
THE TIMEKEEPING METHODOLOGY:

EXPLOITING GENERATIONAL LIFETIME

BEHAVIOR TO IMPROVE PROCESSORPOWER

AND PERFORMANCE

ZHIGANG HU

A DISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

ELECTRICAL ENGINEERING

NOVEMBER 2002

c
 Copyright by Zhigang Hu, 2002.

All Rights Reserved

iii

Abstract

Today’s CPU designers face increasingly aggressive CPU performance goals while also

dealing with challenging limits on power dissipation. The conflict of performance and

power requirements increases the importance of simple but effective techniques. This the-

sis demonstrates how processors can be optimized by exploiting knowledge about time

durations between key processor and memory events. These “timekeeping” techniques can

give performance or power improvements with simple hardware.

We use the memory hierarchy as the main example to illustrate the timekeeping method-

ology. First we introduce some basic concepts, including the generational nature of cache

behavior. By exploiting characteristics of key timekeeping metrics, we show how they form

the basis for a rich set of policies to classify and predict future program behavior. Hardware

mechanisms are then proposed to harness these predictions.

Three techniques are presented as applications of the timekeeping methodology to the

memory system. The first mechanism,cache decay, can reduce cache leakage energy by 4X

by identifying long-idle cache lines using simple 2-bit counters and turning them off. The

second mechanism, atimekeeping victim cache filter, uses similar 2-bit counters to identify

cache lines with short dead times and chooses them as candidates for the victim cache.

This filters out 87% of victim cache traffic while improving performance. In the third

mechanism,timekeeping prefetch, we exploit regularity across consecutive generations of

the same cache line, using information from the previous generation as predictions for the

current generation. The resulting prefetcher is highly effective and also hardware-efficient.

With an 8KB history table, an average performance improvement of 11% is achieved for

SPEC2000.

Outside the memory system, we also show how to apply the timekeeping methodology

to other subsystems such as branch predictors. A key characteristic of predictor data is

that they are execution hints that do not affect program correctness. To exploit this charac-

iv

teristic, we propose to use naturally decaying 4-transistor cells to build branch predictors,

instead of traditional 6-transistor cells. This reduces branch predictor leakage by 60-80%

with cell area savings up to 33%.

The techniques presented clearly demonstrate the power of the timekeeping methodol-

ogy. We expect that in our future work, as well as in work by others, more timekeeping

techniques will be proposed to help to meet the many challenges in future processors.

v

Acknowledgments

First and foremost, I would like to gratefully thank my advisor, Professor Margaret Martonosi,

for leading my way into the wonderful field of computer architecture, and for guiding my

numerous random thoughts to solid, reportable work. I would also like to acknowledge Dr.

Stefanos Kaxiras, for providing a precious opportunity of summer internship at Bell Labs,

and for taking the role of a co-advisor during the key years of my graduate study. Thanks

also go to my other co-authors, Profs Kevin Skadron and Doug Clark, Philo Juang, Dr.

Girijia Narlikar, Dr. Phil Diodato, Dr. Alan Berenbaum, and Dr. Rae McLellan.

I am very grateful to the other Computer Engineering, Computer Science, and Informa-

tion and System Sciences faculty at Princeton, for teaching me a broad range of knowledge,

from which I will benefit for my whole life. Special thanks go to my academia advisor, Pro-

fessor Niraj Jha, for directing me in the first year of my graduate study and for teaching me

a key course for my research.

Many researchers outside Princeton also helped my research, either through insightful

discussions, or by providing tools or advice for my research. Among them are Dr. Anchow

Lai, Dr. Pradip Bose, Dr. George Cai and many others.

Last and most importantly, my deepest thanks to my family, especially my parents, for

their support and encouragement over the years. Finally, to my wife Liya Wan, for her love,

support and always taking care of me.

Contents

Abstract . iii

1 Introduction 1

1.1 Introduction 1

1.2 Contributions 5

1.2.1 Timekeeping in the Memory System 6

1.2.2 Timekeeping in Other Systems 8

1.3 Organization 9

2 The Timekeeping Methodology 10

2.1 The Timekeeping Methodology: Introduction. 10

2.2 Timekeeping in the Memory System 17

2.2.1 Introduction to Timekeeping Metrics in the Memory System 17

2.2.2 Simulation Model Parameters 19

2.2.3 Statistical Distributions of Timekeeping Metrics 22

2.2.4 Using Timekeeping Metrics to Predict Conflict Misses 23

2.2.5 Summary .. 29

2.3 Timekeeping Victim Cache Filter. 30

2.3.1 Introduction. 30

2.3.2 Simulation Results 32

vi

CONTENTS vii

2.3.3 Adaptive Scheme 33

2.3.4 Timekeeping Victim Cache Filter: Summary. 34

2.4 Related Work 35

2.5 Chapter Summary .. 36

3 Cache Decay 38

3.1 Potential Benefits .. 38

3.2 Timekeeping for Leakage Control: Cache Decay 41

3.3 Cache Decay: Implementation .. 44

3.4 Power Evaluation Methodology. 47

3.5 Simulation Model Parameters . .. 51

3.6 Cache Decay: Simulation Results 51

3.7 Cache Decay: Adaptive Variants. 55

3.8 Changes in the Generational Behavior and Decay 60

3.8.1 Sensitivity to Cache Size, Associativity and Block Size 60

3.8.2 Instruction Cache 61

3.8.3 Multiple Levels of Cache Hierarchy 61

3.8.4 Multiprogramming 64

3.9 Related Work 65

3.10 Chapter Summary .. 66

4 Timekeeping Prefetch 69

4.1 Prefetching: Problem Overview. 70

4.2 Tag-History-Based Address Predictor 71

4.3 Live-Time-Based Dead Block Predictor 74

4.4 Timekeeping Prefetch: Implementation 76

4.5 Simulation Results. 80

CONTENTS viii

4.6 Related Work 84

4.7 Chapter Summary .. 85

5 Timekeeping in Branch Predictors 87

5.1 Introduction 87

5.2 Branch Predictors Studied 89

5.3 Simulation Model Parameters . .. 91

5.4 Spatial and Temporal Locality in Branch Predictors 92

5.5 Decay with Basic Branch Predictors 94

5.6 Decay with Hybrid Predictors .. 96

5.7 Branch Predictor Decay with Quasi-Static 4T Cells 98

5.7.1 The Quasi-Static 4T Cell. 100

5.7.2 Retention Times In 4T Cells 101

5.7.3 Locality Considerations. 102

5.7.4 Results for Decay Based on 4T Cells. 103

5.8 Chapter Summary .. 106

6 Conclusions 108

6.1 Contributions 108

6.2 Future Directions .. 111

6.3 Chapter Summary .. 113

Chapter 1

Introduction

1.1 Introduction

For several decades now, the advance of semiconductor technologies has enabled a dou-

bling of transistor density on a manufactured die every year [53]. This trend, widely known

as “Moore’s law”, provided computer architects with solid physical basis for building high

performance computers.

The task of a computer architect is a complex one: to “determine what attributes are

important for a new machine, then design a machine to maximize performance while stay-

ing within cost constraints” [25]. In other words, a computer architect must understand

the functional requirements of software applications, organize transistors into a complete

machine to satisfy these functional requirements, and then optimize the design for perfor-

mance, cost and other factors.

With accumulated experience over the years, as well as the help from computers them-

selves (through computer aided design), computer architectures have evolved from sim-

ple sequential designs in early years to complex super-pipelined, superscalar, out-of-order

designs such as the Intel Pentium 4 processors [28]. When designing such powerful and

1

CHAPTER 1. INTRODUCTION 2

complicated processors, computer architects face enormous challenges. Among these chal-

lenges, the “memory wall” and the increasing power consumption and density problems

stand out as crucial bottlenecks awaiting further breakthroughs:

� The “memory wall” : The rate of improvement in microprocessor speed far exceeds

that in DRAM memory speed [25]. This is illustrated in Figure 1.1: while CPU

speeds double approximately every eighteen months, main memory speeds double

only about every ten years. Because of these diverging rates, a memory request

in current microprocessors could take hundreds of cycles to complete. This often

leaves the CPU staying idle in waiting of the data, and thus greatly limits the system

performance. To solve this problem, on-chip caches have long been used as high

speed buffers for the main memory [68]. However, current cache designs suffer from

cache misses and their performance is far from optimal. Overall, the “memory wall”

is still a unsolved problem for computer architects [49, 79].

1

10

100

1000

10000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

Year

R
el

at
iv

e
P

er
fo

rm
an

ce

CPU

memory

Figure 1.1: The widening speed gap between microprocessor and main memory, starting
with 1980 performance as a baseline. The memory baseline is 64-KB DRAM. The CPU
refers to the whole microprocessor including on-chip caches. Data are based on [25].

� Power consumption: As shown in Figure 1.2, as CPU chips are more densely packed

with transistors, and as clock frequencies increase, power dissipation on modern

CHAPTER 1. INTRODUCTION 3

CPUs will keep increasing in the following generations. Although power has tra-

ditionally been a worry mainly for mobile and portable devices, it is now becoming

a concern in even the desktop and server domains.

1

10

100

1000

10000

2002 2004 2006 2008 2010 2012 2014 2016

#T
ra

n
si

so
to

rs
o

n
D

ie
(M

ill
o

n
s)

0

50

100

150

200

250

300

350

2002 2004 2006 2008 2010 2012 2014 2016

M
ax

im
u

m
P

o
w

er
(W

)
Figure 1.2: Increasing transistors on die (left) and corresponding increases in power dissi-
pation (right). Data are based on the International Technology Roadmap for Semiconduc-
tors, 2001 Edition [66].

In current CMOS circuits, the dominant form of power dissipation is “dynamic” or

“switching” power, which arises from the repeated charging and discharging of tran-

sistors and wires due to computing activity. Dynamic power is proportional to the

square of the supply voltage; for that reason, it has been common to reduce sup-

ply voltage to improve both performance and power. The left graph in Figure 1.3

demonstrates this trend. While effective, this optimization often has the side effect of

increasing the amount of “static” or “leakage” power that a CMOS circuit dissipates,

which is mainly due to the sub-threshold current that flows through transistors even

when they are not switching. Static power is so-named because it is dissipated con-

stantly, not simply on wire transitions. Static power is a function of the circuit area,

the fabrication technology, and the circuit design style. In current chips, static power

represents about 2-5% of power dissipation (or even higher [35]), but it is expected

to grow exponentially in upcoming generations [5, 66], as shown by the right graph

in Figure 1.3. With a trend of growing impact, leakage power has become a major

CHAPTER 1. INTRODUCTION 4

issue for power-aware computer architects.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2002 2004 2006 2008 2010 2012 2014 2016

V
d

d
(V

)

0.01

0.1

1

10

100

2002 2004 2006 2008 2010 2012 2014 2016

L
ea

ka
g

e
C

u
rr

en
t

at
25

O
C

(u
A

/u
m

)

Figure 1.3: Decreasing supply voltage (Vdd) (left) and exponential increases in leakage
current (right). Data are based on the International Technology Roadmap for Semiconduc-
tors, 2001 Edition [66]. The left graph is in linear scale while the right graph is in log
scale.

In attacking these challenges, many computer architects adopt a quantitative approach

as described below [25]:

1. First, identify certain aspects of program behavior that are crucial to performance,

power or other targets under attack.

2. Second, profile and observe the chosen aspects of program behavior to locate the

“common cases” that most frequently occur.

3. Third, design specific hardware structures to cater to the common cases and make

them the most effective in terms of the set target.

In this process, the first step is a starting point, limiting the scope of the following steps.

Since there are numerous aspects of program behavior, attempt to cover all aspects of pro-

gram behavior is not practical. On the other hand, ignoring important aspects of program

behavior could miss great opportunities for improving processor performance. Therefore,

it is important to pinpoint appropriate aspects of program behavior to investigate.

CHAPTER 1. INTRODUCTION 5

Most prior work has focused on time-independent aspects of program activity. In these

approaches, event ordering and interleaving are of prime importance. An example of such

work is the trace-based analysis adopted by most researchers [74, 78, 29]. In trace-based

analysis, program memory behavior is typically represented as collections of memory ad-

dress traces. Memory addresses and their access ordering are captured in these traces, but

the time intervals between accesses are missing, therefore can not be exploited.

1.2 Contributions

In contrast to traditional trace-based analysis, in this thesis we propose to keep track of the

time intervals dynamically at run time, use them to make predictions about future program

behavior, and build hardware mechanisms to exploit these predictions for improving pro-

cessor performance and power consumption. This methodology, dubbed the “timekeeping

methodology”, exploits statistical characteristics in the time-dependent aspects of program

behavior, as well as those that are time-independent. As an example, one characteristic of

a program’s time-dependent behavior is that data tend to become useless after they have

been idle for a long time. To exploit this characteristic, we can keep track of the idle time

(the time interval between current time and the time of the previous access) of a cache line,

predict a cache line useless if the idle time exceeds a threshold, and then “turn off” the

cache line to cut off its leakage power consumption. This mechanism, called “cache de-

cay”, provides substantial power savings while maintaining processor performance. Using

this example, as well as several other sample applications, this thesis shows that time-based

tracking of program behavior can be a powerful way of understanding and improving future

program behavior.

The timekeeping methodology can be widely applied to various components in digital

processors. We will first use the memory system as the main example to illustrate the power

CHAPTER 1. INTRODUCTION 6

of the timekeeping methodology. Later we will give examples of how the timekeeping

methodology can be applied to other structures, such as branch predictors.

1.2.1 Timekeeping in the Memory System

We follow a three-step process to apply the timekeeping methodology to the memory sys-

tem:

1. First, we provide a complete quantitative characterization of the time-dependent

memory reference behavior. We construct an expanded set of useful metrics regard-

ing generational behavior of cache lines.

2. Second, using these metrics, we introduce a fundamentally different approach for on-

the-fly categorization of application reference patterns. We give reliable predictors

of conflict misses, dead blocks and other key aspects of reference behavior.

3. Third, based on our ability to discover these reference patterns on-the-fly, we propose

hardware structures that exploit this knowledge to improve performance and power

consumption.

We propose three novel hardware mechanisms as applications of timekeeping in the

memory system to improve processor power and performance.

� Cache Decay [33, 42, 43]: Cache decay targets cache lines with long idle times for

reducing cache leakage energy. With long idle times, these cache lines consume the

largest portion of cache leakage energy. If a long idle time can be identified at run

time, then the associated cache line can be “turned off” in time to cut off leakage

consumption. A key program characteristic that supports cache decay is that if a

cache line has been idle for a long time, it is likely no longer useful, so turning it off

will not incur any extra cache miss. Cache decay can be implemented using simple

CHAPTER 1. INTRODUCTION 7

hierarchical counters, with a two-bit counter for each cache line, and a single global

counter for the whole cache. Simulation results show that cache decay can reduce

cache leakage energy by4X, with minimal impact on miss rate or performance.

� Timekeeping Victim Cache Filter [34]: In contrast to cache decay, the timekeeping

victim cache filter targets cache lines with short idle times. Short idle times indicate

cache lines that are likely victims of conflict misses, which are prematurely evicted

due to mapping conflicts. Consequently, these cache lines make perfect candidates

for conflict-oriented structures, such as victim caches. Simulation results for the

SPEC2000 benchmarks prove the effectiveness of such filters: the victim cache traffic

is reduced by about 87%, while at the same time better performance is achieved

compared to victim caches without filters. Compared to another filter [1] built upon

time-independent analysis, the timekeeping filter achieves 22% more performance

improvement with a similar effect on victim cache traffic.

� Timekeeping Prefetch [34]: The timekeeping prefetch mechanism demonstrates that

a history-based predictor can predict both what should be prefetched and when to

initiate the prefetch. The intuition is as follows: in a cache set, if in the past cache

line A was followed by B, then C, and the live time (the time between the first and

the last access) of B is lt(B), then the next time we see A followed by B, we can

predict C as the next address and lt(B) as the live time of B. Thus a prefetch to C

can be scheduled at roughly lt(B) after the appearance of B. In other words, the his-

tory of previous occurrences can predict the behavior of the current occurrence. Our

simulation results show that the resulting prefetcher can improve processor perfor-

mance by an average of 11% for the whole SPEC2000 benchmark suite, with an 8

KB correlation table. For 6 out of the 26 benchmarks, it improves performance by

more than 20%. With a storage requirement that is 2-3 orders of magnitude smaller,

CHAPTER 1. INTRODUCTION 8

this timekeeping prefetcher outperforms previously proposed prefetchers exploiting

time-independent memory behavior.

While cache decay targets cache lines with long idle times, timekeeping victim cache

filter mainly concerns those with short idle times. Both cache decay and timekeeping vic-

tim cache filter exploit lifetime characteristics within single occurrences. In contrast to

these two mechanisms, timekeeping prefetch demonstrate how regularity across consecu-

tive occurrences of the same cache line can be exploited.

Different timekeeping techniques require specific hardware support. A common re-

quirement in all timekeeping techniques is to track time intervals at run time. Our proposal

is to gauge the intervals by hierarchical counters. Each cache line is augmented with a local

counter that is 2-5 bits wide. This only adds 1% - 2% extra hardware to a typical cache line.

All local counters are triggered by a global cycle counter, which is shared by the whole pro-

cessor. The local counters gauge time intervals dynamically, at the granularity determined

by the global counter. Hierarchical counters are more hardware-efficient than a flat design

that uses full counters in each cache line. Moreover, the shared global counter provides a

central knob that can be dynamically turned to adapt to varying run time program behavior.

1.2.2 Timekeeping in Other Systems

Aside from the memory system, we also show how to apply the timekeeping methodology

to other structures, such as branch predictors [30, 31, 32]. With large array structures sim-

ilar to caches, branch predictors are natural candidates for applying cache decay strategies.

A direct application of decay to branch predictors, in the granularity of a row in the predic-

tor array, can reduce the branch predictor leakage energy by 40-60% with minimal impact

on either the predictor accuracy or the program performance. More interestingly, because

branch predictor contents are often short-lived, and not critical to execution correctness,

CHAPTER 1. INTRODUCTION 9

we propose to store them with quasi-static 4-transistor (4T) cells, instead of traditional

6-transistor (6T) RAM cells. 4T cells are generally smaller than 6T cells, and naturally

decay over time so no extra control is required to activate decay. Overall, 4T-based branch

predictors offer up to 33% in cell area savings and 60-80% leakage savings with minimal

performance impact. More importantly, the match between data characteristics of branch

predictor contents and 4T cells suggests a new thinking of how transient data should be

supported in power-aware processors.

The techniques presented in this thesis are highly effective and interesting by them-

selves. As applications of the timekeeping methodology, they further demonstrate the ef-

fectiveness of this novel methodology. We expect that in our future work, as well as in

work by other researchers, more timekeeping techniques can be proposed to help future

processors to meet the many challenges in power and performance.

1.3 Organization

Chapter 2 gives an overview of the timekeeping methodology, introduces the basic con-

cepts for timekeeping in the memory system, and presents a timekeeping mechanism to im-

prove the management of victim caches. Chapter 3 describes another timekeeping mecha-

nism that provides cache leakage energy savings while maintaining processor performance.

Chapter 4 proposes a novel hardware prefetecher which exploits regularity between the past

and present cache line lifetime behavior. Chapter 5 extends the timekeeping methodology

to structures other than caches, such as branch predictors. Finally, Chapter 6 offers our

conclusion.

Chapter 2

The Timekeeping Methodology

In this chapter we first give an introduction to the timekeeping methodology in Section 2.1.

Later in Section 2.2 we use the memory system as the main example to further illustrate the

timekeeping methodology, Section 2.3 then presents a sample application of timekeeping in

the memory system to improve victim cache efficiency. Section 2.4 discusses some related

work. Finally, Section 2.5 concludes this chapter.

2.1 The Timekeeping Methodology: Introduction

Frequently described as the fourth dimension, time is a key element in real life. From

early sundials to mechanical clocks to atomic clocks, humans have taken a great effort to

measure time accurately. The reason for this is simple: all events are time-dependent,i.e.,

all events occur within a time frame. Keeping track of time enables humans to know at

what stage they currently are and to anticipate or predict what will happen in the future and

when.

Very often events exhibit a recurring pattern within the time frame. Each occurrence is

somewhat similar to the previous occurrence, but with possible changes. Each occurrence

10

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 11

is defined as a “generation”. Within each generation, objects go through a period of active

life, and then followed by a period of inactive life. It is very important to identify these two

periods. For example, the lifetime of milk can be divided into two periods, the valid period

when it is safe to drink, and the expired period when it becomes stale and unsafe to drink.

In digital processors events also occur within their time frames, and are usually asso-

ciated with some information. Data and instructions dominate architectural information in

a typical processor. However, with increasingly speculative techniques adopted in current

processors, the amount of transient, predictive data in processors has grown greatly. The

term “transient, predictive data” refers to the information stored in predictive structures

such as branch predictors. Since such data mainly serve as execution hints for improving

processor performance, losing them does not affect the correctness of the execution. In

Chapter 5 we exploit this characteristics to propose an energy-efficient storage scheme for

transient data.

Figure 2.1 shows the instruction flow. Instructions are fetched from the main memory,

and pass sequentially through the L2 instruction cache, the L1 instruction cache, the in-

struction fetch buffer, the reorder buffer, the reservation station, the functional units and

then ended in the reorder buffer. In each component, an instruction stays active for a period

after initial activation, and then remains inactive for some time until finally getting evicted.

After eviction, often the same instruction may re-enter a component sometime later and

thus start a new occurrence. Borrowing terminology from the real world, we call each re-

currence a “generation”. Within each generation, we call the active period the “live time”,

and the inactive period the “dead time”. For example, consider an instruction in the reorder

buffer. The lifetime of the instruction starts when it is dispatched into the reorder buffer

in program order. It ends when the instruction is committed and removed from the reorder

buffer. During the time between dispatch and issue, instructions re-check the availability

of their operands whenever a new instruction finishes execution. When they become ready,

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 12

i.e., all their operands are available, they are issued to the reservation station. There, they

wait to get free function units, then start execution, and finally write back their results and

wakeup dependent instructions in the reorder buffer. Even though instructions complete

their execution after writeback, they usually remain in the reorder buffer for a while wait-

ing for previous instructions (in program order) to commit. This ensures the handling of

precise interrupts. Overall, we can divide the lifetime of a typical instruction in the reorder

buffer into two distinct periods: the active period, between dispatch and writeback, and the

inactive period, between writeback and commit. An interesting exception happens when a

misprediction is discovered for an earlier branch, or when a fault is detected in an earlier

instruction. In this case, the lifetime of the instruction is terminated immediately.

Figure 2.2 depicts the lifetime of an instruction in the reorder buffer.

In
st

ru
ct

io
n

F
et

ch
Q

ue
ue

R
eo

rd
er

B
uf

fe
r

R
es

er
va

tio
n

S
ta

tio
n

M
ai

n
M

em
or

y

L2
In

st
ru

ct
io

n
C

ac
he

L1
In

st
ru

ct
io

n
C

ac
he

F
un

ct
io

na
lU

ni
ts

Figure 2.1: The instruction flow in a typical processor.

issue writeback commitdispatch time

instruction A

issue writeback commitdispatch

instruction B

Figure 2.2: Timeline depicting the lifetime of an instruction in the reorder buffer. The
instruction is active between dispatch and writeback, and becomes inactive between write-
back and commit. After commit, the entry is freed, remains idle for a while, and later
is reclaimed by another instruction. Note that “dispatch” refers to the transfer from the
instruction fetch queue to the reorder buffer, while “issue” refers to the transfer from the
reorder buffer to the reservation station.

