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ABSTRACT
Designers are moving toward chip-multiprocessors (CMPs) to lever-
age application parallelism for higher performance while keeping
design complexity under control. However, to date, no power man-
agement techniques have been proposed for coordinated power con-
trol of multiple processor cores.

In this paper, we illustrate how the use of local, per-tile dynamic
voltage and frequency scaling (DVFS) techniques can result in tiles
counteracting each others’ power management policies, significantly
hurting chip power-performance. We then propose a coordinated
DVFS scheme for CMPs, which eliminates the oscillations and en-
sures efficient and resilient DVFS control. Specifically, our pro-
posed technique incorporates thread information collected at run-
time across the chip. In addition, by extending a control-theoretic lo-
cal DVFS control technique toward DVFS for chip-multiprocessors,
our technique prescribes DVFS settings formally at each tile, thus
ensuring stable, distributed, coordinated DVFS control of a CMP.
Experimental results show that our technique achieves a 15.5% im-
provement in energy-delay product over a CMP with no DVFS con-
trol, and a 7% improvement in energy-delay product against the lat-
est state-of-the-art local DVFS scheme.
Categories and Subject Descriptors: B.1.1 [Control Design
Styles]: Hardwired control
General Terms: Design, Algorithms, Performance
Keywords: Power, Dynamic Voltage Scaling

1. INTRODUCTION
Power-efficiency and thermal-efficiency are increasing concerns

for both embedded and high-end chip multi-processor systems. With
uniprocessor chips we know that often there is insufficient work to
fully occupy the processor, due to memory latencies and lack of
parallelism. Running the processor at full speed thus only wastes
energy. Instead, one can change the voltage and frequency to scale
down the speed of the processor to match the decreased requirements
in processing performance. This technique, called Dynamic Voltage
and Frequency Scaling (DVFS), is common in both embedded as
well as high-performance processors.

With multiple processors on the chip, power issues are com-
pounded by the presence of more processors and that these proces-
sors often interact as they cooperatively process an application. Most
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DVFS techniques proposed to date typically apply to single proces-
sors such as the Intel XScale or Pentium-M [6, 3, 7]. Some recent
work has looked at processors with several internal clock domains—
multiple-clock-domain (MCD) processors [10, 15, 16, 19, 20]—but
are restricted to local solutions in which each domain is consid-
ered separately. Such local, per-tile DVFS techniques lead to unsta-
ble DVFS control of CMPs processing multithreaded applications,
worsening overall chip power-performance (See Section 2).

The majority of current DVFS work can be characterized along
two general lines: the level of dynamism (online or offline) and of
formality (ad hoc or formal). Most prior DVFS work is either a
profile-based optimization approach (off-line formal) [5, 9, 10, 21]
or a run-time heuristic based (online ad hoc) approach [15, 16, 8,
11]. However, CMPs pose a major problem to these techniques.
First, CMPs typically execute several applications at once, making
it difficult to obtain a representative profile. Second, the number of
processors and possible placements explosively increases the tuning
space for ad hoc approaches.

This motivates us to investigate run-time, control-theoretic solu-
tions. Currently, the best known online formal DVFS approach is
described in [19], which uses a control-theoretic approach in the con-
text of MCD processors. We will refer to this scheme as local-PID.
Local-PID is a purely local scheme—only information local to a tile
is used, with interaction across multiple tiles ignored. In this paper,
we propose a distributed version of this scheme, applying the basic
mechanics of the formal approach to CMPs, while realizing stable,
distributed, coordinated DVFS control.

Our paper is structured as follows. Section 2 describes the local-
PID scheme and its drawbacks when used in a CMP. Section 3 pro-
poses our scheme, called dist-PID. Next, Section 4 details our simu-
lation setup and benchmarks, following with the results. Finally, we
draw our conclusions and sketch plans for future work in Section 5.

2. MOTIVATION

Figure 1: Each CMP tile modeled as a queueing system.

