
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Resource-Efficient Quantum
Computing by Breaking
Abstractions

By YUNONG SHI , PRANAV GOKHALE , PRAKASH MURALI , JONATHAN M. BAKER,
CASEY DUCKERING , YONGSHAN DING , NATALIE C. BROWN, CHRISTOPHER CHAMBERLAND ,
ALI JAVADI-ABHARI, ANDREW W. CROSS, DAVID I. SCHUSTER, KENNETH R. BROWN ,
MARGARET MARTONOSI , AND FREDERIC T. CHONG

ABSTRACT | Building a quantum computer that surpasses

the computational power of its classical counterpart is a

great engineering challenge. Quantum software optimizations

can provide an accelerated pathway to the first generation

of quantum computing (QC) applications that might save

years of engineering effort. Current quantum software stacks

follow a layered approach similar to the stack of classical

computers, which was designed to manage the complexity.

In this review, we point out that greater efficiency of QC sys-

tems can be achieved by breaking the abstractions between

these layers. We review several works along this line, includ-

ing two hardware-aware compilation optimizations that break

the quantum instruction set architecture (ISA) abstraction

Manuscript received October 1, 2019; revised December 29, 2019 and March 23,
2020; accepted May 5, 2020. This work was supported in part by Enabling
Practical-scale Quantum Computing (EPiQC), an NSF Expedition in Computing,
under Grant CCF-1730449/1832377/1730082; in part by Software-Tailored
Architectures for Quantum co-design (STAQ) under Grant NSF Phy-1818914; and
in part by DOE under Grant DE-SC0020289 and Grant DE-SC0020331. Yunong
Shi is funded in part by the NSF QISE-NET fellowship under grant number
1747426. Pranav Gokhale is supported by the Department of Defense (DoD)
through the National Defense Science & Engineering Graduate Fellowship
(NDSEG) Program. This work was completed in part with resources provided by
the University of Chicago Research Computing Center. (Corresponding author:
Frederic T. Chong.)

Yunong Shi and David I. Schuster are with the Department of Physics, The
University of Chicago, Chicago, IL 60637 USA.

Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Yongshan Ding,
and Frederic T. Chong are with the Department of Computer Science, The
University of Chicago, Chicago, IL 60637 USA (e-mail: chong@cs.uchicago.edu).

Prakash Murali andMargaret Martonosi are with the Department of
Computer Science, Princeton University, Princeton, NJ 08544 USA.

Natalie C. Brown and Kenneth R. Brown are with the Department of
Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA.

Christopher Chamberland is with the AWS Center for Quantum Computing,
Pasadena, CA 91125 USA, and also with the Institute for Quantum Information
and Matter, California Institute of Technology, Pasadena, CA 91125 USA.

Ali Javadi-Abhari and Andrew W. Cross are with the IBM Thomas J. Watson
Research Center, Ossining, NY 10598 USA.

Digital Object Identifier 10.1109/JPROC.2020.2994765

and two error-correction/information-processing schemes that

break the qubit abstraction. Last, we discuss several possible

future directions.

KEYWORDS | Quantum computing (QC), software design, sys-

tem analysis and design.

I. I N T R O D U C T I O N
Quantum computing (QC) has recently transitioned from a
theoretical prediction to a nascent technology. With
development of noisy intermediate-scale quantum (NISQ)
devices, cloud-based quantum information processing
(QIP) platforms with up to 53 qubits are currently acces-
sible to the public. It has also been recently demonstrated
by the Quantum Supremacy experiment on the Sycamore
quantum processor, a 53-qubit QC device manufactured
by Google, that quantum computers can outperform cur-
rent classical supercomputers in certain computational
tasks [7], although alternative classical simulations have
been proposed that scale better [73], [74]. These develop-
ments suggest that the future of QC is promising. Neverthe-
less, there is still a gap between the ability and reliability
of current QIP technologies and the requirements of the
first useful QC applications. The gap is mostly due to
the presence of qubit decoherence and systematic errors
including gate errors, state preparation, and measurement
(SPAM) errors. As an example, the best reported qubit
decoherence time on a superconducting (SC) QIP platform
is around 500 μs (meaning that in 500 μs, the probability
of a logical 1 state staying unflipped drops to 1/e ≈
0.368), the best error rate of 2-qubit gates is around 0.3%–
1% in a device, measurement error of a single qubit is
between 2% and 5% [1], [75]. In addition to the errors
in the elementary operations, emergent error modes such

0018-9219 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PROCEEDINGS OF THE IEEE 1

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0824-6107
https://orcid.org/0000-0003-1946-4537
https://orcid.org/0000-0003-3378-8589
https://orcid.org/0000-0002-2338-1315
https://orcid.org/0000-0002-4656-9644
https://orcid.org/0000-0003-3239-5783
https://orcid.org/0000-0001-7716-1425
https://orcid.org/0000-0001-9282-4645
https://orcid.org/0000-0001-9683-8032

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 1. Workflow of the QC stack roughly followed by current

programming environments (e.g., Qiskit, Cirq, ScaffCC) based on the

quantum circuit model.

as crosstalk are reported to make significant contributions
to the current noise level in quantum devices [18], [60].
With these sources of errors combined, we are only able to
run quantum algorithms of very limited size on current QC
devices.

