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github.com/PrincetonUniversity/MuchiSimTutorial Website

Getting Started! Open the terminal and go to the path where you want to have the simulator:
 git clone https://github.com/PrincetonUniversity/muchiSim.git
 cd muchiSim
 source setup.sh

If  the C++ compiler was detected successfully, then you can run the first basic experiment:
 exp/run_app.sh

Installing the Python environment to use our cool visualization tools J
 python3 -m venv gui/env_viz 
 source gui/env_viz/bin/activate
 pip install --upgrade pip && pip install PyQt5 matplotlib imageio
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MuchiSim’s Roots: 
DARPA-funded DECADES Project

• Enhance data locality
• Optimize spatial mapping of threads 
• Enable in-memory computing

Language and 
Compiler Support

• Accelerator rich architecture
• Reconfigurable interconnection network
• Reconfigurable in-memory computing
• Embedded Machine Learning Accelerators

Very Coarse-Grained 
Reconfigurable 

Tile-Based Architecture

• DECADES chip prototype
• In-memory Computing Hardware
• Multi-FPGA emulation infrastructure

Multi-Tiered 
Demonstration Strategy

Lead: Margaret 
Martonosi

Lead: Luca Carloni

Lead: David 
Wentzlaff 4



From Our Original Project Slides:
Data Supply = Fundamental Bottleneck in Accelerator-Oriented Systems

‖ Amdahl’s Law: 
Accelerating 
compute makes 
data supply 
bottlenecks look 
relatively bigger!

‖ Key memory/comm 
bottlenecks lie in 
supplying 
specialized 
accelerators with 
data

‖ Different apps ->  
different data 
supply needs

John McCalpin, SC’16 Keynote 
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Latency and Bandwidth:
• Accelerator often lacks general-purpose latency-tolerance 

mechanisms (e.g., OoO execution, Multithreading)
• Improving Accelerator compute throughput increases memory 

bandwidth pressure
55
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Open-Source Tiles, Compiler, Emulators
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Our Simulator Needs

‖ Extreme Parallelism: Thousands or Millions of processing 
elements

‖ Chiplet Ecosystem: Interconnect and Memory system focus

‖ Support for applications with sparse and irregular control and 
dataflow patterns: Graphs, Sparse, etc.

èWe created MuchiSim to support this future-looking research.
èToday’s tutorial: Encourage other users as well!
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Hierarchical & Scalable Architectures

• Each Tile contains 1+ Processing Units (PUs), a router, and a private local memory (PLM)
• TSU: Manage and schedule tasks
• Queues: Coordinate ordered communication.

• A compute Chiplet has X*Y tiles and may include a memory controller (if  attaching DRAM)
• A chip Package has a grid of  compute chiplets (with or without DRAM attached).
• A compute Node is a board with 1+ chip Packages.
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What is changeable in this?

‖ Variations on task scheduling via changes to TSU Model
‖ Interconnect topology, bandwidth and latency

‖ Variations on memory: SRAM-per-tile, scratchpad vs cache, on-package HBM

‖ Granularity: number of  PUs per tile, tiles per chiplet.
‖ Communication Scheme: Routing exposed to software applications; Logical 

mappings of  application data and task invocations to tiles.  
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Downloading and Initial Compilation

If  you haven’t done it yet, open the terminal and go to the path where you want to have the simulator and download it. You have the commands 
in www.github.com/PrincetonUniversity/muchiSim/blob/main/tutorial/1.COMPILATION.md

git clone https://github.com/PrincetonUniversity/muchiSim.git

cd muchiSim

source setup.sh

If  the C++ compiler was detected successfully, then you can run the first basic experiment:

exp/run_app.sh

12

http://www.github.com/PrincetonUniversity/muchiSim/blob/main/tutorial/1.COMPILATION.md


Running the Simulator
Parallel Simulator written in C/C++ only using standard libraries, no external dependencies
Ø A Bash script configures the system to simulate and launches the simulation
exp/run.sh [-a app | -b barrier | -c chiplet_width | -d datasets | -e proxy_width | -f  force_proxy_ratio | -g large_queue | -j write_thru        
| -k board_width | -l express_link | -m grid_conf  | -n name | -o NOC | -p dry_run | -q queue_mode | -r assert_mode | -s machine_to_run 
| -t max_threads | -u noc_conf  | -v verbose | -w SRAM size-per-tile | -x num_phy_nocs | -y dcache | -z proxy_routing ]