Figure 2.3 shows the flow of data, in the time order, through main memory, the L2 data

cache, the L1 data cache, the functional units and the register file. Data in these components

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 13

exhibit similar lifetime behavior as described above for instructions. For example, consider

a cache line of data in the L1 data cache, as shown in Figure 2.4. The lifetime of the cache

line begins with a cache miss to the particular cache line, which initiates a load of the cache

line into the cache. While staying in the cache, the cache line is first actively accessed for

several times, followed by a period with no accesses, and eventually evicted out of the

cache to make room for another cache line B.

F
un

ct
io

n
U

ni
ts

R
eg

is
te

r
F

ile

M
ai

n
M

em
or

y

L2
D

at
a

C
ac

he

L1
D

at
a

C
ac

he

Figure 2.3: The data flow in a typical processor.

A A A A A B B B A A AAA
time

Figure 2.4: Timeline depicting a reference stream in a cache frame. Long heavy ticks
represent cache misses, while short light ticks represent cache hits.

Much prior computer architecture research has been based on “orderkeeping” method-

ologies. In an “orderkeeping” methodology, the ordering of events matters but the exact

time intervals between events are ignored. For example, the reorder buffer keeps all in-

structions in their original program order, but the time intervals, such as the length of ac-

tive/inactive period for each instruction, and the time between two consecutive instructions,

are not tracked. As another example of an “orderkeeping methodology”, the memory sys-

tem behavior is usually represented as “traces” of memory addresses. The reference stream

in Figure 2.4 can be represented as(:::; A; A;A;A;A;A;B;B;B;A;A;A;A; :::) or simply

(:::; A; B;A; :::). These traces preserve the appearance order of the addresses, but the time

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 14

intervals, such as the time between consecutive accesses to A, or between last A and first

B, are missing from the traces, and are not tracked at run time either.

In this thesis, we propose a “timekeeping” methodology, in which the time intervals

are tracked and used to classify, predict, and optimize future memory behavior. The key

characteristic of the timekeeping methodology, compared to traditional orderkeeping or

trace-based methodology, is that time intervals are tracked and exploited. The ultimate

goal of timekeeping is the following. Imagine that execution is at some arbitrary point

along the timeline depicted in Figure 2.4. We can know something about past history along

that timeline, but we wish to predict what is likely to happen soon in the future. First, we

wish to deducewhere we currently are. That is, is the current cache line still active, or will

it be evicted next? This cannot be perfectly known until the next event, but if we can predict

it accurately, we can build power and performance optimizations based on this prediction.

Second, we wish to deducewhat will happen next: a re-reference of the cached data? Or

a reference to new data that begins a new generation? Accurately deducing what will be

referenced nextand when is a crux issue for improving processor performance.

Let us look at some examples to illustrate why the time intervals are useful. If we

consider the data in an L1 data cache line, we can deduce the following rules:

� If the common case is that a cache line becomes useless after a period of X cycles,

then instead of always waiting until next access, a cache line can be proactively

evicted after X cycles. This is similar to how we handle milk in the real life: if we

know milk will typically expire 2 weeks after buying, we would stop drinking it after

that time, and discard it to make room in the refrigerator for new milk.

� If in the previous occurrence, a cache line became useless after Y cycles, then in the

current occurrence we also expect it to become useless after Y cycles. Compared to

the previous rule, this rule emphasizes learning from individual history. In real life,

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 15

the milk expiration time depends heavily on the brand of the milk and the particular

refrigerator, so knowing the expiration time of the milk bought last time could lead

to a more accurate estimate of the expiration time.

From this example we can see why the timekeeping methodology works: it is because

the time intervals can help us to deduce what will happen next. The key characteristic

exploited by the timekeeping methodology is the correlation between the time intervals

and future program behavior, which can be observed either by investigating the common

cases, or by resorting to past history. Hardware structures can be built to exploit the cor-

relation to optimize processor behavior. Figure 2.5 depicts the stages one goes through in

using the time intervals to build mechanisms, This is the general work flow of applying the

timekeeping methodology.

Metrics

Mechanisms

Predictions

Figure 2.5: The general work flow for timekeeping techniques.

� Metrics: The first step in applying the timekeeping methodology is to investigate the

metrics, which are the time intervals between events. For instructions in the reorder

buffer (See Figure 2.2), the metrics include the time intervals between dispatch and

issue, between issue and writeback, between writeback and commit, etc. For data in

caches (See Figure 2.4), the metrics include the intervals between consecutive access

to the same cache line, between the first access and the last access, between the last

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 16

access and the eviction, etc. These time intervals characterize the time-dependent

aspects of processor behavior; therefore they are of prime interest to the timekeeping

methodology.

� Predictions: The key premise of the timekeeping methodology is that the timekeep-

ing metrics can be used to identifypredictions or indications about future program

behavior. For instructions, the predictions might include whether an instruction is

performance-critical, whether it is speculative, etc. For data, the predictions in-

clude identifying conflict misses or deducing dead cache blocks, etc. Interestingly,

as shown later in this chapter, sometimes more than one metric can be used as a

predictor of the same behavior, each with a different trade-off between cost and ef-

fectiveness.

� Mechanisms: To exploit these predictions, hardware structures can be added to track

the timekeeping metrics at run time, and use them to activate performance-enhancing

or power-reducing schemes. For example, one characteristic of processor behavior is

that often when data stay idle for a long time, they become useless and thus can be

“turned off” to cut off leakage consumption. To exploit this characteristic, counters

can be added to gauge the data idle time. When the idle time exceed a threshold, the

counters can signal to “turn off” the data, thus reducing leakage power consumption.

The timekeeping methodology can be widely applied to the whole processor. We will

use the memory system as the major example to illustrate the power of the timekeeping

methodology. In the next section, we first introduce some basic metrics in the memory

system, then we present statistical distributions of the metrics, and finally we demonstrate

how the metrics can be used to make predictions about processor memory behavior. To

illustrate the effectiveness of such predictions, Section 2.3 describes a “timekeeping victim

cache filter”, which tracks a timekeeping metric at run time to predict whether a cache line

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 17

is a victim of conflict misses, and improves the efficiency of the victim cache based on this

prediction. Chapters 3 and 4 present two more examples of timekeeping in the memory

system: cache decay and timekeeping prefetch. Timekeeping in other subsystems will be

discussed in Chapter 5.

2.2 Timekeeping in the Memory System

This section gives an overview of how the timekeeping methodology can be applied to the

memory system. We start by introducing and profiling the basic timekeeping metrics in the

memory system, and then show how they can be used to predict memory system behavior.

2.2.1 Introduction to Timekeeping Metrics in the Memory System

Figure 2.6 depicts a stream of references to a particular cache line. One can break this

reference stream intogenerations. Each generation is comprised of a series of references

to the cache line. Using the terminology from [77], the i-th generation begins immediately

after the i-th miss to that cache line, when a new memory line is brought into the cache

frame. This generation ends when the line is replaced and a new one is brought into the

cache frame. Generations begin with one or more cache references. Following the last

reference before eviction, the generation is said to have entered its dead time. At this point,

this generation has no further successful use of the items in the cache line, so the line is

said to be dead. Each cache line generation is divided into two parts: thelive time of the

cache line, where the line is actively accessed by the processor and thedead time, awaiting

eviction.

The live time of a cache line starts with the miss that brings the data into the cache and

ends with the last successful access before the item is evicted. The dead time is defined

as the time duration where the cached data will not be used again successfullyduring this

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 18

Load A

A A A A A B

ReLoad A

generation time

live time dead time

access interval

reload interval

B B ...

Evict A

A A AAA

Figure 2.6: Timeline depicting the reference stream to a cache frame. First, A is resident,
followed by A’s eviction to begin a generation with B resident, and eventually, A is re-
referenced to begin yet another generation.

generation. That is, the dead time is the time between the last access for a generation and

when the data are actually evicted. Many times we see only a single miss and then eviction.

We consider these cases to have zero live time; here the generation length is equal to the

dead time.

There are further metrics that also turn out to be of practical interest. These include

the access interval and reload interval. Access interval refers to the time interval between

successive accesses to the same cache linewithin the live time of a generation. In contrast,

reload interval denote the time duration between the beginnings of two generations that

involve the same data in the same memory line. The reload interval in one level of the

hierarchy (eg, L1) is actually the access interval for the cache in the next lower level of the

hierarchy (eg, L2) assuming the data are resident there.

To further understand the basic metrics, we can relate them to program memory behav-

ior. The correlation between the metrics and program behavior is the key characteristic that

will be exploited by the timekeeping methodology.

1. Live Times vs. Dead Times: Cache lines are in two distinct states depending on

whether they are currently in live time or dead time. In live time, cache lines are

active and expecting more reuse before eviction, so they must be kept valid. On the

other hand, when in dead time, cache lines will not be used before eviction, therefore

their contents can be safely discarded (although they need to be written back if dirty.)

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 19

When dead, a cache line can be either turned off to cut off leakage, as in the cache

decay mechanism (Chapter 3,) or be reclaimed to store prefetched data predicted to

be useful in the future, as in timekeeping prefetch (Chapter 4).

2. Access Intervals vs. Dead Times: Both access intervals and dead times are inter-

access intervals between consecutive accesses to the same cache frame. The differ-

ence is, for access interval, the accesses are targeting the same cache line, while for

dead time, the accesses are targeting different cache lines. Imagine there is a timer

which constantly gauges inter-access intervals in a cache frame. At any point of time,

the timer is either counting an access interval, or a dead time, but never both. It is

only when the next access appears that we exactly know what the timer has been

counting. However, in the interim, the duration elapsed hints the end result: If the

duration is long enough, it is very likely that a dead time is being counted, but not

an access interval. This observation will be exploited in the cache decay mechanism,

detailed in Chapter 3.

3. Access Intervals vs. Reload Intervals: Access interval represents the time between

consecutiveaccesses to the same cache line. Reload interval is the time between

consecutivemisses to the same cache line. In a first glimpse, they are very different

metrics. However, with hierarchical cache design, misses to one cache level usually

turn out to be hits in the next cache level. Consequently, for data resident in the L2

cache, a reload interval in the L1 cache corresponds to the access interval of the same

data in the L2 cache, down one level in the hierarchy.

2.2.2 Simulation Model Parameters

In the next section, we will show the statistical distributions of the basic metrics introduced

in the previous section. Unless stated otherwise, our results in this chapter, as well as for

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 20

the rest of this thesis, use SimpleScalar [8] to model an aggressive 8-issue out-of-order

processor with the configuration parameters shown in Table 2.1.

Processor Core
Clock rate 2GHZ
Instruction Window 128-RUU, 128-LSQ
Issue width 8 instructions per cycle
Functional Units 8 IntALU,3 IntMult/Div,

6 FPALU,2 FPMult/Div,
4 Load/Store Units

Memory Hierarchy
L1 Dcache Size 32KB, 1-way, 32B blocks, 64 MSHRs
L1 Icache Size 32KB, 4-way, 32B blocks
L1/L2 bus 32-bit wide, 2GHZ
L2 I/D each 1MB, 4-way LRU,

64B blocks,12-cycle latency
L2/Memory bus 64-bit wide, 400MHZ
Memory Latency 70 cycles

Prefetcher
Prefetch MSHRs 32
Prefetch Request Queue128 entries

Table 2.1: Configuration of simulated processor.

We evaluate our results using the SPEC CPU2000 benchmark suite [73]. The bench-

marks are compiled for the Alpha instruction set using the Compaq Alpha compiler with

SPECpeak settings. For each program, we skip the first 1 billion instructions to avoid

unrepresentative behavior at the beginning of the program’s execution. We then simulate 2

billion instructions using the reference input set. We include some overview statistics here

for background. Figure 2.7 shows how much the performance (IPC) of each benchmark

would improve ifall conflict and capacity misses in the L1 data cache could be eliminated.

This is the target we aim for in our memory optimizations. The programs are sorted from

left to right according to the amount they would speed up if conflict and capacity misses

could be removed.

Figure 2.8 breaks down the misses of these programs (with an L1 cache configured as

in Table 2.1) into three stacked bar segments denoting cold, conflict and capacity misses.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 21

0%

50%

100%

150%

200%

250%

300%

350%

400%

fm
a3

d

eq
u

ak
e

g
ap

vo
rt

ex

m
es

a

eo
n

ap
si

si
xt

ra
ck

g
al

g
el

cr
af

ty

g
zi

p

p
er

lb
m

k

w
u

p
w

is
e

b
zi

p
2

lu
ca

s

vp
r

g
cc

fa
ce

re
c

p
ar

se
r

ap
p

lu

tw
o

lf

m
g

ri
d

ar
t

sw
im

am
m

p

m
cf

IP
C

im
p

ro
ve

m
en

t
w

it
h

co
ld

m
is

s
o

n
ly

(%
)

Figure 2.7: Potential IPC improvement if all conflict and capacity misses in the L1 data
cache could be eliminated for SPEC2000 benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fm
a3

d

eq
u

ak
e

g
ap

vo
rt

ex

m
es

a

eo
n

ap
si

si
xt

ra
ck

g
al

g
el

cr
af

ty

g
zi

p

p
er

lb
m

k

w
u

p
w

is
e

b
zi

p
2

lu
ca

s

vp
r

g
cc

fa
ce

re
c

p
ar

se
r

ap
p

lu

tw
o

lf

m
g

ri
d

ar
t

sw
im

am
m

p

m
cf

%conflict %cold %capacity

Figure 2.8: Breakdown of program L1 data cache misses into three categories: conflict,
cold and capacity. Data are obtained with a 32KB direct-mapped cache, as shown in Table
2.1.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 22

An interesting observation here is that the programs that exhibit the biggest potential for

improvement (RHS of Figure 2.8) also tend to have comparatively more capacity misses

than conflict misses. Thus, we expect that eliminating capacity misses will result in larger

benefit than eliminating conflict misses. This is confirmed in Chapter 4.

2.2.3 Statistical Distributions of Timekeeping Metrics

The upper two graphs in Figure 2.9 illustrates a distribution for SPEC2000 benchmarks of

live times anddead times. Recall that live time is defined as the time duration for a cached

item between when it arrives in cache, and when it experiences its last successful use before

its eviction. Dead time is defined as the time duration between when an item in the cache

is last used successfully, and when it is evicted from the cache.

The lower two graphs in Figure 2.9 illustrates access interval and reload interval distri-

butions. Reload intervals are plotted with the x-axis times 1000 cycles rather than 100X

as in previous graphs. Access interval is the time duration between successive references

within a cache line live time. In contrast, reload interval is the time between the beginnings

of two successive generations involving the same memory line.

Dead times are in general much longer than average access intervals. For example, over

all of the SPEC suite, 61% of access intervals are 100 cycles or less. In contrast, only 31%

of dead times are less than 100 cycles. On the other hand, 21% of dead times are more than

10,000 cycles, while only 2% access intervals are 10,000 cycles or more. This is a useful

observation because it hints that we can succeed in discerning dead times versus access

intervalsa priori based on the durations observed. Chapter 3 will exploit this observation.

Another observation from the distributions of the basic metrics is that for dead times

and reload intervals, the distributions are “bi-modal”,i.e., the distributions are heavy at

heads and tails, while light in the middle. This naturally hints two distinct categories of

cache lines: those with long dead times (or reload intervals), versus those with short dead

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 23

0

2

4

6

8

10

12

14

16

18

20
3 10 17 24 31 38 45 52 59 66 73 80 87 94

>
10

0

live time (x100 cycles)

%
m

is
se

s
58%

0

2

4

6

8

10

12

14

16

18

20

3 10 17 24 31 38 45 52 59 66 73 80 87 94

>
10

0

dead time (x100 cycles)

%
m

is
se

s

21.3%31%

0

2

4

6

8

10

12

14

16

18

20

3 10 17 24 31 38 45 52 59 66 73 80 87 94

>
10

0

access interval (x100 cycles)

%
m

is
se

s

61%

0

2

4

6

8

10

12

14

16

18

20

3 10 17 24 31 38 45 52 59 66 73 80 87 94

>
10

0

reload interval (x1000 cycles)

%
m

is
se

s

32.1%24%

Figure 2.9: Distribution of live times (upper left), dead times (upper right), access inter-
vals (lower left), and reload intervals (lower right) for all generations of cache lines in
the SPEC2000 simulations. Numbers marked at the head and the tail of each distribution
represent the percentage of metrics that falls into that range.

times (or reload intervals). We discuss this categorization in detail in the next section.

2.2.4 Using Timekeeping Metrics to Predict Conflict Misses

When a cache line A is evicted, there are two possible reasons: (1) there is a mapping

conflict between A and another cache line B, or (2) there is not enough space so A must

be evicted to make room for B. Based on Hill’s definitions in [27], the exact reason will

be known by investigating the reload of A. This reload is a cache miss in a direct-mapped

cache. However, if we substitute the direct-mapped cache with a fully-associative cache of

the same capacity, two situations could occur:

1. If the reload does not miss in the fully-associative cache, then the reason it misses

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 24

in the original direct-mapped cache is the mapping conflict between A and B, which

is not tolerated by the limited associativity of a direct-mapped cache, but helped by

the fully-associative cache. In this case, the reload of A is a “conflict miss” in the

original direct-mapped cache.

2. If the reload still misses in the fully-associative cache, then the reason it misses in

the direct-mapped cache is a lack of space. In this case, the reload of A is classified

as a “capacity miss” in the original cache.

Interpreting Hill’s definitions with generational behavior, a conflict miss occurs because

its last generation was unexpectedly interrupted—something that would have not happened

in a fully associative cache. Similarly, a capacity miss occurs because its last generation

was ended because of lack of space—again, something that would not have happened in

a larger cache. In this section we evaluate prediction of the miss types with timekeeping

metrics. When we correlate metrics to a miss type we always refer to the timekeeping

metrics of the last generation of the cache line that suffers the miss. In other words, we use

what happens to the current generation of a cache line to predict the miss type of the next

miss to the same cache line.

By Reload Interval While Figure 2.9 showed reload intervals over all generations, Fig-

ure 2.10 splits the reload interval distribution into two graphs for different miss types.

These statistics show vividly different behavior for conflict and capacity misses. In partic-

ular, reload intervals for capacity misses are overwhelmingly in the tail of the distribution.

In contrast, reload intervals for conflict misses tend to be fairly small: an average of roughly

8000 cycles. The average reload interval for a capacity miss is one to two orders of mag-

nitude larger than that for a conflict miss! Large reload intervals for capacity misses make

sense: for an access to an item to be classified a capacity miss, there must be at least 1024

(total number of blocks in the simulated cache) unique accesses to drive the item out of a

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 25

fully-associative cache after its last access. In a processor that typically issues 1-2 memory

accesses per cycle, the time for 1024 accesses is on the order of a thousand cycles, and it

may take even longer before 1024unique lines have been accessed. On the contrary, a con-

flict miss can have less than 1024 unique cache accesses after their last access; this leads to

their small reload intervals.

conflict

0

2

4

6

8

10

12

14

16

18

20

1 8 15 22 29 36 43 50 57 64 71 78 85 92

>
10

0

reload interval (x1000 cycles)

%
co

n
fl

ic
t

m
is

se
s

49%

capacity

0

2

4

6

8

10

12

14

16

18

20

1 8 15 22 29 36 43 50 57 64 71 78 85 92

>
10

0

reload interval (x1000 cycles)

%
ca

p
ac

it
y

m
is

se
s

78.1%

Figure 2.10: Distribution of reload interval for conflict (left) and capacity (right) misses

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128 256 512

reload interval (x1000 cycles)

accuracy coverage

Figure 2.11: Accuracy and coverage for conflict miss predictions based onreload interval.
Each data point indicates what the accuracy or coverage would be for predicting conflict
misses to be all instances where thereload interval is less than the quantity on the x-axis.

Reload intervals make excellent predictors of conflict misses. Figure 2.11 shows accu-

racy and coverage when reload interval is used as predictor. For each point on the x-axis,

one curve gives the accuracy of predicting that reload intervals less than that x-axis value

denote conflict misses. The other curve gives the coverage of that predictor: i.e., how

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 26

often it makes a prediction. For example, a prediction that “if the reload interval is less

than 32Kcycles, then the next miss of the same cache line will be a conflict miss” has an

accuracy of about 91%, and covers about 88% of all conflict misses.

When conflict misses are defined as small reload intervals (about 1000 cycles or less)

prediction accuracy is close to perfect. Coverage, the percent of conflict misses captured by

the prediction, is low at that point, however, about 40%. The importance of reload interval,

though, shows in the behavior of this predictor as we increase the threshold: up to 16K

cycles, accuracy is stable and nearly perfect, while coverage increases to about 85%. This

is appealing for selecting an operating point because it means we can walk out along the

accuracy curve to 16K cycles before accuracy sees any substantive drop. The clear drop

there makes that a natural breakpoint for setting up a conflict predictor based on reload

intervals smaller than 16K.

By Dead Time Figure 2.12 shows the distribution of dead time divided by miss types.

Again, we see trends similar to reload interval distribution, though not as clear cut. That is,

dead times are typically small for conflict misses, while much larger for capacity misses.

These observations about dead times hint at a phenomenon one could exploit. Namely, one

can deduce that an item has been “prematurely” evicted from the cache due to a conflict

miss, if its dead time is quite short. Where dead times are quite large, it hints at the fact that

the item probably left the cache at the end of its “natural lifetime”; that is, it was probably

evicted as a capacity miss at the end of its usage.

Figure 2.13 shows accuracy and coverage of a predictor that predicts an upcoming

conflict miss based on the length of the dead time of the current generation. Namely, for

a point on the x-axis, accuracy and coverage data indicate what the prediction outcome

would be if one considered dead times less than that value as indicators of conflict misses.

Coverage is essentially the fraction of conflict misses for which we make a prediction.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 27

conflict

0

2

4

6

8

10

12

14

16

18

20
1 8 15 22 29 36 43 50 57 64 71 78 85 92

>
10

0

dead time (x100 cycles)

%
co

n
fl

ic
t

m
is

se
s

48%
capacity

0

2

4

6

8

10

12

14

16

18

20

1 8 15 22 29 36 43 50 57 64 71 78 85 92

>
10

0

dead time (x100 cycles)

%
ca

p
ac

it
y

m
is

se
s

64.2%

Figure 2.12: Distribution of dead time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128 256 512

dead time (x100 cycles)

accuracy coverage

Figure 2.13: Accuracy and coverage for conflict miss predictions based ondead time. Each
data point indicates what the accuracy or coverage would be for predicting conflict misses
to be all instances where thedead time is less than the quantity on the x-axis.

Accuracy is the likelihood that our prediction is correct, for the instances where we do

make a prediction.

Predicting a conflict miss if the dead time of its last generation is smaller than a given

threshold is very accurate (over 90%) for small thresholds (100 cycles or less). But cover-

age is only about 40% (attesting to the fact that most dead times are large). Increasing the

dead-time threshold degrades accuracy but increases coverage. A likely method for choos-

ing an appropriate operating point would be to walk down the accuracy curve (i.e., walk

out towards larger dead times) until just before accuracy values drop to a point of insuffi-

cient accuracy. One can then check that the coverage at this operating point is sufficient for

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 28

the predictor’s purpose. In the next section, we describe a hardware mechanism that uses

dead-time predictions of conflict misses to filter victim cache entries.

By Live Time Live time is also highly biased between conflict (very small live times)

and capacity misses (larger live times). A very important special case here is when we have

a live time equal to zero. This special case makes for a simple and fairly accurate predictor

of conflict misses. In fact, a single (“re-reference”) bit in each L1 cache line is all that is

needed to distinguish between zero and non-zero live times.

