
MuchiSim: A Simulation Framework for Design 
Exploration of Multi-Chip Manycore Systems 

Marcelo Orenes-Vera, Esin Tureci, Margaret Martonosi and Stojche Nakov
{movera, esin.tureci, mrm, sn3332} @princeton.edu 

github.com/PrincetonUniversity/MuchiSimTutorial Website

Getting Started! Open the terminal and go to the path where you want to have the simulator:
 git clone https://github.com/PrincetonUniversity/muchiSim.git
 cd muchiSim
 source setup.sh

If  the C++ compiler was detected successfully, then you can run the first basic experiment:
 exp/run_app.sh

Installing the Python environment to use our cool visualization tools J
 python3 -m venv gui/env_viz 
 source gui/env_viz/bin/activate
 pip install --upgrade pip && pip install PyQt5 matplotlib imageio



Acknowledgements

‖ PI David Wentzlaff (Princeton) + Co-PIs Margaret Martonosi 
(Princeton) and Luca Carloni (Columbia University)

‖ Funding: DARPA MTO Software-Defined Hardware Program

‖ The Full DECADES Team!
• https://decades.cs.princeton.edu

2

https://decades.cs.princeton.edu/


Plan for the Day

3

Introduction Target Architectures 
covered by MuchiSim

Simulator Infrastructure
Downloading and Basic 
Experiment
Reading a Simulator Report
Parallel Simulation

Simulator Configurations

System Hardware 
Configurations

Energy, Area & Cost 
Parameters
Sweeping Through Parameter 
Values
Case Study: Cerebras Wafer 
Scale Engine

Application-Hardware 
Interactions: 
Programming Model

Application Suite
Task-based Programs
Adding Applications to 
MuchiSim
Datasets Included in the Repo

Visualization Tools

Case Study: Regional Reductions

Visualization Tools

Case Study: Memory-Compute 
Ratio

End-to-end Experiment Simulation Speed & 
Scalability

Conclusions & Future 
Work

Work that users could do to 
explore System design and 

application mapping
Future work on the simulator 

itself

First Half

Second Half



MuchiSim’s Roots: 
DARPA-funded DECADES Project

• Enhance data locality
• Optimize spatial mapping of threads 
• Enable in-memory computing

Language and 
Compiler Support

• Accelerator rich architecture
• Reconfigurable interconnection network
• Reconfigurable in-memory computing
• Embedded Machine Learning Accelerators

Very Coarse-Grained 
Reconfigurable 

Tile-Based Architecture

• DECADES chip prototype
• In-memory Computing Hardware
• Multi-FPGA emulation infrastructure

Multi-Tiered 
Demonstration Strategy

Lead: Margaret 
Martonosi

Lead: Luca Carloni

Lead: David 
Wentzlaff 4



From Our Original Project Slides:
Data Supply = Fundamental Bottleneck in Accelerator-Oriented Systems

‖ Amdahl’s Law: 
Accelerating 
compute makes 
data supply 
bottlenecks look 
relatively bigger!

‖ Key memory/comm 
bottlenecks lie in 
supplying 
specialized 
accelerators with 
data

‖ Different apps ->  
different data 
supply needs

John McCalpin, SC’16 Keynote 
Pe

ak
 F

LO
PS

 / 
[L

at
en

cy
 o

r B
W

]

Latency and Bandwidth:
• Accelerator often lacks general-purpose latency-tolerance 

mechanisms (e.g., OoO execution, Multithreading)
• Improving Accelerator compute throughput increases memory 

bandwidth pressure
55



DECADES Platform Architecture

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

Heterogeneity meets coarse reconfigurability

Computations mapped 
onto core tiles or 
available accelerator 
tiles

Dynamic reconfiguration 
of Supply-Compute 
decoupling, 
power-performance 
tradeoffs, and 
interconnect

Open-Source Tiles, Compiler, Emulators
6



Our Simulator Needs

‖ Extreme Parallelism: Thousands or Millions of processing 
elements

‖ Chiplet Ecosystem: Interconnect and Memory system focus

‖ Support for applications with sparse and irregular control and 
dataflow patterns: Graphs, Sparse, etc.

èWe created MuchiSim to support this future-looking research.
èToday’s tutorial: Encourage other users as well!