• Experiment name. Scripts that use the run.sh script to setup experiment-specific configurations, e.g. run_exp_granularity.sh (will cover later)
• Max number of  host threads to run with
• Application (we’ll cover later the benchmark and datasets included in the repo)
• Dataset 

• Total Grid size, up to 1024x1024 evaluated.
• Chiplet width, E.g., 16x16.
• Board width [Default size of  Grid]

• NoC type, e.g., mesh, torus
• Num Physical NoCs
• NoC width configuration, including inter-die direct channels for multi-chiplet systems

+ Many other configurations settable through set_conf  (More later)
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Basic Experiment Configuration
exp/run_app.sh
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Basic Experiment Configuration
exp/run_app.sh
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Reading a Simulator Report
The simulation logs will be saved in the sim_logs folder. Particularly, the basic experiment you ran with 
run_app.sh creates a log called DATA-Kron16--16-X-16--BA16-A4.log

• This log contains first the logs of  the dataset 
being loaded, Kron16, aka, RMAT-16 
(containing 2^16 vertices or non-zero elems) 

• Later, it shows information about the 
manycore configuration (16x16 grid with a 
single chiplet of  16x16 tiles, 1 PU/tile, etc.

16



Reading a Simulator Report
The simulation logs will be saved in the sim_logs folder. Particularly, the basic experiment you ran with 
run_app.sh creates a log called DATA-Kron16--16-X-16--BA16-A4.log

• This log contains first the logs of  the dataset 
being loaded, Kron16, aka, RMAT-16 
(containing 2^16 vertices or non-zero elems) 

• Later, it shows information about the 
manycore configuration (16x16 grid with a 
single chiplet of  16x16 tiles, 1 PU/tile, etc.

• And it’s estimated cost
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Reading a Simulator Report
The simulation logs will be saved in the sim_logs folder. Particularly, the basic experiment you ran with 
run_app.sh creates a log called DATA-Kron16--16-X-16--BA16-A4.log

• This log contains first the logs of  the dataset 
being loaded, Kron16, aka, RMAT-16 
(containing 2^16 vertices or non-zero elems) 

• Later, it shows information about the 
manycore configuration (16x16 grid with a 
single chiplet of  16x16 tiles, 1 PU/tile, etc.

• And its estimated cost

• Then, it logs statistics and counters about 
the simulation frame by frame (length 
configurable through set_conf).

18



Reading a Simulator Report

Verbose>=2
Verbose>=1

From exp/run_app.sh



Simulation Frame 32

32

32

32

32

32

32

32
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PU and NoC simulation threads keep 
track of  many performance counters
 

• Every X thousand cycles (a frame) 
the PU threads output stats to a Log

• Aggregated and per-frame stats

Logical Grid of  8x8 Tiles



32
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Grid of 8 x 8 Tiles

Parallelization across columns
• A pair of  PU and NoC threads per 

grid slice
• 4 slices → 8 host threads in total!

PU and NoC threads synchronize 
based on message timestamps
• NoC and PUs in may use different 

clock frequency of  the DUT

Th 1 Th 2 Th 3 Th 4

Logical Grid of  8x8 Tiles

Simulation
From exp/run_app.sh

pow2 # threads
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Balancing Memory, Compute, and Network resources
Chiplet-level design choices
• SRAM and PUs-per-tile  &  Tiles-per-chiplet

• NoC topology and width & extra express channels.