To motivate the need for distributed, coordinated DVFS, we first
study the effect of local DVFS in a CMP, where each tile’s fre-
quency (and voltage) is set independently based on local informa-
tion. Our study is based on local-PID, which is representative of
per-tile queue-based DVFS policies [19, 20] and was shown to have
better energy efficiency than prior ad hoc DVFS approaches.
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void sum_sqrt() { void main() {//Thread MT
int num, div = 0; int i, child1, child2, child3;
float sum = 0.0;

child1 = thread_create(&sum_sqrt);
thread_recv(&num, sizeof(int), ANY); child2 = thread_create(&sum_sqrt);

child3 = thread_create(&sum_sqrt);
while(div != -1) {

if((div%num) == 0) sum += sqrt(num); thread_send_int(2, sizeof(int), child1); //send num
thread_recv(&div, sizeof(int), ANY); thread_send_int(17, sizeof(int), child2);

} thread_send_int(10000, sizeof(int), child3);

_thread_send(&div, sizeof(int), ANY); for(i = 0; i < 1000; i++) {
_thread_terminate(); thread_send_int(i, sizeof(int), child1); //send div

} thread_send_int(i, sizeof(int), child2);
thread_send_int(i, sizeof(int), child3);

}
thread_send_int(-1, sizeof(int), child1);
thread_send_int(-1, sizeof(int), child2);
thread_send_int(-1, sizeof(int), child3);
thread_wait_children();

}

Figure 2: Sample source code
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Figure 3: Frequency selection for execution of code in Figure 2

While used in an MCD context, the solid formal control-theoretic
principles behind local-PID can be readily applied to single-clock-
domain CMPs. Each tile is modeled as a local queue model as shown
in Figure 1, with each tile processor fed by a task queue, where
threads scheduled on the processor await execution. The service rate
is denoted as µ, which is determined by the tile processor frequency
f. Demand is represented as λ, which is the arrival rate of new tasks.
Queue occupancy q, refers to the summation of each task in the task
queue multiplied by its expected relative execution time (the load
factor, whose derivation will be elaborated in Section 3.2). Con-
ceptually, we seek to match the service rate µ with demand λ such
that the average queue occupancy q remains constant from interval
to interval; this implies that the processor has supplied just enough
performance to meet the processing requirement of the application,
and thus the maximum amount of energy has been saved.

Local-PID computes µ at interval k as:

µk = µk−1 + Ki(qk − qref ) + Kp(qk − qk−1) (1)

where µk−1 is the service rate of the last interval, qk and qk−1 the
average queue occupancy of the current interval k and previous in-
terval k-1. The remaining variables are fixed: Ki and Kp constants
that are picked based on control-theoretic principles to ensure sta-
bility, and qref the steady-state desired queue occupancy constant.
Essentially, the above Equation 1 predicts the needed service rate to
eventually bring the queue occupancy to qref .

Conversely, if one assumes a µk (proportional to the processor
frequency), and solves for qref , then the equation produces what the
eventual value of qref (target task queue size) should be in response
to frequency setting µk . Solving for qref we get:

qref = (Kp(qk − qk−1) + Kiqk − µk + µk−1)/Ki (2)

2.1 Limitations of Local-Only Control
Consider the following four-threaded program as shown in Figure

2. The code on the right is the main “master thread” (Thread MT).
MT launches three threads running the code on the left with initial
parameters 2 (Thread T(2)), 17 (Thread T(17)), and 10000 (Thread
T(10k)). Each thread is run on a separate tile on the CMP. MT cre-
ates three threads, running the function sum sqrt. MT then sends
each thread their initial argument (num), before moving into a loop
in which it sends a stream of numbers (div) to each thread—each
number is sent three times. Each thread then compares the value re-
ceived and if it is divisible by the initial argument, adds the square
root to a sum. If the value is -1, the program ends.

Based on profiling, T(17) spends 169 cycles per element, whereas
T(2) needs 540 cycles on average. T(10k) has virtually no work, and
spends fewer than 100 cycles per element. Ideally, the tile executing
T(2) should run at full speed, while the one executing T(17) should
run at approximately one-third full frequency to minimize energy-
delay-product. T(10k) should execute at minimum speed.

Figure 3 shows a sample execution of Figure 2 using the default
settings of (Ki=0.6 and Kp=0.2) for local-PID. T(2) saturates and
runs at full frequency as expected, and likewise, T(10k) drops to the
minimum frequency, occasionally increasing its speed to compen-

sate for small perturbations in execution. Unexpectedly however,
rather than settling at a lower frequency, T(17) oscillates between
low and high DVFS settings. With only local information, there is
no way that T(17) can know that it can slow down and match T(2).