7



Outline First Half

8

Introduction 
Motivation

Target Architectures 
covered by MuchiSim

Simulator 
Infrastructure

Downloading and 
Basic Experiment
Reading a Simulator 
Report
Parallel Simulation

Simulator 
Configurations

System Hardware 
Configurations
Energy, Area & Cost 
Parameters
Sweeping Through 
Parameter Values
Case Study: Cerebras 
Wafer Scale Engine

Application-Hardware 
Interactions: 
Programming Model
Application Suite

Task-based Programs
Adding Applications to 
MuchiSim

Datasets Included in 
the Repo



Hierarchical & Scalable Architectures

• Each Tile contains 1+ Processing Units (PUs), a router, and a private local memory (PLM)
• TSU: Manage and schedule tasks
• Queues: Coordinate ordered communication.

• A compute Chiplet has X*Y tiles and may include a memory controller (if  attaching DRAM)
• A chip Package has a grid of  compute chiplets (with or without DRAM attached).
• A compute Node is a board with 1+ chip Packages.

PU(s)

Private Local
Memory

TSU R

Tile
1 or more PUs

Compute chiplet  
X * Y tiles

PHY

PHY

D
R

A
M

 C
trl

.

Node 
 1 or more chips

PCB Board

. . .

. . .

Queues

I/O

DR
AM

Chip Package  1 or more chiplets

. . . . . .

Cluster 
 1 or many nodes

PU(s)

Private Local
Memory

TSU R

Tile
1 or more PUs

Compute chiplet  
X * Y tiles

PHY

PHY

D
R

A
M

 C
trl

.

Node 
 1 or more chips

PCB Board

. . .

. . .

Queues

I/O

DR
AM

Chip Package  1 or more chiplets

. . . . . .

Cluster 
 1 or many nodes

PU(s)

Private Local
Memory

TSU R

Tile
1 or more PUs

Compute chiplet  
X * Y tiles

PHY

PHY

D
R

A
M

 C
trl

.

Node 
 1 or more chips

PCB Board

. . .

. . .

Queues

I/O

DR
AM

Chip Package  1 or more chiplets

. . . . . .

Cluster 
 1 or many nodes

9



What is changeable in this?

‖ Variations on task scheduling via changes to TSU Model
‖ Interconnect topology, bandwidth and latency

‖ Variations on memory: SRAM-per-tile, scratchpad vs cache, on-package HBM

‖ Granularity: number of  PUs per tile, tiles per chiplet.
‖ Communication Scheme: Routing exposed to software applications; Logical 

mappings of  application data and task invocations to tiles.  

10



Outline First Half

11

Introduction 
Motivation

Target Architectures 
covered by MuchiSim

Simulator 
Infrastructure

Downloading and 
Basic Experiment
Reading a Simulator 
Report
Parallel Simulation

Simulator 
Configurations

System Hardware 
Configurations
Energy, Area & Cost 
Parameters
Sweeping Through 
Parameter Values
Case Study: Cerebras 
Wafer Scale Engine

Application-Hardware 
Interactions: 
Programming Model
Task-based Programs

Adding Applications to 
MuchiSim
Application Suite

Datasets Included in 
the Repo



Downloading and Initial Compilation

If  you haven’t done it yet, open the terminal and go to the path where you want to have the simulator and download it. You have the commands 
in www.github.com/PrincetonUniversity/muchiSim/blob/main/tutorial/1.COMPILATION.md

git clone https://github.com/PrincetonUniversity/muchiSim.git

cd muchiSim

source setup.sh

If  the C++ compiler was detected successfully, then you can run the first basic experiment:

exp/run_app.sh

12

http://www.github.com/PrincetonUniversity/muchiSim/blob/main/tutorial/1.COMPILATION.md


Running the Simulator
Parallel Simulator written in C/C++ only using standard libraries, no external dependencies
Ø A Bash script configures the system to simulate and launches the simulation
exp/run.sh [-a app | -b barrier | -c chiplet_width | -d datasets | -e proxy_width | -f  force_proxy_ratio | -g large_queue | -j write_thru        
| -k board_width | -l express_link | -m grid_conf  | -n name | -o NOC | -p dry_run | -q queue_mode | -r assert_mode | -s machine_to_run 
| -t max_threads | -u noc_conf  | -v verbose | -w SRAM size-per-tile | -x num_phy_nocs | -y dcache | -z proxy_routing ]

• Experiment name. Scripts that use the run.sh script to setup experiment-specific configurations, e.g. run_exp_granularity.sh (will cover later)
• Max number of  host threads to run with
• Application (we’ll cover later the benchmark and datasets included in the repo)
• Dataset 

• Total Grid size, up to 1024x1024 evaluated.
• Chiplet width, E.g., 16x16.
• Board width [Default size of  Grid]

• NoC type, e.g., mesh, torus
• Num Physical NoCs
• NoC width configuration, including inter-die direct channels for multi-chiplet systems

+ Many other configurations settable through set_conf  (More later)

PU(s)

Private Local
Memory

TSU R

Tile
1 or more PUs

Compute chiplet  
X * Y tiles

PHY

PHY

D
R

A
M

 C
trl

.

