoors. For all datasets, we consider scenarios where data
across different networked sensors are transmitted from the
devices and aggregated at the edge.

In addition to the aforementioned datasets, we collected web
traffic to replay on mobile platforms. Collection of the mobile
web traffic was performed offline using Fiddler [30], a web
debugging proxy, which captures the raw payload of each
request. To emulate real mobile traffic, we generate HTTP
requests to transfer captured web traffic data as the request
payload. We captured the traffic from mobile versions of the
top 200 most popular websites according to the Alexa list
[2]. For each web page load in the Alexa list, multiple (2 to
200) web page elements are fetched and loaded on the client.
Although the traffic in the Alexa dataset is originating mostly
from downlink traffic, we will consider that the data is living at
the edge and will be using it for transfers between the edge and
the cloud. The dataset size is 350MB and consists of 25 dif-
ferent data formats, including scripts (e.g. HTML, Javascript),
text formats (e.g. .txt files, JSON and XML formatted text)
and multimedia (e.g. jpeg, png images, audio files). The Alexa
Top 200 list contains a broad spectrum in terms of data size
and data types. To the best of our knowledge, there are no
alternative benchmarks available capable of capturing traffic
representative of the wide range of mobile and Internet of
Things devices.

To study IoTZip’s behavior on different levels of compress-
ibility, we created two test sets using traffic from 50 different
websites. Test set A includes the 25 most compressible web-
sites (average compressibility 3.07) and test B includes the
25 least compressible websites (average compressibility 1.23)
of the Alexa Top 200 list. We eliminated web sites that were
either very small in size (order of a few tens of Kilobytes) or
contained a small number of files. The remaining 150 websites
comprise our training set, which we use to train IoTZip’s
models.

Figure 2 presents the Cumulative Distribution Functions
(CDFs) for each of the evaluated datasets. Data found in the
IoT datasets vary orders of magnitude in size across datasets,
but insignificantly within the same dataset. Data size in the
Activity Recognition dataset is in the order of MBs, in the
RToF Measurements dataset data size is in the order of KBs
, whereas Air Quality data are very small (order of bytes).
Alexa Top 200 data sizes spread from bytes to MBs.

Table II characterizes the datasets per data type and focuses
on data compressibility and content distribution by data size.
Activity Recognition and RToF Measurements include highly
compressible text data. The Air Quality dataset has very low
compressibility despite having text data due to the small data
size; the compression algorithm builds a dictionary that is
comparable in size to the original data size. Alexa Top 200
is largely composed by scripts and text data which are highly
compressible and by images that are previously encoded and
therefore yield very low compressibility.

In the experiments performed, we compare IoTZip against
other different compression policies using the aforementioned
benchmarks. As the applications and the target hardware vary
significantly, we are not using mobile web browsers for our
evaluation; instead, we focus on the total time required for
a benchmark to complete the transfer over the network. We
also account for compression and decompression latency at
the endpoints.

Network Throughput Estimation: We use the open source
Network Connection Class [12], an Android library that allows
developers to determine current network throughput of an ap-
plication. Network Connection Class achieves this by listening
to the traffic flowing through the application and by measuring
network throughput samples along the way. The library uses
throughput samples to keep a moving average of the network
throughput and provides the user with a notification when there
is a significant change.

Performance Evaluation: For performance evaluation, we
compare IoTZip against (i) a policy that performs all data
transfers uncompressed (Uncompressed), (ii) an approach that
compresses all data before they get transferred (Compressed)
and against an oracle (Time Oracle). The Time Oracle always
makes a correct decision when reasoning about the compres-
sion decision as it is computed by choosing the minimum
request latency between compressing data and leaving it
uncompressed for each individual web data transfer.

For each dataset we evaluate, each individual file or data
item is processed by IoTZip and eventually transferred from



Fig. 3. Speedup of compression policies across datasets and network settings.
Results are presented relative to the Uncompressed policy along with their
respective standard errors.

the client at the edge to the cloud using an HTTP request.
The resulting time required to transfer the mobile web site
is the aggregate time of individual data transfer times of its
elements.