The oscillation may be smoothed out by using a larger interval, al-
lowing T(17) to deal with the large jump in queue occupancy before
the next decision is to be made. However, there are two conflicting
objectives here. Larger intervals are desirable to reduce the effects of
sharp transient spikes in queue occupancy. Shorter intervals, though,
are desirable as they have more potential for DVFS.

T(17) being unable to realize it can slow down is not unique to
local-PID. Basing DVFS decisions locally and statically, whether
it be qref or IPC or some other metric, will be unrepresentative of
thread imbalance between tiles. In local-PID in the above example,
once MT stops sending items (indicating the end of this parallel sec-
tion), the instant the queue occupancy drops below qref local-PID
will begin slowing the tile down, even if it is the only thread still
running and thus is the critical path. If a tile is on the critical path,
the DVFS technique should not reduce the clock speed.

Even with the best-known local DVFS technique (local-PID)—a
technique designed for multiple interacting domains (multiple clock
domain processors)—purely local techniques performed still poorly
with a simple parallel application on a CMP. Clearly, this example
illustrates the limitations of oblivious, local DVFS control in a CMP,
motivating the need for distributed, coordinated DVFS.

3. COORDINATED DVFS CONTROL
ALGORITHM

Our example in Section 2 points to the limitations of DVFS based
on purely local information. More specifically, the target qref needs
to (1) adapt at run-time to match thread behavior; (2) be based on
global information, rather than fixed locally; and (3) be set to pre-
serve performance. Here we propose a formal, online method that
supports stable, distributed, coordinated DVFS control in CMPs. We
refer to this method as dist-PID.

The intuition behind dist-PID is that, to preserve performance
while maximizing energy savings, it is necessary to identify threads
that lie on the critical path. Those threads should be run at max
speed to preserve performance, while others slowed to maximize
energy savings without impacting performance. In parallel appli-
cations, these are last threads to reach a synchronization point. If
each tile knows the expected execution time of the longest-running-
thread, they can adjust their processing speeds to match that. De-
termining which specific threads are on the critical path is difficult;
instead, dist-PID chooses which tile has the most work left to do.
Because parallel sections require all threads to finish before moving
on, the last tile to finish will essentially be the critical path.

Dist-PID operates in three steps:

1. At each tile, estimate future queue occupancy (tile workload)
using Equation 2, assuming the maximum service rate, and
renaming qref as qtarget:

qtarget = (Kp(qk − qk−1) + Kiqk − µk + µk−1)/Ki (3)
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2. Through pair-wise communications, each tile identifies the tile
scheduled with the critical-path-thread through keeping track
of the highest qtarget across the chip

3. With this information, each tile re-solves Equation 1 to deter-
mine the new service rates (tile frequency settings), essentially
slowing down tiles not executing critical-path-threads.

Figure 4: Example of how dist-PID assesses the code in Figure 2

Figure 4 shows a snippet of execution near the beginning of the
code in Figure 2. On tile T(2), queue occupancy increased as the
tile is unable to keep up with the processing requirements, while the
reverse is true at T(17) and T(10k). Thus we expect to lower the
frequency for T(17) and T(10k), and increase it in T(2). Equation 2
estimates the qtarget for each tile, and as we expect, tile T(2) which
is experiencing the highest load will have the highest qtarget.

Thus each tile selects T(2)’s qtarget to use as the qref to re-solve
Equation 1. Mathematically T(2) must equal the max frequency
(1000), running the tile on our identified critical path at highest fre-
quency. In all other tiles, the equation produces a frequency lower
than maximum, as their original qtargets are lower than qref .

Building on the basic example, consider if the example code (MT
and child threads) has in turn been spawned by a parent thread PT.
Here, the qtarget passed to MT+1 must not be MT’s, but rather
T(2)’s—each thread passes to its parent the highest qtarget among
its siblings. By induction one can see that this holds all the way up
to the original parent. Thus, one can trace the critical path through
pair-wise parent-child communications. Once the maximum qtarget

is derived, it is then disseminated from each parent to its children.