Node 
 1 or more chips

PCB Board

. . .

. . .

Queues

I/O

DR
AM

Chip Package  1 or more chiplets

. . . . . .

Cluster 
 1 or many nodes

13



Basic Experiment Configuration
exp/run_app.sh

14

PU(s)

Private Local
Memory

TSU R

Tile
1 or more PUs

Compute chiplet  
X * Y tiles

PHY

PHY

D
R

A
M

 C
trl

.

Node 
 1 or more chips

PCB Board

. . .

. . .

Queues

I/O

DR
AM

Chip Package  1 or more chiplets

. . . . . .

Cluster 
 1 or many nodes

PU(s)

Private Local
Memory

TSU R

Tile
1 or more PUs

Compute chiplet  
X * Y tiles

PHY

PHY

D
R

A
M

 C
trl

.

Node 
 1 or more chips

PCB Board

. . .

. . .

Queues

I/O

DR
AM

Chip Package  1 or more chiplets

. . . . . .

Cluster 
 1 or many nodes



Basic Experiment Configuration
exp/run_app.sh

15



Reading a Simulator Report
The simulation logs will be saved in the sim_logs folder. Particularly, the basic experiment you ran with 
run_app.sh creates a log called DATA-Kron16--16-X-16--BA16-A4.log

• This log contains first the logs of  the dataset 
being loaded, Kron16, aka, RMAT-16 
(containing 2^16 vertices or non-zero elems) 

• Later, it shows information about the 
manycore configuration (16x16 grid with a 
single chiplet of  16x16 tiles, 1 PU/tile, etc.

16



Reading a Simulator Report
The simulation logs will be saved in the sim_logs folder. Particularly, the basic experiment you ran with 
run_app.sh creates a log called DATA-Kron16--16-X-16--BA16-A4.log

• This log contains first the logs of  the dataset 
being loaded, Kron16, aka, RMAT-16 
(containing 2^16 vertices or non-zero elems) 

• Later, it shows information about the 
manycore configuration (16x16 grid with a 
single chiplet of  16x16 tiles, 1 PU/tile, etc.

• And it’s estimated cost

17



Reading a Simulator Report
The simulation logs will be saved in the sim_logs folder. Particularly, the basic experiment you ran with 
run_app.sh creates a log called DATA-Kron16--16-X-16--BA16-A4.log

• This log contains first the logs of  the dataset 
being loaded, Kron16, aka, RMAT-16 
(containing 2^16 vertices or non-zero elems) 

• Later, it shows information about the 
manycore configuration (16x16 grid with a 
single chiplet of  16x16 tiles, 1 PU/tile, etc.

• And its estimated cost

• Then, it logs statistics and counters about 
the simulation frame by frame (length 
configurable through set_conf).

18



Reading a Simulator Report

Verbose>=2
Verbose>=1

From exp/run_app.sh



Simulation Frame 32

32

32

32

32

32

32

32

Grid of 8 x 8 Tiles

PU and NoC simulation threads keep 
track of  many performance counters
 

• Every X thousand cycles (a frame) 
the PU threads output stats to a Log

• Aggregated and per-frame stats

Logical Grid of  8x8 Tiles



32

32

32

32

32

32

32

32

Grid of 8 x 8 Tiles

Parallelization across columns
• A pair of  PU and NoC threads per 

grid slice
• 4 slices → 8 host threads in total!

PU and NoC threads synchronize 
based on message timestamps
• NoC and PUs in may use different 

clock frequency of  the DUT

Th 1 Th 2 Th 3 Th 4

Logical Grid of  8x8 Tiles

Simulation
From exp/run_app.sh

pow2 # threads



Outline First Half

22

Introduction 
Motivation

Target Architectures 
covered by MuchiSim

Simulator 
Infrastructure

Downloading and 
Basic Experiment
Reading a Simulator 
Report
Parallel Simulation

Simulator 
Configurations

System Hardware 
Configurations
Energy, Area & Cost 
Parameters
Sweeping Through 
Parameter Values
Case Study: Cerebras 
Wafer Scale Engine

Application-Hardware 
Interactions: 
Programming Model
Task-based Programs

Adding Applications to 
MuchiSim
Application Suite

Datasets Included in 
the Repo



Balancing Memory, Compute, and Network resources
Chiplet-level design choices
• SRAM and PUs-per-tile  &  Tiles-per-chiplet

• NoC topology and width & extra express channels.

