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ABSTRACT

Routing in Delay Tolerant Networks (DTN) with unpredictalpode
mobility is a challenging problem because disconnectioapeeva-
lent and lack of knowledge about network dynamics hindersigo
decision making. Current approaches are primarily baseddum-
dant transmissions. They have either high overhead duecesex
sive transmissions or long delays due to the possibility akimgy
wrong choices when forwarding a few redundant copies. kbt
per, we propose a novel forwarding algorithm based on the adle
erasure codes. Erasure coding allows use of a large number of
lays while maintaining a constant overhead, which resaolfswer
cases of long delays.

We use simulation to compare the routing performance ofgusin
erasure codes in DTN with four other categories of forwaydif
gorithms proposed in the literature. Our simulations arseteon
a real-world mobility trace collected in a large outdoor dilife
environment. The results show that the erasure-codinglteige-
rithm provides the best worst-case delay performance wiikea
amount of overhead. We also present a simple analytical htode
capture the delay characteristics of erasure-coding basedrd-
ing, which provides insights on the potential of our apptoac
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General Terms
Algorithms, Performance, Theory
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1. INTRODUCTION

Opportunistic networks are an important class of DTNs inalvhi
contacts(time-window when data can be exchanged) apmpgar
portunistically without any prior information. Examples of such
networks are sparse mobile ad hoc networks, such as Zebj@&Net
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where no contemporaneous end-to-end path may exist dudito ra
range limitations. Routing becomes challenging in suclvoekts
because contact dynamics are not known in advance and no sin-
gle path can be relied upon. Most current approaches are base
some kind of data replication over multiple paths [14, 8].this
paper, we propose an alternate method of improving deldpmper
mance. The basic idea is to erasure code a message andudkstrib
the generated code-blocks over a large number of relays p&@d

to sending a full copy of the message over a relay, only aifnact
of code-blocks are sent over each relay. This fraction allog/to
control the routing overhead in terms of bytes transmitked.sce-
narios like ZebraNet, where nodes are energy constraimeiinig
such overhead is an important design goal.

The basic idea of using erasure coding is simple and has been
explored in many applications [11]. However, it is not cléand
when it will perform better than simpler alternatives basadgure
replications in DTNSs. In this paper, we study the perforneaoican
erasure coding approach and other existing alternativasiorerse
mobility scenarios with different node densities and mgvpat-
terns. We use both synthetic and real-world DTN mobilitcés
as input to our simulations. We discover that the erasuréngod
approach can provide good delay guarantees by using a fixad ov
head. Fundamentally, the benefits of erasure coding arisknmn
nating cases when long delays arise due to bad choice of fdrwa
ing relays. Erasure coding allows the transmission to beasbr
over multiple relays while using a fixed amount of overheakisT
results in a protocol much more robust to failures of a feayslor
some bad choices. We find that the erasure-coding basedtlaigor
is the least sensitive to different parameters in terms cfsage
latency and message delivery rate. Also, we derive an esipres
for the delay distribution under a simple network model tguar
when and why the erasure coding approach outperforms dther s
pler alternatives. In one extreme case, we show that thexgeer
delay of a simple replication strategy will be infinite, wbas, by
using erasure coding the average delay can be reduced tolla sma
constant.

Erasure coding can also help combat packet loss due to bad cha
nel quality or packet drops due to congestion. A full invgation
of the benefits of this aspect is outside the scope of thisrpbfeze,
our focus is on a less-conventional use of erasure codiraghigve
better delay performance using a fixed amount of replication

2. BACKGROUND

In an opportunistic network, reliable data delivery is ofeehieved
using replication to send identical copies of a message rowdi-
ple paths to mitigate the effects of disconnections. Typdgo-
rithms differ based on their decisions asatho forwards the data,
at what times the data forwarded, and vehomis the data sent. In



the following discussions, we definecantactas an opportunity to 3.1 Erasure coding background

communicate between two nodes a.n@lay denotes a fOrWarding Erasure codes operate by Converting a message into a |mtger S
node. of code blocks such that any sufficiently large subset of teeg
) ) ated code blocks can be used to reconstruct the originalagess
e Flooding (f1 ood): each node forwards any non duplicated \ore precisely, an erasure encoding takes as input a mes§age
messages (including messages received on behalf of othergijze )/ and a replication factor. The algorithm produces? +r /b

