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Problem: Memory bottlenecks

• Modern system designs employ hardware 
accelerators, heterogeneity, and parallelism

• Significantly benefits compute-bound workloads

• Applications that are memory-bound due to 
irregular memory access patterns do not 
scale well with the number of cores

• Sparse neural networks, as a result of network 
pruning to reduce model storage

• Graph algorithms, recommendation systems, etc.
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• Their data footprint is constantly 
increasing, putting more pressure 
in the memory system.

• IMAs arise from pointer 
indirection, e.g. A[B[i]] 
• Since array A is often very big (e.g., 

millions of edge/nodes in graph analytics) 
and accesses are unpredictable           
IMAs often incur in poor cache locality 
and their latency dominates the runtime

31 Runtimes measured on a simulated in-order core.

IMAs
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Opportunity: Mitigating the latency of Indirect 
Memory Accesses (IMAs)
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Challenge A: Mitigate IMAs in Manycores

1. Manycores often have slim cores 
without OoO structures

2. A prefetcher in each core would cause 
significant per-core overhead

3. Heterogeneous tiles (e.g. accelerators) 
might need memory tolerance too.

4. Prefetching in the LLC require changes 
specific to mem hierarchy
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Challenge B: Easy hardware integration

1. Deep microarchitecture changes 
are difficult to incorporate due to 
the verification burden

2. Faster path to SoC silicon by 
integrating off-the-shelf IP blocks

3. Easier adoption when not 
modifying the memory hierarchy 
not existing IP blocks
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Challenge C: Memory-access specialization 
without adding new instructions
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1. Not modifying the cores IP means 
no new instructions (no ISA 
modifications)

2. It’s ideal to bring to L1 the cache-
friendly accesses and bypass the 
cache-averse ones

3. Provide HW advantages but with 
the illusion of only using SW 
optimizations with an API

for (i=0;i<N;i++){
for (k=ptr[i];k<ptr[i+i];k++){

result[i] += val[k] * A[B[k]];
}

}      

Sparse Matrix-Vector multiplication (SPMV) code

for (i=0;i<N;i++){
specialized_prefetch(A,B,ptr[i+1]);
for (k=ptr[i];k<ptr[i+i];k++){

result[i] += val[k] * consume();
}

}      

Mitigating the IMA



Our Approach: Out-of-core mem. latency tolerance
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• Mitigating the latency of IMAs without 
modifying cores or mem. hierarchy

• Ease to integrate via the NOC

• ISA-agnostic

• Provides memory-level parallelism to 
the thin cores of a manycore

• Enables decoupling and prefetching SW 
optimizations via an API that only uses 
existing memory instructions

Off-the-shelf cores using MAPLE



Contributions
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• RTL implementation taped-out into silicon
• Reusable open-source hardware block
• Real area numbers
• Extensive testing using formal verification

• Scalable Latency tolerance
• Multiple instances
• Instances shared across cores, protected access

• Real-world OS and compiler support
• MAPLE’s API supports virtual memory
• Programmed from SMP Linux
• Open-source compiler pass targets MAPLE’s API

Off-the-shelf cores using MAPLE
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Decoupling for Latency Tolerance

At DAE [Smith ‘82] (Decoupled Access 
Execute) ideally the Access runs ahead of 
the Execute

• The Access core issues memory requests 
early and the the return data is enqueued

• The Execute consumes data from the 
queue and handles complex value 
computation

Some applications may involve long-
latency loads, where the Execute waits 
for their data to be ready

Data Access Execute
Memory 
Hierarchy
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Layers that Prior Work Modifies
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DAE [Smith ISCA ‘82]
μarch changes visible with new ISA inst.

DeSC [Ham MICRO’15]
Compiler targeting new ISA inst.



Layers in which Prior Work Operates
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DAE [Smith ISCA ‘82], Pipette [Nguyen MICRO’20] 
μarch changes visible with new ISA inst.

Programmable Prefetching [Ainsworth ASPLOS’18]
DeSC [Ham MICRO’15]
Compiler targeting new ISA inst.

Software Prefetching for IMAs [Ainsworth CGO’18]
Clairvoyance [Tran CGO’17] 
Compiler-only approach

DROPLET [Basak HPCA ‘19], IMP [Yu MICRO’15]
Use predictors to trigger prefetches
Slipstream [Sundaramoorthy ASPLOS ’00]
Use predictors to orchestrate streams
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DAE [Smith ISCA ‘82], Pipette [Nguyen MICRO’20] 
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Compiler targeting new ISA inst.

Provides an API that can 
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or DSL backend
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ISA-agnostic
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Provides an API that can 
be targeted by Compiler 
or DSL backend

Our hardware 
approach doesn’t 
modify the Core

API operations use existing 
memory instructions, so it is 
ISA-agnostic

Our Approach

Layers in which MAPLE Operates
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LD B[i+X]

Time (cy)

Access thread runs X
loop iterations ahead
of the Execute thread, 

since MAPLE loads the data

10050 1500

CONSUME (i)

data

LD B[i]
LD A[B[i]]

200

dataDRAM latency

PRODUCE

data(i)

 

 for (i=0; i<N; i++)
    produce(&A[B[i]])

  for (i=0; i<N; i++)
       data = consume()
       res[i] = data * 42

Access thread

Execute thread

 ITERATION i 

ITERATION i

 ITERATION i+1 

PRODUCE

pointer (i+x)

CONSUME (i)Lost of runahead due to
stalled Access thread

data

CONSUME (i)
for (i=0; i<N; i++)
     data = A[B[i]]
     res[i] = data * 42

Original program

Software API for Decoupling with MAPLE

• Compiler pass for decoupling (e.g. similar to DeSC) 
divides the program into Access and Execute threads 
and targets MAPLE’s API for Produce/Consume
• Decoupling by itself doesn’t give latency tolerance
• Need Memory-Level Parallelism