Figure 2.14 shows the accuracy and coverage of such a prediction. Accuracy is very

high: for many programs, accuracy is close to one. The geometric mean for all SPEC2000

is 68% accuracy, but coverage is low. Coverage varies from benchmark to benchmark with

a geometric mean of roughly 30%. In contrast to the previous approaches, this prediction

has no knobs to turn to trade accuracy for coverage. Because of the low coverage and its

specialized nature, live-time conflict prediction is likely to be useful in few situations. We

include it here mainly to demonstrate how different metrics can classify or predict the same

program behavior.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

accuracy coverage

Figure 2.14: Accuracy and coverage using “live time = 0” as a predictor of conflict misses.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 29

Prediction Location Conflict predictors based on dead times (or live times) rely only

on L1-centric information. In contrast, conflict predictors based on reload intervals would

most likely be implemented by monitoring access intervals in the L2 cache. As a result,

one’s choice of how to predict conflict misses might depend on whether the structure using

the predictor is more conveniently implemented near the L1 or L2 cache.

2.2.5 Summary

In this section, we first introduced the basic metrics for timekeeping in the memory sys-

tem, including live time, dead time, reload interval and access interval. We profiled the

metrics and then showed their statistical distributions. We found that access intervals are

overwhelmingly short, while dead times and reload intervals exhibit “bimodal” distribu-

tions. In other words, generations with short dead times (and short reload intervals), and

those with long dead times (and thus, long reload intervals), are both very common. Our

investigation indicates that they represent two distinct categories of cache line generations:

1. Conflict-oriented generations: These cache line generations are ended due to a con-

flict between the current cache line and its successor. Because they are often ended

prematurely, these cache line generations tend to have short dead times and reload

intervals, and many of them have a zero live time.

2. Capacity-oriented generations: These cache line generations are ended due to a lack

of cache space. These cache lines tend to have long dead times and reload intervals.

Because of the close correlation between the timekeeping metrics and program behav-

ior, these metrics can be dynamically tracked and used to optimize processor behavior. In

the next section, we present a timekeeping mechanism that identifies generations withshort

dead times and filters the victim cache traffic by only allowing such cache lines to enter the

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 30

victim cache. Later in Chapter 3, another timekeeping mechanism that targetslong dead

times will be discussed.

2.3 Timekeeping Victim Cache Filter

In the previous section we discussed timekeeping metrics that can be used as reliable indi-

cators of conflict misses, particularly dead time and reload interval1. Such predictions will

naturally facilitate conflict-miss-oriented structures, such as victim caches. In this section,

we demonstrate such an example.

2.3.1 Introduction

A victim cache is a small fully-associative cache that reduces L1 miss penalties by holding

items evicted due to recent conflicts. Victim caches help with conflict misses, so we propose

using conflict indicators such as dead times and reload intervals to manage the victim cache.

In particular, we want to avoid entering items into the victim cache that are unlikely to be

reused soon.

Small reload intervals are highly correlated to conflict misses and they are an effective

filter for a victim cache. The intuition that ties reload intervals to victim caches is the

following: Since the size of victim cache is small, a victim block will stay only for a

limited time before it is evicted out of the victim cache. In terms of generational behavior,

this means that only victim blocks with small reload intervals are likely to hit in the victim

cache. Blocks with large reload intervals will probably get evicted before their next access

so it is wasteful to put them into the victim cache. Unfortunately, reload intervals are only

available for counting in L2, and are not known at the time of eviction. This inhibits their
1We do not further examine the zero-live-time predictor because of its relatively low coverage and signif-

icant overlap with the technique based on dead time.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 31

use as a means to manage an L1 victim cache.

Besides short reload intervals, short dead times are also very good indicators of conflict

misses. Dead times are readily available in L1 at the point of eviction and as such are a

natural choice for managing a victim cache associated with the L1. We use a policy in

which the victim cache only captures those evicted blocks that have dead times of less than

a threshold of 1K cycles. Figure 2.12 shows that these blocks are likely to result in conflict

misses.

The hardware structure of the dead-time victim filter is shown in Figure 2.15. A single,

coarse-grained counter per cache line measures dead time. The counter is reset with every

access and advances with global ticks that occur every 512 cycles. Upon a miss the counter

contains the time since the last access, i.e., the dead time. An evicted cache line is allowed

into the victim cache if its counter value is less than or equal to 1 (giving a range for the

dead time from 0 to 1023 cycles).

global clock

L1 data cache

2-bit
counters

< threshold?

victim cache L2 cache

if dirty

Figure 2.15: Implementation of timekeeping victim cache filter. The global clock ticks
every 512 cycles. Upon each global tick, the local counters associated with each cache line
increment by one. When a cache line is evicted, if its local counter is less than or equal to
1, it is allowed to enter the victim cache. Otherwise, it will be discarded, after written back
to L2 if dirty.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 32

2.3.2 Simulation Results

Our experiments, as shown in Figure 2.16, show that for a 32-entry victim cache managed

by the timekeeping filter, the traffic to the victim cache is reduced by 87%. Such a reduction

can greatly relieve the traffic pressure on the victim cache, and save power by reducing

the number of victim cache fills. Moreover, this reduction is achieved without sacrificing

performance, as seen in the top graph of Figure 2.16.

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

fm
a3

d

eq
u

ak
e

g
ap

vo
rt

ex

m
es

a

eo
n

ap
si

si
xt

ra
ck

g
al

g
el

cr
af

ty

g
zi

p

p
er

lb
m

k

w
u

p
w

is
e

b
zi

p
2

lu
ca

s

vp
r

g
cc

fa
ce

re
c

p
ar

se
r

ap
p

lu

tw
o

lf

m
g

ri
d

ar
t

sw
im

am
m

p

m
cf

IP
C

im
p

ro
ve

m
en

t
o

ve
r

n
o

vi
ct

im
ca

ch
e

(%
)

victim w/o filter victim w/ collins filter victim w/ timekeeping filter

0.00

0.05

0.10

0.15

0.20

fm
a3

d

eq
u

ak
e

g
a p

vo
rt

e x

m
es

a

eo
n

ap
si

si
xt

ra
c k

g
a l

g
el

cr
af

ty

g
z i

p

p
e r

lb
m

k

w
u

p
w

is
e

b
z i

p
2

lu
ca

s

vp
r

g
c c

fa
ce

re
c

p
a r

se
r

ap
p

lu

tw
o

l f

m
g

ri
d

ar
t

sw
im

am
m

p

m
cf

[g
eo

m
ea

n
]

#e
n

tr
y

en
te

re
d

/c
yc

le

victim w/o filter victim w/ collins filter victim w/ timekeeping filter

Figure 2.16: Top: IPC improvement offered by timekeeping victim cache filter and a com-
parison to prior work. Bottom: Fill traffic to victim cache for our method, prior filtering
method, and no filtering.

Collins et al. suggest filtering the victim cache traffic by selecting only victims of

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 33

possible conflict misses [13]. Their solution requires storing an extra tag for each cache line

(remembering what was there before) to distinguish conflict misses from capacity misses.

Comparing our approach with a Collins-style filter, we see similar traffic reduction, but

our timekeeping victim filter leads to higher IPC for all the benchmarks. The order of

the programs in this figure is the same as in Figure 2.7. Recall from Figure 2.7 that the

potential for speedup increases to the right, but the ratio of conflict misses to total misses

increases to the left. In Figure 2.16, the programs that experience the largest speedups

for our timekeeping victim filter are clustered in the middle of the graph. Programs to

the far left have little room for improvement. Programs to the far right whose misses are

overwhelmingly capacity misses arenegatively affected with anunfiltered victim cache,

but they retain their performance if a conflict filter (either Collins-style or timekeeping) is

employed.

2.3.3 Adaptive Scheme

The performance of our timekeeping victim filter indicates that the parameters (dead-time

threshold, cache sizes, etc.) are well matched. This is not coincidental. What makes our

timekeeping techniques invaluable is that they provide a sound framework to reason about

such parameters rather than to revert to trial-and-error. We will informally “prove” that the

optimal dead-time threshold actually stems from the relative size of the victim cache versus

the L1 data cache, and the reuse characteristics of the program. It is essentially a form of

Little’s Law, from queueing theory [21]. The reasoning is as follows:

1. We can think of a victim cache as providing associativity for some frames of the

direct-mapped cache. Without any filtering, associativity is provided on a first-come,

first-served basis: every block that is evicted gets an entry in the victim cache.

2. Our timekeeping filtering based on dead time results in a careful selection of the

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 34

frames for which the victim cache is allowed to provide associativity. Timekeeping

filtering culls out blocks with dead times greater than the threshold. In turn, the dead-

time threshold controls thenumber of frames for which associativity is provided for.

3. Our filtering ensures that the victim cache will provide associativityonly for the

“active” blocks that are fairly-recently used at the time of their eviction.

4. Since the victim cache cannot provide associativity to more frames than its entries,

the best size of the victim cache relates to the amount of cache in active use. A larger

set of “active” blocks dilute the effectiveness of the victim cache associativity. In

the data here, with a 1K cycle dead time threshold, only about 3% of cache blocks

resident at any moment meet the threshold. Since 3% of 1024 total cache blocks is

30.72, a 32-entry victim cache is a good match.

The relation of the dead-time threshold and the size of the victim cache not only gives

us a good policy to statically select an appropriate threshold, but also points to adaptive

filtering techniques. An adaptive filtering can adjust the dead time threshold at run-time so

the number of candidate blocks remains approximately equal to the number of the entries

in the victim cache. With a modest amount of additional hardware an adaptive filter would

perform even better than static filter shown above, which already outperforms previous

proposals.

2.3.4 Timekeeping Victim Cache Filter: Summary

A typical cache line generation is expected to have a short live time followed by a long

dead time. However, conflict misses are “catastrophic” to the typical generation of a block

in that they cut its live time or dead time short. A generation resulting from a conflict

exhibits either a zero live time or an inordinately short dead time. Furthermore, since

the block is thrown out of the cache despite being alive, its reload interval is also very

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 35

short, indicating they are likely re-referenced soon. Such blocks make perfect candidates

for conflict-oriented structures, such as the victim cache. In this section, we proposed the

timekeeping victim cache filter that filters the fill traffic to the victim cache so as to feed it

only with blocks evicted with short dead times, which are likely evicted as a result of con-

flict. Our victim cache filtering results in both performance improvements and significant

reductions in victim cache traffic. Our filter outperforms a previous proposal that predicts

conflict misses remembering previous tags in the cache.

2.4 Related Work

Puzak introduced the first notion of live and dead cache lines in [60]. He demonstrated the

modeling and measurement of the amount of dead lines in the cache and the significance of

this parameter to the performance of the system. Mendelson et al. proposed an analytical

model for predicting the fraction of live and dead cache lines of a process, as a function of

the process’ execution time and the behavior of other processes in a multitasking environ-

ment [52]. Wood et al. presented the first work to describe and investigate the generational

behavior of cache lines [77], and exploit it for improving the accuracy of cache sampling

techniques in simulations. They showed that one can deduce the miss rates of unprimed

references at the beginning of reference trace samples by considering the proportion of

cycles a cache line spendsdead or waiting to be evicted.

Compared to prior work, this thesis is the first to propose dynamically tracking genera-

tional lifetime behavior at run time, and to use them to make predictions of future memory

behavior. We give a complete quantitative characterization of generational lifetime behav-

ior, and propose a group of novel hardware mechanisms to dynamically optimize processor

performance and power consumption.

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 36

2.5 Chapter Summary

In this chapter we first gave an introduction to the timekeeping methodology. While most

prior work for improving processor power and performance only exploits time-independent

aspects of program behavior, such as event ordering and interleaving, the timekeeping

methodology proposes to keep track of the time intervals between events, to use them

to make predictions of future program behavior, and then to build hardware mechanisms to

harness these predictions. This three-step process, from metrics to predictions to mecha-

nisms, is the general work flow for all timekeeping techniques.

The timekeeping methodology can be applied to all types of information, including

data, instructions and transient predictive data, in all components in digital processors. In

this thesis, the memory system is used as the main example to illustrate the timekeeping

methodology. Timekeeping in the memory system exploits the generational lifetime be-

havior of cache lines. The basic metrics for timekeeping in the memory system include live

time, dead time, access interval, and reload interval. Live time and dead time refer to, re-

spectively, the active and inactive period in a cache line generation. Access interval refers

to the interval between consecutive successful accesses to the same cache line. Reload

interval is the time between consecutive misses to the same cache line. Statistical distribu-

tions of the timekeeping metrics show that: most access intervals are very short, while dead

times and reload intervals are “bi-modal”,i.e., some of them are short while many others

are long. This characteristic reveals the correlation between the program memory behavior

and the metrics. More specifically, short dead times and reload intervals are mainly caused

by conflict misses, while long dead times and reload intervals are more likely associated

with capacity misses. In other words, a short dead time or reload interval indicates that the

current cache line generation is ended due to a mapping conflict. Such cache lines makes

good candidates for conflict-oriented structures, such as a victim cache. A “timekeeping

CHAPTER 2. THE TIMEKEEPING METHODOLOGY 37

victim cache filter”, which keeps tracks of dead times using hierarchical counters, and al-

lows a victim to enter the victim cache only when its dead time is small, can reduce the

victim cache traffic by 87%, while improving overall system performance.

The timekeeping victim cache filter clearly demonstrates the power of the timekeeping

methodology: with simple extra hardware to track the time intervals, the processor perfor-

mance can be improved along with a power benefit. In the next chapters, we will present

several other applications of the timekeeping methodology.

Chapter 3

Cache Decay

In the previous chapter, we gave an overview of the timekeeping methodology, then dis-

cussed how it can be applied to the memory system, and finally presented a sample appli-

cation, the timekeeping victim cache filter, that can reduce victim cache traffic with simple

counter hardware. The timekeeping victim cache filter targets cache line generations with

short dead times, because they are likely victims of conflict misses and thus fit well to the

purpose of the victim cache. In this chapter we demonstrate how the timekeeping method-

ology can help to control cache leakage energy consumption. We start by evaluating the

potential benefits of such a technique.

3.1 Potential Benefits

As described in Chapter 1, leakage energy is increasing exponentially and is becoming a

major challenge in designing power-efficient processors. Because caches comprise much

of the area in current and future microprocessors, it makes sense to target them when devel-

oping leakage-reducing strategies. Recent work by Powell et al. has shown that transistor

structures can be devised to limit leakage power by banking the cache and providing “sleep”

38

CHAPTER 3. CACHE DECAY 39

transistors which dramatically reduce leakage current by gating off theVdd [59, 80]. Note

that this circuit technique is state-destroying, meaning that when “sleep” transistors are en-

abled the data stored in memory cells will get lost. Therefore, if the data are dirty, they

should be written back before entering into sleep state.

Our work exploits these sleep transistors at a finer granularity: individual cache lines.

In the previous chapter we described the generational lifetime behavior of cache lines and

we introduced the live time and the dead time period within a cache line generation. Live

time is the time between the first and last access within a generation, while dead time is

the time between the last access and the eviction. The key idea of timekeeping for cache

leakage control is that if a dead time can be identified at run time, then the associated cache

line can be turned off to cut off leakage power. Because the access after the dead time

is to a different cache line, turning off the cache line will not lead to extra cache misses.

Thus turning off cache lines during dead times can reduce cache leakage energy without

sacrificing performance.

To motivate the potential of this approach, we start by presenting an idealized study of

its advantages. Here, we have run simulations using an “oracle” predictor of when dead

time starts in each cache line. That is, we note when a cache line has had its last successful

access, before the cache miss that begins the next generation. We imagine, in this section

only, that we can identify these dead times with 100% accuracy and eliminate cache leakage

during the dead times.

Figure 3.1 illustrates the fraction of dead time we measured for a 32KB L1 data cache

on our benchmark collection. This is the total fraction of time cache lines spend in their

dead times1. We only count complete generations that end with a miss in the cache frame.

The average across the benchmark suite is quite high: around 65% for integer benchmarks
1We sum the dead times and the live times of all the generations we encounter and we compute the ratio

dead=(dead+ live). We do not compute individual dead ratios per generation and then average them, as this
would skew the results towards short generations.

CHAPTER 3. CACHE DECAY 40

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

si
xt

ra
ck

ap
si

d
ea

d
_t

im
e/

(d
ea

d
_t

im
e+

liv
e_

ti
m

e)

Figure 3.1: Fraction of time cached data are “dead.”

and even higher (80%) for FP benchmarks. From the dead time distribution in Figure 2.9,

we can see that it is mainly the long dead times that dominates the aggregate length of

all dead times. Consider next an oracle predictor which knows precisely when a cache line

becomes dead. With it, we could turn the cache line off with zero impact on cache miss rate

or program performance. Such an oracle predictor would allow us to save power directly

proportional to the shutoff ratio. If on average, 65% of the cache is shut off, and if we

can implement this shutoff with negligible overhead power, then we can cut cache leakage

power by one half or more.

Note that this oracle prediction is not necessarily an upper bound on the leakage power

improvements to be offered by putting cache lines to sleep. Rather, the oracle predictor

offers the best possible leakage power improvementssubject to the constraint that cache

misses do not increase. There may be cases where even though a line is live (i.e., it will be

referenced again before eviction) the reuse will be far into the future. In such cases, it may

be power-optimal to shut off the cache line early, mark it as invalid, and accept a moderate

increase in the number of cache misses. Later sections will offer more realistic policies for

managing these tradeoffs. On the other hand, real world attempts to put cache lines to sleep

will also incur some small amounts of overhead power as we also discuss in the following

sections.

CHAPTER 3. CACHE DECAY 41

3.2 Timekeeping for Leakage Control: Cache Decay

We now examine possible timekeeping policies for guiding how to use a mechanism that

can reduce cache leakage by turning off individual cache lines. A key aspect of these

policies is the desire to balance the potential for saving leakage energy (by turning lines off)

against the potential for incurring extra L2 cache accesses (if we introduce extra misses by

turning lines off prematurely). We wish to either deduce immediately at a reference point

that the cache line is now worth turning off, or else infer this fact by watching its behavior

over time, deducing when no further accesses are likely to arise, and therefore turning the

line off. This section focuses on the latter case, which we refer to as cache decay.

With oracle knowledge of reference patterns, Figure 3.1 demonstrated that the leakage

energy to be saved would be significant. The question is: can we develop policies that come

acceptably close to this oracle? In fact, this question can be approached by relating it to the

theoretical area of competitive algorithms [44]. Competitive algorithms make cost/benefit

decisions online (i.e., without oracle knowledge of the future) that offer benefits within a

constant factor of an optimal offline (i.e., oracle-based) algorithm. A body of computer

systems work has previously successfully applied such strategies to problems including su-

perpage promotion for TLB performance, prefetching and multiprocessor synchronization

[41, 61].

A generic policy for competitive algorithms is to take action at a point in time where the

extra cost we have incurred so far by waiting is precisely equal to the extra cost we might

incur if we act but guess wrong. Such a policy, it has been shown, leads to worst case cost

that is within a factor of two of the offline optimal algorithm.2

For example, in the case of our cache decay policy we are trying to determine when
2[61] includes a helpful example: the ski rent-vs.-buy problem. For example, if ski rental charges are $40

per day, and skis cost $400 to buy, then online approaches suggest that a beginning skier (who doesn’t know
whether they will enjoy skiing or not) would be wise to rent skis 10 times before buying. This equalizes the
rental cost to the purchase cost, bounding total cost at two times the optimal offline approach.

CHAPTER 3. CACHE DECAY 42

to turn a cache line off. The longer we wait, the higher the leakage energy dissipated. On

the other hand, if we prematurely turn off a line that may still have hits, then we inject

extra misses which incur dynamic power for L2 cache accesses. Competitive algorithms

point us towards a solution: we could leave each cache line turned on until the static energy

it has dissipated since its last access is precisely equal to the dynamic energy that would

be dissipated if turning the line off induces an extra miss. With such a policy, we could

guarantee that the energy used would be within a factor of two of that used by the optimal

offline policy shown in Figure 3.1.

As will be detailed in Section 3.4, we estimate the dynamic energy required for a single

L2 access to be roughly 9 times as large as the static leakage energy dissipated by whole L1

data cache. If we consider just one line from the L1 cache, then that ratio gets multiplied by

1024, since the cache we are studying has 1024 lines. This analysis suggests that to come

within a factor of two of the oracle-policy we should leave cache lines turned on until they

have gone roughly 10,000 cycles without an access. At that point, we should turn them

off. Since the dynamic vs. static energy ratio varies so heavily with design and fabrication

factors, we consider a wider range of decay intervals, from 1K to 512K cycles, to explore

the design space thoroughly.

The optimality of this oracle-based policy applies to the case where no additional cache

misses are allowed to be added. In cases of very glacial reuse, however, it may be energy-

beneficial to turn off a cache line, mark its contents invalid, and incur an L2 cache miss

later, rather than to hold contents in L1 and incur leakage power for a long time.

For the online approach (and its bound) to be of practical interest, the wait times before

turning a cache line off must be short enough to be seen in real-life. That is, the average

dead times seen in real programs must be long enough to allow the lines to be turned off a

useful amount of the time. Therefore, we wish to characterize the cache dead times typi-

cally seen in applications, in order to gauge what sorts of decay intervals may be practical.

CHAPTER 3. CACHE DECAY 43

Figure 3.2 shows cumulative distributions of access intervals and dead times for gzip (dot-

ted lines) and applu (solid lines). The last point on the horizontal axis graph represents the

tail of the distributions beyond that point. Recall that the termaccess interval refers to the

time between any two accesses during the live-time of a cache generation. Dead time refers

to the time between the last access to an item in cache, and when it is actually evicted. Our

experiments show that across the benchmark suite, there are a sizable fraction of dead times

greater than 10,000 cycles. Thus, the time range suggested by the online policy turns out

to be one of significant practical promise.

0

20

40

60

80

100

120

1 13 25 37 49 61 73 85

>
=

10
0

cycles(x100)

cu
m

u
la

tv
ie

%

access_inter_gzip dead_time_gzip access_inter_applu dead_time_applu

access_interval

dead_time

Figure 3.2: Cumulative distribution of Access Interval and Dead Time for gzip and applu.

Figure 3.2 also highlights the fact that there is a huge difference between average access

interval and average dead time. For gzip, the average access interval is 458 cycles while the

average dead time is nearly 38,243 cycles. For applu, the results are similar: 181 cycles per

access interval and 14,984 cycles per dead time. This suggests that many dead times are

not only long, but also can be moderately easy to identify, since we will be able to notice

when the flurry of short access interval references is over.

Based on these observations, we focus on timekeeping techniques in which cache de-

cay intervals (the wait times to turn lines off) are set between 1K and 512K cycles for the

L1 cache. These intervals span broadly over the range suggested by both competitive al-

gorithms and the dead time distributions. The following section details a particular way of

implementing a cache decay policy with a single fixed decay interval. Section 3.7 refines

CHAPTER 3. CACHE DECAY 44

this approach to consider an adaptive policy whose decay interval automatically adjusts to

application behavior.

3.3 Cache Decay: Implementation

To switch off a cache line we use thegated Vdd technique developed by Yang et al. [59].

The idea in this technique is to insert a “sleep” transistor between the ground (or supply)

and the SRAM cells of the cache line. The stacking effect [12] of this transistor when it is

off reduces by orders of magnitude the leakage current of the SRAM cell transistors to the

point that leakage power of the cache line can be considered negligible. According to [59]

a specific implementation of the gatedVdd transistor (NMOS gatedVdd, dualVt, wide, with

charge pump) results in minimal impact in access latency but with a 5% area penalty. We

assume this implementation of the gatedVdd technique for cache decay.