nodes) to any other node that it encountérisood delivers equal sized code blocks of sizesuch that any1+-c)-M /b erasure
messages with the minimum delay if there are no resource coded blocks can be used to reconstruct the message. Hera,
constraints, such as link bandwidth or node storage. small constant and varies depending on the exact algoried,u

e Direct contact (di rect ): the source holds the data until it such_as Re_ed-SoIomon codes or Tornado_ codes. T_h(_a §e|ettion °
comes in contact with thé destinatiafi.r ect uses minimal algonthms. " volve trade-offs between coding/decodirftiecy
resources since each message is tlransmitted at most Onceand the minimum number of code block_s_to reconstruct amessag
However, it may incur long delays For example, Tornadp codes ha\{e efficient encoding and decod

' ) ing steps based on simple operations such as XOR, at thefcost o
slightly highere. A thorough discussion of the various trade-offs is
presented in [11]. The choice of exact erasure coding dlguris

not important in our forwarding algorithm. The key aspedtiat

when using erasure coding with a replication factor-obnly 1/r

of the code blocks are required to decode the message. dheref

we ignore constarfor simplicity. Constanb is the block-size and

is implementation dependent.

e Simple replication (srep(r)): this is a simple replication
strategy in which identical copies of the message are sent
over thefirst r contacts. Here,r is the replication factor.
Only the source of the message sends multiple copies. The
relay nodes are allowed to send only to the destination; they
cannot forward it to another relay. This leads to small over-
head as the message flooding is controlled to take place only
near the source. This class of forwarding algorithms is also

known as théwo-hoprelay algorithm [3, 2]. There is a natu- 3.2 Erasure COdmg based forwardlng c{c)

ral trade-off between overhead)@nd data delivery latency. Our erasure-coding based forwarding algorithm can be under
A higherr leads to more storage/transmissions but has lower Stood as an enhancement to the simple replication algo(&hmp)
delays. described in Section 2.
In sr ep with a replication factor, the source sends identi-
e History-based (i st or y( ) ): herehistoryis used as an in- cal copies over contacts and relays are only allowed to send di-

dicator of the probability of delivery. Each node keepshkrac rectly to the destination. In the erasure-coding basedighgo, we

of the probability that a given node will deliver its message  first encode the message at the source and generate a largemum
r highest ranked relays (based on delivery probability) are of code blocks. The generated code blocks are then equdity sp
selected as forwarding nodes. ZebraNet uses the frequencyamong the firskr relays, for some constakt In comparison with

at which a node encounters destination as an indicator of the sr ep, this approach uses a factoroimore relays and each relay
delivery probability. We use the same implementation as [8] carries a factor ofl /k less data. However, the number of bytes

in our simulations. generated are)M, the same as the number of bytes generated by
srep (r).
A summary of these forwarding algorithms is listed in Tahle 1 Now by definition of erasure coding (with rate message size
M), the message can be decoded at the destinatibfr-ibf the
Algorithm Who When To whom generated code blocks are received. Since code blockswédedli
fl ood allnodes  new contact all new equally amondkr relays, the message can be decoded as soon as
direct source only destination  destination only anyk relays deliver their data if we assume that no code blocks are
srep(r) source only new contact r first contacts lost during transmissions to and from a relay.
hi story(r) all nodes new contact r highest ranked Whenk = 1, the erasure coding approach has the same effect as
the simple replication approach, which is, to use the firstlays
Table 1: Summary of various forwarding algorithms. and to each carry a copy of the original message.

3.3 Benefits of erasure coding in forwarding

3. THE ERASURE-CODING BASED FOR- In simple replicationr relays are used to improye the.dela)./ per-
formance. The erasure-coding based approach, instebzesikir
WARDING ALGORITHM relays for the same amount of overhead. Therefore, one can ex