Package-level choices
• Memory hierarchy (levels and capacity)

• Chip package size and off-chip I/O bandwidth

23



a. Distributed SRAM, as main-memory
• For a given dataset, SRAM-only will 

need more chiplets to store the dataset

b. L1 cache (SRAM) + main-mem (HBM)
• No coherence in our current models

Configurable Memory Hierarchy

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “DCRA: A Distributed Chiplet-based Reconfigurable Architecture for Irregular Applications”

Image from [1]
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Energy/BW/Latency Parameters for Memory & Links

Default memory and communication link parameters
• Multi-Chip-Module (MCM) or Silicon interposers

Other parameters for PU energy in the repo
• Energy scales with voltage → Voltage scales with 

operating frequency and transistor node            
(Default parameters with 0.7 V, 1 GHz, 7nm)

• Supports different frequency for NoC and PUs

MCM Silicon interposer

github.com/PrincetonUniversity/MuchiSim
25



Area & Cost Parameters
Area parameters for in-order PUs, supported NoC topologies, and memories
• Area scaling with peak design frequency

Cost
• Die: Wafer cost by the number of  good dies → calculated using parameterizable 

number of  defects per mm2 and edge loss, using Murphy’s model. 
• Substrate, Interposer and yield cost as a % of  the die area.
• HBM cost based on $/GB.

MuchiSim allows post-processing a given experiment (without re-simulating) to 
re-calculate the energy and cost with different model parameters.

26



Setting Simulator Configurations

# Change the cost of HBM memory to 5 USD/GiB
set_conf "param_cost" "hbm_usd_per_gib" 5
exp/reprocess.sh # Default Kron16--16-X-16--BA16-A4

# Change back to the original value
set_conf "param_cost" "hbm_usd_per_gib" 7.5
exp/reprocess.sh

The set_conf function allows to programmatically change parameters 
defined in the config and parameter files (inside src/config)

The reprocess.sh script re-process a simulation with different 
energy and cost parameters, to evaluate different scenarios, e.g., calculate 
different tradeoffs in performance/$ or performance/Watt



Granularity of the Processing Tile

Changing the number of  PUs per 
tile while keeping the total number 
of  PUs and bisection BW constant

exp/run_exp_granularity.sh  
4 0 2 32 Kron16 

Run SPMV (app=4), and 3 cases
•  Configuration & run script prepares 
cases 0-2 with different configurations of  
tiles per chiplet, PUs/per tile (SMT) and 
network BW
• Later we’ll run this and visualize the 
simulation logs!

28



MuchiSim to simulate the 
Cerebras Wafer-Scale Engine
§ Tiles contain a PU, 48KB scratchpad and a router.

§ 32-bit  2D mesh NoC

§ 3D-FFT of  !3  elements over !2 PEs for !=32,..,512
§ Using the published implementation1

[1] M. Orenes-Vera, I. Sharapov, R. Schreiber, M. Jacquelin, et al. “Wafer-Scale Fast Fourier Transforms”. ICS’23 cerebras.net

The reported WSE-2 runtimes1 are ~1.2x of  the simulated ones
• Stable across scaling range, 32x32 to 512x512 (1/4 million tiles)

DUT area calculated by MuchiSim is 1.08x of  the WSE-2 area.

29
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MuchiSim Enables Exploration of Novel Task-based 
Programming Models

PRINCETON 
UNIVERSITY

Main Task-1 Task-2 Task-n. . .

A program can be converted into a series tasks where each task invokes the next preserving program order. 

Mapping of the location for the execution of tasks can be done according to the desired parallelization scheme.
     e.g.  Near Memory Processing parallelization schemes utilize a data-local execution based parallelization.

Since the set of many core architectures MuchiSim targets do not employ cache-coherence, tasks must be 
written in a way that does not require coherence at cache level.

31



Transforming a Program to a Task-based Program: 
Iterative, Frontier-based Graph Applications

PRINCETON 
UNIVERSITY

32

for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)

0

3

2

1

4

Frontier nodes 
processed in 

parallel

while frontier not empty:1
2
3
4
5
6
7



Transforming a Program to a Task-based Program: 
Task Generation

PRINCETON 
UNIVERSITY

33

Task T2 (neigh_begin, neigh_end, node_dist):

Task T3 (neighbor, new_dist):
curr_dist = DIST[neighbor]
if (new_dist < curr_dist):
  DIST[neighbor] = new_dist
  frontier.push(neighbor)

Task T1 (v):

CQ = PTR[v+1]
CQ = DIST[v]

CQ = PTR[v]

for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)

Task T4:
CQ = frontier.pop()

while frontier not empty:

for i in range(neigh_begin, neigh_end):
CQ = EDGES[i].neigh_idx
CQ = node_dist + EDGES[i].val