Testing under changing network conditions: IoTZip is
able to perform under varying network conditions. To evaluate
our framework in a dynamically changing environment, we
emulate a network whose bandwidth varies over time and
experiment with IoTZip’s capacity to adapt to changes. We
generate traces that encapsulate changes in network conditions
and that vary over the course of our experiment. Each of these
network conditions corresponds to a fixed network throughput
level that remains constant during an epoch, a predefined
period of time. Throughout the experiments, network settings
are controlled in the cloud setup by traffic shaping tools and
network throughput levels are sampled to vary in a uniformly
random manner. Using this methodology, we can test across
controlled but varying network conditions.

In order to vary network settings in discrete intervals, we
create a 4-way partition of each dataset and consider the time
required for each dataset partition’s transfer to complete as
an epoch. During the timeline of the experiment we monitor
the percentage of data compressed for IoTZip and compare
it against the Time Oracle. This comparison will provide us
with insight into how IoTZip adapts to the network changes
and whether it decides to compress data at a higher or lower
percentage, depending on the data and the network conditions.
In addition, we compare IoTZip’s performance against the
Uncompressed, Compressed and Time Oracle policies.

V. IOTZIP EVALUATION

This section compare IoTZip’s performance against the
(i) Uncompressed, (ii) Compressed and (iii) Time Oracle
approaches previously described. In addition, we present
statistics that showcase IoTZip’s efficiency and discuss the
most significant prediction errors that affect its accuracy. We
perform experiments in two different ways, (a) under constant
network settings and (b) under network throughput that varies
over time.

A. Evaluation under fixed network conditions

Figure 3 presents the comparison of the aforementioned
approaches using bandwidth thresholds at 2Mbps, 5Mbps and
10Mbps. The benchmarks used are distributed across four
different test sets, Activity Recognition, Air Quality, RToF

Measurements and Alexa, each with different compressibility
characteristics as described in Section IV. The Alexa datasets
are presented in total first, with subsequent graphs separating
into the groups A and B previously described. The results
are presented as relative speedup over the Uncompressed
approach, which is always at 1; higher is better. The figure
also includes relative standard errors for each of the policies.
As expected, the Time Oracle always demonstrates superior
performance over the other policies as it represents an ideal
scenario in which IoTZip makes decisions correctly across all
data.

As Figure 3 shows, IoTZip performs better relative to the
Uncompressed approach when the available bandwidth is low.
That is expected since network transfers become gradually
more expensive as bandwidth declines. Compression makes
better use of limited bandwidth, both in terms of sending less
data to begin with, and also in terms of requiring fewer retries.
Similarly, IoTZip performs better versus Compressed as the
network throughput increases. An always-compress strategy
can be inefficient for fast networks, because the additional
compression latency can outweigh the benefits of transferring
less data. IoTZip shows performance advantages against both
the Compressed and Uncompressed approaches.

Apart from the network conditions, the type of data trans-
ferred also affects the performance of each policy. Highly
compressible data favor the Compressed method, as the use
of compression allows to pay overhead to reduce the size of
data significantly. However, when data are not compressible,
the Uncompressed approach has better performance since
introduction of compression adds overhead but yields limited
data savings in return. IoTZip benefits in both scenarios as
it can make a data driven decision. It achieves a maximum
speedup of 3.78x, whereas the average speedup across datasets
is at 2.18x.

For the highly compressible data in the Activity Recognition
and RToF datasets, there are some cases where the Compressed
policy edges IoTZip, whereas in the Air Quality dataset that is
highly non compressible, Uncompressed is marginally better
than IoTZip.

Since the Alexa dataset includes data with a wide spectrum
of data size and compressibility, it allows us to better observe
the aforementioned tradeoffs and we will study it in more
detail in Figures 4(a)-4(f). Here, since the Alexa dataset is
divided into two test sets according to compressibility, we
can compare IoTZip’s advantages in two distinct scenarios.
Each of these test sets is comprised by 25 mobile website
benchmarks, each corresponding to mobile web data contained
in the page load for that particular website. The benchmarks
are sorted in descending order of data compressibility. For
each of these benchmarks we present the relative speedup of
the Compressed, IoTZip and Time Oracle policies normalized
over the Uncompressed policy. Additionally, we present the
average of these benchmarks for each of the two test sets A
and B and across the network conditions 2, 5 and 10 Mbps.