As discussed in the previous section, most current appesach pect that the chances of at least some relays having low slalay
for routing in opportunistic networks are based on sendingfim higher, compared to using onlyrelays. At the same time, erasure

ple identical copies over different paths. There is a funelatal coding requires at leagtrelays to succeed (instead bfn sr ep)
trade-off between overhead and delay. On one extreme, figodi before the data can be reconstructed. Therefore, if the auotb
achieves the best possible delay but results in very highheeel. such low-delay relays are larger thanthe erasure-coding based
The other extreme is protocols likk r ect which have low over- approach will successfully deliver the message with a |cheday
head because they send only few copies or none at all. Lack ofthan simple replication. Thus, the fundamental questiavhisther
knowledge about the topology dynamics prevents distitnijogs to user relays and wait for one to succeed or usek relays and
good paths from bad ones. Therefore, these protocols mait res wait for k relays to succeed. We answer this question using a sim-
in long delays if bad paths are selected. In this section,eseribe ple analytical model in Section 5. The main observationas ihk

a forwarding algorithm based on the idea of erasure coding.a® is large, the delay distribution converges to a constanerdfore,
gorithm achieves better worst-case delay performanceetkiating with the erasure-coding based approach, one cafrbestassured

approaches with a fixed overhead. of a constant delay.



4. EVALUATION

In this section, we use simulation to compare forwarding al-
gorithms discussed in Section 2 and the erasure-codingl lzgse
proach presented in Section 3.

4.1 Methodology

We usedt nsi m the discrete event simulator for DTN environ-
ments from [6]. We implemented the following routing algbms
in dt nsi m flooding | ood), direct contact routingdj r ect ),
history-based routingh st or y), simple replication routings(r ep)
and erasure-coding based routieg]. Forsr ep andec, we rep-
resent different replication factors and number of relagsduto
split, usingsr ep-rep- and ec-rep-pn. Here,r is the replication
factor andn are the number of relays among which code blocks are
divided.

We simulate using a real-world mobility trace collected ast p
of a wildlife tracking experiment in Kenya. The mobile netko
was deployed by the ZebraNet group in January, 2004 [15EKFra
ing collars are placed on the necks of selected zebras. Ediehn ¢
uses GPS to record its position data every 8 minutes, andderi
ically sends back position log data to a mobile base stagan,(

a vehicle). Due to extreme weather and waterproofing isaages,
well as antenna problems, only one tracking collar retuanedm-
plete set of uninterrupted movement data for the whole 3#-ho
duration. Due to such limitatiorfs we create a semi-synthetic mo-
bility model as follows: we synthesize node speed and tugiean
distributionsfrom the observed data and create other node move-
ments following the same distribution. We scale the grie sz
6kmx 6km with a radio range ofkm. Initially, the nodes are ran-
domly distributed in the grid. The base station moves alorers
angular path near the grid boundary. All messages are ofiMze
Each node generates 12 messages every day. The total dwhtio
simulation is 16 days. Another mobility model based on heavy
tailed inter-contact times is discussed in Section 4.4.

We compare the routing performance of different forwardifig
gorithms using the following three metrics:

e Data success ratethe ratio of the number of messages that
are delivered to the destination within a tirie(deadling).
If T is unspecified, it is considered to be the whole duration
of the simulation, i.e 16 days.

Data latency: the duration between message generation and
message reception (atits destination). Ina DTN, latengy ma
not be the most critical issue. However, it is always desérab
to have fast data delivery whenever possible. The latency
distribution metric measures how efficiently a protocolause
the available contact opportunities.

Routing overhead: the ratio of the number of bytes trans-
mitted to the number of bytes generated during the simula-
tion time. This metric measures the extra data transmitted
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Figure 1: Cumulative distribution plots for inter-contact times
and contact durations for the ZebraNet trace. The figure plos
these two metrics for four randomly selected links. Other Ihks
show similar characteristics. The contact duration distrbution
uses a different x-axis range to separate different curvesOb-
serve that inter-contact time patterns show significant vaiation
and can be very long in some cases.

4.2 Zebratrace analysis

To begin our analysis, we first characterize the contact ippo
nities in the ZebraNet trace, with a focus on inter-contmeetand
contact durations. These two metrics are important in (stded-
ing the behavior of different forwarding algorithms on theliZaNet
trace. Simply put, inter-contact time is the time intenal Which
a link is down (no communications are possible during thisedi
and contact duration is the interval for which a link is up.

Figure 1 plots the distribution of these two metrics for foam-
domly selected pairs of nodes (links) in the ZebraNet tr&iace
almost all the links in the trace show similar charactergstive just
use these four random links as examples.