One way to represent recency of a cache line’s access is via a binary counter associated

with the cache line. Each time the cache line is accessed the counter is reset to its initial

value. The counter is incremented periodically at fixed time intervals. If no accesses to the

cache line occur and the counter saturates to its maximum count (signifying that the decay

interval has elapsed) it switches off power to the corresponding cache line.

Our competitive algorithm bound and the dead time distributions both indicate that

decay intervals should be in the range of tens of thousands of cycles. Such large decay

intervals make it impractical for the counters to count cycles—too many bits would be

required. Instead, it is necessary for the counters to tick at a much coarser level. Our

solution is to utilize a hierarchical counter mechanism where a single global cycle counter

is set up to provide the ticks for smaller cache-line counters (as shown in Figure 3.3).

Our simulations show that an infrequently-ticking two-bit counter per cache line pro-

vides sufficient resolution and produces the same results as a larger counter with the same

CHAPTER 3. CACHE DECAY 45

BV

M
V Vg

B

CACHE-LINE (DATA + TAG)

Counter
2-bit
FSM M

B B

Power-Off

CACHE-LINE (DATA + TAG)

00

S1 S0
WRD

WRD

T/0 PowerOff01

State Diagram for 2-bit (S1,S0), saturating, Gray-code counter with two inputs (WRD, T)

1 1 1

RESET

T

LOCAL 2-BIT COUNTERS

WRD

WRD

WRD
ROW

DECODERS

ALWAYS POWERED SWITCHED POWER

GLOBAL COUNTER

TT

WRD

T

VALID BIT

CASCADED
TICK
PULSE

V

V

V

Figure 3.3: Implementing cache decay with hierarchical counters.

effective decay interval. If it takes four ticks of the 2-bit counter to decay a cache line (Fig-

ure 3.3), the resulting decay interval is—on average—3.5 times the period of the global

counter.

In our power evaluations, we assume that the global counter will come for free, since

many processors already contain various cycle counters for the operating system or for

performance counting [14, 50, 81]. If such counters are not available, a simple N-bit binary

ripple counter could be built with 40N + 20 transistors, of which few would transition each

cycle.

To minimize state transitions in the local 2-bit cache-line counters and thus minimize

dynamic power consumption we use Gray coding so only one bit changes state at any

time. Furthermore, to simplify the counters and minimize transistor count we choose to

implement them asynchronously. Each cache line contains circuitry to implement the state

machine depicted in Figure 3.3. The two inputs to the local counters, the global tick signal

CHAPTER 3. CACHE DECAY 46

T generated by the global counter and the cache-line access signal WRD, are well behaved

so there are no meta-stability problems. The output signal Power-Off, controls the gated

Vdd transistor and turns off power when asserted. To avoid the possibility of a burst of

writebacks with every global tick signal (if multiple dirty lines decay simultaneously) the

tick signal is cascaded from one local counter to the next with a one-cycle latency. This

does not affect results but it spreads writebacks in time.

Local counters change value with every global counter (T) pulse. However, this happens

at very coarse intervals (equal to the period of the global counter). Resetting a local counter

with an access to a cache line is not a cause of concern either. If the cache line is heavily

accessed the counter has no opportunity to change from its initial value so resetting it does

not expend any dynamic power (none of the counter’s transistors switch). The cases where

power is consumed are accesses to cache lines that have been idle for at least one period of

the global counter. Our simulation results indicate that over all 1024 2-bit counters used in

our scheme, there are 0.2 bit transitions per cycle on average. Modeling each counter as a

2-bit register in Wattch [7], we estimate roughly .1pJ per access. Therefore, at an average

of 0.02pJ per cycle, the power expended by all 1024 of these infrequently-ticking counters

is roughly 4 orders of magnitude lower than the cache leakage energy which we estimate at

0.45nJ per cycle in the next section. For this reason, our power analysis will consider this

counter overhead to be negligible from this point forward.

Switching off power to a cache line has important implications for the rest of the cache

circuitry. In particular, the first access to a powered-off cache line should: (i) result in a

miss (since data and tag might be corrupted without power) (ii) reset the counter and restore

power to the cache line and (iii) delay an appropriate amount of time until the cache-line

circuits stabilize after power is restored. To satisfy these requirements we use the Valid bit

of the cache line as part of the decay mechanism (Figure 3.3). First, the valid bit is always

powered. Second, we add a reset capability to the valid bit so the Power-Off signal can

CHAPTER 3. CACHE DECAY 47

clear it. Thus, the first access to a power-off cache line always results in a miss regardless

of the contents of the tag. Since satisfying this miss from the lower memory hierarchy is

the only way to restore the valid bit, a newly-powered cache line will have enough time to

stabilize. In addition, no other access (to this cache line) can read the possibly corrupted

data in the interim.

Analog implementation: Another way to represent the recency of a cache line’s ac-

cess is via charge stored on a capacitor. Each time the cache line is accessed, the capacitor

is grounded. In the common case of a frequently-accessed cache line, the capacitor will

be discharged. Over time, the capacitor is charged through a resistor connected to the sup-

ply voltage (Vdd). Once the charge reaches a sufficiently high level, a voltage comparator

detects it, asserts the Power-Off signal and switches off power to the corresponding cache

line. Although the RC time constant cannot be changed (it is determined by the fabricated

size of the capacitor and resistor) the bias of the voltage comparator can be adjusted to dif-

ferent temporal access patterns. An analog implementation is inherently noise sensitive and

can change state asynchronously with the remainder of the digital circuitry. Some method

of synchronously sampling the voltage comparator must be used to avoid meta-stability.

Since an analog implementation can be fabricated to mimic the digital implementation, the

rest of this paper focuses on the latter.

3.4 Power Evaluation Methodology

A basic premise of our evaluations is to measure the static power saved by turning off

portions of the cache, and then compare it to the extra dynamic power dissipated in our

method. Our method dissipates extra dynamic power in two main ways. First, we introduce

counter hardware to support our decay policy decisions, so we need to account for the

dynamic power of these counters in our evaluations. Second, our method can dissipate

CHAPTER 3. CACHE DECAY 48

extra dynamic power in cases where our decay policy introduces additional L1 cache misses

not present in the original reference stream. These L1 misses translate to extra L2 reads

and sometimes also extra writebacks. Turning off a dirty line results in an early writeback

which is extraneous only if paired with an extra miss. For the rest of this paper, when we

discuss extra misses we implicitly include associated extra writebacks.

Since both leakage and dynamic power values vary heavily with different designs and

fabrication processes, it is difficult to nail down specific values for evaluation purposes.

Rather, in this paper we focus on ratios of values. In this section, we describe our rationale

for the range of ratio values we focus on. Later sections present our results for different

ratios within this range.

A key energy metric in our study is “normalized cache leakage energy” . This refers

to a ratio of the energy of the L1 with cache decay policies, versus the original L1 cache

leakage energy. The numerator in this relationship sums three terms. The first term is

the improved leakage energy resulting from our policies. The second term is energy from

counter maintenance or other overhead hardware for cache decay policies. The third term

is extra dynamic energy incurred if cache decay introduces extra L1 misses that result in

extra L2 cache accesses (reads and writebacks).

Dividing through by original cache leakage energy, we can use weighting factors that

relate the dynamic energy of extra L2 accesses and extra counters, to the original cache

leakage energy per cycle. Thus, the normalized cache leakage energy after versus before

our improvements can be represented as the sum of three terms: ActiveRatio + (Ovhd :

leak)(OvhdActivity) + (L2Access : leak)(extraL2Accesses). ActiveRatio is the aver-

age fraction of the cache bits, tag or data, that are powered on. Ovhd:leak is the ratio of

the cost of counter accesses in our cache decay method relative to the leakage energy. This

multiplied by overhead activity (OvhdActivity) gives a relative sense of overhead energy in

the system. The L2Access:leak ratio relates dynamic energy due to an additional miss (or

CHAPTER 3. CACHE DECAY 49

writeback) to a single clock cycle of static leakage energy in the L1 cache. Multiplying

this by the number of extra L2 accesses induced by cache delay gives the dynamic cost

induced. By exploring different plausible values for the two key ratios, we present the

benefits of cache decay somewhat independently of fabrication details.

Considering appropriate ratios is fundamental in evaluating our policies. We focus here

on the L2Access:leak ratio. As discussed in the Section 3.3, the dynamic energy of decay

counters are negligible therefore are ignored from now on.

We wish to turn off cache lines as often as possible in order to save leakage power.

We balance this, however, against a desire to avoid increasing the miss rate of the L1

cache. Increasing the miss rate of the L1 cache has several power implications. First

and most directly, it causes dynamic power dissipation due to an access to the L2 cache,

and possible additional accesses down the memory hierarchy. Second, a L1 cache miss

may force dependent instructions to stall, interfering with smooth pipeline operation and

dissipating extra power. Third and finally, the additional L1 cache miss may cause the

program to run for extra cycles, and these extra cycles will also lead to extra power being

dissipated.

We encapsulate the energy dissipated due to an extra miss into a single ratio called

L2Access:leak. The predominant effect to model is the amount of dynamic power dissi-

pated in the L2 cache and beyond, due to the L1 cache miss. Additional power due to

stalls and extra program cycles is minimal. Benchmarks see very few cycles of increased

runtime (< 0:7%) due to the increased misses for the decay policies we consider. In fact, in

some situations, some benchmarks actually run slightly faster with cache decay techniques.

This is because writebacks occur eagerly on cache decays, and so are less likely to stall the

processor later on [23].

To model the ratio of dynamic L2 access energy compared to static L1 leakage per

cycle, we first refer to recent work which estimates dynamic energy per L2 cache access

CHAPTER 3. CACHE DECAY 50

in the range of 3-5nJ per access for L2 caches of the size we consider (1MB) [39]. We

then compared this data to industry data by back-calculating energy per cache access for

Alpha 21164’s 96KB S-cache; it is roughly 10nJ per access for a 300MHz fabricated in a

0.5� process [6]. Although the S-cache is about one-tenth the capacity of the L2 caches we

consider, our back-calculation led to a higher energy estimate. First, we note that banking

strategies typically employed in large caches lessen the degree by which energy-per-access

scales with size. Second, the higher 0.5� feature size used in this older design would lead

to larger capacitance and higher energy per access. Our main validation goal was to check

that data given by the analytic models are plausible; our results in later sections are plotted

for ratios varying widely enough to absorb significant error in these calculations.

The denominator of the L2Access:leak relates to the leakage energy dissipated by the

L1 data cache. Again, we collected this data from several methods and compared. From the

low-Vt data given in Table 2 of [80], one can calculate that the leakage energy per cycle for

a 32KB cache will be roughly 0.45nJ. A simple aggregate calculation from industry data

helps us validate this. Namely, using leakage power of roughly 2-5% of current CPU power

dissipation, L1 cache is roughly 10-20% of that leakage [5], and CPU power dissipations

are around 75W. This places L1 leakage energy at roughly 0.3nJ per cycle. Again, both

methods of calculating this data give results within the same order-of-magnitude.

Dividing the 4nJ dynamic energy per access estimate by the .45nJ static leakage per

cycle estimate, we get a ratio of 8.9 relating extra miss power to static leakage per cy-

cle. Clearly, these estimates will vary widely with design style and fabrication technology

though. In the future, leakage energy is expected to increase dramatically, which will also

impact this relationship. To account for all these factors, our energy results are plotted for

several L2Access:leak ratios varying over a wide range (5 to 100). Our results are conser-

vative in the sense that high leakage in future technologies will tend to decrease this ratio.

If that happens, it will only improve on the results we present in this chapter.

CHAPTER 3. CACHE DECAY 51

Processor Core
Instruction Window 80-RUU, 40-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts

Memory Hierarchy
L1 Dcache Size 32KB, 1-way, 32B blocks, WB
L1 Icache Size 32KB, 1-way, 32B blocks, WB
L2 Unified, 1MB, 8-way LRU,

64B blocks,6-cycle latency, WB
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

Table 3.1: Configuration of simulated processor for cache decay.

3.5 Simulation Model Parameters

Simulations in this chapter are based on the SimpleScalar framework [8]. Our model pro-

cessor has sizing parameters that closely resemble Alpha 21264 [22], but without a clus-

tered organization. The main processor and memory hierarchy parameters are shown in

Table 3.1.

We evaluate our results using benchmarks from the SPEC CPU2000 [73] and Media-

Bench suites [46]. The MediaBench applications help us demonstrate the utility of cache

decay for applications with significant streaming data. The benchmarks are compiled for

the Alpha instruction set using the Compaq Alpha compiler with SPEC peak settings. For

each program, we follow the recommendation in [63], but skip a minimum of 1 billion

instructions. We then simulate 500M instructions using the reference input set.

3.6 Cache Decay: Simulation Results

We now present experimental results for the timekeeping cache decay policy based on

binary counters described in section 3.3. First Figures 3.4 and 3.5 plot the active ratio and

CHAPTER 3. CACHE DECAY 52

miss rate as a function of cache decay interval for a collection of integer and floating point

programs. In each graph, each application has five bars. In the active ratio graph, the first

bar is the active ratio for a traditional 32KB L1 data cache. Since all the cache is turned on

all the time, the active ratio is 100%. Furthermore, we have determined that our benchmark

programs touch the entirety of the standard caches for the duration of execution (active ratio

over 99%). The other bars show the active ratio (average number of cache bits turned on)

for decay intervals ranging from 512K cycles down to 1K cycles. Clearly, shorter decay

intervals dramatically reduce the active ratio, and thus reduce leakage energy in the L1

data cache, but that is only part of the story. The miss rate graphs show how increasingly

aggressive decay intervals affect the programs’ miss rates.

0.00

0.03

0.06

0.09

0.12

0.15

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

m
is

s
ra

te

orig 512K cycle decay interval 64Kc 8Kc 1Kc

0

20

40

60

80

100
gz

ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

ac
ti

ve
ra

ti
o

Figure 3.4: Miss rate and active ratio of a 32KB decay cache for SPECint 2000.

0.00

0.10

0.20

0.30

0.40

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

m
is

s
ra

te

orig 512K cycle decay interval 64Kc 8Kc 1Kc

0

20

40

60

80

100

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

ac
ti

ve
ra

ti
o

Figure 3.5: Miss rate and active ratio of a 32KB decay cache for SPECfp 2000.

Figure 3.6 plots similar data averaged over all the benchmarks. The upper curve corre-

sponds to a traditional cache in which we vary the cache size and see the miss rate change.

In a traditional cache, active size is just the cache size. The lower curve in this graph cor-

responds to a decay cache whose full size is fixed at 32KB. Although the decay cache’s

full size is fixed, we can vary the decay interval and see how this influences the active size.

CHAPTER 3. CACHE DECAY 53

(This is the apparent size based on the number of cache lines turned on.) Starting at the

16KB traditional cache and dropping downwards, one sees that the decay cache with the

same active size has much better miss rate characteristics.

4KB standard

8KB standard

16KB standard
32KB standard

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 8 16 24 32
active size(KB)

m
is

s
ra

te
32KB decay cache standard caches

Figure 3.6: Comparison of standard 8KB, 16KB, and 32KB caches to a fixed-size 32KB
decay cache with varying cache decay intervals. The different points in the decay curve rep-
resent different decay intervals. From left to right, they are: 1Kcycles, 8Kcycles, 64Kcy-
cles, and 512Kcycles. Active size and miss rate are geometric means over all SPEC 2000
benchmarks.

Figure 3.7 shows the normalized cache leakage energy metric for the integer and float-

ing point benchmarks. In this graph, we assume that L2Access:leak ratio is equal to 10

as discussed in section 3.3. We normalize to the leakage energy dissipated by the origi-

nal 32KB L1 data cache with no decay scheme in use. Although the behaviors of each

benchmark are unique, the general trend is that a decay interval of 8K cycles shows the

best energy improvements. This is quite close to the roughly 10Kcycle interval suggested

for worst-case bounding by the theoretical analysis. For the integer benchmarks, all of the

decay intervals — including even 1Kcycle for some —result in net improvements. For the

floating point benchmarks, 8Kcycle is also the best decay interval. All but one of the float-

ing point benchmarks are improved by cache decay techniques for the full decay-interval

range.

We also wanted to explore the sensitivity of our results to different ratios of dynamic

L2 energy versus static L1 leakage. Figure 3.8 plots three curves of normalized cache

leakage energy. Each curve represents the average of all the SPEC benchmarks. The

CHAPTER 3. CACHE DECAY 54

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

gzip vpr gcc mcf crafty parser
eon perlbmk gap vortex bzip2 twolf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

wupwise swim mgrid applu mesa
galgel art equake facerec ammp
lucas fma3d sixtrack apsi

Figure 3.7: Normalized cache leakage energy for an L2Access:leak ratio of 10. This metric
takes into account both static energy savings and dynamic energy overhead. Top graph
shows SPECint2000; bottom graph shows SPECfp2000.

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

ratio=100 ratio=20 ratio=10 ratio=5

1.8

Figure 3.8: Normalized L1 data cache leakage energy averaged across SPEC suite for
various L2Access:leak ratios.

curves correspond to L2Access:leak ratios of 5, 10, 20, and 100. All of the ratios show

significant leakage improvements, with smaller ratios being especially favorable. When

the L2Access:leak ratio equals 100, then small decay intervals (less than 8K cycles) are

detrimental to both performance and power. This is because short decay intervals may in-

duce extra cache misses by turning off cache lines prematurely; this effect is particularly

bad when L2Access:leak is 100 because high ratios mean that the added energy cost of

additional L2 misses is quite high.

To assess these results one needs to take into consideration the impact on performance.

If cache decay slows down execution because of the increased miss rate then its power

advantage diminishes. For the decay scenarios we consider, not only we do not observe

CHAPTER 3. CACHE DECAY 55

any slow-down but in fact we observe a very slight speed up in some cases, which we

attribute to eager writebacks [23]. Beyond this point, however, cache decay is bound to

slow down execution. For our simulated configuration, performance impact is negligible

except for very small decay intervals: the 8Kcycle interval—which yields very low nor-

malized leakage energy (Figures 3.7 and 3.8)—decreases IPC by 0.1% while the 1Kcycle

interval—which we do not expect to be used widely—decreases IPC by 0.7%. Less ag-

gressive processors might suffer comparably more from increased miss rates, which would

make very small decay intervals undesirable.

In addition to the SPEC applications graphed here, we have also done some initial stud-

ies with MediaBench applications [46]. The results are even more successful than those

presented here partly due to the generally poor reuse seen in streaming applications; Me-

diaBench applications can make use of very aggressive decay policies. Since the working

set of MediaBench can, however, be quite small (for gsm, only about 50% of the L1 data

cache lines are ever touched) we do not present the results here.

3.7 Cache Decay: Adaptive Variants

So far we have investigated cache decay using a single decay interval for all of the cache.

We have argued that such a decay interval can be chosen considering the relative cost of

a miss to leakage power in order to bound worst-case performance. However, Figure 3.7

shows that in order to achieve best average-case results this choice should be application-

specific. Even within an application, a single decay interval is not a match for every gener-

ation: generations with shorter dead times than the decay interval are ignored, while others

are penalized by the obligatory wait for the decay interval to elapse. In this section we

present an adaptive decay approach that chooses decay intervals at run-time to match the

behavior of individual cache lines.

CHAPTER 3. CACHE DECAY 56

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

gz
ip

de
ca

y

or
ac

le

vp
r

de
ca

y

or
ac

le

m
cf

de
ca

y

or
ac

le

cr
af

ty
de

ca
y

or
ac

le

pa
rs

er
de

ca
y

or
ac

le

pe
rlb

m
k

de
ca

y

or
ac

le

ga
p

de
ca

y

or
ac

le

vo
rt

ex
de

ca
y

or
ac

leB
en

ef
it

(s
h

u
t-

o
ff

ra
ti

o
) Decayed dead Decayed live Oracle dead Wait time Short dead

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

w
up

w
is

e
de

ca
y

or
ac

le

sw
im

de
ca

y

or
ac

le

m
gr

id
de

ca
y

or
ac

le

m
es

a
de

ca
y

or
ac

le

ar
td

ec
ay

or
ac

le

eq
ua

ke
de

ca
y

or
ac

le

fa
ce

re
c

de
ca

y

or
ac

le

ap
si

de
ca

y

or
ac

le

B
en

ef
it

(s
h

u
t-

o
ff

ra
ti

o
)

Figure 3.9: Lost opportunities for cache decay with 64Kcycle decay intervals.
SPECint2000 and SPECfp2000.

Motivation for an adaptive approach: Figure 3.9 shows details about why a single

decay interval cannot capture all the potential benefit of an oracle scheme. In this figure

two bars are shown for each program: a decay bar on the left and an oracle bar on the right.

Within the bar for the oracle-based approach, there are three regions. The lower region of

the oracle bar corresponds to the lower region of the decay bar which is the benefit (the

shut-off ratio) that comes from decaying truly dead cache lines. The two upper regions of

the oracle bar represent benefit that the single-interval decay schemes of Section 3.6 cannot

capture. The middle region of the oracle bar is the benefit lost while waiting for the decay

interval to elapse. The upper region is lost benefit corresponding to dead periods that are

shorter than the decay interval. On the other hand, the decay scheme can also mistakenly

turn off live cache lines. Although this results in extraneous misses (decay misses) it also

represents benefit in terms of leakage power. This effect is shown as the top region of the

decay bars. For some SPECfp2000 programs the benefit from short dead periods is quite

large in the oracle bars.

Implementation: An ideal decay scheme would choose automatically the best decay

interval for each generation. Since this is not possible without prior knowledge of a gen-

eration’s last access, we present here an adaptive approach to chose decay intervals per

cache-line.

Our adaptive scheme attempts to choose the smallest possible decay interval (out of

a predefined set of intervals) individually for each cache-line. The idea is to start with

CHAPTER 3. CACHE DECAY 57

a short decay interval, detect whether this was a mistake, and adjust the decay interval

accordingly. A mistake in our case is to prematurely decay a cache-line and incur a decay

miss. We can detect such mistakes if we leave the tags always powered-on but this is a

significant price to pay (about 10% of the cache’s leakage for a 32KB cache). Instead we

opted for a scheme that infers possible mistakes according to how fast a miss appears after

decay. We determined that this scheme works equally well or better than an exact scheme

which dissipates tag leakage power.

The idea is to reset a line’s 2-bit counter upon decay and then reuse it to gauge dead

time (Figure 3.10). If dead time turns out to be very short (the local counter did not ad-

vance a single step) then chances are that we have made a mistake and incurred a decay-

miss. But if the local counter reaches its maximum value while we are still in the dead

period then chances are that this was a successful decay. Upon mistakes—misses with the

counter at minimum value (00 in Figure 3.10)—we adjust the decay interval upwards; upon

successes—misses with counter at maximum value (10)—we adjust it downwards. Misses

with the counter at intermediate values (01 or 11) do not affect the decay interval.

We use exponentially increasing decay intervals similarly to Ethernet’s exponential

back-off collision algorithm but the set of decay intervals can be tailored to the situa-

tion. As we incur mistakes, for a cache line, we exponentially increase its decay interval.

By backing-off a single step in the decay-interval progression rather than jumping to the

smallest interval we introduce hysteresis in our algorithm.

Implementation of the adaptive decay scheme requires simple changes in the decay im-

plementation discussed previously. We introduce a small field per cache line, called decay

speed field, to select a decay interval. An N-bit field can select up to 2N decay intervals.