Looking at the averages for each figure we conclude that
Test set A (more compressible) provides better performance



(a) High compressibility (A), 10 Mbps network bandwidth (b) Low compressibility (B), 10 Mbps network bandwidth

(c) High compressibility (A), 5 Mbps network bandwidth (d) Low compressibility (B), 5 Mbps network bandwidth

(e) High compressibility (A), 2 Mbps network bandwidth (f) Low compressibility (B), 2 Mbps network bandwidth
Fig. 4. Performance evaluation across different network settings, using test sets of high compressibility (A) and low compressibility (B). ZipIoT is compared
against an approach utilizing no compression (Uncompressed), an approach that compresses all data (Compressed) and a Time Oracle. For relative speedup
comparison, higher is better, with an ideal Time Oracle representing a “perfect” performance. Comparison is available for network throughput set at 2,5,10
Mbps. Regardless of compressibility or network conditions, IoTZip demonstrates speedup against non-Oracle approaches.

Fig. 5. Breakdown of IoTZip’s Total Runtime into Overhead, Compression
time and Transmission Time. Results are normalized against the Total Runtime
along with their respective standard errors.

than test set B, since there are more opportunities to reduce
network transfer times when utilizing compression. Test set B
contains data with low compressibility, which IoTZip often
chooses to leave uncompressed, and often due to the file
size and type threshold criteria. This approach proves to be
beneficial in the case of low throughput at 2 Mbps and 5 Mbps.

Fig. 6. Presentation of Data Usage across datasets and network settings. Data
Usage is normalized against the Uncompressed policy. Lower is better.

When throughput is low, compressing is the common case, as
savings from network transfers are more significant. Therefore,
IoTZip makes fewer errors on test set B and has less slowdown
against the Oracle compared to test set A. However, that does
not hold for 10 Mbps, where IoTZip performs marginally
better on test set A.

Table III presents statistics about IoTZip’s performance



TABLE III
OVERVIEW OF PERFORMANCE AND ACCURACY STATISTICS FOR IOTZIP
ACROSS DIFFERENT NETWORK CONDITIONS FOR THE ALEXA DATASETS.

COMPARISON TO THE Uncompressed, Compressed AND Time Oracle
APPROACHES PRESENTS THE PERCENTAGE OF BENCHMARKS (DATA

CORRESPONDING TO INDIVIDUAL MOBILE WEB PAGES) SPED UP WITH
IOTZIP, THE RESPECTIVE AVERAGE SPEEDUP AND THE LIBRARY’S

OVERHEAD.

Network conditions
2 Mbps 5 Mbps 10 Mbps

Percentage win over Compressed 76% 86% 86%
Percentage win over Uncompressed 92% 88% 90%
Speedup vs Uncompressed 1.78 1.56 1.53
Speedup vs Compressed 1.12 1.19 1.24
IoTZip overhead 0.26% 0.36% 0.56%
Slowdown vs Oracle 0.84 0.81 0.86

across different network settings using the Alexa dataset.
First, the table presents the percentage of Alexa website
benchmarks for which IoTZip outperforms the Compressed
and Uncompressed approaches. The table presents results at a
per-benchmark granularity, comparing the aggregate network
transfer time of each website’s data for every policy. In
addition, the table depicts the average speedup of IoTZip
across both test sets for the Uncompressed and Compressed
approaches and its performance relative to the Time Oracle. It
also presents IoTZip’s average overhead, which ranges from
0.26% to 0.56% of the total transfer time of a request. To better
understand how IoTZip resolves the tradeoffs we break down
the different latencies involved in each request performed
by IoTZip in Figure 5. The Total Runtime is composed by
the Overhead, Compression Time and Transmission time, in
order to process, possibly compress and transfer the data. The
latencies are presented normalized to the Total Time along
with their respective relative standard errors. We observe how
IoTZip is affected by the changes in network conditions. The
results at 2 Mbps show that most of the latency is taken up by
the Transmission time and as the network throughput increases
the Transmission Time decreases and the Compression Time
increases relative to the Total Time. This behavior is expected
as the compression is constant across network conditions. As
the network throughput increases, the compression overhead
becomes increasingly significant until a tipping point where
compression no longer provides enough data savings and
reduction in data transmission time. Data in the Activity
Recognition and RToF datasets are highly compressible and
the percentage of Total Time used for Compression is high
compared to the Alexa dataset where data is less compressible.
This happens as IoTZip chooses to compress more frequently
as compression is more beneficial. In addition, the data
savings are much higher in the compressible datasets which
corresponds to shorter overall Transmission Time. For the Air
Quality dataset there is no compression as IoTZip’s threshold
is in force due to the small data size.