As shown in Figure 1(a), the inter-contact time distribotltas
few cases when a link is broken for a very long time. This ob-
servation is important because such inter-contact time et can

for each message generated, while a metric based solely onlead to extremely long delays when using a naive forwarding a

the number of message transmissions will overlook the fact

gorithm. As expected in such a sparse network, link up-tiares

thatec has smaller message sizes. The radio transmission relatively short (as compared to the link down times) andetfuze,

energy is proportional to the total number of byes transmit-
ted. Therefore, this metric reflects the energy efficiency of
the forwarding algorithm.

1At the moment, we are working on collecting more node traces
during our second field trip in June, 2005. We will work on atju
ing the model once we have those node traces available.

itis important to efficiently utilize the available commauation op-
portunity.

4.3 Impact of node density

4.3.1 Data latency distribution
Figure 2(a) and 2(b) show the data latency distribution fier t
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Figure 2: Latency distribution for different forwarding al go-
rithms. Traffic injection rate is 12 messages per day. The
distribution is shown in Complementary CDF (CCDF) curve.
A numeric presentation of this figure is in Table 2 which lists
the exact50%", 90" and 99" percentiles delay. The erasure-
coding based approach has significantly smaller tail than dter
approaches (except flood)f | ood has the lowest latencies but
has high overhead as discussed later.

ZebraNet trace with 34 nodes and 66 nodes respectivelyoDige
ing source and destination, the total number of relays arargR
64 respectively. The distribution is shown in Complemen@bF
(CCDF) curve.

Table 2 shows various data latency percentiles for both@en
and 66-node experiments to facilitate the comparison ofexmase
delay performance among all the algorithms considered.

Generallyec has a higheb0'" percentile compared to other al-
gorithms as shown in both Figure 2(a) and Figure 2(b) but &tow
99'" percentile. This is because it takes longer to find enough
relays to distribute data replicas. However, omae distributes
enough code blocks by forwarding along multiple relays (th-
ber of relays is larger than that used syep), it takes a much
shorter time to transfer the messages to the destinatiae siny
n/r relays are required to be successful. Sinces much larger
thanr, ec can fully utilize the diversity of multiple relays and is
very robust to bad performance of individual relays. Thatins
the presence of unpredicted failures or mobility of somehefre-

. 34 nodes 66 nodes
Algorithm
50% 90% 99%| 50% 90% 99%

ec-rep2-p8| 0.44 084 1.32 — — —
ec-rep2-pl6| 0.53 0.85 1.21] 0.51 0.83 1.17
ec-rep2-p32, — — — 0.59 0.82 1.04
srep-rep2 | 0.24 0.88 1.70, 0.25 0.89 1.91

direct 049 163 3.27| 051 1.79 3.54

history 0.18 0.87 9.50| 0.14 0.72  10.83

flood 0.013 0.044 0.12 0.00012 0.0091 0.032

Table 2: Latency (in days) for different algorithms for two dif-
ferent node densities. This is the same data as shown in Figur
2. We see thatec has significantly lower 99" percentile la-
tency. This indicates thatec is effective in getting rid of very
high latency cases.

Therefore, erasure-coding based routing is a promisingidate
for opportunistic networks where (1) relay failures arevafent
and delays are unpredictable, and (2) minimizing the wease
delay is important.

This observation is further supported by the data showngn Fi
ure 2(b) where node density is higher. Given more contactsen
lays, the CCDF curves of all forwarding algorithms becoreeger.
This is because there are more contacts ovezall as we have ex-
plained, still has the lowest9™" percentile and the sharpest data
latency curve. Therefore, given enough relay opportusige has
the best performance in delivering most of the messagesivest
among all the algorithms considered.

Simple replication, direct contact, and history-basedwtigms,
on the other hand, have very long tails (messages with mungeto
delays). This is because they use a small number of relayeTh
fore, they cannot guarantee when these relays will see thie de
nation. Very likely, some packets may encounter very lorigyde
by selecting some relays that fail to deliver the messagmptig.

In the long run however, with sufficient buffer space, all segges
will eventually be delivered. The lower the replicationtfarer, the
longer the tail will be. This is illustrated by comparing t6€DF
of srep-rep2 anddi rect. Sincesrep-rep2 replicates its
data to two other relays, the chance of losing contact oppitis
is lower than that fodi r ect . Hencesr ep-r ep2 has a shorter
tail thandi r ect .