The decay-speed field selects different tick pulses coming from the same or different global

cycle counters. This allows great flexibility in selecting the relative magnitude of the decay

intervals. The value of this field is incremented whenever we incur a perceived decay miss

CHAPTER 3. CACHE DECAY 58

10 00 11011100 01 10

Decay

Interval

increases the decay interval

A miss in here (perceived mistake)

Decay

Accesses

A miss from this point forward

decreses the decay interval (success)

Miss

TIME

Dead time

Last

Generation

Live time

NEW

Access

Figure 3.10: Adaptive decay.

and decremented on a perceived successful decay. We assume that higher value means

longer decay interval.

Results: Figure 3.11 presents results of an adaptive scheme with 10 decay intervals

(4-bit decay-speed field). The decay intervals range from 1K cycles to 512K cycles (the

full range used in our previous experiments) and are successive powers-of-two. In the

same figure we repeat results for the single-interval decay and for various standard caches.

We also plot iso-power lines, lines on which total power dissipation remains constant (for

L2Access : leak = 10). The adaptive decay scheme automatically converges to a point

below the single-interval decay curve. This corresponds to a total power lower than the iso-

power line tangent to the decay curve. This point has very good characteristics: significant

reduction in active area and modest increase in miss ratio. Intuitively, we would expect this

from the adaptive scheme since it tries to maximize benefit but also is aware of cost. This

behavior is application-independent: the adaptive scheme tends to converge to points that

are close or lower than the highest iso-power line tangent to the single-decay curve.

Discussion: Adaptive cache decay is essentially a feedback-control mechanism, which

tries to be more aggressive when successful, but more conservative in case of failure. Our

results show that the parameters in our adaptive scheme (see Figure 3.10) match well with

the L2Access : leak ratio of 10. When such ratio changes, the scheme can be adjusted to

match the new ratio, either by re-defining what happens in each counter state, or by select-

ing a different decay interval range (for example, 8-1024K instead of 1-512K). Special care

CHAPTER 3. CACHE DECAY 59

320.00

0.01

0.02

0.03

0.04

0.05

0 8 16 24 32
active size(KB)

#
ex

tr
a

L
2

ac
ce

ss

decay

adaptive

standard

Figure 3.11: Effect of adaptive decay. Iso-power lines show constant power (L2Access :
leak = 10). Results averaged over all SPEC2000.

must be taken when choosing the smallest decay interval of the range. If decay interval is

smaller than typical access intervals, many cache lines will be turned off when they are still

active, leading to an excessive number of decay-caused misses. To avid this, the value of

the smallest decay interval should be safely away from those of typical access intervals.

Adaptive decay for set-associative caches: Figure 3.12 demonstrates the effect of

adaptive decay for a 4-way 32KB data cache. As in the previous section, the decay interval

starts with an aggressively small value but increases in the event of a decay caused miss.

To identify a decay caused miss, instead of the counter-based huristic described above,

we keep part of the cache tag always powered-on. If during a cache access, the lookup

tag matches the partial powered-on tag but the data is decayed, then we declare it a decay

caused miss and modify the decay interval to a more conservative (larger) value. On the

other hand, if the lookup tag does not match the partial tag, indicating a “ true” cache miss

not caused by cache decay, then the decay interval is reset to the most aggressive (smallest)

value. Since the powered-on partial tag leads to additional leakage power, we should choose

it to be as small as possible. On the other hand, too few powered on bits will lead to aliasing

effect where the lookup tag matches the partial tag but does not match the whole tag. In our

experiment, we found a 5-bit partial tag effectively remove the aliasing effect with minimal

additional leakage power.

CHAPTER 3. CACHE DECAY 60

320.00

0.01

0.02

0.03

0.04

0.05

0 8 16 24 32
active size(KB)

#
ex

tr
a

L
2

ac
ce

ss
p

er
cy

cl
e

decay

adaptive

standard

Figure 3.12: Effect of adaptive decay for a 4-way 32KB cache. Iso-power lines show
constant power (L2Access : leak = 10). Results averaged over all SPEC2000.

3.8 Changes in the Generational Behavior and Decay

In this section we will first examine sensitivity of cache decay to cache size, associativity

and block size. Then we show the effectiveness of cache decay for the instruction cache.

Finally we will discuss how cache decay can be applied when multi-level cache hierarchies

or multi-programming change the apparent generational behavior of cache lines.

3.8.1 Sensitivity to Cache Size, Associativity and Block Size

Cache characteristics usually vary with different cache geometries, namely cache size, as-

sociativity and block size. Now we explore the effect of changing these parameters on

cache decay behavior. Figure 3.13 and 3.14 plot ActiveRatio-MissRate curves of differ-

ent cache size, associativity and block size for SPEC2000 benchmark suite. Across the

configurations, we observed trends consistent to the 32KB direct-mapped cache shown in

the previous section. Cache decay constantly show a benefit even for considerably small

caches.

CHAPTER 3. CACHE DECAY 61

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

active ratio(%)

m
is

s
ra

te

16K 32K 64K

Figure 3.13: ActiveRatio-MissRate curve for mcf for different sizes of L1 data cache.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

active ratio(%)

m
is

s
ra

te

1_way 2_way 4_way

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

active ratio(%)

m
is

s
ra

te

16B 32B 64B

Figure 3.14: ActiveRatio-MissRate curve for mcf for different associativity(left) and block
size(right) of a 32KB L1 data cache.

3.8.2 Instruction Cache

Cache decay can be applied to instruction caches since they typically exhibit even more

locality than data caches. In fact, compared to data cache, instruction cache has the addi-

tional benefit that it does not have any writeback traffic. Figure 3.15 shows the normalized

leakage energy for a 32KB L1 instruction cache. Notice that even without decay, the in-

struction cache is not fully touched during our simulation period. The figure shows that

decay works very well except for very small decay intervals.

3.8.3 Multiple Levels of Cache Hierarchy

Cache decay is likely to be useful at multiple levels of the hierarchy since it can be usefully

employed in any cache in which the active ratio is low enough to warrant line shut-offs.

CHAPTER 3. CACHE DECAY 62

0.0

0.1

0.2

0.3

0.4

0.5

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

ratio=100 ratio=20 ratio=10 ratio=5

1.32

Figure 3.15: Normalized L1 instruction cache leakage energy averaged across SPEC suite
for various L2Access:leak ratios.

For several reasons, the payoff is likely to increase as one moves outward in the hierarchy.

First, a L2 or level-three cache is likely to be larger than the L1 cache, and therefore will

dissipate more leakage power. Second, outer levels of the cache hierarchy are likely to have

longer generations with larger dead time intervals. This means they are more amenable to

our time-based decay strategies. On the other hand, the energy consumed by any extra L2

misses we induce could be quite large, especially if servicing them requires going off chip.

The major difference between L1 and L2 is the filtering of the reference stream that

takes place in L1 which changes the distribution of the access intervals and dead periods in

L2. Our data shows that the average access interval and dead time for L2 cache are 79K and

2.7M cycles respectively. Though access intervals and dead periods become significantly

larger, their relative difference remains large and this allows decay to work.

The increased access intervals and dead times suggest we should consider much larger

decay intervals for the L2 compared to those in the L1. This meshes well with the com-

petitive analysis which also points to an increase in decay interval because the cost of an

induced L2 cache miss is so much higher than the cost of an induced L1 cache miss. As a

simple heuristic to choose a decay interval, we note that since there is a 100-fold increase

in the dead periods in L2, we will also multiply our L1 decay interval by 100. Therefore a

64Kcycle decay interval in L1 translates to decay intervals on the order of 6400K cycles in

CHAPTER 3. CACHE DECAY 63

0.0

0.2

0.4

0.6

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

L
2

m
is

s
ra

te
orig 8192Kcycles decay interval 1024Kc 128Kc 16Kc

0

20

40

60

80

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

L
2

ac
ti

ve
ra

ti
o

Figure 3.16: Miss rate and active ratio of a 1MB L2 decay cache for SPECint 2000. eon
does not fully utilize the L2 cache.

0.0

0.2

0.4

0.6

0.8

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

L
2

m
is

s
ra

te

orig 8192Kcycles decay interval 1024Kc 128Kc 16Kc

0

20

40

60

80

100

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

L
2

ac
ti

ve
ra

ti
o

Figure 3.17: Miss rate and active ratio of a 1MB L2 decay cache for SPECfp 2000. fma3d
does not fully utilize the L2 cache.

the L2.

Here, we assume that multilevel inclusion is preserved in the cache hierarchy [2]. Mul-

tilevel inclusion allows snooping on the lowest level tags only and simplifies writebacks

and coherence protocols. Inclusion bits are used to indicate presence of a cache line in

higher levels. For L2 cache lines that also reside in the L1 we can turn off only the data but

not the tag. Figures 3.16 and 3.17 show miss rate and active ratio results for the 1MB L2

cache. As before, cache decay is quite effective at reducing the active ratio in the cache.

Miss rates tend to be tolerable as long as one avoids very short decay intervals. (In this

case, 128Kcycle is too short.)

It is natural to want to convert these miss rates and active ratios into energy estimates.

This would require, however, coming up with estimates on the ratio of L2 leakage to the

extra dynamic power of an induced L2 miss. This dynamic power is particularly hard to

characterize since it would often require estimating power for an off-chip access to the next

level of the hierarchy. Instead, we report the “breakeven” ratio. This is essentially the value

CHAPTER 3. CACHE DECAY 64

of L2Access:leak at which this scheme would break even for the L2 cache.

In these benchmarks, breakeven L2Access:leak ratios for an 1Mcycle decay interval

range from 71 to 155,773 with an average of 2400. For a 128Kcycle decay interval,

breakeven L2Access:leak ratios range from 16 to 59K with an average of 586. The art

benchmark tends to have one of the lowest breakeven ratios; this is because its average L2

access interval is very close to its average L2 dead time so cache decay is very prone to

inducing extra misses.

3.8.4 Multiprogramming

Our prior results all focus on a single application process using all of the cache. In many

situations, however, the CPU will be time-shared and thus several applications will be

sharing the cache. Multiprogramming can have several different effects on the data and

policies we have presented. The key questions concern the impact of multiprogramming

on the cache’s dead times, live times, and active ratios.

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

ratio=100 ratio=20 ratio=10 ratio=5

2.2 1.7

Figure 3.18: Normalized L1 data cache leakage energy for cache decay methods on a
multiprogrammed workload.

To evaluate multiprogramming’s impact on L1 cache decay effectiveness, we have done

some studies of cache live/dead statistics for a multiprogramming workload. The workload

was constructed as follows. We collected reference traces from six benchmarks individ-

ually: gcc, gzip, mgrid, swim, vpr and wupwise. In each trace, we recorded the address

CHAPTER 3. CACHE DECAY 65

referenced and the time at which each reference occurred. We then “sew” together pieces

of the traces, with each benchmark getting 40ms time quanta in a round-robin rotation to

approximate cache conflicts in a real system.

Multiprogramming retains the good behavior of the single-program runs. Average dead

time remains roughly equal to the average dead times of the component applications. This

is because the context switch interval is sufficiently coarse-grained that it does not impact

many cache generations. In a workload where cache dead times are 14K cycles long on

average, the context switch interval is many orders of magnitude larger. Thus, decay tech-

niques remain effective for this workload. Multiprogramming also allows opportunities

for more aggressive decay policies such as decaying items at the end of a process time

quantum.

3.9 Related Work

Various researchers have noticed that a large percentage of blocks in a cache at any given

time are never reused. Wood, Hill, and Kessler showed that for their benchmark suite dead

time was typically at least 30% on average [77]. Similarly, Burger et al. showed that most

of the data in a cache will not be used in the future [9]. They found cache “efficiencies”

(their term for fraction of data that will be a read hit in the future before any evictions or

writes) to be around 20% on average for their benchmarks. Most interestingly, they noted

that fraction of dead time gets worse with higher miss rates, since lines spend more of their

time about to be evicted.

Albonesi [1] proposed a cache design which can change the associativity of the cache

according to application demands. Yang et al. [80] described a circuit technique called

Gated-Vdd and an instruction cache organization that disables ways of a set-associative

cache to match the capacity currently needed by the executing program. Similar to the

CHAPTER 3. CACHE DECAY 66

Cache Decay idea described in this chapter, Zhou et al. [82] describe techniques for dis-

abling individual cache lines by inferring that lines which have not been used in a long

time have decayed: they probably contain data that is not likely to be used again before re-

placement. Flautner et al. [19] have proposed a drowsy cache, which reduces static power

consumption by putting cache lines in a low-power state where they retain their information

but cannot be accessed. The authors propose putting the entire cache in the drowsy mode

at periodic intervals. Nii et al. [56] proposed a low leakage circuit technique called Auto-

Backgate-Controlled Multi-Threshold COMS (ABC-MTCMOS). With this technique, the

threshold voltages of the transistors in the cell are dynamically increased when the cell is

set to a low leakage mode by raising the source to body voltage in the circuit. Hanson et

al. [24] compare various leakage reduction techniques for the L1 instruction cache, the L1

data cache, and the L2 unified cache. Heo et al. [26] propose to reduce the static energy

associated with the bitlines in a RAM by simply tristating the drivers to the lines. The

floating bitlines naturally settle at the voltage level that minimizes the leakage energy.

3.10 Chapter Summary

This chapter has described a novel method to reduce cache leakage power by keeping track

of cache line idle times and exploiting generational characteristics of cache-line usage. We

introduce the concept of cache decay, where individual cache lines are turned off (elimi-

nating their leakage power) when they enter a dead period—the time between the last suc-

cessful access and a line’s eviction. We propose an energy-efficient technique that deduces

entrance to the dead time with small error. Error in our technique translates into extraneous

cache misses and writebacks which dissipate dynamic power and harm performance. Thus,

our techniques must strike a balance between leakage power saved and dynamic power in-

duced. Our evaluations span a range of assumed ratios between dynamic and static power,

CHAPTER 3. CACHE DECAY 67

in order to give both current and forward-looking predictions of cache decay’s utility.

Our proposal of cache decay is a time-based working set algorithm over all cache lines.

A cache line is kept on as long as it is re-accessed within a time window called “decay

interval.” In our implementation, a global counter provides a coarse time signal for small

per-cache-line counters. Cache lines are “decayed” when a cache-line counter reaches its

maximum value. This simple scheme works well for a wide range of applications, L1 and

L2 cache sizes, and cache types (instruction, data). It also survives multiprogramming

environments despite the increased occupancy of the cache. Compared to standard caches

of various sizes, a decay cache offers better active size (for the same miss rate) or better

miss rate (for the same active size) for all the cases we have examined.

Regulating a decay cache to achieve a desired balance between benefit and overhead

is accomplished by adjusting the decay interval. Competitive on-line algorithm theories

allow one to reason about appropriate decay intervals given a dynamic to static energy

ratio. Specifically, competitive on-line algorithms teach us how to select a decay interval

that bounds worst case behavior within a constant factor of an oracle scheme. To escape

the burden of selecting an appropriate decay interval to optimize average case behavior

for different situations (involving different applications, different cache architectures, and

different power ratios), we propose adaptive decay algorithms that automatically converge

to the desired behavior. The adaptive schemes involve selecting among a multitude of

decay intervals per cache line and monitoring success (no extraneous misses) or failure

(extraneous misses) for feedback.

Aside from the hardware-counter based decay mechanism, we also experimented a

profile-based, rather than time-based, method to detect dead times [42]. By using a pro-

file run to classify load/store instructions according to subsequent hit or miss events on

the cache lines they access, one can further improve on timekeeping-based cache decay by

eliminating the long wait times before lines are turned off.

CHAPTER 3. CACHE DECAY 68

With the increasing importance of leakage power in upcoming generations of CPUs,

and the increasing size of on-chip memory, cache decay can be a useful architectural tool

to save power or to rearrange the power budget within a chip.

From the viewpoint of the timekeeping methodology, cache decay is complementary

to the timekeeping victim cache filter described in the previous chapter. More specifically,

while the victim cache filter targets cache line generations with short dead times, cache

decay mainly captures those with long dead times. Short dead times are good indicators of

conflict misses, therefore they are good matches to conflict-oriented structures, such as the

victim cache. On the other hand, long dead times contribute to the bulk of cache leakage

consumption, and typically indicate cache lines that are likely no longer useful, so they

are the natural target for leakage reduction techniques such as cache decay. Overall, both

cache decay and the timekeeping victim cache filter demonstrate that, since timekeeping

metrics are strongly predictive of program memory behavior, keeping track of them leads

to effective hardware mechanisms for improving processor power and performance.

Chapter 4

Timekeeping Prefetch

In previous chapters, we described two applications of the timekeeping methodology:

cache decay and a timekeeping victim cache filter. A common characteristic of these

two mechanisms is that they both exploit lifetime characteristics within single generations.

More specifically, cache decay tracks the idle time in the current generation and predicts

whether the cache line is in its dead time. Timekeeping victim cache filter tracks the dead

time of the current generation and predicts whether this generation is ended due to a conflict

or capacity miss.

In contrast, the timekeeping prefetch mechanism, as will be described in this chapter,

exploits lifetime characteristics across consecutive generations of the same cache line. This

mechanism keeps track of timekeeping metrics in the previous generation of a cache line

and uses them to deduce what will happen in the current generation. Specifically, we will

show that there exists regularity among live times of consecutive generations of the same

cache line. This means the live time in the previous generation can be a good estimate of

the live time of the current generation. Since knowing the live time tells us when a cache

line is dead, this naturally leads to a dead block predictor. In this chapter, we evaluate the

effectiveness of such a predictor and we demonstrates how it can be used to construct a

69

CHAPTER 4. TIMEKEEPING PREFETCH 70

highly effective hardware prefetcher.

4.1 Prefetching: Problem Overview

To attack the widening speed gap between processor and main memory, many computer

architects have relied on prefetching mechanisms. Prefetching works by predicting what

data will be required by the processor in the future and fetching them into caches a priori.

Prefetching is somewhat similar to branch prediction, where addresses of to-be-executed

instructions are predicted and associated instructions pre-loaded into the processor core. As

in branch predictors, prefetching can be initiated in either hardware [4, 11, 34, 37, 38, 45,

62, 70] or software [47, 48, 54, 57]. Compared to software prefetching, hardware prefetch-

ers have the advantage of transparency and run-time information availability. However,

due to the lack of program semantic information, many hardware prefetchers have relied

on capturing specific recurring patterns observed in memory reference streams. For ex-

ample, stride prefetchers [4] target load instructions that stride through the address space.

Stream buffers [38] attempt to capture reference streams formed by consecutive cache lines.

Correlation-based prefetching [11, 34, 37, 45, 70] is a more general prefetching scheme,

attempting to exploit any correlation between a future memory reference and past memory

behavior, including memory reference streams, load instruction addresses, and branch his-

tory. A common drawback in previous proposals on correlation-based prefetching is the

relatively large size of their correlation tables, often 1-2 MB [37, 45]. These size require-

ments are comparable to current on-chip L2 caches and therefore bring up concerns about

latency, power, and transistor budget overhead. Moreover, some prefetchers require in-

struction addresses, in addition to address traces. Passing information about instructions

from the processor core to prefetchers complicates the processor design.

In general, prefetching can be thought of in terms of two sub-problems:

CHAPTER 4. TIMEKEEPING PREFETCH 71

� Identifying when a cache line enters its dead time, so that it can be evicted to make

room for prefetched data.

� Identifying which new block should be prefetched.

In this chapter, we demonstrate a highly effective prefetcher that can be constructed by in-

tegrating a tag-history-based prefetch address predictor and a live-time-history-based dead

block predictor. We follow a sequence of steps to establish this claim:

� First, we show in Section 4.2 that tags and tag sequences, the necessary ingredient

for tag correlating prefetching, are highly repetitive and thus form a solid basis for

address predictions.

� Second, we show in Section 4.3 that live time across consecutive generations of the

same cache line exhibit strong regularity. This leads to a live-time-history-based dead

block predictor.

� Third, we show in Section 4.4 that a small, integrated history table can track both

tag correlation history and live time history. Finally, in Section 4.5 we evaluate a

timekeeping prefetcher based on such a history table.

4.2 Tag-History-Based Address Predictor

In this section we present the rationale behind our tag-based address predictor. We start

from the well-known locality of memory references: programs tend to access addresses

that match or are close to previously-accessed addresses. Traditionally memory reference

locality has been interpreted in terms of complete addresses. Since cache tags are just

the high order bits of memory addresses, intuitively the rule of locality should also apply.

(Note that locality of tags are in accordance with locality found for virtual pages [3] and

CHAPTER 4. TIMEKEEPING PREFETCH 72

TLB [64, 40]). In the following paragraphs we further formalize the locality of tags, with

formula “A! B” representing the relationship that “ if A appeared in the recent past, then

B will likely appear in the near future” .

� Temporal locality states that recently accessed addresses are likely to be re-accessed

in the near future. When re-references to an address occur, the corresponding tag and

index will also re-appear. So temporal locality indicates that cache tags tend to recur

within the same cache set. This line of thought can be represented by the following

formula.

A! A

) tag(A)! tag(A) and index(A)! index(A)

� Spatial locality says that items whose addresses are near each other tend to be refer-

enced close in time. This correlation can be represented as follows:

A! A+ Æ

Depending on the relative size of Æ, three situations could occur:

1. tag(A) = tag(A+ Æ) and index(A) = index(A + Æ).

This happens when Æ is so small that A and A + Æ remain in the same cache

line. In this situation tag(A) re-appears in the same set, accompanying the

occurrence of A + Æ.

2. tag(A) = tag(A+ Æ) but index(A) 6= index(A + Æ).

This happens if Æ is big enough to change the index but not enough to affect

the tag. In this situation tag(A) re-appears in another cache set when A + Æ is

referenced.

3. tag(A) 6= tag(A+ Æ).

This happens if Æ is big enough to change the tag. In this situation tag(A) will

not re-appear when A + Æ is referenced.

CHAPTER 4. TIMEKEEPING PREFETCH 73

Spatial locality typically refers to addresses that are near each other, therefore Æ is

usually small enough so that the third situation rarely occurs. Combining situation 1 and 2,

we can interpret spatial locality as: “cache tags tend to re-appear either in the same cache

set, or in other cache sets.” This interpretation also applies to temporal locality, where

cache tags recur only in the same cache set. Thus, for both temporal and spatial locality:

A! A or A! A + Æ

) tag(A)! tag(A)

Overall, tags exhibit recurring behavior due to the locality of references. Tags can be

viewed as special per-cache-set tag sequences, with sequence length of 1. The question we

want to investigate next is whether general tag sequences also exhibit recurring behavior.

That is, is the following formula true?

tag(A1); tag(A2); :::; tag(Ak)! tag(A1); tag(A2); :::; tag(Ak)

To test this, we profiled the tag sequences in SPEC2000 benchmarks. Without loss of

generality, we look at sequences with length of three. The left graph of Figure 4.1 shows

the number of unique three-tag sequences that appeared in the miss streams of a 32 KB

direct-mapped L1 data cache. The right graph of Figure 4.1 gives the average number of

times each three-tag sequence recurs. As we can see, for many benchmarks, each three-

tag sequence recurs thousands of times, indicating a very repetitive behavior that can be

exploited by a history-based predictor.

Since many tag sequences do exhibit recurring behavior, if a tag sequence of (A;B;C)

appeared in the past, then we expect it to repeat itself in the future. Therefore, whenever we

observed sequence of (A;B), we can predict C as the next tag. We utilize such an address

predictor in our timekeeping prefetch and we evaluate its effectiveness in Section 4.5.