Thus, it will require tremendous efforts and invest-
ment to solve these engineering challenges, and we can-
not expect a definite timeline for its success. Because of
the uncertainties and difficulties in relying on hardware
breakthroughs, it will also be crucial in the near term to
close the gap using higher-level quantum optimizations
and software hardware codesign, which could maximally
utilize noisy devices and potentially provide an accelerated
pathway to real-world QC applications.

Currently, major quantum programming environments,
including Qiskit [6] by IBM, Cirq [3] by Google, PyQuil
[58] by Rigetti, and strawberry fields [66] by Xanadu,
follow the quantum circuit model. These programming
environments support users in configuring, compiling, and
running their quantum programs in an automated work-
flow and roughly follow a layered approach as illustrated
in Fig. 1. In these environments, the compilation stack
is divided into layers of subroutines that are built upon
the abstraction provided by the next layer. This design

philosophy is similar to that of its classical counterpart,
which has slowly converged to this layered approach over
many years to manage the increasing complexity that
comes with the exponentially growing hardware resources.
In each layer, burdensome hardware details are well encap-
sulated and hidden behind a clean interface, which offers
a well-defined, manageable optimization task to solve.
Thus, this layered approach provides great portability and
modularity. For example, the Qiskit compiler supports both
the SC QIP platform and the trapped ion QIP platform as
the backend (see Fig. 2). In the Qiskit programming envi-
ronment, these two backends share a unified, hardware-
agnostic programming frontend even though the hardware
characteristics, and the qubit control methods of the two
platforms are rather different. SC qubits are macroscopic
LC circuits placed inside dilution fridges of temperature
near absolute zero. These qubits can be regarded as arti-
ficial atoms and are protected by a metal transmission
line from environmental noise. For SC QIP platforms, qubit
control is achieved by sending microwave pulses into the
transmission line that surrounds the LC circuits to change
the qubit state, and those operations are usually done
within several hundreds of nanoseconds. On the other
hand, trapped ion qubits are ions confined in the potential
of electrodes in vacuum chambers. Trapped ion qubits have
a much longer coherence time (>1 s) and a modulated
laser beam is utilized (in addition to microwave pulse
control) in performing quantum operations. The quantum
gates are also much slower than that of SC qubits but the
qubit connectivity (for 2-qubit gates) are much better. In
Qiskit’s early implementation, the hardware characteristics
of the two QIP platforms are abstracted away in the quan-
tum circuit model so that the higher level programming
environment can work with both backends.

However, the abstractions introduced in the layered
approach of current QC stacks restrict opportunities for
cross-layer optimizations. For example, without accessing
the lower level noise information, the compiler might not
be able to properly optimize gate scheduling and qubit
mapping with regard to the final fidelity. For near-term
QC, maximal utilization of the scarce quantum resources
and reconciling quantum algorithms with noisy devices
is of more importance than to manage complexity of
the classical control system. In this review, we propose a
shift of the QC stack toward a more vertical integrated
architecture. We point out that breaking the abstraction
layers in the stack by exposing enough lower level details
could substantially improve the quantum efficiency. This
claim is not that surprising—there are many supporting
examples from the classical computing world such as the
emergence of application-specific architectures like the
graphics processing unit (GPU) and the tensor processing
unit (TPU). However, this view is often overlooked in the
software/hardware design in QC.

We examine this methodology by looking at several
previous works along this line. We first review two
compilation optimizations that break the instruction set

2 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 2. Same abstractions in the QC stack on the logical level can be mapped to different physical implementations. Here, we take the SC

QIP platform and the trapped ion QIP platform as examples of the physical implementations. (Left) In the quantum circuit model, both SC

qubits and trapped-ion qubits are abstracted as two-level quantum systems and their physical operations are abstracted as quantum

gates, even though these two systems have different physical properties. (Middle) SC qubits are SC circuits placed inside a long, metal

transmission line. The apparatus requires a dilution fridge of temperature near absolute zero. The orange standing waves are oscillations in

the transmission line, which are driven by external microwave pulses and used to control the qubit states. (Right) Trapped ion qubits are

confined in the potential of cylindrical electrodes. Modulated laser beam can provide elementary quantum operations for trapped ion qubits.

The apparatus is usually contained inside a vacuum chamber of pressure around 10−8 Pa. The two systems require different high-level

optimizations for better efficiency due to their distinct physical features.

architecture (ISA) abstraction by exposing pulse level
information (see Section II) and noise information (see
Section III). Then, we discuss an information processing
scheme that improves general circuit latency by exposing
the third energy level of the underlying physical space,
that is, breaking the qubit abstraction using qutrits (see
Section IV). Then, we discuss the Gottesman–Kitaev–
Preskill (GKP) qubit encoding in a quantum harmonic
oscillator (QHO) that exposes error information in the
form of small shifts in the phase space to assist the
upper level error mitigation/correction procedure (see
Section V).