The history approach, though having the lows@t* percentile
delay, also has the longest tail among all the algorithmsidened.
The performance dfii st ory is dependent on the accuracy of its
selection of highest ranked relays based on past statidfithe
decision is relatively accurate, it tends to find relays thiitfor-
ward the data to the destinations very quickly. On the contif
the relays selected based on this heuristic do not reflaatefdior-
warding probabilities, very long delays may be incurredwideer,
using certain timeout and retransmission schemes, thegedelay
messages might be masked out which makes the history approac
more attractive over the others in networks with predigaimde
movement. This is an interesting research direction tocegpl

Finally, observe that thel ood protocol in Figure 2(a) and Fig-
ure 2(b), has latency distribution curves which are almestical.
This shows that | ood has very low delays for all messages.

4.3.2 Routing overhead

Table 3 lists the routing overhead corresponding to eactlial-
ing algorithm. Routing overhead is measured using the tio

lays, ec still has a good chance of sending the messages to thebytes transmitted to the bytes generated. Since éotandsr ep

destination by routing code blocks through other functioakys.

transmit a fixed amount of data with respect to the data geetira



Algorithm Overhead
(34 nodes) (66 nodes)
ec-rep2-p8 3.96 —
ec-rep2-plo 3.96 3.98
ec-rep2-p32 — 3.98
srep-rep2 3.98 3.99
direct 1.0 1.0
history 30.28 59.61
flood 68.0 132.0

Table 3: Routing overhead of different forwarding algorithms
for two node densities. Forwarding algorithms (such agc and

sr ep) which employ replication only at the source has signifi-
cantly lower overhead. f | ood has almost an order of magni-
tude higher overhead and does not scale well as the number of
nodes increase. The high overhead dii st ory results from
our implementation in dt nsi n2 where a copy of message is
transmitted even when some copy of the original message has
been delivered. Some timeout scheme can solve this problem b
reducing unnecessary message transmissions.

their overhead is constant. For an algorithm with a repbcat
factor of 2, the overhead should be 4, with 2 from the source to
the relay and from the relay to the destination and the otHer 2
the other relay. On the other hand, in bathst or y andf | ood
where relays also forward to other relays (and there arestace
tions on replication factor), multiple identical copiestioé original
message are transmitted even after the first delivery of tigg- o
nal message. As Table 3 shows, normdllyst or y has a higher
overhead thasr ep andec. This situation becomes worse when
more contacts are available and very likely, more duplicaés-
sages will be transmitted. Fét ood, almost all the nodes could
receive a copy potentially and the overhead is proportitmak:,

T % (1) ec-rep2-ps—
08t t"‘\“f‘) : (2) ec-rep2—pl6.me T
o6l A . (3) srep-rep2 .........
o \\ i (4direct ..
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Figure 3: Latency distribution of different forwarding alg o-
rithms for the Pareto trace. We use a log-scaled x-axis for ak-
ity. Similar to the ZebraNet trace we observe that tails are 8-
nificantly smaller when ec is used, i.e., the worst case delays
for other approaches are significantly higher. Since x-axiss log
scale, the ratio of the worst case delay values is higher than
the ZebraNet trace.

deadlines smaller than the total simulation time. All desetl are
specified in units oflays The data success rate foe is low if the
deadlines are less than 6 hours long. However, for relgtieslg
deadlines (between 1 and 2 daysg, has the highest data success
rate. This result can be observed directly by looking at thead
latency distribution curve. Because has a lowe®9*" percentile

of latency distribution, it will deliver more messages befehat
time and hence a higher data success rate. Therefore, évaati
low latencies for all messages or high success rate withitaioe
reasonable deadlines are the application requirereerghould be

wheren is the number of nodes. The factor of two comes because Us€d.

every relay sends to the destination (even if the destindtas al-
ready received the message) in our implementation. Sonyaesim

On the other handii st or y has the highest data success rate
when the deadline is less than 6 hours. This is bechusé ory

timeout scheme, such as one that imposes a maximum number of@n find good relays without the need to distribute copiesaté d

hops a message can traverse, can alleviate this problemeugow
data delivery rate will decrease if the number of hops a ngessa
can traverse is too small. The exploration of such a trafles-pfurt
of our future work.