Package-level choices
• Memory hierarchy (levels and capacity)

• Chip package size and off-chip I/O bandwidth

23



a. Distributed SRAM, as main-memory
• For a given dataset, SRAM-only will 

need more chiplets to store the dataset

b. L1 cache (SRAM) + main-mem (HBM)
• No coherence in our current models

Configurable Memory Hierarchy

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “DCRA: A Distributed Chiplet-based Reconfigurable Architecture for Irregular Applications”

Image from [1]

24



Energy/BW/Latency Parameters for Memory & Links

Default memory and communication link parameters
• Multi-Chip-Module (MCM) or Silicon interposers

Other parameters for PU energy in the repo
• Energy scales with voltage → Voltage scales with 

operating frequency and transistor node            
(Default parameters with 0.7 V, 1 GHz, 7nm)

• Supports different frequency for NoC and PUs

MCM Silicon interposer

github.com/PrincetonUniversity/MuchiSim
25



Area & Cost Parameters
Area parameters for in-order PUs, supported NoC topologies, and memories
• Area scaling with peak design frequency

Cost
• Die: Wafer cost by the number of  good dies → calculated using parameterizable 

number of  defects per mm2 and edge loss, using Murphy’s model. 
• Substrate, Interposer and yield cost as a % of  the die area.
• HBM cost based on $/GB.

MuchiSim allows post-processing a given experiment (without re-simulating) to 
re-calculate the energy and cost with different model parameters.

26



Setting Simulator Configurations

# Change the cost of HBM memory to 5 USD/GiB
set_conf "param_cost" "hbm_usd_per_gib" 5
exp/reprocess.sh # Default Kron16--16-X-16--BA16-A4

# Change back to the original value
set_conf "param_cost" "hbm_usd_per_gib" 7.5
exp/reprocess.sh

The set_conf function allows to programmatically change parameters 
defined in the config and parameter files (inside src/config)

The reprocess.sh script re-process a simulation with different 
energy and cost parameters, to evaluate different scenarios, e.g., calculate 
different tradeoffs in performance/$ or performance/Watt



Granularity of the Processing Tile

Changing the number of  PUs per 
tile while keeping the total number 
of  PUs and bisection BW constant

exp/run_exp_granularity.sh  
4 0 2 32 Kron16 

Run SPMV (app=4), and 3 cases
•  Configuration & run script prepares 
cases 0-2 with different configurations of  
tiles per chiplet, PUs/per tile (SMT) and 
network BW
• Later we’ll run this and visualize the 
simulation logs!

28



MuchiSim to simulate the 
Cerebras Wafer-Scale Engine
§ Tiles contain a PU, 48KB scratchpad and a router.

§ 32-bit  2D mesh NoC

§ 3D-FFT of  !3  elements over !2 PEs for !=32,..,512
§ Using the published implementation1

[1] M. Orenes-Vera, I. Sharapov, R. Schreiber, M. Jacquelin, et al. “Wafer-Scale Fast Fourier Transforms”. ICS’23 cerebras.net

The reported WSE-2 runtimes1 are ~1.2x of  the simulated ones
• Stable across scaling range, 32x32 to 512x512 (1/4 million tiles)

DUT area calculated by MuchiSim is 1.08x of  the WSE-2 area.

29

http://cerebras.net/


Outline First Half

30

Introduction 
Motivation

Target Architectures 
covered by MuchiSim

Simulator 
Infrastructure

Downloading and 
Basic Experiment
Reading a Simulator 
Report
Parallel Simulation

Simulator 
Configurations

System Hardware 
Configurations
Energy, Area & Cost 
Parameters
Sweeping Through 
Parameter Values
Case Study: Cerebras 
Wafer Scale Engine

Application-Hardware 
Interactions: 
Programming Model
Task-based Programs

Adding Applications to 
MuchiSim
Application Suite

Datasets Included in 
the Repo



MuchiSim Enables Exploration of Novel Task-based 
Programming Models

PRINCETON 
UNIVERSITY

Main Task-1 Task-2 Task-n. . .

A program can be converted into a series tasks where each task invokes the next preserving program order. 

Mapping of the location for the execution of tasks can be done according to the desired parallelization scheme.
     e.g.  Near Memory Processing parallelization schemes utilize a data-local execution based parallelization.

Since the set of many core architectures MuchiSim targets do not employ cache-coherence, tasks must be 
written in a way that does not require coherence at cache level.