IoTZip is designed to inherently provide data savings, as
it bases its approach on compression. We measured the data
usage for each policy across different network conditions
and across all datasets and present them in Figure 6. The
data usage for each policy is presented normalized over the

TABLE IV
CHARACTERIZATION OF THE MOST SIGNIFICANT PREDICTION ERRORS

ACROSS ALL DATASETS FOR IOTZIP USING THE TIME ORACLE AS
GROUND TRUTH.

Dataset Error Type 2 Mbps 5 Mbps 10 Mbps
Activ. R. Success Rate (%) 100 100 98.67

False positives (%) 0 0 1.33
False negatives (%) 0 0 0

Air Q. Success Rate (%) 65.00 80.88 74.84
False positives (%) 0 0 0
False negatives (%) 35.00 19.12 25.16

RToF M. Success Rate (%) 100 87.33 92.66
False positives (%) 0 12.67 7.33
False negatives (%) 0 0 0

Alexa Success Rate (%) 74.66 74.36 77.07
False positives (%) 3.41 4.90 4.34
False negatives (%) 21.93 20.74 18.59

data usage of the Uncompressed policy and lower is better.
The Uncompressed policy is guaranteed to have the highest
data usage as there is no compression involved. Additionally,
the Time Oracle, despite providing ideal performance, does
not necessarily provide the most data savings, as in some
transfers the correct decision is to leave data uncompressed.
The data usage demonstrates variation across the different
network settings, as IoTZip and the Time Oracle can be-
come more aggressive on using compression if the network
throughput is reduced and less aggressive if the throughput
is high. The figure additionally shows the data usage based
on the different datasets. Having highly compressible data can
drastically change the data usage as is demonstrated by the
Activity Recognition and RToF Measurements dataset. After
transferring the former, IoTZip reduces data Usage to 24.2% of
the original and in the case of the latter data usage goes down
to 18.5%. In the case of the Air Quality dataset, the threshold
disallows compression and therefore the data usage remains
unchanged. For the Alexa dataset, data usage is at roughly
60% of the original at 2, 5, and 10Mbps, while providing
applications with performance speedup. The majority of data
savings originates from large transfers of highly compressible
data. For all datasets, IoTZip performs very well in terms
of data savings and is operating close to the optimal, as
demonstrated by the Compressed policy columns.

IoTZip’s performance compared to other policies correlates
with its prediction accuracy, as depicted in Table IV. These
results demonstrate the accuracy of IoTZip across different
network conditions for all datasets. For this comparison, the
Time Oracle is used as ground truth. IoTZip is subject to two
different kinds of errors: when it decides to compress when
it should not (false positives) and when it fails to identify
that compression is beneficial (false negatives). Most incorrect
predictions are false negatives. The false negative rate in the
Alexa dataset decreases as the throughput increases, because
compression is no longer beneficial for some of the data.
The same trend does not hold in the Air Quality dataset,
as IoTZip’s threshold does not allow compression due to
small data size. Activity Recognition and RToF Measurements
datasets have better success rate since large file size and highly
compressible data make the compression decisions easier.



Fig. 7. Presentation of the percentages of compressed data over time for
IoTZip and Time Oracle. Results are presented across each epoch along
the network throughput level at each epoch. The changes in percentage of
compressed data and IoTZip’s ability to ”follow” the Time Oracle indicate
IoTZip’s adaptivity to changes in network conditions.