3.1 Setting of stability constants Ki and Kp

From [15, 16, 19] we set the stability constants Ki and Kp to
produce a maximum swing of 4-8% in frequency per interval. To
achieve this, we assume that the load factor, or difference between
(qk - qref ) and (qk - qk−1), is typically between 0 and 1000. Using
the analysis in [19], Equation 7, we derive a range of stability con-
stants. Constants from this range were then simulated through a set
of benchmarks using local-PID. Ki=0.3 and Kp=0.1 were the best
over the set of benchmarks. These are smaller than the default sta-
bility constants of Ki=0.6 and Kp=0.2 because in general the work-
load variation in CMPs tends to be shorter and sharper compared
to MCDs, and thus we need to underdamp (relatively) the response.
While different Ki and Kp may be better for dist-PID, for consis-
tency both local-PID and dist-PID use the constants for local-PID.

3.2 Estimation of queue occupancies qi

Our technique estimates the execution load on a tile in a CMP
by monitoring the threads in the task queue of a tile. Each thread
is associated with a load factor (a number ranging from 0 to 1000),
provided by the compiler or programmer. Queue occupancies at each
tile are then the summation of the load factors in the tile’s task queue.

Load factors can be provided by programmer or the compiler. Us-
ing a performance macro-modeling tool [12, 13] for quicksort, a
simple model based on the input argument size requiring a single
multiply was sufficient to give a low 2% error in the run-time esti-
mation of run time over various input distributions. For Othello, a

Simulator setup
Processor clock 2-way, 1 GHz, 7 stage pipeline
Issue/Decode/Commit width 2/2/2 instructions per cycle
L1 D-cache Size 32KB, 4-way, 32B blocks, 1 cycle latency
L1 I-cache Size 32KB, 4-way, 32B blocks, 1 cycle latency
L2 None
Memory 20 cycles
Network topology 2-dimensional mesh
Channel Width and Flit Size 256-bit/256-bit
Router Pipeline 3 cycle latency (scouts), 1 cycle latency (others)
Link Traversal 1 cycle latency between hops
DVFS transition and setup delays 73.3ns/MHz, 171ns/2.86mV

Table 1: Architectural parameters.

linear model with a single multiplication led to just 6.8% error for
random board configurations. Given that our technique requires only
relative accuracy in thread run-time estimation these models can be
further simplified so the processing overhead is negligible.

3.3 Example Load Factors
We coded five multi-threaded benchmarks to evaluate dist-PID.

Two are aggressively multithreaded kernels to stress dist-PID (recur-
sive quicksort and Othello). Three others are SPEC [17] benchmarks
(equake, twolf, and mcf) that are hand-partitioned.

Quicksort consists of threads created at each recursive invoca-
tion. Compared to the other benchmarks, quicksort creates threads
20 times more often, putting high thread pressure on the system.
The load factor is based on the number of items to be sorted. Oth-
ello is a minimax tree search, where each move creates six or more
new threads, creating significant variance in the load on each tile.
Through profiling, each move has comparable (order of magnitude)
complexity. Similarly, equake has two parallelized loops, which syn-
chronize between loops, each thread having comparable complexity
as well. Simplifying the linear model in [12], we predefine the load
factors; 250 for each thread in Othello, 50 for each in equake.

In mcf, due to a large shared data structure, there is significant
execution variability as a result of memory. In practice, however,
threads are bimodal—either very small or very large. The load factor
is set by profiling the tree traversal. If there exists a grandchild, the
load factor is 750; otherwise, it is 0. For twolf we apply decoupled
software pipelining [14] so producer threads prefetch nodes from
memory, while consumer threads perform computation. The load
factor is set by profiling the linked list traversal and multiplying the
length by 100. These constant factors are required to set the load
factors within the expected range of 0 to 1000.

4. RESULTS
For our results, we used a multiprocessor simulator based on

XTREM [4]. XTREM is a validated SimpleScalar ARM [2] sim-
ulator, and our modifications added support for multiprocessing and
networking. We model a 16-core chip multiprocessor with the archi-
tectural parameters given in Table 1. Threads are scheduled using
a simple heuristic policy. First, look for free processors. If none
are available, schedule onto the processor with the lightest load.
Qtargets is distributed via the on-chip network, with statistics trans-
mission prioritized. Queue occupancy and load factor are sent every
2,500 cycles. The default DVFS interval was set at 50,000 cycles.

Dynamic power numbers for the CMP are obtained using Wattch
[1] for the processor and memory components and Orion [18] for the
network, running at a nominal voltage of 2.08V. Processors select
frequencies between 100 MHz (0.45V) and 1 GHz (2.08V).