31



Transforming a Program to a Task-based Program: 
Iterative, Frontier-based Graph Applications

PRINCETON 
UNIVERSITY

32

for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)

0

3

2

1

4

Frontier nodes 
processed in 

parallel

while frontier not empty:1
2
3
4
5
6
7



Transforming a Program to a Task-based Program: 
Task Generation

PRINCETON 
UNIVERSITY

33

Task T2 (neigh_begin, neigh_end, node_dist):

Task T3 (neighbor, new_dist):
curr_dist = DIST[neighbor]
if (new_dist < curr_dist):
  DIST[neighbor] = new_dist
  frontier.push(neighbor)

Task T1 (v):

CQ = PTR[v+1]
CQ = DIST[v]

CQ = PTR[v]

for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)

Task T4:
CQ = frontier.pop()

while frontier not empty:

for i in range(neigh_begin, neigh_end):
CQ = EDGES[i].neigh_idx
CQ = node_dist + EDGES[i].val



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n. . .CQ

Tile i Tile j Tile p

IQ IQCQ

1-to-1: One Task invoking a single next Task

34

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n. . .CQ

Tile i Tiles j, k, l Tile p

IQ IQCQ

1-to-many: One Task can invoke many of  the next Task

35

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n-1. . .CQ

Tile i Tile j, k, l Tile p

IQ IQCQ

self-invocation

CQ IQ Task n

Tile p

36

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



MuchiSim Enables Exploration of Novel Task-based 
Programming Models: Variations

PRINCETON 
UNIVERSITY

Main Task 1 Task 2 Task n-1. . .CQ

Tile i Tile j, k, l Tile p

IQ IQCQ CQ IQ Task n

Tile p

Task 1
Tile q

loops

37

while frontier not empty:
for node in frontier:
  val = process_node(node)
  for neib in G.neighbors(node):
    update = update_neib(node_vals,val,neib)
    if(add_to_frontier(update)):
      new_frontier.push(neib)



Application Suite

PRINCETON 
UNIVERSITY

39

4 graph algorithms, 2 sparse linear algebra, and 2 HPC kernels
• Breadth-First Search (BFS) determines the number of  hops from a root vertex to all vertices reachable from it.

• Single-Source Shortest Path (SSSP) finds the shortest path from the root to each reachable vertex.

• PageRank ranks websites based on the potential flow of  users to each page.

• Weakly Connected Components (WCC) finds and labels each set of  vertices reachable from one 

• Sparse Matrix-Vector Multiplication (SPMV) multiplies a square sparse matrix with a dense vector.

• Sparse Matrix-Matrix Multiplication (SPMM) multiplies a square sparse matrix with a dense matrix and stores the result in 
a dense matrix.

• 3D Fast Fourier Transform (FFT) computes the Fourier Transformation of  a 3D tensor. 

• Histogram counts the values that fall within a series of  intervals.



Annotation of Task-based Programs For MuchiSim:

PRINCETON 
UNIVERSITY

40

Task T3 (neighbor, new_dist):
curr_dist = DIST[neigh_id]
if (new_dist < curr_dist):
  return_array[neighbor] = new_dist
  frontier.push(neighbor)

int task3_kernel(int tX, int tY, u_int64_t timer){
  Msg msg = IQ(2).dequeue();
  u_int32_t neighbor = task3_dequeue(msg.data);
  u_int32_t new_dist =  IQ(2).dequeue().data;

  int cycles = check_dcache(tX,tY,ret,neighbor,timer, msg.time);
  int curr_dist= return_array[neighbor];
  cycles +=2; //comp + beq
  bool cond = (new_dist < curr_dist); flop(1);
  if (cond){
    return_array[neighbor] = new_dist; //Surely it's a hit in the cache
    cycles+=1;store(1);
    cycles+=add_to_frontier(tX, tY, neighbor,timer) + 1; //ADD to Frontier + Store
  }
  return cycles;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Read the inputs of the Task from input queues

•microarchitectural timing for basic blocks
• count stores, loads and ops for energy 



What else can be mapped to this programming model? 

PRINCETON 
UNIVERSITY

41

• Multiple PUs accessing shared data from the DRAM if  it’s not modified

• Access remote privately-owned data, requiring two-way communication for both read and 
write (e.g., pull based graph-algorithms)
• Place sender_id as a parameter of  a task to have another task be the response

• Programs that have deterministic control flow and data communication, e.g. FFT.
• Send based on tile_id, as with MPI_send, or collective communication.

• Multiple kernels in a workflow that require global synchronization before the next phase
• In general, application implementations parallelized using MPI



Simulator Features: Details and Plans

PRINCETON 
UNIVERSITY

43

• No Operating System support yet
• MuchiSim focuses on manycore systems that are programmed as 

accelerators. PUs access memory without virtualization 

• No hardware cache coherence
• Currently not needed for the programming models we evaluated
• Could be implemented via simulator or software extensions

• Few in-core microarchitecture details.
• Computation modeled at instr-level, via application code annotations



Datasets in Simulator Repo

PRINCETON 
UNIVERSITY

44

• Work with the 8 provided benchmarks

• 6 sizes of  the synthetic RMAT graphs—standard on the Graph500 list—RMAT-16, 21, 22, 25, 26, and 27.