Fig. 8. Speedup of compression policies across datasets and network settings.
Results are presented across each epoch along the network throughput level at
each epoch. Results are presented relative to the Uncompressed policy along
with their respective standard errors.

Our evaluation of IoTZip under fixed network conditions
indicates that it performs consistently better than the Uncom-
pressed and Compressed policies and approaches the ideal per-
formance (Time Oracle) in many cases. IoTZip demonstrates
an average speedup of 2.18x over the Uncompressed policy
across all datasets, with a maximum of 3.78x. It does so while
maintaining high accuracy throughout all datasets and while
demonstrating significantly reduced data usage down to 18.5%
of the original data size.

B. Evaluation under changing network conditions

Having seen IoTZip’s speedup advantages for constant
network conditions, we next extend our evaluation to demon-
strate that IoTZip can offer performance improvements while
adapting to changes in network conditions. Figure 7 demon-
strates the percentage of compressed data for IoTZip and the
Time Oracle across the timeline. The figure also depicts the
changes in network throughput across the timeline. For our
experiments we use the IoT datasets and Alexa test sets in
sequence to build the timeline. Each dataset is split in 4
partitions and results are presented per partition. The transfer
of each partition corresponds to an epoch. During the timeline,
changes in network throughput happen across epochs, but
network settings remain constant within an epoch. The Time
Oracle line presents the percentage of data compressed under
the assumption that perfect compression decisions are made.

In the figure we can observe the fluctuations in the rate
IoTZip performs correct compression decision predictions over
time. We observe that the percentage of compressed data
changes over the course of the experiment and is affected

by the data and the network throughput. The IoTZip line
demonstrates the same behavior as the Time Oracle, although
with some false positives and false negatives. As the network
throughput decreases, the percentage of compressed files in-
creases and the trend occurs reversed during an increase in
the available network throughput. Although each change in
network throughput triggers a change in the percentage of data
compressed, this percentage is affected by the size of data in
the dataset and their compressibility. When comparing epochs
around the RToF Measurements and the Alexa B datasets,
we can observe that in the first case changes in the network
throughput cause the percentage to fluctuate around 100%,
whereas in the latter case the percentage fluctuates between
20-40%. One exception is the Air Quality dataset. Due to their
very small size, the data don’t pass the IoTZip’s threshold and
are immediately disqualified for compression. Therefore, there
is a large gap between the IoTZip and Time Oracle lines.

IoTZip’s throughput prediction follows the throughput
movement the device observes and has a trend similar to
the Time Oracle, although there is a gap between the two
lines. One reason for that gap is that there is a disparity
between IoTZip’s throughput prediction and the real band-
width. First, IoTZip’s throughput prediction module uses a
moving average that adjusts the prediction progressively and
smooths rapid changes in measured throughput. The reason
for this mechanism is to avoid the throughput estimate to
fluctuate significantly during rapid changes in throughput. The
average prediction accuracy is 74.04% across the timeline.
Table V presents an error characterization for IoTZip across
the experiment timeline. The errors are evaluated against
the Time Oracle. We can observe that the success rate of
highly compressible datasets (Activity Recognition and RToF
Measurements) is high and in this case most errors fall under
false positives and IoTZip compresses when it should not.
Epochs 5-9 that belong to the Air Quality dataset only have
false negatives and low success rate, as IoTZip’s threshold
limits compression on these data. When comparing the success
rate between Alexa A and Alexa B datasets, we observe that
similarly Alexa A has a better success rate due to its higher
compressibility. A technique capable of adapting the threshold
based on the data and network conditions could be investigated
in future work.