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n. . .CQ

Tile i Tile j Tile p

IQ IQCQ

1-to-1: One Task invoking a single next Task

34

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n. . .CQ

Tile i Tiles j, k, l Tile p

IQ IQCQ

1-to-many: One Task can invoke many of  the next Task

35

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n-1. . .CQ

Tile i Tile j, k, l Tile p

IQ IQCQ

self-invocation

CQ IQ Task n

Tile p

36

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n-1. . .CQ

Tile i Tile j, k, l Tile p

IQ IQCQ CQ IQ Task n

Tile p

Task 1
Tile q

loops

37

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



Application Suite

PRINCETON 
UNIVERSITY

39

4 graph algorithms, 2 sparse linear algebra, and 2 HPC kernels
• Breadth-First Search (BFS) determines the number of  hops from a root vertex to all vertices reachable from it.

• Single-Source Shortest Path (SSSP) finds the shortest path from the root to each reachable vertex.

• PageRank ranks websites based on the potential flow of  users to each page.

• Weakly Connected Components (WCC) finds and labels each set of  vertices reachable from one 

• Sparse Matrix-Vector Multiplication (SPMV) multiplies a square sparse matrix with a dense vector.

• Sparse Matrix-Matrix Multiplication (SPMM) multiplies a square sparse matrix with a dense matrix and stores the result in 
a dense matrix.

• 3D Fast Fourier Transform (FFT) computes the Fourier Transformation of  a 3D tensor. 

• Histogram counts the values that fall within a series of  intervals.



Annotation of Task-based Programs For MuchiSim:

PRINCETON 
UNIVERSITY

40

Task T3 (neighbor, new_dist):
curr_dist = DIST[neigh_id]
if (new_dist < curr_dist):
  return_array[neighbor] = new_dist
  frontier.push(neighbor)

int task3_kernel(int tX, int tY, u_int64_t timer){
  Msg msg = IQ(2).dequeue();
  u_int32_t neighbor = task3_dequeue(msg.data);
  u_int32_t new_dist =  IQ(2).dequeue().data;

  int cycles = check_dcache(tX,tY,ret,neighbor,timer, msg.time);
  int curr_dist= return_array[neighbor];
  cycles +=2; //comp + beq
  bool cond = (new_dist < curr_dist); flop(1);
  if (cond){
    return_array[neighbor] = new_dist; //Surely it's a hit in the cache
    cycles+=1;store(1);
    cycles+=add_to_frontier(tX, tY, neighbor,timer) + 1; //ADD to Frontier + Store
  }
  return cycles;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Read the inputs of the Task from input queues

•microarchitectural timing for basic blocks
• count stores, loads and ops for energy 



What else can be mapped to this programming model? 

PRINCETON 
UNIVERSITY

41

• Multiple PUs accessing shared data from the DRAM if  it’s not modified

• Access remote privately-owned data, requiring two-way communication for both read and 
write (e.g., pull based graph-algorithms)
• Place sender_id as a parameter of  a task to have another task be the response

• Programs that have deterministic control flow and data communication, e.g. FFT.
• Send based on tile_id, as with MPI_send, or collective communication.

• Multiple kernels in a workflow that require global synchronization before the next phase
• In general, application implementations parallelized using MPI



Simulator Features: Details and Plans

PRINCETON 
UNIVERSITY

43

• No Operating System support yet
• MuchiSim focuses on manycore systems that are programmed as 

accelerators. PUs access memory without virtualization 

• No hardware cache coherence
• Currently not needed for the programming models we evaluated
• Could be implemented via simulator or software extensions

• Few in-core microarchitecture details.
• Computation modeled at instr-level, via application code annotations



Datasets in Simulator Repo

PRINCETON 
UNIVERSITY
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• Work with the 8 provided benchmarks

• 6 sizes of  the synthetic RMAT graphs—standard on the Graph500 list—RMAT-16, 21, 22, 25, 26, and 27.