In summary, in terms of routing overheagl; andsr ep scale
well with node density and network size, whflé ood does not.

4.3.3 Data success rate

Algorithm | 0.25day 1day 2days 4days 8days
ec-rep2-p8| 22.6% 95.9% 100% 100% 100%
ec-rep2-ple| 9.2% 94.6% 100% 100% 100%
srep-rep2 | 51.8% 92.5% 99.6% 99.9% 99.9%
direct 32.0% 74.6% 94.2% 99.5% 99.9%
history 58.4% 87.9% 92.7% 94.6% 95.3%
flood 100% 100% 100% 100%  100%

Table 4: Data success rate of different algorithms for diffeent
deadlines. Even with extremely large deadline of 8 days sim-
ple replication can not transfer all its data. Also note that ec
has low data success rate when deadlines are extremely small
and hence, caution must be used before deciding to use erasur
coding.

Table 4 shows the data success rate for different algorithitis

to many relays. The performance improvemenhio§t or y upon

di rect andsr ep comes directly from the efficiency of its selec-
tion of good relays. However, sin¢e st or y has long tails in its
data latency distribution curve, its data success ratddtively low
compared to other approaches.

4.4 Impact of mobility model

In this section, we evaluate the performanceofand other ap-
proaches on a different mobility model. Our results here aem
strate that the idea of using erasure-coding based rouinghe
applied to different scenarios other than the ZebraNettratle
find that the benefits of erasure coding are greater when tée in
contact times are heavy-tailed. We use such a heavy-taitd-d
bution for simulations in this section. The mobility modehased
on the approximate power law distribution for inter-comttimes
observed for another set of real-world traces described]in [

Figure 3 plots the CCDF of the data latency distribution foe t
Pareto trace. The other simulation parameters are exaetlyame
as in Section 4.1. Observe that all curves are much sharpethie
ZebraNet traces. Agaimec has the sharpest CCDF curve and the
lowest 99" percentile delay, while all the other algorithms have
higher worst case delays.

5. DELAY DISTRIBUTION ANALYSIS

This section discusses the theoretical behavior of theydiita



tribution when the erasure-coding based approach is used. W
also theoretically compare the simple replication appnasgith the
erasure-coding based approach.

5.1 Network model and assumptions

We consider the following scenario. Consider a source asti-de
nation pair which can communicate via one of theistinct relays.
Delay seen if relay is used is a random variable with distribu-
tion X;. Using a random variable allows us to model the fact that
the delay encountered in using a relay is not known precisity
assume the delay variableX () to be identical and independent.
Although a strong assumption, this should be seen as a Brstet
wards a more sophisticated analysis. Even with these asgnmsp
we show interesting behavior which gives fundamental mtsign
the potential of using an erasure-coding based approachnowe
introduce the concept afrder statistics the mathematical theory
that is used to derive results.

5.2 Order statistics background

Consider identical and independent (1ID) random variables
X1, Xo2... X, LetY", Y5, ... Y," be the random variables ob-
tained by sorting the seX, X» ... X, in increasing order. The
random variablé’;, is called thek™ order statistic> One can ob-
tain the distribution ot in the following form [12]. LetF(x) be
the cumulative distribution function (CDF) of the variabl¥; and
f(x) be the probability distribution function (PDFX{ are identi-
cal). Then the PDF (denoted lg¥} (y)) of Y, is given by:

gyl — Fy)

gr(y) = f(y)m

@)

5.3 Results for the delay distribution

In the erasure-coding based approach, the source erasies-c
a message and divides the code blocks equally amaetays. For
simplicity, we assume that is a multiple ofr, andn = rk. A
destination can decode a message as soémrelays successfully
deliver data. LetEC;" denote the delay distribution whest is
used withr replication andn relays. Using the terminology of
order-statistics8C™ is defined as th&'" order statistic over the
variables{ X1, Xa2,..., Xn}.