Figure 8 presents the relative speedup of the Compressed,
IoTZip and Time Oracle policies over the Uncompressed
across the epochs of the timeline. The network throughput
level for each epoch is also available for each figure. The
effect of the changes in network conditions are apparent on
the results. Whenever the network throughput increases, we
observe that the IoTZip performs better compared to the
Compressed version and worse compared to the Uncompressed
version. Similarly, the reversed behavior occurs when the
network throughput is low. Based on the compressibility of
the datasets, IoTZip provided better speedup when data are
highly compressible. However, in some cases the Compressed
policy edges IoTZip. When the data is not compressible as
in the Air Quality dataset, IoTZip always performs better than



TABLE V
CHARACTERIZATION OF THE MOST SIGNIFICANT PREDICTION ERRORS FOR IOTZIP USING THE TIME ORACLE AS GROUND TRUTH. THE PREDICTION

ERRORS ARE PRESENTED PER EPOCH AND NETWORK THROUGHPUT VARIES ACROSS EPOCHS.

Epoch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Success Rate (%) 100 100 95.0 100 62.9 59.9 60.9 64.7 87.8 100 90.0 82.9 75.6 74.2 69.4 60.6 62.1 67.7 67.3 59.8

False positives (%) 0 0 5.0 0 0 0 0 0 12.2 0 7.5 17.1 5.4 6.4 13.2 7.0 20.3 13.7 18.6 16.3
False negatives (%) 0 0 0 0 37.1 40.1 39.1 35.3 0 0 2.5 0 19.0 19.4 17.4 32.4 17.6 18.6 14.1 23.9

the Compressed policy but can marginally perform worse than
the Uncompressed policy. As previously mentioned, change
of network conditions affects the prediction accuracy since
IoTZip uses an approach that progressively propagates the
changes in throughput to the model. Therefore, changes in
network conditions affect, even temporarily, the accuracy of
compression decisions. As evidenced by comparing tables IV
and V, IoTZip’s prediction errors are on average better under
fixed network settings when compared against measurements
performed under dynamically changing network conditions.

We evaluated IoTZip in dynamically changing network set-
tings across all datasets where our library proved to be superior
than the uniform policies, Uncompressed and Compressed.
Our results demonstrate a maximum speedup of 4.17× and
an average speedup of 2.03× over the Uncompressed policy.
IoTZip is adaptive to changes in network conditions and
follows the Time Oracle’s behavior while in many cases its
performance is close to ideal. IoTZip showcases an average
prediction accuracy of 74.04% despite the varying network
conditions.

VI. CONCLUSION

This paper presented IoTZip, a library for optimizing
IoT and mobile web traffic which implements selective
compression—using it only when it is likely to benefit perfor-
mance. To support this, IoTZip uses compression latency and
network throughput estimates to reason about the compression
decision of each web transfer.

Based on our analysis of IoT data, specific IoT systems
operate with a single type of data and can generate data
that exhibit little variation in data size. Although these data
characteristics could be used as indications to reduce the need
for compression selectivity, throughput and network quality
variations will still be present in IoT environments, making
compression selectivity necessary.

Throughout the evaluation of IoTZip, it is clear that the
performance and data usage of IoT communication heavily
relies on data characteristics. We envision that our work can
also be utilized as a tool to characterize IoT applications.
IoTZip can identify properties of application data (data size
distribution, compressibility) as well as provide insight on how
to handle communication efficiently based on a Time Oracle
that documents correct compression decisions for the data and
the network conditions in question.

IoTZip performs consistently better than uniform policies
requiring either all-compressed or all-uncompressed data and
also approaches the Time Oracle policy in many cases . Its
average prediction accuracy is above 70% and its resulting

runtime latency outperforms these naı̈ve policies, delivering a
speedup of up to 3.78x. The average speedup of IoTZip is
2.18x and 2.03x across datasets under fixed and dynamic net-
work conditions respectively. Furthermore, the library provides
significant data savings across different network conditions
and over different data.

Overall, IoTZip represents an important building block
towards broader implementation of traffic-reduction techniques
that can improve latency, save energy, and reduce the band-
width requirements for mobile applications and devices.

REFERENCES

[1] V. Agababov et al. Flywheel: Google’s data compression proxy for the
mobile web. In NSDI’15, 2015.

[2] Alexa list web page. http://www.alexa.com/topsites.
[3] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-

ergy consumption in mobile phones: A measurement study and impli-
cations for network applications. In IMC ’09.