• Named after their scale. E.g., RMAT-26 contains 2^26, i.e., 67M Vertices (V) and 1.3B Edges (E) ~11 GB
 

And 4 real-world graphs:

• Wikipedia (V=4.2M, E=101M)

• LiveJournal (V=5.3M, E=79M)

• Amazon (V=262K, E=1.2M)

• Twitter (V=81K, E=2.4M)

For SPMV and SPMM, the graphs are seen as a square sparse matrix with V rows & columns and E non-zero elems.

‖ The graphs (as sparse matrices) are stored in the Compressed Sparse Row (CSR) format
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Visualization Tools

1. Plotting per-PE performance counters or stats for every execution frame
•Router port collisions and utilization, end-point contention
• PU utilization
• Cache hit-rate and memory-controller requests and average latency.

2. Plotting aggregated execution metrics for combinations of  HW configurations, and 
applications and datasets.
• Runtime, throughput (FLOPS), energy, cost.
•Network traffic, cache hit-rate, arithmetic intensity, etc.
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GUI
visualization.py

1. Performance metric, e.g., boxplot, mean

2. DUT grid size, e.g., 64x64

3. Configuration experiment name

4. Dataset, e.g., RMAT-22 (Kronecker)

5. Application, e.g., BFS
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Visualizing Execution Frame by Frame
visualization.py [-h] [--nogui] [-m METRIC] [-p PLOT] [-s SIZE] [-a APP] [-n NAME] [-d DATASET]

--nogui       Process directly without GUI

  -m METRIC Metric name (default: FMCore Active)

  -p PLOT Plot statistical metric (default: Average. Other options Boxplot, Heatmap)

  -s SIZE Size parameter (default: 64)

  -a APP  App number (default: 2)

  -n NAME Experiment name (default: )

  -d DATASET Dataset name (default: Kron22)
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BFS on RMAT-22, 64x64 tiles, Mesh NoC
With atomic operations vs regional reductions1

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “Tascade: Hardware Support for Atomic-free, Asynchronous and Efficient Reduction Trees”

Whether read-modify-write updates happen at a 
designated tile across the entire grid, or within a region, 
which later updates the globally designated owner

”Atomic”(every update has an owner)
python3 gui/visualization.py --nogui -e 1 
-p Boxplot -n HEAT64M -m 'FMCore Active’

Regional reduction operations:
python3 gui/visualization.py --nogui -e 1 
-p Boxplot -n HEAT8M -m 'FMCore Active'

50

Boxplots are generated at muchisim/plots/images



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With atomic operations vs regional reductions1

Decrease in Frame # reflects the 3x runtime difference, since frame-rate is the same, 40 µs

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “Tascade: Hardware Support for Atomic-free, Asynchronous and Efficient Reduction Trees”
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Animated Heatmaps

Creates a GIF with a heatmap image for every frame

• Each image shows % of  frame time that the 
performance counter was active, e.g., PU utilization

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT64M -m 'FMRouter Active'

Heat64M

Generated at muchisim/plots/animated_heatmaps
as subfolders starting with a timestamp



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With atomic operations

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT64M -m 'FMCore Active'

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT64M -m 'FMRouter Active'



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With regional reductions

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT8M -m 'FMCore Active'

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT8M -m 'FMRouter Active'
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Visualization Tools

1. Plotting per-PE performance counters or stats for every execution frame
•Router port collisions and utilization, end-point contention
• PU utilization
• Cache hit-rate and memory-controller requests and average latency.

2. Plotting aggregated execution metrics for combinations of  HW configurations, and 
applications and datasets.
• Runtime, throughput (FLOPS), energy, cost.
•Network traffic, cache hit-rate, arithmetic intensity, etc.
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Plotting Experiments Across Several 
Benchmarks and Datasets
python3 plots/characterization.py -p 23 -m 0 -e 3

-p <plot_type> (based on different experiments performed in our studies

-m <metric> (0:time, 1:utilization, 2:noc_energy, 3:sim_time, 
4:arith_intensity_msgs, 5:arith_intensity_loads, 6:flops, 7:energy, 8:total_msg, 
9:dhit_rate, 10:perf/$)

-e <artifact_evaluation> (0:default, 1:muchisim_eval, 2:dcra_eval1, 3:tutorial)

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “DCRA: A Distributed Chiplet-based Reconfigurable Architecture for Irregular Applications” 2023