4.1 Energy-delay-product savings
To evaluate the efficiency of our proposed scheme, we evalu-

ated three schemes, baseline, local-PID, and dist-PID. The baseline
scheme is a processor with no DVFS, but “tile-gates” a tile when
all the threads in a tile’s task queue are stalled (waiting for other
threads). We define tile-gating as shutting off the tile (and thus con-
suming no dynamic power). When a tile has no threads, it is also tile-
gated. The interval length is 50,000 cycles. Local-PID uses a qref

of 300, or one-third of the maximum expected queue occupancy, the
default setting for qref in [19].
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Figure 6: Run-time variations with varying load factor

Figure 5 shows the energy-delay product (EDP) for the five bench-
marks. Overall the local scheme had 85.5% of the energy consump-
tion of the baseline but increased run-time by 6.9%, producing an
EDP of 97.3%. By comparison, our proposed scheme saved 20% of
energy but increased run-time only 5.6%, giving an EDP of 84.55%.

Othello is problematic for both schemes. Othello tends to have
long running threads punctuated by short outbursts where it launches
many threads; this made it difficult to figure out the critical path.
Quicksort on the other hand maps well to dist-PID, the size of the
input arguments proved a good proxy for computation complexity.

4.2 Stability of DVFS control
Figure 6 shows the execution time (normalized against the base-

line) after varying the load factor of Othello and quicksort from 100x
to 0.01x for both schemes. Local-PID results are indicated with tri-
angular markers and the dist-PID ones indicated with square one.

For both applications, dist-PID is relatively resilient toward load
factor variation, remaining stable. Local-PID, however, is quite frag-
ile. For Othello the performance of local-PID jumps quite suddenly
at some point, when the load factor crosses over qref . Once the load
factor consistently stays above qref , local-PID tries to preserve per-
formance. If it is below qref , local-PID tries to save energy, without
regard to the overall program state. This crossover point is not al-
ways foreseeable and not particularly predictable. Thus we see that
distributed, coordinated control not only improves EDP, but ensures
stability due to inter-tile coordination.

For quicksort, local-PID performs well when the load factors are
overestimated—for example, when the list to be sorted is larger than
what we tuned for. This tells the local-PID controller to try to pre-
serve performance. When load factors were underestimated, though,
performance skyrocketed—much more than in dist-PID. However, if
the load factor is tuned for a large quicksort, a smaller one will take
a massive hit in performance. Common sense would thus be to lean
toward tuning for smaller quicksorts. Taken to the extreme, only
very small quicksorts would be eligible for energy savings, and then
we miss the point of DVFS.

4.3 Impact of Stability Constants
Figure 6 also indicates the impact of the stability constants, and

whether stability constants rather than the distributed nature of dist-
PID are responsible for the EDP improvement. Recall that in Equa-
tion 1 the stability constants Ki and Kp are multiplied by the queue
occupancies and their load factors. Thus, a 10X increase in Ki and
Kp is the same as a 10X increase in the load factors. From Figure
6 both schemes are never significantly better than the baseline; this
indicates that the stability constants as chosen were fairly good. As
both schemes used the same stability constants, we see that it is the
distributed feature of dist-PID rather than the actual value of the sta-

bility constants that improves EDP. Thus, our results again show a
compelling reason to have adaptable, coordinated, run-time DVFS.

5. CONCLUSIONS
We have shown that distributed, coordinated DVFS control is nec-

essary to overcome the possibly counter-acting DVFS actions of
local DVFS. Our proposal of dist-PID is shown to boost energy-
performance on CMPs while ensuring the stability of DVFS control.
Compared to local-PID, it achieves up to 8.8X improvement in EDP
on benchmarks with substantial variance across the chip. We also
show how local-PID can oscillate substantially for certain bench-
marks, while our proposed dist-PID ensures stability.

As CMPs continue to be proposed and implemented, we believe
that the techniques described in this paper can be used to extend
on-line, formal approaches to DVFS from the uniprocessor realm
into CMPs. Our approach is lightweight, requiring little extra hard-
ware, and distributed, requiring little extra communication band-
width. Overall, we believe our approach to be an effective way of
improving DVFS for CMPs.
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