• Named after their scale. E.g., RMAT-26 contains 2^26, i.e., 67M Vertices (V) and 1.3B Edges (E) ~11 GB
 

And 4 real-world graphs:

• Wikipedia (V=4.2M, E=101M)

• LiveJournal (V=5.3M, E=79M)

• Amazon (V=262K, E=1.2M)

• Twitter (V=81K, E=2.4M)

For SPMV and SPMM, the graphs are seen as a square sparse matrix with V rows & columns and E non-zero elems.

‖ The graphs (as sparse matrices) are stored in the Compressed Sparse Row (CSR) format



Outline Second Half

45

Visualization Tools

Case Study: Regional Reductions

Visualization Tools

Case Study: Memory-Compute 
Ratio

End-to-end Experiment Simulation Speed & 
Scalability

Conclusions & Future 
Work

Work that users could do to 
explore System design and 

application mapping
Future work on the simulator 

itself

Instructions for Visualization Tools
muchiSim/tutorial/2.VISUALIZATION.md



Visualization Tools

1. Plotting per-PE performance counters or stats for every execution frame
•Router port collisions and utilization, end-point contention
• PU utilization
• Cache hit-rate and memory-controller requests and average latency.

2. Plotting aggregated execution metrics for combinations of  HW configurations, and 
applications and datasets.
• Runtime, throughput (FLOPS), energy, cost.
•Network traffic, cache hit-rate, arithmetic intensity, etc.

46



GUI
visualization.py

1. Performance metric, e.g., boxplot, mean

2. DUT grid size, e.g., 64x64

3. Configuration experiment name

4. Dataset, e.g., RMAT-22 (Kronecker)

5. Application, e.g., BFS

 



www.github.com/PrincetonUniversity/muchiSim/blob/main/tutorial/2.VISUALIZATION.md 48

http://www.github.com/PrincetonUniversity/muchiSim/blob/main/tutorial/2.VISUALIZATION.md


Visualizing Execution Frame by Frame
visualization.py [-h] [--nogui] [-m METRIC] [-p PLOT] [-s SIZE] [-a APP] [-n NAME] [-d DATASET]

--nogui       Process directly without GUI

  -m METRIC Metric name (default: FMCore Active)

  -p PLOT Plot statistical metric (default: Average. Other options Boxplot, Heatmap)

  -s SIZE Size parameter (default: 64)

  -a APP  App number (default: 2)

  -n NAME Experiment name (default: )

  -d DATASET Dataset name (default: Kron22)

 

49



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With atomic operations vs regional reductions1

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “Tascade: Hardware Support for Atomic-free, Asynchronous and Efficient Reduction Trees”

Whether read-modify-write updates happen at a 
designated tile across the entire grid, or within a region, 
which later updates the globally designated owner

”Atomic”(every update has an owner)
python3 gui/visualization.py --nogui -e 1 
-p Boxplot -n HEAT64M -m 'FMCore Active’

Regional reduction operations:
python3 gui/visualization.py --nogui -e 1 
-p Boxplot -n HEAT8M -m 'FMCore Active'

50

Boxplots are generated at muchisim/plots/images



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With atomic operations vs regional reductions1

Decrease in Frame # reflects the 3x runtime difference, since frame-rate is the same, 40 µs

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “Tascade: Hardware Support for Atomic-free, Asynchronous and Efficient Reduction Trees”
51



Animated Heatmaps

Creates a GIF with a heatmap image for every frame

• Each image shows % of  frame time that the 
performance counter was active, e.g., PU utilization

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT64M -m 'FMRouter Active'

Heat64M

Generated at muchisim/plots/animated_heatmaps
as subfolders starting with a timestamp



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With atomic operations

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT64M -m 'FMCore Active'

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT64M -m 'FMRouter Active'



BFS on RMAT-22, 64x64 tiles, Mesh NoC
With regional reductions

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT8M -m 'FMCore Active'

python3 gui/visualization.py --nogui -e 1 
-p Heatmap -n HEAT8M -m 'FMRouter Active'



Outline Second Half

55

Visualization Tools

Case Study: Regional Reductions

Visualization Tools

Case Study: Memory-Compute 
Ratio

End-to-end Experiment Simulation Speed & 
Scalability

Conclusions & Future 
Work

Work that users could do to 
explore System design and 

application mapping
Future work on the simulator 

itself

Instructions for Visualization Tools
muchiSim/tutorial/2.VISUALIZATION.md



Visualization Tools

1. Plotting per-PE performance counters or stats for every execution frame
•Router port collisions and utilization, end-point contention
• PU utilization
• Cache hit-rate and memory-controller requests and average latency.