Characterizations are generated at muchisim/plots/characterization/



Case Study: 
Memory-Compute Ratio
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Case Study

A chiplet is attached to an 8-channel HBM
• The number of  tiles per chiplet (16x16 or 32x32) 

determines the ratio of  tiles per HBM channel. 
• 1024 tiles -> dataset footprint per tile 4-8 MiB

SRAM/tile and tiles/chiplet. RMAT-25

59Characterizations are generated at muchisim/plots/characterization/
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SPMM has higher arithmetic intensity
• Lower memory bandwidth demands → 

Lower FLOPS gains with beefier mem.

32x32 chiplets (32 Tiles/Ch) higher FLOPS/$ 
than 16x16 chiplets, despite total FLOPS gains

SRAM/tile and tiles/chiplet. RMAT-25
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Granularity of the Processing Tile
Changing the number of  PUs per 
tile while keeping the total number 
of  PUs and bisection BW constant

exp/run_exp_granularity.sh  
4 0 2 32 Kron16 

Run SPMV (app=4), and 3 cases
•  Configuration & run script prepares 
cases 0-2 with different configurations of  
tiles per chiplet, PUs/per tile (SMT) and 
network BW

python3 plots/characterization.py 
-e 3 -p 23 -m 0 # Plot time 

python3 plots/characterization.py 
-e 3 -p 23 -m 7  # plot energy

62
To run the end-to-end experiment & visualizations
source tutorial/3.EXPERIMENTS.md



Granularity of the Processing Tile

Inside plots/characterization.py 

python3 plots/characterization.py 
-e 3 -p 23 -m 0 # Plot time 

python3 plots/characterization.py 
-e 3 -p 23 -m 7  # plot energy
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Granularity of the Processing Tile
python3 plots/characterization.py 
-e 3 -p 23 -m 0 # Plot time 

python3 plots/characterization.py 
-e 3 -p 23 -m 7  # plot energy

64Characterizations are generated at muchisim/plots/characterization/



Granularity of the Processing Tile

python3 gui/visualization.py --nogui -n GRANU0 -a 4 -s 32 -d Kron16
python3 gui/visualization.py --nogui -n GRANU1 -a 4 -s 16 -d Kron16
python3 gui/visualization.py --nogui -n GRANU2 -a 4 -s 8 -d Kron16

65Boxplots are generated at muchisim/plots/images
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Parallel Simulation
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• Ratio between the simulator and the DUT runtime (aggregated for all tiles)
• The simulator runtime decreases close to linearly with the number of  host threads.

• For 32 threads, the simulator takes ~40x more than the DUT runtime. 

Scaling host threads from 2 to 32 (2-socket, 24 CPU/socket, ~100GB DRAM). RMAT-22 dataset.
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Simulation Speed
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Scaling host threads from 16 to 128 (4-socket, 20 CPU/socket, 1TB DRAM). RMAT-26 dataset

• Evaluating 1M processing tiles for billion-element datasets in ~12-48 hours (105 seconds)
• Simulating up to 40 million routed messages/second
• Up to billions of  operations/seconds
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Summary & Takeaways
MuchiSim is a simulation framework developed to explore the increasingly relevant design space of  
scale-out architectures.

• Particularly effective for comm. intensive applications such as graph analytics and sparse linear algebra.

• Scales up to simulate millions of  PUs interconnected hierarchically, with options for different network 
topologies, and memory integrations.

Fully open-source and available for use and modification. Includes:

• Parametrizable simulator with performance, energy, area and cost model.

• 10+ ready-made scripts for experiments of  different configurations

• Applications, datasets, and visualization tools.

github.com/PrincetonUniversity/MuchiSim



Things that can be evaluated now only changing script parameters:
- Case studies from the DCRA paper with different configurations or parameters

Things that can be evaluated changing the application code:
- Change dataset mapping
- Different PU models: e.g., ASIC, CGRA…

Further development on the simulator:
- Cluster-level network (with higher dimensionality)
- Multi-node simulation via MPI
- Some degree of  hardware coherence

Future work that Users (aka, you) can do 

github.com/PrincetonUniversity/MuchiSim
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