[4] Butkiewicz et al. KLOTSKI: Reprioritizing Web Content to Improve
User Experience on Mobile Devices. In NSDI’15. USENIX Association.

[5] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding Website
Complexity: Measurements, Metrics, and Implications. In IMC ’11.
ACM, 2011.

[6] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In USENIX ATC’10, 2010.

[7] P. Casale, O. Pujol, and P. Radeva. Personalization and user verification
in wearable systems using biometric walking patterns. Personal and
Ubiquitous Computing, 2012.

[8] Cisco Visual Networking Index: Forecast and Methodology, 2015-2020.
[9] S. De Vito et al. On field calibration of an electronic nose for benzene

estimation in an urban pollution monitoring scenario. Sensors and
Actuators B: Chemical, 2008.

[10] Dropbox. Lepton image compression, cited December 2020.
https://blogs.dropbox.com/tech/2016/07/lepton-image-compression-
saving-22-losslessly-from-images-at-15mbs/.

[11] J. Erman et al. Towards a SPDY’Ier Mobile Web? In CoNEXT ’13,
2013.

[12] Facebook Network Connection Class.
https://code.facebook.com/projects/1547113495553528/network-
connection-class/.

[13] Facebook. Zstandard is a real-time compression algorithm, cited
December 2020. http://facebook.github.io/zstd/.

[14] H. Falaki et al. A First Look at Traffic on Smartphones. In IMC ’10,
2010.

[15] E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging
Smart Home Applications. In S&P ’16, 2016.

[16] E. Fernandes, J. Paupore, A. Rahmati, et al. FlowFence: Practical Data
Protection for Emerging IoT Application Frameworks. In Proceedings
of the 25th USENIX Security Symposium, August 2016.

[17] Google. Brotli Compression Format. https://github.com/google/brotli.
[18] K. Hong et al. Mobile Fog: A Programming Model for Large-scale

Applications on the Internet of Things. In MCC ’13, 2013.
[19] R. Khan et al. Future Internet: The Internet of Things Architecture,

Possible Applications and Key Challenges. In FIT ’12, 2012.
[20] Z. Li et al. Exploring Cross-application Cellular Traffic Optimization

with Baidu TrafficGuard. In NSDI’16, 2016.
[21] T. Melissaris, K. Shaw, and M. Martonosi. OKAPI: In support of

application correctness in smart home environments. In FMEC’19, 2019.
[22] T. Melissaris, K. A. Shaw, and M. Martonosi. Locomotive: Optimizing

mobile web traffic using selective compression. In WoWMoM ’17, 2017.



[23] R. Netravali et al. Polaris: Faster Page Loads Using Fine-grained
Dependency Tracking. In NSDI ’16, 2016.

[24] A. Purohit et al. CRAWDAD dataset cmu supermarket (v. 2014-05-27),
cited December 2020. http://crawdad.org/cmu/supermarket/20140527.

[25] F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource Usage for
Mobile Web Browsing. In MobiSys ’14, 2014.

[26] L. Ravindranath et al. Procrastinator: Pacing Mobile Apps’ Usage of
the Network. In MobiSys ’14, 2014.

[27] S. Raza, H. Shafagh, R. Iida, and L. Wang. Lithe: Lightweight secure
coap for the internet of things. 2013.

[28] C. M. Sadler and M. Martonosi. Data Compression Algorithms for
Energy-constrained Devices in Delay Tolerant Networks. In SenSys,
2006.

[29] S. Singh et al. Flexiweb: Network-aware compaction for accelerating
mobile web transfers. In MobiCom ’15, 2015.

[30] Telerik Fiddler Debugging Proxy. http://www.telerik.com/fiddler.
[31] N. Thiagarajan et al. Who Killed My Battery?: Analyzing Mobile

Browser Energy Consumption. In WWW ’12, 2012.
[32] X. S. Wang et al. Demystifying Page Load Performance with WProf.

In NSDI ’13, 2013.
[33] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding up Web

Page Loads with Shandian. In NSDI’ 16, 2016.
[34] P. Zhang et al. Hardware Design Experiences in ZebraNet. In SenSys

’04, 2004.