• Targeting MAPLE’s hardware achieves better 
performance due to its memory-parallelism
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Decoupling with MAPLE
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Produce path (steps 1-6)

Core 1 (behaving as the 
Access core) will supply 
data to Core2 (Execute)

‘Access’ or ‘Execute’ are 
roles taken by software 
threads rather than a 
core-type (as in prior art) 



Decoupling with MAPLE
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Consume path (A-C)

Core 1 (behaving as the 
Access core) will supply 
data to Core2 (Execute)

‘Access’ or ‘Execute’ are 
roles taken by software 
threads rather than a 
core-type (as in prior art) 



Decoupling with MAPLE
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Consume path (A-C)

Core 1 (behaving as the 
Access core) will supply 
data to Core2 (Execute)

‘Access’ or ‘Execute’ are 
roles taken by software 
threads rather than a 
core-type (as in prior art) 



MAPLE Hardware Design
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• Load Pipeline: Consume data

• Configuration Pipe: manage 
queues, config MMU, debug

• Store Pipe: Push data and 
pointers (to fetch)

START:
Incoming
Operation

END:
Outgoing
Response



Prefetching Loops of IMAs: LIMA
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Loading A[B[i]] for a range

• Base address of arrays A and B 
are configured

• Fetches B in chunks, which are 
then accessed word by word to 
calculate the index to array A.

Array B

Array A

5 7 1 ...

42  ...

Fetch ChunkLIMA(A,B, 0, 9)

Fetch Word
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for (i=0;i<N;i++){
for (k=ptr[i];k<ptr[i+i];k++){

y += val[k]*A[B[k]]; //IMA
}
result[i]=y;

}      

Prefetching version with MAPLE

Original SPMV code Snippet

• Prefetch IMAs in tight inner loops with a 
single instruction and then consume from 
MAPLE 

The LIMA subunit prefetches Loops of IMAs

• Can also do individual prefetching

• Advantages over the hardware and software 
state of the art (see full-paper)

LIMA(A,B,ptr[i],ptr[i+1];

for (i=0;i<N;i++){
for (k=ptr[i];k<ptr[i+i];k++){

y += val[k]*CONSUME(); 
}
result[i]=y;
LIMA(A,B,ptr[i+1],ptr[i+2];

}      

Prefetching with MAPLE
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• MAPLE can be instantiated many times, e.g., in a 
tiled architecture. 
• Each unit is addressed as a separate memory-

mapped page (protected access)
• A process can map multiple MAPLE units

• The API implementation hides the management of 
physical MAPLE units
• The software interface only deals with the 

abstract concept of queues

OS support

Processor Tiles
MAPLE Tiles
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Hardware Integration with OpenPiton

LLC
slice

64KB

Ariane
Core

NoC
routers

NoC
routers

LLC
slice

64KB

MAPLE
L1.5 private

8KB
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LSU L1 MAPLE    

ARIANE CORE TILE X TILE X+1

1 cycle 2 cycles

L1.5

4 cycles

4 cycles

TRI
iface

5 cycles1 cycles 2 cycles

NoC

3 cycles

3 cycles

• We integrated MAPLE into the 
open-source OpenPiton [Balkind 
ASPLOS’16] manycore, on its own tile

• We use in-order, OS-capable RISC-V 
cores: Ariane 
• Using the API, loads/stores are 

routed to MAPLE via the NoC
• Mem-mapped address range



• Experimental setup: SoC prototype on FPGA VC707 composed of 2 Ariane Core 
and 1 MAPLE Tile. We evaluate applications full-stack on top of Linux v5.6-rc4

Evaluating MAPLE full-system on FPGA
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MAPLE for decoupling
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MAPLE decoupling provides 2.3x speedup over SW-only decoupling, and 
outperforms traditional parallelism across the board, 1.5x over 2-cores do-all

2.3x1.5x



MAPLE for programmable prefetching
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Geomean speedup 1.7×
over no prefetching
Ø Up to 2.4× for SPMV 

Decreases the average load 
latency by 1.9x



Scaling core counts sharing a MAPLE unit
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Evaluating 8 cores sharing 
the same MAPLE instance

• 4 decoupling queues
• Can handle twice that
• Area-efficient
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Conclusions

MAPLE enables prefetching and decoupling SW 
optimizations with specialized HW to make it 
effective even with slim, in-order cores.

ü Can be used on a SoC generator framework, 
as a plug-n-play latency tolerance mechanism

Full-stack SoC prototype evaluation shows 
geomean speedups of 2.3x over software-only 
decoupling and prefetching

Our HW-SW co-design benefits from program 
knowledge and hardware specialization. 
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• Marcelo Orenes-Vera,  movera@princeton.edu
• https://decades.cs.princeton.edu/

Contact 

• github.com/PrincetonUniversity/maple
• github.com/PrincetonUniversity/openpiton
• github.com/PrincetonUniversity/DecadesCompiler

Project Repositories

• Decoupling with four tiles 
https://youtu.be/elkQcMFSvoo

• Decoupling and prefetching on top of Linux 
https://youtu.be/YRbsjqzlTOM

MAPLE demos on FPGA

Contributions

https://decades.cs.princeton.edu/
https://github.com/PrincetonUniversity/maple
https://github.com/PrincetonUniversity/openpiton
http://github.com/PrincetonUniversity/DecadesCompiler
https://youtu.be/elkQcMFSvoo
https://youtu.be/YRbsjqzlTOM