2. Plotting aggregated execution metrics for combinations of  HW configurations, and 
applications and datasets.
• Runtime, throughput (FLOPS), energy, cost.
•Network traffic, cache hit-rate, arithmetic intensity, etc.

56



Plotting Experiments Across Several 
Benchmarks and Datasets
python3 plots/characterization.py -p 23 -m 0 -e 3

-p <plot_type> (based on different experiments performed in our studies

-m <metric> (0:time, 1:utilization, 2:noc_energy, 3:sim_time, 
4:arith_intensity_msgs, 5:arith_intensity_loads, 6:flops, 7:energy, 8:total_msg, 
9:dhit_rate, 10:perf/$)

-e <artifact_evaluation> (0:default, 1:muchisim_eval, 2:dcra_eval1, 3:tutorial)

[1] M Orenes-Vera, E Tureci, D Wentzlaff, and M Martonosi “DCRA: A Distributed Chiplet-based Reconfigurable Architecture for Irregular Applications” 2023

Characterizations are generated at muchisim/plots/characterization/



Case Study: 
Memory-Compute Ratio

58



Case Study

A chiplet is attached to an 8-channel HBM
• The number of  tiles per chiplet (16x16 or 32x32) 

determines the ratio of  tiles per HBM channel. 
• 1024 tiles -> dataset footprint per tile 4-8 MiB

SRAM/tile and tiles/chiplet. RMAT-25

59Characterizations are generated at muchisim/plots/characterization/



Case Study
0

2

4

6

8

10

12

F
L
O

P
S

Im
pr

ov
em

en
t

SSSP

0

2

4

6

8

10

12

PAGE

0

2

4

6

8

10

12

BFS

0

2

4

6

8

10

12

WCC

0

2

4

6

8

10

12

SPMV

0

2

4

6

8

10

12

SPMM

0

2

4

6

8

10

12

HISTO

0

2

4

6

8

10

12

Geo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
L
O

P
S/

W
at

t
Im

pr
ov

em
en

t SSSP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

PAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

BFS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

WCC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SPMV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SPMM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

HISTO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Geo

0

1

2

3

4

5

F
L
O

P
S/

$
Im

pr
ov

em
en

t

SSSP

128 Tile/Ch 64 KiB

128 Tile/Ch 128 KiB

128 Tile/Ch 256 KiB

32 Tile/Ch 128 KiB

32 Tile/Ch 256 KiB

32 Tile/Ch 512KiB

0

1

2

3

4

5

PAGE

0

1

2

3

4

5

BFS

0

1

2

3

4

5

WCC

0

1

2

3

4

5

SPMV

0

1

2

3

4

5

SPMM

0

1

2

3

4

5

HISTO

0

1

2

3

4

5

Geo

SPMM has higher arithmetic intensity
• Lower memory bandwidth demands → 

Lower FLOPS gains with beefier mem.

32x32 chiplets (32 Tiles/Ch) higher FLOPS/$ 
than 16x16 chiplets, despite total FLOPS gains

SRAM/tile and tiles/chiplet. RMAT-25

60



Outline Second Half

61

Visualization Tools

Case Study: Regional Reductions

Visualization Tools

Case Study: Memory-Compute 
Ratio

End-to-end Experiment

Granularity of Processing Tiles

Simulation Speed & 
Scalability

Conclusions & Future 
Work

Work that users could do to 
explore System design and 

application mapping
Future work on the simulator 

itself

To run the end-to-end experiment & visualizations
source tutorial/3.EXPERIMENTS.md



Granularity of the Processing Tile
Changing the number of  PUs per 
tile while keeping the total number 
of  PUs and bisection BW constant

exp/run_exp_granularity.sh  
4 0 2 32 Kron16 

Run SPMV (app=4), and 3 cases
•  Configuration & run script prepares 
cases 0-2 with different configurations of  
tiles per chiplet, PUs/per tile (SMT) and 
network BW

python3 plots/characterization.py 
-e 3 -p 23 -m 0 # Plot time 

python3 plots/characterization.py 
-e 3 -p 23 -m 7  # plot energy

62
To run the end-to-end experiment & visualizations
source tutorial/3.EXPERIMENTS.md



Granularity of the Processing Tile

Inside plots/characterization.py 

python3 plots/characterization.py 
-e 3 -p 23 -m 0 # Plot time 

python3 plots/characterization.py 
-e 3 -p 23 -m 7  # plot energy

63



Granularity of the Processing Tile
python3 plots/characterization.py 
-e 3 -p 23 -m 0 # Plot time 