CHAPTER 4. TIMEKEEPING PREFETCH 74

1

10

100

1000

10000

100000

1000000

10000000

100000000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#
u

n
iq

u
e

3-
ta

g
-s

eq
u

en
ce

s
fo

u
n

d
in

th
e

si
m

u
la

ti
o

n
p

er
io

d

1

10

100

1000

10000

100000

1000000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#t
im

es
ea

ch
3-

ta
g

-s
eq

u
en

ce
ap

p
ea

r

Figure 4.1: Number of unique three-tag sequences (left) and average number of times each
sequence appears (right) for SPEC2000 benchmarks.

4.3 Live-Time-Based Dead Block Predictor

Now that we have addressed the address prediction, in this section we explain how to decide

when to initiate a prefetch so that it will arrive on time, but without disrupting any useful

data. Ideally, a new cache line should arrive right after the live time of the current cache

line has elapsed, therefore a live time predictor can greatly facilitate the scheduling of a

prefetch. As with other predictors, past history is our guide in predicting the live time of a

block. The simplest history-based predictor is to predict that the live time of a block in the

current generation will be the same as the live time of its previous generation. This works

if there exists regularity between live times of consecutive generations of the same cache

line. To test this, we profiled variability of consecutive live times per block using counters

with a resolution of 16 cycles. Figure 4.2 shows the profiling results for selected SPEC2000

programs and for the geometric mean for all SPEC2000 programs. The benchmarks shown

have significant speedup potential and will be discussed in detail in Section 4.5. The figure

shows that a significant percentage (more than 20%) of the differences are less than 16

cycles, indicating that for many cache lines, their live times stay relatively stable across

consecutive generations.

By exploiting this regularity of the live times we can construct a predictor for dead

CHAPTER 4. TIMEKEEPING PREFETCH 75

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-8
19

2

-4
09

6

-2
04

8

-1
02

4

-5
12

-2
56

-1
28 -6
4

-3
2

-1
6 0 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

%
d

if
f_

lt
(r

ea
l-

p
re

d
ic

te
d

)

gcc mcf swim mgrid applu
art facerec ammp [average]

0

0.2

0.4

0.6

0.8

1

1.2

1/4 1/2 1 2 4

gcc mcf swim mgrid applu art facerec ammp [average]

Figure 4.2: Absolute difference (left) and cumulative distribution of the relative ratio (right)
of consecutive live times.

blocks as follows: at the start of a block’s generation we predict that its live time is going to

be similar to its last live time. After its predicted live time is over, we wait a brief interval

and then we predict the block to be dead. The question is: how long should we wait before

predicting the block is dead? To account for some variability in the live time we could add

a fixed number of cycles to the predicted live time. Because live times have a wide range in

magnitude, however, we chose instead to scale the added time to the predicted live time. To

choose an appropriate scaling factor, the second graph of Figure 4.2 shows the cumulative

distribution of the ratio of the current live time divided by the previous live time. As we

can see in this graph, on average, about 80% of the current live times are less than twice

the previous live time.

Thus, a simple heuristic is to predict that a block is dead at a time twice its previous

live time from the start of its current generation. Additional justification for this predictor

comes from our observation in Chapter 2 that dead times are typically much larger than live

times. Using this predictor, Figure 4.3 shows the accuracy and coverage for the SPEC2000

programs. Coverage in this case refers to the percentage of blocks for which we do make

a prediction while they are still in the cache. Blocks with a shorter generation than twice

their predicted live time have already been evicted by the time of the prediction. On average

CHAPTER 4. TIMEKEEPING PREFETCH 76

(for all SPEC2000), accuracy is around 75% and coverage about 70%. There is also a

discernible trend for increased accuracy and coverage to the right of the graph towards

the programs with significant percentage of capacity misses and significant potential for

speedup.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fm
a3

d

eq
ua

ke

ga
p

vo
rt

ex

m
es

a

eo
n

ap
si

si
xt

ra
ck

ga
lg

el

cr
af

ty

gz
ip

pe
rlb

m
k

w
up

w
is

e

bz
ip

2

lu
ca

s

vp
r

gc
c

fa
ce

re
c

pa
rs

er

ap
pl

u

tw
ol

f

m
gr

id ar
t

sw
im

am
m

p

m
cf

[g
eo

m
ea

n]

accuracy coverage

Figure 4.3: Accuracy and coverage of live time based dead-block prediction. Benchmarks
are order from left to right according to their performance speedups with an ideal L1 data
cache with no conflict or capacity misses.

4.4 Timekeeping Prefetch: Implementation

A full-fledged prefetching mechanism needs to establish both what to prefetch and when to

prefetch it. Regarding what to prefetch, a tag-history-based predictor can help to provide

accurate address prediction, as discussed in Section 4.2. Regarding when to prefetch, a

live-time dead-block prediction is an efficient mechanism to schedule prefetches but this

also requires a predictor structure to predict live times.

In this section we show that the same structure that can predict addresses can also

predict live-times (or vice-versa), unifying the two predictors into a single structure. We

propose a compact, history-based, predictor for both addresses and live-times that outper-

CHAPTER 4. TIMEKEEPING PREFETCH 77

forms previous proposals for the whole of the SPEC2000. Furthermore, it requires only

a tiny fraction of the area compared to prior proposals: about two orders of magnitude

smaller than the Dead Block Correlating Predictor (DBCP) proposed by Lai et al in [45].

Our predictor is a correlation table not unlike the DBCP. In our case, the reference

history used by our predictor is just the most recent miss address per frame, which is readily

available in L1. In contrast, the DBCP approach also requires a PC trace which, in many

cases, is complex to obtain from within the out-of-order core. We use miss address per

cache frame, rather than the global miss trace of the cache. This means that a prediction

that refers to a specific frame takes into account only the miss trace of this frame. The

issue is complicated somewhat in set-associative caches where we use per-set miss trace

history but we still perform all timekeeping and accounting on a per-frame basis. Per-set

miss trace history removes some of the conflict misses that are dispersed within the history

of the capacity misses. This is an advantage for our prefetching mechanism since it caters

mostly to capacity misses as we will show later in this section.

Each predictor entry stores both the prediction for the prefetch address and the pre-

dicted live time of the block to be replaced by the prefetch. We use a 1-miss history to get

these predictions. For example, assume that block A occupies a cache frame. At the point

when block B replaces A, we access the predictor using the (per-frame) history (A,B). The

predictor returns a prediction that block C should replace B and a prediction for the live

time of B. Using the predicted live time of B, we apply our live-time-based dead-block

prediction and we “declare” B to be dead at a time twice its predicted live time. At that

point in time, we schedule the prefetch to C to occur. (One could also estimate when C

needs to arrive, and exploit any slack to save power or smooth out bus contention.)

Figure 4.4 shows how we access the address correlation table and in particular the

indexing mechanism we use. When block B replaces block A in a cache frame we add the

tags of A and B (using truncated addition). When combined with A and B’s common index,

CHAPTER 4. TIMEKEEPING PREFETCH 78

Address Correlation Table

C lt(B)index' B

B

A

+

tag'

8 ways

L1 data cache

m
(7)

n
(1)

previous current next

A B C

tag

tag

next tag

t

tag live time

data

index offset

Figure 4.4: Structure of Timekeeping Address Correlation Table. Assuming a tag sequence
of (A;B;C) in the current cache frame.

the sum of the tags gives us a pointer to the correlation table. The pointer is constructed by

taking m bits from the sum of the tags and n bits from the index. The correlation table is

typically set-associative so the pointer selects a set in this table. We then select the correct

entry in the set by matching the tag of the block B to the identification tag in the predictor

entry. The selected predictor entry predicts the tag of the block to be prefetched. The index

is implied and is the same as in A and B. The same entry also gives a prediction for the live

time of B. This live-time prediction is at the crux of our ability to do timely prefetch.

We have tested several sizes of this table ranging from megabytes to few kilobytes.

Even very small tables work surprisingly well. An interesting observation arises when we

index this table using mainly tag information and only partial index information (n less than

10). In this case, histories from different cache frames (or sets) may map to the same entry.

This results in constructive aliasing and allows our table to have much smaller size than the

table in [45]. The intuition behind this constructive aliasing is that often multiple distinct

CHAPTER 4. TIMEKEEPING PREFETCH 79

data structures are traversed similarly. If accesses in one data structure imply accesses to

another data structure, it does not matter what particular element is accessed in the one or

the other. A contrived and simplistic example is to imagine a loop that adds elements of

two arrays and stores them in a third array. Many triads of elements accessed can share a

single entry in the correlation table as long as their tags remain the same! They all exhibit

the same tag sequence pattern.

Within every cache line, we need the following timekeeping hardware for our prefetch:

two counters, a register, and two extra tag fields. The two counters and the register are

only 5 bits long each. The results we present in this chapter are for an 8KB table, 8-way

set-associative correlation table. We index the table using seven bits from the sum of tags

(m=7) and one bit from the cache index (n=1).

One counter (gt counter) and one register (lt register) are needed to track live time

as follows: The counter measures generation time. It is initialized at the beginning of a

generation and is continuously incremented by the global tick until the next miss. At this

point the counter contains the generation time. At every intermediate hit the gt counter is

copied over to the lt register so at any point in time the lt register trails the gt counter by

one access. Thus, when a generation ends, the value of the lt register is the time from the

initial miss to the last access, i.e., the live time. An additional counter (prefetch counter)

and a tag field (next tag) are needed to schedule a prefetch while another tag (prev tag) is

needed for predictor update as discussed below.

Figure 4.5 and 4.6 show the overall structure and operations associated with timekeep-

ing prefetch. The correlation table sits besides the L1 cache. Assume we have the following

sequence of blocks in a cache frame: (D;A;B; C). When a miss on address B attempts to

replace block A, the lt counter contains the live time of A, the prev tag contains D, and the

following actions occur:

1. A demand fetch is sent to L2 for block B.

CHAPTER 4. TIMEKEEPING PREFETCH 80

OoO core

L2 cache

correlation
table

L1/L2 bus

(D, A)
TAG DATA

next
tag

lt
ctr

gt
ctr

prefetch
ctr

prev
tag

L1 cache

Update: B, lt(A)

Figure 4.5: Update of a predictor entry.

2. Predictor update occurs as shown in Figure 4.5. An index is computed from A and

its precursor D. The predictor table is accessed with history (D,A) and the entry

corresponding to A is updated with B as the predicted next tag and lt(A) as the next

prediction for the live time of A. A is installed in prev tag.

3. Predictor access occurs as shown in Figure 4.6. An index is computed from B and

the just evicted block A. The predictor is accessed with history (A,B) and an entry is

selected that corresponds to B. Predictions for the live time of B and the next tag C

are obtained and installed in the prefetch counter and the next tag respectively. (The

live time is doubled by shifting one bit before it is installed in the prefetch counter.)

4. The prefetch counter is decremented with every tick. When it reaches zero the

prefetch to C is put into an 128-entry prefetch queue.

4.5 Simulation Results

Figure 4.7 shows the IPC improvement of timekeeping prefetch over the base configura-

tion. We include results for our 8KB timekeeping correlation table and we compare to the

CHAPTER 4. TIMEKEEPING PREFETCH 81

OoO core

L2 cache

prefetch
queue

correlation
table

L1/L2 bus

(A, B)

2 * lt(B)

C

TAG DATA

L1 cache predict

next
tag

lt
ctr

gt
ctr

prefetch
ctr

prev
tag

Figure 4.6: Predictor access to make a prediction (right).

prior proposed DBCP with a 2MB table. DBCP [45] is a correlation based prefetcher that

correlates the liveness of a cache line and the next tag with PCs of previous memory in-

structions, in addition to addresses. Note that in [45], a critical miss predictor [18, 72] is

proposed to filter the correlation entries. In our experiment, this filter is not incorporated in

either DBCP or timekeeping prefetch. Our timekeeping prefetch achieves higher IPC im-

provement than DBCP in all SPEC2000 benchmarks except mcf and ammp (these bench-

marks benefit greatly from a large history table, as explained later.) In addition, it improves

performance for all but four of the SPEC2000 programs. Overall, our prefetch mecha-

nism achieved 11% IPC improvement while DBCP only achieved about 7% improvement.

Referring back to Figure 2.7, we see that our prefetching mechanism achieves significant

speedup for many of the programs with a very large percentage of capacity misses (pro-

grams to the right of the graph in Figures 2.7 and 4.7) without harming those heavy on

conflict misses (programs to the left of the graphs). The best performers are gcc, facerec,

applu, mgrid, art, swim, ammp, and mcf. From the programs with the highest potential

for speedup only two, twolf and parser, do not benefit from prefetch. These two programs

exhibit very low accuracy in address prediction which results in a slight performance loss

CHAPTER 4. TIMEKEEPING PREFETCH 82

for twolf; the same programs are problematic even with a 2MB DBCP.

-20%

0%

20%

40%

60%

80%

100%

fm
a3

d

eq
u

ak
e

g
ap

vo
rt

ex

m
es

a

eo
n

ap
si

si
xt

ra
ck

g
al

g
el

cr
af

ty

g
zi

p

p
er

lb
m

k

w
u

p
w

is
e

b
zi

p
2

lu
ca

s

vp
r

g
cc

fa
ce

re
c

p
ar

se
r

ap
p

lu

tw
o

lf

m
g

ri
d

ar
t

sw
im

am
m

p

m
cf

[g
eo

m
ea

n
]

IP
C

im
p

ro
ve

m
en

t
o

ve
r

b
as

e
ca

se
(%

)

DBCP w/ 2MB correlation table timekeeping prefetch w/ 8KB correlation table

277 257

Figure 4.7: IPC improvement using timekeeping prefetch vs. DBCP prefetch

Considering only the eight best performers we see that, although the achieved speedups

are significant, there is still room for improvement when compared to the ideal case. The

differences are explained by close examination of the accuracy and coverage of our address

prediction and the timeliness of our prefetches. Figure 4.8 shows the address accuracy and

coverage for our 8KB address correlation table. Coverage in this case refers to the hit rate

of the predictor; if we miss in the predictor we cannot make an address prediction.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g
cc

m
cf

sw
im

m
g

ri
d

ap
p

lu ar
t

fa
ce

re
c

am
m

p

accuracy coverage

Figure 4.8: Address accuracy of the 8KB correlation table for the eight best performers

Figure 4.9 classifies the timeliness of the prefetches for the correct and wrong address

CHAPTER 4. TIMEKEEPING PREFETCH 83

predictions. Each bar (from bottom to top) shows prefetches that are:

� “early,” arrived early and displaced the current live block

� “discarded,” thrown out of the 128-entry prefetch queue before been issued to the L2

� “ timely,” arrived within the dead time and before the next miss

� “ started but not timely,” issued, but arrived late (after the next miss)

� “not started,” did not even issue before the next miss

0%

20%

40%

60%

80%

100%

gc
c

m
cf

sw
im

m
gr

id

ap
pl

u

ar
t

fa
ce

re
c

am
m

p

[g
eo

m
ea

n]

early_correct discarded timely start_not_timely not_started

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gc
c

m
cf

sw
im

m
gr

id

ap
pl

u

ar
t

fa
ce

re
c

am
m

p

[g
eo

m
ea

n]

early_wrong discarded timely start_not_timely not_started

Figure 4.9: Timeliness of prefetches for correct (left) and wrong (right) address predictions

From the information of Figures 4.8 and 4.9 we can deduce the following. For two pro-

grams mgrid and facerec, while their address accuracy and coverage are fair, only 40% and

30% respectively of their correct prefetches are timely, while most of their other prefetches

are late. This is because these two programs have short generation times and it is difficult

to pinpoint their dead times. Two programs, art and to a lesser extent gcc, have a lot of

discarded prefetches because of burstiness. This was also observed in DBCP prefetching.

In addition art suffers from low accuracy in predicting the prefetch address. The reason

why mcf does not achieve its full potential is also because of its low address accuracy. This

program benefits from very large address correlation tables and this is the reason why it is

CHAPTER 4. TIMEKEEPING PREFETCH 84

doing well with a 2MB DBCP. We observed better performance for mcf with our timekeep-

ing prefetch when using a larger address correlation table. Finally, ammp, which speeds up

by 257% — almost all of its potential — shows very good address accuracy and coverage

and in addition shows very timely prefetches. As a general observation, the timeliness of

our prefetches, especially with respect to earliness, correlates well with the accuracy of the

address prediction: when we predict addresses correctly, we tend not to displace live blocks

(Figure 4.9).

4.6 Related Work

Software prefetching, and more generally, compile-time analysis of memory access behav-

ior, has been studied by many researchers [20, 47, 48, 54, 57]. Mowry et al successfully

predicts what data references will likely miss in scientific codes that mainly employ matri-

ces [54]. Ghosh et al describes methods for generating and solving equations that give a

detailed representation of cache misses in loop-oriented scientific code [20]. Such a frame-

work can be utilized to decide what addresses should be prefetched and when to start the

prefetches. Other work target pointer-intensive applications and applications with recursive

data structure and propose to insert compile-time prefetch instructions [47, 48, 57].

Compared to software prefetching, hardware prefetching [4, 11, 37, 34, 38, 45, 62, 70]

usually requires extra hardware to track correlations between memory references with pre-

vious memory references and other information, such as memory instruction addresses

and branch history. Baer and Chen proposed a early notion of correlation-based hardware

prefetching for paged virtual-memory systems [3]. They also investigated a prefetching

mechanism that captures load instructions that have constant strides [4]. Jouppi proposed a

stream buffer that can be effective when there is a large amount of sequentiality in the ref-

erence stream [38]. Charney and Reeves were the first to propose a generalized correlation-

CHAPTER 4. TIMEKEEPING PREFETCH 85

based hardware prefetching for caches [11]. In their scheme, the prefetcher is positioned

between L1 and L2, and prefetches to L2 only. Joseph and Grunwald proposed a markov

model for prefetching and proposed to store multiple targets with each prediction [37]. Lai

et al were the first to propose a hardware predictor for dead blocks based on both PC traces

and previous memory addresses [45]. They were also the first to propose prefetching ac-

cording to per-cache-set memory reference behavior. Solihin et al proposed to use a user

level thread for prefetching and store the correlation history in memory, instead of specific

hardware tables [70].

4.7 Chapter Summary

In this chapter, we described a timekeeping prefetch scheme which tackles the problem of

predicting when a block is dead and prefetches another block in anticipation of the next

miss. As an application of the timekeeping methodology, timekeeping prefetch demon-

strates how to exploit the lifetime regularities across consecutive generations of the same

cache line. A key contribution in the work is the discovery that live times, when examined

on a per-cache-frame basis, exhibit regularity. This enables predicting the live time of the

current block based on its previous live times. Such a predictor allows us to schedule a

prefetch to take place shortly after the block “dies.” To implement a timekeeping prefetch

we need both an tag-based address predictor and a live-time based dead-block predictor.

We propose a novel history-based predictor that provides both predictions simultaneously.

Our predictor is a correlation table accessed using the history of the previous and current

misses in a frame. It predicts the live time of the current block, and the address to prefetch

next. Because we index this predictor using mostly tag information we observe significant

constructive aliasing both for addresses and live times. This allows us to outperform a

2MB DBCP predictor [45] using just 8KB of predictor state for all SPEC2000, with an

CHAPTER 4. TIMEKEEPING PREFETCH 86

average IPC improvement of 11% over the base configuration.

Chapter 5

Timekeeping in Branch Predictors 1

In previous chapters we show three applications of the timekeeping methodology in the

memory system. The timekeeping methodology can be applied to other structures on-chip.

As an example, in this chapter, we demonstrate an example of how it can be applied to

branch predictors.

5.1 Introduction

In Chapter 3, we introduced cache decay, a timekeeping mechanism to attack the problem

of increasing leakage power consumption. After caches, branch predictors are among the

largest and most power-consuming array structures in current CPUs. Current predictors are

4–8 Kbytes in size, already the size of a small cache. They dissipate about 10% of the pro-

cessor’s total dynamic power dissipation [58]. Cycle-time, power-dissipation, and thermal

concerns tend to keep predictors from growing larger. However, Jiménez et al. [36] pointed

out that two-level predictors can avoid cycle-time constraints and that large second-level

predictors can give substantial increases in prediction accuracy, resulting in predictors that
1The research presented in this chapter is a joint work by myself, Philo Juang, who is a fellow graduate

student in our group, as well as other researchers from Princeton University, Agere Systems, and University
of Virginia.

87

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 88

could be as large and have the same substantial leakage as first-level caches. Furthermore,

Skadron et al. [67] found that the branch predictor is a thermal hot spot, as it is typically

accessed every cycle. This indicates that branch predictors expend much more leakage en-

ergy than their sizes would suggest, because leakage power increases exponentially with

temperature.

Applying decay techniques to caches has proven effective, so applying decay tech-

niques to branch predictors is an obvious next step. Unfortunately, several factors compli-

cate this task, for it is much less obvious when a branch predictor entry may be considered

“dead” and can therefore be turned off with little performance impact.

� First, many branches may map to the same predictor entry. Since this sharing is

sometimes beneficial, notions of cache conflicts and eviction do not translate directly

into the branch prediction world.

� Second, a branch predictor entry is not simply valid or invalid, as in a cache. A branch

predictor entry may have reached the “strongly not taken” state due to the effects of

several different branches and may be useful to the next branch that accesses it, even

if this branch has never been executed before.

� Third, branch predictor entries are too small to deactivate individually, so one must

consider some larger collection, such as a row of predictor entries in the square array

in which the predictor is likely implemented. The challenge here is that unlike the

grouping of data into a cache line, the grouping of branch predictor entries in a row is

not something for which application programmers and systems builders have a sense

of spatial locality. This chapter evaluates design options related to these questions.

Further interesting questions arise when moving from simple bimodal branch predic-

tors [69], which keep one two-bit counter per predictor entry, to multi-table predictors like

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 89

hybrid predictors [51], which operate several prediction structures in parallel. For exam-

ple, hybrid predictors may encounter instances when one of the predictor components has

decayed but the other has not. The chooser might be designed to pick the non-decayed

component in such situations. For other branches, the chooser may exhibit a strong bias

for one predictor component over the other. In this case, predictor entries that are not being

selected might be deactivated.

A key characteristic of branch predictor contents is that they are both “ transient” and

“predictive” . Transient means that they tend to be short-lived. Predictive means they are

program hints so losing them does not affect the correctness of the execution. To exploit

this characteristic we propose a more area-efficient and power-efficient implementation of

branch predictor decay, using quasi-static 4-transistor (4T) RAM cells. 4T-based branch

predictors can decay naturally, without extra hardware for tracking the idle time, or explicit

control for gating the Vdd. Such a design can reduce leakage energy by 60-80%, with a

cell area savings up to 33%.

5.2 Branch Predictors Studied

Although a wealth of dynamic branch predictors have been proposed, we focus on the

effects of decay for a representative sample of predictor types: bimodal, gshare, and hybrid.

The bimodal predictor [69] consists of a simple pattern history table (PHT) of satu-

rating two-bit counters, indexed by branch PC. This means that all dynamic executions of

a particular branch site (a “static” branch) map to the same PHT entry, and means that

there are never more PHT entries in use at any one time than there are active branch sites.

This chapter models a 4 K-entry (8 Kbit) bimodal predictor. This is the configuration that

appears in the Alpha 21064 [16], although the 21064 uses one-bit rather than two-bit coun-

ters. The Alpha 21164 [17] used a larger PHT of 8 K entries, but we conservatively choose

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 90

taken/not−taken

 PHT
(16K)

xor

branch address

GBHR

14

1412

component #1
 (global)

component #2
 (local)

taken/not−taken

GBHR (12)

PHT
(4K)

 selector
(uses global hist)

PHT
(1K)PHT

(4K)

BHT
 (1K
 x10)

Figure 5.1: Gshare predictor in the Sun UltraSPARC-III (left) and 21264-style hybrid pre-
dictor (right).

the smaller PHT to make it more difficult to show benefits from decay.