ECT

=Y 2

In simple replicationy relays are used and the message can be
decoded when one of these relays successfully delivers ddta
though the choice of relays could vary with the amount of finfo
mation available to the forwarding algorithm, for simpycive as-
sume that the relays. . . » are used by the simple replication ap-
proach. Therefore, for simple replication, the observddydis the
minimum of the random variablesX, Xo, ..., X, }.

srepr = Y7 3)
Equation 1 (for distribution of thé*" order statistic) can now be

used to obtain the delay distribution. However, it is harditectly
compare the statistics of these distributions from the aliormula.
In the rest of this section, we discuss two aspects based@btive
analysis. First, we discuss the behaviofaf," as a function of: (

n measures how aggressively erasure coding is used). lcylarti
we derive the asymptotic distribution f&C," (whenn — o0).
Second, we comparer ep and EC;* analytically, for both finiten
and asn — co.

2y = min; (X;) andY,” = maz;(X;).

5.4 Understanding the nature ofec?

The exact distribution of£C;* depends on the distribution of
X,. For our analysis, we consider the case whénare given
by the Pareto distribution. Recent work on mobility anadyisas
hinted that such delay distributions are heavy-tailed dwd it is
an interesting case to discuss in-depth [2]. We also briefhsicler
the more traditional case wheX; are exponential (for example,
when the underlying mobility model is random waypoint).

For a Pareto distribution, the probability distributiométion is
given by f(z) = (b*)axz™*"' . The constanb is its scale param-
eter, andx is the power law coefficient. Far < 1, F[X] = o
(i.e., using only one relay will have an infinite average ggld

To understand the nature &fC;", we plot the PDF ofEC}" for
different values of.. Figure 5.4 shows the PDF and CDF respec-
tively. We consider the case when = .6. The choice ofx is
arbitrary and the only important aspect is that it presentase
when the distribution is extremely heavy-tailed.

Key Observations. As n increases, the distribution becomes
thinner and more bell-shaped. In particular, the variarfcthe
distribution reduces as increases. Low variance means that the
probability of encountering very large delays due to badahof
relays is reduced. Also note that the mean delay reducesiras
creases. We find that with = 32, the mean delay is within 10%
of the delay obtained when = oo relays are used. This shows
that convergence is reasonably quick, and most of the aalyast
of erasure coding can be obtained by using a moderate nurhber o
relays.

The following result formalizes the observations made abov
The proof is based upon limiting analysis of quantiles ofjéar
number of independent variables and is beyond the scopedsof th
paper [12].

REsULT 1. Let the underlying delay variableX; have a con-

tinuous PDFf(z). Let¢: denote the},th quantile of the random

variable X;. * Then for sufficiently large:, the distribution of
ECT converges to the normal distribution in the following man-
ner:

(r—1

ECY is N(Cy, m) (4)
COROLLARY 1.

lim_ E[ECT] = (1 (%)

nan;O Variance[EC)] = 0 (6)

It follows immediately that, for large, the distribution ofEC}"

converges to a constant. The mean dela);%tl’é guantile of the
original distribution. This result is also interesting base it in-
dicates that only thé: of the original distribution is relevant to

. T . .
characterize the performance when erasure coding is used.

COROLLARY 2. WhenX; have Pareto distributions with scale
parameter and power-law coefficient, E[EC}'] is given by,

T 1

)OL

3E[] is used to denote expectation of a random variable.
4By definition, Prob(X; < (1) = % (1 is obtained by the in-
verse CDF function.

Jlim B[ECT] = b ( @)

r—1
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Figure 4: PDF and CDF of the delay distribution for differ-
ent values ofn when using the erasure-coding based approach.
Underlying delay distribution is Pareto with « = .6, andb = 1.

r = 2. For each line, the value after the labelAvg denotes the
average value of the distribution E[ECT']). We observe that
asn increases the distribution becomes thinner and more bell-
shaped.

The above equation shows that for any valuexpthe delay be-
havior of an erasure-coding based approach converges tstaod
(for any finite amount of replication facter such that > 1). This
is particularly interesting because for< 1, the delay of using any
single relay by itself iso. In fact, thesr ep algorithm, which uses

the firstr relays, will also have an infinite delay on average if the
productra < 1. For this case, the erasure-coding based approach

has infinitely better performance. This shows that for heaited
delay distributions, the erasure-coding based approadieso get
rid of the tail (i.e long delays) whereas simple replicatiam not.