python3 plots/characterization.py 
-e 3 -p 23 -m 7  # plot energy

64Characterizations are generated at muchisim/plots/characterization/



Granularity of the Processing Tile

python3 gui/visualization.py --nogui -n GRANU0 -a 4 -s 32 -d Kron16
python3 gui/visualization.py --nogui -n GRANU1 -a 4 -s 16 -d Kron16
python3 gui/visualization.py --nogui -n GRANU2 -a 4 -s 8 -d Kron16

65Boxplots are generated at muchisim/plots/images



Outline Second Half

66

Visualization Tools

Case Study: Regional Reductions

Visualization Tools

Case Study: Memory-Compute 
Ratio

End-to-end Experiment Simulation Speed & 
Scalability

Conclusions & Future 
Work

Work that users could do to 
explore System design and 

application mapping
Future work on the simulator 

itself



Parallel Simulation

32x32 64x64
101

102

103

Si
m

ti
m

e
/

D
U

T
T

im
e

SSSP

2 Threads 4 Threads 8 Threads 16 Threads 32 Threads
32x32 64x64

101

102

103

PAGE

32x32 64x64
101

102

103

BFS

32x32 64x64
101

102

103

SPMV

32x32 64x64
101

102

103

SPMM

32x32 64x64
101

102

103

HISTO

32x32 64x64
101

102

103

FFT

101

102

103

Geo

• Ratio between the simulator and the DUT runtime (aggregated for all tiles)
• The simulator runtime decreases close to linearly with the number of  host threads.

• For 32 threads, the simulator takes ~40x more than the DUT runtime. 

Scaling host threads from 2 to 32 (2-socket, 24 CPU/socket, ~100GB DRAM). RMAT-22 dataset.

67



Simulation Speed

210 214 218
103

104

105

106

107

108

109

SSSP

Sim Time (s) Ops/s Msg/s

210 214 218
103

104

105

106

107

108

109

PAGE

210 214 218
103

104

105

106

107

108

109

BFS

210 214 218
103

104

105

106

107

108

109

WCC

210 214 218
103

104

105

106

107

108

109

SPMV

210 214 218
103

104

105

106

107

108

109

HISTO

Scaling host threads from 16 to 128 (4-socket, 20 CPU/socket, 1TB DRAM). RMAT-26 dataset

• Evaluating 1M processing tiles for billion-element datasets in ~12-48 hours (105 seconds)
• Simulating up to 40 million routed messages/second
• Up to billions of  operations/seconds

68



Outline Second Half

69

Visualization Tools

Case Study: Regional Reductions

Visualization Tools

Case Study: Memory-Compute 
Ratio

End-to-end Experiment Simulation Speed & 
Scalability

Conclusions & Future 
Work

Work that users could do to 
explore System design and 

application mapping
Future work on the simulator 

itself

Instructions for Visualization Tools
muchiSim/tutorial/2.VISUALIZATION.md



Summary & Takeaways
MuchiSim is a simulation framework developed to explore the increasingly relevant design space of  
scale-out architectures.

• Particularly effective for comm. intensive applications such as graph analytics and sparse linear algebra.

• Scales up to simulate millions of  PUs interconnected hierarchically, with options for different network 
topologies, and memory integrations.

Fully open-source and available for use and modification. Includes:

• Parametrizable simulator with performance, energy, area and cost model.

• 10+ ready-made scripts for experiments of  different configurations

• Applications, datasets, and visualization tools.

github.com/PrincetonUniversity/MuchiSim



Things that can be evaluated now only changing script parameters:
- Case studies from the DCRA paper with different configurations or parameters

Things that can be evaluated changing the application code:
- Change dataset mapping
- Different PU models: e.g., ASIC, CGRA…

Further development on the simulator:
- Cluster-level network (with higher dimensionality)
- Multi-node simulation via MPI
- Some degree of  hardware coherence

Future work that Users (aka, you) can do 

github.com/PrincetonUniversity/MuchiSim



MuchiSim: A Simulation Framework for Design 
Exploration of Multi-Chip Manycore Systems 
Marcelo Orenes-Vera, Esin Tureci, Margaret Martonosi and Stojche Nakov

{movera, esin.tureci, mrm, sn3332} @princeton.edu 

Princeton University

github.com/PrincetonUniversity/MuchiSimFull paper! Tutorial Website