The gshare predictor, shown in the left-hand portion of Figure 5.1, tries to detect and

predict sequences of correlated branches by tracking a global history (the global branch

history register or GBHR) of the outcomes of the N most recent branches. In gshare, the

global branch history and the branch address are XOR’d to reduce aliasing. This chapter

models a 16 K-entry gshare predictor in which 12 bits of history are XOR’d with 14 bits of

branch address. This is the configuration that appears in the Sun UltraSPARC-III [71].

Instead of using global history, a two-level predictor can track local branch history

on a per-branch basis. Local history is effective at exposing patterns in the behavior of

individual branches. Because most programs have some branches that perform better with

global history and others that perform better with local history, a hybrid predictor [10, 51]

combines the two. It operates two independent branch predictor components in parallel

and uses a third predictor—the selector or chooser—to learn for each branch which of

the components is more accurate and selects its prediction. This chapter models a hybrid

predictor with a 4K-entry selector that only uses 12 bits of global history to index its PHT; a

global-history component predictor of the same configuration; and a local history predictor

with a 1 K-entry, 10-bit wide BHT and a 1 K-entry PHT. This configuration appears in the

Alpha 21264 [22] and is depicted in the right-hand portion of Figure 5.1.

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 91

Predictor index

two-bit counter

row
decoder

column
decoder

asserted
wordline

chosen
bitlines

b b/2

b/2

Figure 5.2: A schematic of a squarified branch predictor table of two-bit counters (the
pattern history table).

Logically, branch predictors are arrays of counters that are typically just two bits wide.

Physically, however, branch predictors are, like caches, implemented as square or nearly-

square array structures, as shown in Figure 5.2. This helps to minimize the complexity

of the row and column decoders and balance wordline and bitline length and delay. The

predictor array is thus similar to a cache array, except that it needs no tags. For example,

the 16K-entry gshare predictor discussed above can be laid out as a 128�128 array of 2-bit

counters. Alternatively, it can be divided into 4 banks, each a 64 � 64 counter array. We

refer to these two organizations as “unbanked” and “banked” respectively and will discuss

their decay behavior in Section 5.5. Since branch counters are only 2 bits in size, a cost-

effective choice for turning off these counters is at the granularity of rows in the array

structure rather than individual entries.

5.3 Simulation Model Parameters

In this chapter we model a processor with microarchitectural parameters that most closely

resemble the Intel PIII processor [15]. The main processor and memory hierarchy param-

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 92

Processor Core
Instruction Window 16-RUU, 8-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts

Memory Hierarchy
L1 D-cache Size 16KB, 4-way, 32B blocks
L1 I-cache Size 16KB, 1-way, 32B blocks
L2 Unified, 256KB, 4-way LRU,

64B blocks,6-cycle latency, WB
Memory 18 cycles
TLB Size 128-entry, 30-cycle miss penalty
Branch target buffer 2048-entry, 4-way

Table 5.1: Configuration of simulated processor for branch predictor decay.

eters are shown in Table 5.1. For performance estimates and behavioral statistics, we use

SimpleScalar’s sim-outorder simulator. For energy estimates, we use the Wattch simula-

tor [7].

Our results are evaluated using benchmarks from the SPEC2000 suite [73]. The bench-

marks are compiled and statically linked for the Alpha ISA using the Compaq Alpha com-

piler with SPEC peak settings and include all linked libraries. We skip the first billion

instructions of each program to avoid unrepresentative behavior at the beginning of the

program’s execution. We then simulate 500M (committed) instructions using the reference

input set. To ensure reproducible results for each benchmark across multiple simulations,

simulations are conducted with SimpleScalar’s EIO traces.

5.4 Spatial and Temporal Locality in Branch Predictors

The first question in exploring decay for branch predictors is to determine how often an

entire row of branch predictor entries is likely to lie idle long enough for decay techniques

to be effective. In today’s machines, branch predictor rows typically include 32-256 counter

entries. Fortunately, program branches are clustered rather than random, and across all the

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 93

predictor organizations we examine, our experiments consistently show that some rows

have heavy activity while others are idle and can be deactivated.

Clearly, programs exhibit spatial locality in the instruction cache. Over a short period

of time, only one or a few small contiguous regions of the program are likely to be active,

so branch instructions are likely to be close in terms of their PC. This also translates into

spatial locality in branch-predictor accesses. For branch predictors, spatial locality means

that at any point in the program, active rows are likely to have many counters active and

idle rows are likely to be entirely idle. This is most true for the bimodal predictor, which

is indexed only by PC. Indeed, the probability that two successive conditional branches

fall into the same row in a 4 K-entry bimodal predictor is greater than 40% for all our

benchmarks.

Yet this is not useful if the active rows change rapidly, so temporal locality is also neces-

sary. One immediate factor that creates temporal locality is the fact that many benchmarks

have small static branch footprints (the number of unique branch instruction sites that are

executed), as seen in Table 5.2. Decay will therefore clearly help bimodal predictors, be-

cause each static branch touches only one predictor entry and we know from the data in

Table 5.2 that they are clustered.

Other predictor structures, however, may not do as well. With gshare, the branch ad-

dress is XOR’d with the global branch history, so that one branch can touch many PHT

entries. We evaluate decay for gshare predictors in the next section. Hybrid predictors use

global- and local-history predictors as components, which brings more design choices. We

explore the design space for hybrid predictors in section 5.6.

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 94

1K cycles 10Kc 100Kc 1Mc Overall
gzip 24 32 45 103 281
vpr 31 45 58 65 742
gcc 2 9 79 193 512
mcf 65 83 92 116 565
crafty 104 305 592 855 1701
parser 53 90 157 294 2265
eon 81 289 357 415 652
perlbmk 90 453 631 1112 1541
gap 62 281 325 576 745
vortex 124 502 1227 1642 1996
bzip2 22 33 45 56 460
twolf 48 210 300 334 351
wupwise 42 52 53 55 193
swim 3 6 11 15 687
mgrid 3 6 9 25 500
applu 1 2 4 7 579
mesa 83 114 139 267 697
galgel 2 6 8 10 508
art 2 2 5 18 109
equake 167 192 193 202 226
facerec 7 24 25 39 144
ammp 11 26 105 230 794
lucas 3 3 3 4 242
fma3d 80 450 452 465 499
sixtrack 39 49 55 99 734
apsi 14 85 117 125 342
geomean 20 46 70 109 529

Table 5.2: Average number of static branches touched every sample interval for SPEC2000.
The rightmost column labeled “Overall” gives the static branch footprint for the whole
simulation period.

5.5 Decay with Basic Branch Predictors

Our techniques have the following general structure. At regular intervals, all rows of predic-

tor entries not been used during the interval are assumed to have decayed and are therefore

deactivated. The interval, called the decay interval, is measured in processor cycles and is

a critical parameter for these schemes. The shorter the interval, the more opportunities for

rows to be deactivated but the more likely it is to deactivate rows prematurely and induce

extra mispredictions. Intervals long enough to minimize extra mispredictions, on the other

hand, result in the deactivation of fewer entries.

If a predictor lookup tries to access a decayed row, the predictor signals that a prediction

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 95

cannot be made; the row is re-activated and possibly initialized to some desired starting

state; in the meantime, a default prediction is made. Upon activation, our experiments use

a default of not taken and initialize all the counters to 01. Thus, subsequent branches using

the re-activated line start in the weakly-not-taken state.

The active ratio in a particular experiment is the average percentage of predictor rows

found to be active (not decayed); it is a proxy for the actual leakage energy consumed by the

predictor. Of course shorter decay intervals yield smaller active ratios (and larger leakage

energy savings), but performance may suffer, since useful predictor entries are sometimes

deactivated. Exploring this power-performance tradeoff is a key objective of this chapter.

To evaluate the net effectiveness of decay for reducing leakage energy, we combine the

reduced value of leakage energy that was observed with decay, and the overhead energy

associated with the decay technique. We then compare this to the original value for leakage

energy. For each of the predictor types we study, we present plots of normalized leakage

energy for different decay intervals, where the basis for normalization is the original value

for leakage energy. This approach for measuring the net reduction in leakage energy is

similar to the techniques used in cache decay, as described in Chapter 3.

Figure 5.3 shows the geometric mean of the active ratios across the benchmarks for

both banked and unbanked 16K-entry gshare predictors and, as a reference, the 4K-entry

bimodal predictor. As expected, the active ratios are quite small (i.e., good from a decay

point of view) for the bimodal predictor. For gshare predictors, the active ratios are larger.

Yet significant numbers of rows remain untouched. This indicates that even for predictor

structures designed to smear branch addresses over many entries, decay-based techniques

still show significant promise for addressing leakage concerns.

We include data in Figure 5.3 for a banked version of gshare. Breaking the predictor

into banks makes the active ratio smaller (better for decay) by reducing the granularity

over which activity is measured. Indeed, the active ratio for gshare is 15–35% smaller if

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 96

0

20

40

60

80

100

1000 10000 100000 1000000 orig

decay interval (cycles)

ac
ti

ve
ra

ti
o

(%
)

gshare unbanked gshare banked bimod

Figure 5.3: Mean active ratio for unbanked and banked gshare predictors and a bimodal
predictor with different decay intervals. The rightmost label “orig” corresponds to non-
decaying predictors.

it is broken into four banks of 4K entries each. Overall, these active ratios yield leakage

energy savings of 40% for unbanked gshare and about 50% for banked gshare. Even greater

savings can be achieved for structures directly indexed by PC: about 65% for bimodal

predictors and 90% for the BTB [31].

5.6 Decay with Hybrid Predictors

With two competing components (the global component and the local component), hybrid

predictors exhibit many interesting design choices when implementing decay. In this sec-

tion we explore these design choices as well as their effect on decay in an Alpha 21264-style

hybrid predictor.

Selection Policy The selection policy refers to the policy for choosing a prediction from

one of the two component predictors. In a non-decaying 21264-style hybrid predictor, the

chooser makes this decision using the global history; see Figure 5.1. However, when decay

is enabled, it may happen that only one of the two components is active while the other is

decayed. In this case, since the decayed component has lost its information, it is intuitively

appealing to use the prediction from the active component, no matter what the chooser

suggests. This policy is called “believe the active component” , and is implemented in all

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 97

our experiments. It may also happen that both the two components are decayed, in which

case all components are reactivated and the branch is predicted as “weakly not taken” , as

in bimodal and gshare predictors.

Wakeup Policy The wakeup policy refers to the decision of whether to reactivate a de-

cayed row when it is accessed by a branch instruction. A naive policy would always wakeup

any rows that are accessed. In a hybrid predictor, a more elegant policy is possible: the de-

cayed component will be reactivated only if the chooser wants to select it. We refer to this

policy as “believe the chooser” .

In the situation when the accessed row in the chooser is decayed, we know that the

corresponding row in the global component is also decayed in the 21264-style predictor.

This is because the structural similarity between the chooser and global predictor: they are

indexed, and thus decayed in exactly the same way; see Figure 5.1. In this case, the chooser

has no useful information. If the local component is active, then we leave the chooser

and the global component inactive and return the prediction from the local component.

Otherwise (when the local component is also inactive), we reactivate all components and

return a prediction of “weakly not taken” .

Results Figure 5.4 and Figure 5.5 detail the active ratio and branch misprediction rate

for naive decay, which always wakeup any rows that are accessed, with a 21264-style

hybrid predictor. We see that even though the active ratios are higher than for bimodal or

gshare predictors, decay has a negligible impact on the misprediction rate for intervals of

64K cycles or larger. Note that in order to compute active ratio sensibly on a multi-table

structure, we compute it over all prediction and chooser bits in the structure. Overall, as

Figure 5.6 shows, naive decay realizes strong reductions in energy savings—40% for a 64

K-cycle interval.

We can obtain even better energy savings by taking advantage of the “believe the

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 98

0
10
20
30
40
50
60
70
80
90

100

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

ac
ti

ve
ra

ti
o

(%
)

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

Figure 5.4: Active ratio for 21264’s hybrid predictor.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

m
is

p
re

d
ic

ti
o

n
ra

te

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

Figure 5.5: Misprediction rate for 21264’s hybrid predictor.

chooser” wakeup policy. As shown in Figure 5.6, this more sophisticated policy leads

to leakage power reductions about 50% better than the naive policy.

5.7 Branch Predictor Decay with Quasi-Static 4T Cells

The preceding sections demonstrated that decay techniques based on counters and stan-

dard 6T array structures could be successful in reducing branch predictor leakage energy.

However, there is a downside to the counter-based techniques: there is a slight (5%) area

overhead for implementing the idle time counters, and the gated-Vdd control for turning off

the cache lines. This section examines a way of avoiding this hardware overhead by using

quasi-static four-transistor (4T) memory cells for decay implementations. Quasi-static 4T

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 99

0.0

0.2

0.4

0.6

0.8

1.0

1.2

orig 4096K cycle
decay interval

512Kc 64Kc 8Kc

decay interval

n
o

rm
al

iz
ed

b
p

re
d

le
ak

ag
e

en
er

g
y

naive believe the chooser

Figure 5.6: Normalized leakage energy of 21264-style Hybrid predictor with naive and
“believe the chooser” wakeup policies.

memory cells have been mainly considered as a means of implementing DRAM within a

logic fabrication process [65, 75]. In traditional uses, the perceived drawback of the 4T

cells is that they are dynamic and need refresh; but this characteristic is actually the key

for an elegant decay design. In contrast to previous 6T leakage control strategies, we do

not have to turn off power to 4T cells. Instead, we let inactive cells decay naturally, thus

avoiding any overhead associated with counting idle times or turning power on and off.

Because of their use as embedded DRAM in some designs, 4T cells are already present in

many design libraries, including those used by Agere Systems. We use the cells as they

appear in the Agere library.

In addition, branch predictor contents are not architectural, meaning that if we unknow-

ingly lose them, only performance might suffer but not correctness. This leads to a clean

design without any decay counter hardware. The drawback in accessing decayed data is

a potential bad prediction. As long as this is a rare event we can eliminate all the decay

counter hardware and get similar benefits as in a 6T-based decay predictor. 4T cells are

also smaller than 6T cells, thus offering area advantages too.

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 100

5.7.1 The Quasi-Static 4T Cell

Basic 4T RAM cells are well established and described in introductory VLSI textbooks

[76]. 4T cells are similar to ordinary 6T cells but lack two transistors connected to Vdd that

replenish the charge that is lost via leakage (Figure 5.7). Using exactly the same transistors

as in an optimized 6T design a 4T cell requires only 2=3 of the area compared to a 6T cell.

4T RAM cells naturally decay over time (without the need to switch them off); once they

lose their charge they leak very little since there is no connection to Vdd.

B B

WW

VddB B

WW

Figure 5.7: Circuit diagrams of the 6T SRAM cell (left) and the 4T quasi-static RAM cell
(right).

Also importantly, 4T cells are automatically refreshed from the precharged bit lines

whenever they are accessed. When a 4T cell is accessed, its internal high node is restored

to high potential, refreshing the logical value stored in it; there is no need for a read-write

cycle as in 1T DRAM. As the cell decays and leaks charge, the voltage difference of its

internal nodes gradually drops to the point where the sense amplifiers cannot distinguish its

logical value. Conservatively, this occurs when the node voltage differential drops below a

threshold of the order of 100 mV (with 1.5V Vdd). Below this threshold we have a decayed

state, where reading a 4T RAM cell may produce a random value —not necessarily a zero.

Over a long time the cell reaches a steady state where both the high node and the low node

of the cell “fl oat” at about 30mV.

4T cells possess two characteristics fitting for decay: they are refreshed upon access

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 101

and decay over time if not accessed. In the rest of this section we discuss extensively the

4T decay design, including retention times, locality considerations, and simulation results.

5.7.2 Retention Times In 4T Cells

We define retention time to be the time from the last access to the time when the internal

differential voltage of the cell drops below the detection threshold. Retention time depends

on the leakage currents present in the 4T cell. Retention time is a critical parameter for a 4T

design because when implemented in 4T cells, decay techniques have the cell’s retention

time as their natural decay interval.

To study retention times for the 4T branch predictor we chose the Agere COM2 0:16�

CMOS process for which we have accurate transistor models. Retention time is affected by

the characteristics of the transistors themselves. For example, doubling the channel length

and the gate oxide thickness can extend the retention time by lowering leakage currents. In

contrast to standard 4T transistors, we refer to these transistors as slow-decay transistors.

The trade-off using slow-decay transistors is that the area advantage is reduced because

RAM cells built upon these transistors are about 7=8 of the 6T cell. Table 5.3 compares the

three cell types for their access time and cell area.

4T 6T
standard slow-decay

access time (ps) 525 565 490
RAM cell area (relative) 0.66 0.88 1

Table 5.3: Comparison of three cell types: 4T standard, 4T slow-decay and 6T cells

Variations in temperature also result in large variations in retention times. Our designs

target an operational temperature of 85ÆC (appropriate for example for mobile processors)

but we also discuss mechanisms to protect performance in situations where very high tem-

perature (125ÆC) does not allow for sufficiently large retention times.

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 102

Based on these assumptions, we determine retention times for our technology through

detailed transistor-level simulations. We simulate an access to a cell, followed by a long

period in which the cell is left unread. During this time, leakage causes the cell’s internal

nodes to lose charge. Recall that the retention time is the duration between an access and the

point at which the differential voltages of the 4T cells internal nodes lapsed to a value less

than 100mV. We use 100mV as our criteria for the minimum voltage we would expect the

sense amplifiers to distinguish. Reading a decayed cell produces a valid, though random,

predictor value. (We model this randomness in our simulated results that follow. Table 5.4

gives the cell retention times in nanoseconds for the COM2 technology.

standard slow-decay
25C 85C 125C 25C 85C 125C

WCF 3.2K 0.44K 0.17K 264K 10.2K 1.94K
NOM 18K 1.7K 0.56K 1,040K 57.2K 9.4K
WCS 92K 8K 2K 1,480K 240K 38.4K

Table 5.4: Retention times in nanoseconds for standard and slow-decay versions of 4T cells
at different operating temperatures. For a 1GHz (1ns cycle time) processor, one can also
consider these retention times as cycle counts.

5.7.3 Locality Considerations

One of the main considerations in the 6T decay design is the granularity of decay. Our

6T designs operate with row granularity in order to reduce the counter overhead for decay.

Granularity is also relevant in the 4T design but here it stems from the way 4T cells are re-

freshed. Branch predictors are typically laid out as a square, with each row having multiple

neighboring predictors. In a squarified predictor, reading a row refreshes all the cells in a

row because the wordline is asserted.

Retention time selection and locality granularity go together because large row granu-

larities make the apparent rate of refresh much higher. Cells that would have decayed if left

alone get refreshed coincidentally by nearby active cells. Thus 4T cells with short retention

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 103

times may not lose data as quickly if the row size is long enough. In contrast, in a design

with very fine row granularity one would opt for 4T cells with very long retention times.

Fine granularity leads to a very good decay ratio but the important cells must remain alive

on their own (without the benefit of accidental refreshes) for considerable time.

5.7.4 Results for Decay Based on 4T Cells

We now examine the leakage and performance impact of branch predictor decay based on

4T structures. We considered a range of technologies, for this section, including COM2,

COM3, and COM4. COM2 shows modest improvements with careful design, and future

technologies improve significantly on this. We use slow-decay 4T cells in our design. As

for the overall configuration, we use a 16K-entry gshare configuration as that appears in

the Sun UltraSPARC-III [71]. We target an operational temperature of 85ÆC; this leaves us

a decay interval of 57,200 cycles.

95.0

96.0

97.0

98.0

99.0

100.0

101.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n]

ex
ec

u
ti

o
n

 t
im

e
(%

)

standard decayed [4T]

Figure 5.8: Normalized execution time of standard and 4T predictors. 4T predictors pro-
duce minimal performance losses.

Figure 5.8 shows the normalized execution time (in percentages) comparing conven-

tional non-decaying 6T-based branch predictors and 4T based branch predictors. Note that

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 104

0.00

0.05

0.10

0.15

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n]

m
is

p
re

d
ic

ti
o

n
 r

at
e

standard decayed [4T]

Figure 5.9: Misprediction rate of standard and 4T predictors. 4T predictors produce mini-
mal prediction accuracy degradations.

the y-axis of the graph has a very limited range. From the graph, we see that execution time

is virtually unchanged. That is, the performance impact of predicting branches based on

decayed predictor entries is negligible. In fact, a few benchmarks actually improve slightly

due to the random effects of reading decayed values. Furthermore, prediction accuracy

(Figure 5.9) was also virtually unchanged. Over all the benchmarks, the overall prediction

accuracy was down less than 0.5%. Figure 5.10 shows the active ratio of the direction

counters. On average, we see a 15% active ratio, which directly translates into over 85%

savings on leakage power over a traditional, non-decaying predictor.

Finally, the normal dynamic energy overhead of additional mispredictions must be in-

cluded in our results. Using a calculation similar to that found in cache decay, we can

evaluate the impact of additional dynamic overhead caused by decayed (and possibly mis-

predicted) reads. Note that this number is an energy calculation for the entire processor;

that is, the dynamic overhead is energy expended by the processor due to a longer runtime.

Figure 5.11 shows the normalized leakage energy with 4T based branch predictor.

The standard processor is defined at 1; a number lower than that indicates the processor

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 105

0

10

20

30

40

50

60

70

80

90

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n]

ac
ti

ve
 r

at
io

 (
%

)

Figure 5.10: Active ratio of a 4T based predictor.

equipped with a particular branch predictor consumed less energy, and vice versa.

As shown in the plot, we see that a processor with a branch predictor using either the

standard 4T (Figure 5.11, Left) or slow-decaying 4T (Figure 5.11, Right) cells consumes

less energy under the COM3 and COM4 processes. At COM2, the branch predictor is

decaying state so rapidly that a lot of useful information is being discarded, imposing a

performance penalty so severe that the overall energy consumed by the processor actually

increases.

More importantly, we see the impending concern over leakage power more clearly; at

COM3 and COM4, where leakage energy has a much larger impact, we can very aggres-

sively decay using standard 4T cells and still achieve an overall power savings.

Overall, 4T cells provide immense power savings with a minimal performance impact.

We also see that the processor will consume less energy despite this performance impact,

and that as leakage energy increases in influence versus dynamic energy, a 4T based branch

predictor becomes much more effective.

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

standard slow decay

N
o

rm
al

iz
ed

 L
ea

ka
g

e
E

n
er

g
y

6T 4T COM2 4T COM3 4T COM4

Figure 5.11: Normalized leakage energy for branch predictors with standard (left) and
slow-decay (right) 4T cells.

5.8 Chapter Summary

In this chapter we presented an application of the timekeeping methodology to branch

predictors. We first tried to extend the cache decay mechanism, described in Chapter 3,

directly to branch predictors. However, due to structural differences between caches and

branch predictors, implementation of decay strategies in branch predictors requires special

consideration:

� First, because a single branch predictor entry is very small (typically only 2-bits

wide), adding counters per predictor entry is not hardware-efficient. Instead, counters

are added to each row in the predictor array, with each row containing 32-256 entries.

We show that branch predictors exhibit strong spatial and temporal locality so that

only a subset of rows are active at any point of time so that other rows can be turned

off to cut off leakage consumption.

� Second, there are many design choices when applying decay to hybrid predictors,

where multiple competing components co-exist. We found that a decay implementa-

CHAPTER 5. TIMEKEEPING IN BRANCH PREDICTORS 107

tion that takes advantage of the multi-table structure of hybrid predictors can achieve

leakage power reduction about 50% more than a naive policy.