For the Pareto case, we can also derive the valug[&6fC;| for
a finite value ofn. This is given by the following expression,

b 1 1 1
T T S S LA S sy ey sy

This expression is useful in determining the value:@t which the
expected delay converges to its eventual vglue

5.5 Comparingec and srep
We argued above that the delay distribution when using ezasu

(p th percentile delay) (normalizes
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Figure 5: Comparing percentiles delay forec and srep.

r = 2,n = 32. a) X; are exponential b) X; are Pareto (@ = .6).
Delays are normalized to the¢: of the underlying distribution
(X:), which makes the plots ir;dependent of the scale parame-
ters of the underlying distribution. The plot is obtained by first
determining delay distributions in accordance to Equation2 for
the ec approach and Equation 3 for the simple replication ap-
proach. The percentiles are then analytically computed byri-
verting the cumulative distribution function. ec approach per-
forms significantly better than sr ep when comparing higher
percentiles of the resultant delay distribution. In fact, ec ap-
proach has almost non increasing delay values for differener-
centiles.

coding has low variance and therefore, it has lower worst das
lay than simple replication. To support this, we compareptfie
percentile delay foec andsrep. Thep!" percentile delay for
a random delay variabl¢ is defined as the valuer such that
Prob(Z < w) = p. Figure 5 compares percentiles delaygorep

andec for two underlying delay distributions¥;), a) Exponential,
b) Pareto witho = .6. » = 2 for bothsr ep andec, andn = 32

for ec. The delay values for each approach are normalized to the

¢1 of the underlying delay distributio’;. This makes the plots

inrdependent of the scale parameters of the underlyingldision.
For lower percentiles, the erasure-coding based approash h

higher delays. This implies that for the few best cases, lsimgpli-



cation has lower delays thac. However, the delays observed
with ec towards the higher percentiles are much lower thaap.
Forec, even for a moderate value af = 32, delay values across
percentiles are more or less the same, and close to.thEor sim-

ple replication, delays for higher percentiles are vehhhi[m this
example, for the Pareto case, ##" percentile delay fosr ep is
25 times more than the erasure-coding based approach.

6. RELATED WORK

A series of efforts [8, 14, 9] in the context of sensor and robi
ad-hoc networks explore various forwarding algorithmsdjppor-
tunistic networks. These techniques employ a form of dagdi-du
cation (typically based on controlled flooding) to achievergual
delivery.

The ZebraNet system uses a history-based protocol that leve
ages the contact history of nodes to the base station [8].- Sim
ple replication approach which uses only one relay was shown
achieve optimal throughout in a mobile ad-hoc network [3] has
been further analyzed in [7, 2].

Erasure codes have recently been discussed and applieshyo ma
network applications, including achieving efficient distition of
bulk data in overlay networks [1] and P2P networks [10], ogpi
with unreliable transmissions in wireless sensor netwfiR§ and
achieving reliability in large-scale distributed storaystems [4].
Applying erasure coding to combat uncertainty in delay qerf
mance is the focus of our work. Since the idea of erasurengodi
based forwarding is orthogonal to all other forwarding aaghes,
it can potentially be combined with them.

7. CONCLUSIONS AND FUTURE WORK

We presented a novel forwarding algorithm based on the use
of erasure coding for opportunistic networks. The use ofwe
coding spreads the responsibility of forwarding over maogles
while maintaining a fixed overhead. We showed using bothyaisal
and simulation against a real-world mobility trace that exarsure-
coding based approach significantly improves the worst delssy.

At the same time, it has no “very small delay” cases. This iata n
ural consequence of how this approach works. We believetieat
basic idea holds promise and an approach that combinesrerasu
coding with other techniques, such as simple replicaticay give

us good performance on both fronts.

We have introduced the erasure coding idea in a simple gettin
in which all nodes are equally good relays. If different rotave
different characteristics, a more sophisticated appraacpread
erasure code blocks is required. This is part of our ongoffugte
and is discussed in [5]. We also plan to investigate thetyitili the
erasure coding approach on more mobility traces with déehsir-
acteristics. Our analysis is preliminary and assumes fifffateht
relays used for forwarding data have independent delayilalist
tions. This assumption breaks down if erasure coding usssett
n relays. Extending our analysis to incorporate such casesiis
teresting future direction. Finally, based on the obsémahat dif-
ferent approaches have distinct advantages under certaiility
characteristics, it is desirable to have an adaptive gfyateat se-
lects one routing scheme over another on-the-fly, tryingctoeve
the best aspects of various forwarding algorithms.
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