� Third, because contents in branch predictors are “ transient” and “predictive” , a more

area-efficient and energy-efficient implementation of decay, using 4-transistor RAM

cells, can be used for building branch predictors. 4T cells decay naturally, keep

contents long enough for maintaining performance, and have a cell area savings up

to 33%.

Overall, this chapter demonstrated that the timekeeping methodology can not only ap-

ply to the memory system, but also to other structures such as branch predictors. When

applying the timekeeping methodology to a particular structure, the specific characteristics

of that structure should be carefully investigated and exploited to achieve the most effective

implementation of the timekeeping methodology.

Chapter 6

Conclusions

The advance of semiconductor technology and computer architecture have enabled phe-

nomenal development in microprocessors. In the pursuit of higher performance micropro-

cessors, several key obstacles exist, including ever-increasing power consumption and the

memory wall [55]. Past work in attacking these problems have mostly followed a “order-

based” methodology, which exploits time-independent characteristics, such as event order-

ing and event interleaving.

6.1 Contributions

This thesis proposed and evaluated a new methodology, called the “ timekeeping methodol-

ogy” , for improving processor power and performance.

First, the timekeeping methodology encourages a fundamentally new way of think-

ing about how time-dependent aspects of processor behavior can be exploited. We show

quantitatively the extent to which detailed timing characteristics of past processor events

are strongly predictive of future program behavior. We take the following three steps to

illustrate the predictive power of timing characteristics of processor behavior.

108

CHAPTER 6. CONCLUSIONS 109

� Metrics: First, we construct a set of useful metrics which characterize the time-

dependent aspects of processor behavior, and we provide quantitative characteriza-

tions of the SPEC2000 benchmarks for these metrics.

� Predictions: Second, using these metrics, we introduce a fundamentally different

approach for on-the-fly categorization of application reference patterns. We give

reliable predictors of conflict misses, dead blocks and other key aspects of reference

behavior, based on the statistical behavior of the proposed metrics.

� Mechanisms: Third, based on our ability to discover these reference patterns on-

the-fly, we propose hardware structures that exploit this knowledge to improve per-

formance.

We use the memory system as the main example to illustrate the predictive power of the

timekeeping methodology. We propose three novel hardware mechanisms for improving

memory performance and power, as shown in Figure 6.1.

Metrics

Mechanisms

Predictions

dead
time

dead block
prediction

conflict miss
prediction

timekeeping victim
cache filter

timekeeping
prefetching

reload
interval

live
time

address
prediction

dead block
prediction

access
interval

cache decay

dead
time

Figure 6.1: Work flow of the timekeeping techniques in the memory system.

� In the ” timekeeping victim cache filter” mechanism, we start by investigating the

correlation between miss types and cache line dead times. We find that short dead

times are good indicators of conflict misses. We exploit this correlation to optimize

CHAPTER 6. CONCLUSIONS 110

a conflict-oriented structure, the victim cache. More specifically, we filter the vic-

tim cache traffic so that only victims with short dead times are allowed to enter the

victim cache. This reduce the victim cache traffic by 87% while providing superior

performance.

� In the “cache decay” mechanism, cache lines are turned off to save leakage energy

if they stay idle for a long time. This is based on the observation that most access

intervals are very short, while many dead times are long, indicating that if a cache

line stays idle for a long time, it is probably at a dead time (i.e., it is dead). Dead

cache lines can be “ turned off” to cut off leakage consumption, without impacting

performance. Using simple 2-bit counters to dynamically gauge idle time, cache

decay can reduce cache leakage energy by 4X, with minimal impact on performance.

� In the “ timekeeping prefetch” mechanism, we construct an accurate prefetcher by

keeping track of past history of cache line generations. We use live time and next

line information observed in the previous generation as predictions for a cache line’s

current generation. After the predicted live time has elapsed, the predicted next line

is prefetched into the cache. With an 8KB integrated history table for both live time

and next line information, a timekeeping prefetcher provides an 11% average per-

formance improvement for the whole SPEC2000 benchmark suite, outperforming an

recent proposal with a much larger 2MB history table.

Finally, we use branch predictors as an example to illustrate how the timekeeping

methodology can be applied outside the memory system. More specifically, we demon-

strate how the decay strategies, which have been shown to be effective for caches, can be

applied to various styles of branch predictors. Our experiments confirm that decay can

be applied to branch predictors, but to achieve a successful and efficient implementation,

structural and data characteristics of branch predictors should be carefully identified and

CHAPTER 6. CONCLUSIONS 111

exploited.

� First, since single branch predictor entry is very small, it is not hardware-efficient

to add counters at the per-entry granularity. Instead, we propose to apply decay at

the granularity of one row in the predictor array. Because of the strong spatial and

temporal locality in branch predictors, often there are many rows remain untouched

during any time period, so that decay at row-granularity can achieve 40-60% leakage

savings.

� Second, in some predictors, such as hybrid predictors, there are multiple competing

components. We show that when taking advantage of this structural characteristic,

about 50% more leakage savings can be achieved.

� Third, a key characteristic of branch predictor contents is that they are “ transient”

(they are typically used soon after creation) and “predictive” (losing them does not

affect the correctness of the processor). To exploit this characteristic, we propose

to build branch predictors with special energy-efficient circuits such as 4-transistor

memory cells. A 4T-based branch predictor can save up to 33% in cell area while

reducing the leakage energy by 60-80%. More broadly, the effectiveness of 4T-based

branch predictors suggests how transient data should be supported in power-aware

processors.

6.2 Future Directions

While the proposed timekeeping mechanisms are interesting and highly-effective by them-

selves, as applications of the timekeeping methodology they demonstrate the power of this

new methodology. We expect in our future work, as well as work by other researchers,

CHAPTER 6. CONCLUSIONS 112

more applications of this methodology will be proposed to meet the power and perfor-

mance challenges of future microprocessors.

� Timekeeping for cache replacement: If perfect knowledge about future is known,

an optimal replacement policy (OPT) can be devised: OPT discards the line of a set

whose next reference is furthest in the future. Though perfect knowledge about future

is not available in practice, the timekeeping methodology can provide predictions of

future memory behavior through observation of past behavior. In future work, we

intend to exploit the predictive power of the timekeeping methodology for improving

cache replacement policies.

� Timekeeping for bus scheduling: Transaction scheduling on buses greatly affects

the processor performance and bus power consumption. Current processors often

schedule transactions based on when they are issued, but not when they are required

to be finished (i.e., their degree of urgency). The main reason for this is because the

time when transactions need to be finished is hard to discern with typical trace-based

analysis. With the timekeeping methodology, such information can be obtained by

keeping track of past time behavior and construct predictions based on them. Overall,

timekeeping for bus scheduling is a promising topic to be explored.

� Timekeeping in the processor core: In this thesis we mainly focused on applying

the timekeeping methodology to data in processors. Another major type of infor-

mation in processors contains instructions. In components such as the instruction

window, instructions exhibit generational lifetime behavior similar to data in caches.

Investigating key timing characteristics of instructions’ timing behavior, and exploit-

ing them to improve processor performance and power consumption, is a promising

direction in further applying the timekeeping methodology.

� Timekeeping in storage system: Applying the timekeeping methodology to other

CHAPTER 6. CONCLUSIONS 113

levels of computer systems is another promising direction. In this thesis we quanti-

fied lifetime characteristics of cache lines and showed how to exploit them for better

performance or lower power consumption. In the future we intend to expand our

investigation to lifetime characteristics of other objects, such as allocated memory

blocks, opened files, web connections, etc. Characteristics found in such investiga-

tions can be exploited to improve overall system performance, similar to what we

have done to the memory system.

� Timekeeping in real-time computing: A key advantage of the timekeeping method-

ology is that it not only predicts what will happen in the future, but also estimates

when it will happen. This is possible because the timekeeping methodology investi-

gates regularities between past and future timing behavior, and deduces future time

intervals based on what have occurred in the past. Knowing when future events hap-

pen is crucial for real-time computing, which usually benefits from predictability but

suffers from randomness.

� Combining the timekeeping methodology with theoretical underpinnings: The time-

keeping methodology is an empirical study, in the sense that first typical program be-

havior is investigated and then common patterns discovered are exploited. A promis-

ing avenue for future work is to integrate this empirical study with theories such as

“Little’s Law” . Such theories could provide theoretical guidance for applying the

timekeeping methodology.

6.3 Chapter Summary

Challenges abound in the research of computer architecture. In prior work, to attack

these challenges most architects limited their investigations to the time-independent as-

CHAPTER 6. CONCLUSIONS 114

pects of processor behavior (such as event ordering and interleaving), while letting the

time-dependent aspects (such as time intervals between events) play a lesser role. In con-

trast, this thesis has proposed focusing on the time-dependent aspects of processor behav-

ior. We show quantitatively that the timing characteristics of program lifetime behavior can

be strongly predictive of future processor events, and thus can provide powerful ways of

understanding and improving program behavior. We illustrate the power of this “ timekeep-

ing” methodology with a group of concrete hardware mechanisms, each keeping track of

key time intervals at run time, using them to deduce future processor behavior on-the-fly,

and exploiting knowledge of future events for improving processor power and performance.

In our future work, as well as work by others, we expect that the timekeeping methodology,

described in this thesis, will offer researchers even more intuition for further understanding

and optimizing processor behavior.

Bibliography

[1] D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation. In

Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchi-

tecture, 1999.

[2] J. Baer and W. Wang. On the Inclusion Property in Multi-level Cache Hierarchies. In

Proceedings of the 15th Annual International Symposium on Computer Architecture,

1988.

[3] J.-L. Baer and T.-F. Chen. Dynamic Improvements of Locality in Virtual Memory

Systems. IEEE Transactions on Software Engineering, 1976.

[4] J.-L. Baer and T.-F. Chen. An Effective On-Chip Preloading Scheme To Reduce Data

Access Penalty. In Proceedings of the 5th International Conference on Supercomput-

ing, pages 176–186, Nov. 1991.

[5] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4), 1999.

[6] W. J. Bowhill, S. L. Bell, B. J. Benschneider, A. J. Black, S. M. Britton, R. W.

Castelino, D. R. Donchin, J. H. Edmondson, H. R. F. III, P. E. Gronowski, A. K.

Jain, P. L. Kroesen, M. E. Lamere, B. J. Loughlin, S. Mehta, R. O. Mueller, R. P.

Preston, S. Santhanam, T. A. Shedd, M. J. Smith, and S. C. Thierauf. Circuit Im-

115

BIBLIOGRAPHY 116

plementation of a 300-MHz 64-bit Second-Generation CMOS Alpha CPU. Digital

Technical Journal, 7(1):100–118, 1995.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architecture-

Level Power Analysis and Optimizations. In Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, June 2000.

[8] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future Microprocessors: the Sim-

pleScalar Tool Set. Tech. Report TR-1308, Univ. of Wisconsin-Madison Computer

Sciences Dept., July 1996.

[9] D. Burger, J. Goodman, and A. Kagi. The Declining Effectiveness of Dynamic

Caching for General-Purpose Microprocessors. Tech. Report TR-1216, Univ. of

Wisconsin-Madison Computer Sciences Dept.

[10] P.-Y. Chang, E. Hao, and Y. N. Patt. Alternative Implementations of Hybrid Branch

Predictors. In Proceedings of the 28th Annual International Symposium on Microar-

chitecture, pages 252–57, Dec. 1995.

[11] M. J. Charney and A. P. Reeves. Generalized Correlation-Based Hardware Prefetch-

ing. Technical Report EE-CEG-95-1, School of Electrical Engineering, Cornell Uni-

versity, 1995.

[12] Z. Chen, L. Wei, M. Johnson, and K. Roy. Estimation of Standby Leakage Power in

CMOS Circuits Considering Accurate Modeling of Transistor Stacks. In Proceedings

of the 1998 International Symposium on Lower Power Electronics and Design, 1998.

[13] J. Collins and D. Tullsen. Hardware Identification of Cache Conflict Misses. In

Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchi-

tecture, pages 126–135, 1999.

BIBLIOGRAPHY 117

[14] J. Dean, J. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos. ProfileMe:

Hardware Support for Instruction-Level Profiling on Out-of-Order Processors. In

Proceedings of the 30th Annual International Symposium on Microarchitecture, 1997.

[15] K. Diefendorff. Pentium III = Pentium II + SSE. Microprocessor Report, Mar. 8

1999.

[16] Digital Semiconductor. DECchip 21064/21064A Alpha AXP Microprocessors: Hard-

ware Reference Manual, Jun. 1994.

[17] Digital Semiconductor. Alpha 21164 Microprocessor: Hardware Reference Manual,

Apr. 1995.

[18] B. Fields, S. Rubin, and R. Bodik. Focusing Processor Policies via Critical-Path

Prediction. In Proceedings of the 28th Annual International Symposium on Computer

Architecture, July 2001.

[19] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Tech-

niques for Reducing Leakage Power. In Proceedings of the 29th Annual International

Symposium on Computer Architecture, May 2002.

[20] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: An Analytical Rep-

resentation of Cache Misses. In International Conference on Supercomputing, pages

317–324, 1997.

[21] D. Gross and C. M. Harris. Fundamentals of Queueing Theory. John Wiley and Sons,

1997.

[22] L. Gwennap. Digital 21264 Sets New Standard. Microprocessor Report, pages 11–16,

Oct. 28, 1996.

BIBLIOGRAPHY 118

[23] H.-H. Lee, G. S. Tyson, M. Farrens. Eager Writeback - a Technique for Improving

Bandwidth Utilization. In Proceedings of the 33rd Annual IEEE/ACM International

Symposium on Microarchitecture, Dec. 2000.

[24] H. Hanson, M. Hrishikesh, V. Agarwal, S. W. Keckler, and D. Burger. Static En-

ergy Reduction Techniques for Microprocessor Caches. In Proceedings of the 2001

International Conference on Computer Design, 2001.

[25] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufman Publishers, Inc., San Mateo, California, 1995. Second Edition.

[26] S. Heo, K. Barr, M. Hampton, and K. Asanovic. Dynamic Fine-Grain Leakage Reduc-

tion using Leakage-Biased Bitlines. In Proceedings of the 29th Annual International

Symposium on Computer Architecture, May 2002.

[27] M. Hill. Aspects of Cache Memory and Instruction Buffer Performance. PhD thesis,

University of California at Berkeley, Nov. 1987.

[28] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.

The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal, 2001.

1st quarter.

[29] M. A. Holliday. Techniques for Cache and Memory Simulation Using Address Ref-

erence Traces. International Journal in Computer Simulation, 1(2), 1991.

[30] Z. Hu, P. Juang, P. Diodato, S. Kaxiras, K. Skadron, M. Martonosi, and D. W. Clark.

Managing Leakage for Transient Data: Decay and Quasi-Static 4T Memory Cells. In

Proceedings of the 2002 International Symposium on Lower Power Electronics and

Design, 2002.

BIBLIOGRAPHY 119

[31] Z. Hu, P. Juang, K. Skadron, D. Clark, and M. Martonosi. Applying Decay Strategies

to Branch Predictors for Leakage Energy Savings. Tech. Report CS-2001-24, Univ.

of Virginia.

[32] Z. Hu, P. Juang, K. Skadron, D. Clark, and M. Martonosi. Applying Decay Strategies

to Branch Predictors for Leakage Energy Savings. In International Conference on

Computer Design, 2002.

[33] Z. Hu, S. Kaxiras, and M. Martonosi. Let Caches Decay: Reducing Leakage Energy

via Exploitation of Cache Generational Behavior. ACM Transactions on Computer

Systems, May 2002.

[34] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the Memory System: Predicting

and Optimizing Memory Behavior. In Proceedings of the 29th Annual International

Symposium on Computer Architecture, May 2002.

[35] J. A. Butts and G. Sohi. A Static Power Model for Architects. In Proceedings of the

33rd Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2000.

[36] D. A. Jiménez, S. W. Keckler, and C. Lin. The Impact of Delay on the Design of

Branch Predictors. In Proceedings of the 33rd Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 67–77, Dec. 2000.

[37] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In 24th Annual

International Symposium on Computer Architecture, June 1997.

[38] N. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small

Fully-Associative Cache and Prefetch Buffers. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, May 1990.

BIBLIOGRAPHY 120

[39] M. B. Kamble and K. Ghose. Analytical Energy Dissipation Models for Low Power

Caches. In Proceedings of the 1997 International Symposium on Lower Power Elec-

tronics and Design, 1997.

[40] G. B. Kandiraju and A. Sivasubramaniam. Going the Distance for TLB Prefetch-

ing: An Application-driven Study. In Proceedings of the 29th Annual International

Symposium on Computer Architecture, May 2002.

[41] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies of Competitive

Spinning for a Shared-Memory Multiprocessor. In Proceedings of the 12thSymposium

on Operating System Principles, 1991.

[42] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational Behav-

ior to Reduce Cache Leakage Power. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, 2001.

[43] S. Kaxiras, Z. Hu, G. Narlikar, and R. McLellan. Cache-Line Decay: A Mechanism

to Reduce Cache Leakage Power. In Workshop on Power-Aware Computer Systems

(PACS), In conjunction with the Ninth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, 2000.

[44] T. Kimbrel and A. Karlin. Near-Optimal Parallel Prefetching and Caching. SIAM

Journal on computing, 2000.

[45] A.-C. Lai, C. Fide, and B. Falsafi. Dead-Block Prediction and Dead-Block Correlating

Prefetchers. In Proceedings of the 28th Annual International Symposium on Computer

Architecture, July 2001.

[46] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool for Evalu-

ating and Synthesizing Multimedia and Communication Systems. In Proceedings of

the 30th Annual International Symposium on Microarchitecture, Dec. 1997.

BIBLIOGRAPHY 121

[47] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger. Spaid: Software

Prefetching in Pointer and Call-Intensive Environments. In Proceedings of the 28th

Annual International Symposium on Microarchitecture, pages 231–236, 1995.

[48] C.-K. Luk and T. C. Mowry. Compiler Based Prefetching for Recursive Data Struc-

tures. In Proceedings of the Seventh International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, pages 222–233, Oct. 1996.

[49] N. R. Mahapatra and B. Venkatrao. The Processor-Memory Bottleneck: Problems

and Solutions. ACM Crossroads, 1999.

[50] T. Mathisen. Pentium Secrets. Byte, pages 191–192, July 1994.

[51] S. McFarling. Combining Branch Predictors. Tech. Note TN-36, Compaq WRL, June

1993.

[52] A. Mendelson, D. Thiébaut, and D. K. Pradhan. Modeling Live and Dead Lines in

Cache Memory Systems. IEEE Transactions on Computers, 42(1):1–16, Jan. 1993.

[53] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics,

pages 114–17, Apr. 1965.

[54] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evaluation of a Compiler Algo-

rithm for Prefetching. In Proceedings of the Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 62–73,

Oct. 1992.

[55] T. Mudge. Strategic Directions in Computer Architecture. ACM Computing Surveys,

28(4):671–678, 1996.

[56] K. Nii, H. Makino, Y. Tujihashi, C. Morishima, Y. Hayakawa, H. Nunogami,

T. Arakawa, and H. Hamano. A Low Power SRAM Using Auto-Backgate-Controlled

BIBLIOGRAPHY 122

MT-CMOS. In Proceedings of the 1998 International Symposium on Lower Power

Electronics and Design, 1998.

[57] T. Ozawa, Y. Kimura, and S. Nishizaki. Cache Miss Heuristics and Preloading Tech-

niques for General-Purpose Programs. In Proceedings of the 28th Annual Interna-

tional Symposium on Microarchitecture, Dec. 1995.

[58] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. Power Issues Related to

Branch Prediction. pages 233–44, Feb. 2002.

[59] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar. Gated-Vdd: A Cir-

cuit Technique to Reduce Leakage in Deep-Submicron Cache Memories. In Proceed-

ings of the 2000 International Symposium on Lower Power Electronics and Design,

2000.

[60] T. R. Puzak. Analysis of Cache Replacement Algorithms. PhD thesis, University of

Massachusetts, Amherst, 1985.

[61] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad. Reducing TLB and Memory Over-

head Using Online Superpage Promotion. In Proceedings of the 22nd Annual Inter-

national Symposium on Computer Architecture, 1995.

[62] A. Roth, A. Moshovos, and G. S. Sohi. Dependence Based Prefetching for Linked

Data Structures. In Proceedings of the Eighth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, Oct. 1998.

[63] S. Sair and M. Charney. Memory Behavior of the SPEC2000 Benchmark Suite. Tech-

nical report, IBM RC-21852, 2000.

BIBLIOGRAPHY 123

[64] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-Based TLB Preloading. In

Proceedings of the 27th Annual International Symposium on Computer Architecture,

June 2000.

[65] S. Schuster, L. Terman, and R. Franch. A 4-Device CMOS Static RAM Cell Using

Sub-Threshold Conduction. In Symposium on VLSI Technology, Systems, and Appli-

cations, 1987.

[66] Semiconductor Industry Association. The International Technology Roadmap for

Semiconductors, 2001. http://www.semichips.org.

[67] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic Techniques and

Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management.

pages 17–28, Feb. 2002.

[68] A. J. Smith. Cache Memories. Computing Surveys, 14(3):473–530, Sept. 1982.

[69] J. E. Smith. A Study of Branch Prediction Strategies. In Proceedings of the 8th Annual

International Symposium on Computer Architecture, pages 135–48, May 1981.

[70] Y. Solihin, J. Lee, and J. Torrellas. Using a User-Level Memory Thread for Corre-

lation Prefetching. In Proceedings of the 29th Annual International Symposium on

Computer Architecture, May 2002.

[71] P. Song. UltraSparc-3 Aims at MP Servers. Microprocessor Report, pages 29–34,

Oct. 27 1997.

[72] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson. Locality vs. Criticality. In Pro-

ceedings of the 28th Annual International Symposium on Computer Architecture, July

2001.

BIBLIOGRAPHY 124

[73] The Standard Performance Evaluation Corporation. WWW Site.

http://www.spec.org, Dec. 2000.

[74] R. A. Uhlig and T. N. Mudge. Trace-Driven Memory Simulation: A Survey. ACM

Computing Surveys, 29(2):128–170, 1997.

[75] A. G. Varadi. Quasi-Static MOS Memory Array with Standby Operation. US Patent

Number 4,120,047.

[76] W. Wolf. Modern VLSI Design: Systems on Silicon. 1998. Prentice-Hall.

[77] D. A. Wood, M. D. Hill, and R. E. Kessler. A Model for Estimating Trace-Sample

Miss Ratios. In Proceedings of the 1991 Proceedings of the ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pages 79–89, June

1991.

[78] C. E. Wu, Y. H. Liu, C. Benveniste, C. L. Chen, and W. Chiang. Trace-Based Analysis

and Tuning for Distributed Parallel Applications. In Proceedings of the International

Conference on Distributed Computing Systems, 1994.

[79] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the Obvious.

Computer Architecture News, 23(1):20–24, Mar. 1995.

[80] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar. An Inte-

grated Circuit/Architecture Approach to Reducing Leakage in Deep-Submicron High-

Performance I-Caches. In Proceedings of the Eighth International Symposium on

High-Performance Computer Architecture, Jan. 2001.

[81] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance Analysis Using

the MIPS R10000 Performance Counters. In Proceedings of the 10th International

Conference on Supercomputing, 1996.

BIBLIOGRAPHY 125

[82] H. Zhou, M. Toburen, E. Rotenberg, and T. Conte. Adaptive Mode Control: A Static-

Power-Efficient Cache Design. In Proceedings of the 2001 International Conference

on Parallel Architectures and Compilation Techniques, Sept. 2001.