At last, we envision several future directions that could
further explore the idea of breaking abstractions and assist
the realization of the first quantum computers for real-
world applications.

II. B R E A K I N G T H E I S A A B S T R A C T I O N
U S I N G P U L S E - L E V E L C O M P I L AT I O N
In this section, we describe a quantum compilation
methodology proposed in [28] and [67] that achieves
an average of 5× speedup in terms of generated circuit
latency, by employing the idea of breaking the ISA abstrac-
tion and compiling directly to control pulses.

A. Quantum Compilation
Since the early days of QC, quantum compilation has

been recognized as one of the central tasks in realiz-
ing practical quantum computation. Quantum compilation
was first defined as the problem of synthesizing quantum
circuits for a given unitary matrix. The celebrated Solovay–
Kitaev theorem [34] states that such synthesis is always
possible if a universal set of quantum gates is given. Now
the term of quantum compilation is used more broadly and
almost all stages in Fig. 1 can be viewed as part of the
quantum compilation process.

There are many indications that current quantum com-
pilation stack (see Fig. 1) is highly inefficient. First, current
circuit synthesis algorithms are far from saturating (or
being closed to) the asymptotic lower bound in the general
case [34], [49]. Also, the formulated circuit synthesis prob-
lem is based on the fundamental abstraction of quantum
ISA (see Section II-B) and largely discussed in a hardware-
agnostic settings in previous work but the underlying
physical operations cannot be directly described by the
logical level ISA (as shown in Fig. 2). The translation from
the logical ISA to the operations directly supported by the
hardware is typically done in an ad hoc way. Thus, there
is a mismatch between the expressive logical gates and the

PROCEEDINGS OF THE IEEE 3

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

set of instructions that can be efficiently implemented on
a real system. This mismatch significantly limits the effi-
ciency of the current QC stack, thus underlying quantum
devices’ computing ability and wastes precious quantum
coherence. While improving the computing efficiency is
always valuable, improving QC efficiency is do-or-die:
computation has to finish before qubit decoherence or the
results will be worthless. Thus, improving the compilation
process is one of the most, if not the most, crucial goals in
near-term QC system design.

By identifying this mismatch and the fundamental lim-
itation in the ISA abstraction, in [28] and [66], we pro-
posed a quantum compilation technique that optimizes
across existing abstraction barriers to greatly reduce
latency while still being practical for large numbers of
qubits. Specifically, rather than limiting the compiler to use
1- and 2-qubit quantum instructions, our framework aggre-
gates the instructions in the logical ISA into a customized
set of instructions that corresponds to optimized control
pulses. We compare our methodology to the standard
compilation workflow on several promising NISQ quantum
applications and conclude that our compilation method-
ology has an average speedup of 5× with a maximum
speedup of 10×. We use the rest of this section to introduce
this compilation methodology, starting with defining some
basic concepts.

B. Quantum ISA

In the QC stack, a restricted set of 1- and 2-qubit
quantum instructions are provided for describing the high-
level quantum algorithms, analogous to the ISA abstraction
in classical computing. In this article, we call this instruc-
tion set the logical ISA. The 1-qubit gates in the logical
ISA include the Pauli gates, P = {X,Y,Z}. It also includes
the Hadamard H gate, the symbol in the circuit model of
which is given as an example in Fig. 2 on the left column.
The typical 2-qubit instruction in the logical instruction
set is the controlled-NOT (CNOT) gate, which flips the
state of the target qubit based on the state of the control
qubit.

However, usually QC devices does not directly support
the logical ISA. Based on the system characteristics, we can
define the physical ISA that can be directly mapped to
the underlying control signals. For example, SC devices
typically has cross-resonance (CR) gate or iSWAP gate
as their intrinsic 2-qubit instruction, whereas for trapped-
ion devices the intrinsic 2-qubit instruction can be the
Mølmer–Sørensen gate or the controlled phase gate.

C. Quantum Control

As shown in Fig. 2 and discussed in Section I, underlying
physical operations in the hardware such as microwave
control pulses and modulated laser beam are abstracted
as quantum instructions. A quantum instruction is simply
as prefined control pulse sequences.

The underlying evolution of the quantum system is
continuous and so are the control signals. The continuous
control signals offer much richer and flexible controllabil-
ity than the quantum ISA. The control pulses can drive
the QC hardware to a desired quantum states by varying
a system-dependent and time-dependent quantity called
the Hamiltonian. The Hamiltonian of a system determines
the evolution path of the quantum states. The ability to
engineer real-time system Hamiltonian allows us to navi-
gate the quantum system to the quantum state of interest
through generating accurate control signals. Thus, quan-
tum computation can be done by constructing a quantum
system in which the system Hamiltonian evolves in a way
that aligns with a QC task, producing the computational
result with high probability upon final measurement of the
qubits. In general, the path to a final quantum state is not
unique, and finding the optimal evolution path is a very
important but challenging problem [25], [39], [62].

D. Mismatch Between ISA and Control

Being hardware-agnostic, the quantum operation
sequences composed by logical ISA have limited freedom
in terms of controllability and usually will not be mapped
to the optimal evolution path of the underlying quantum
system, thus there is a mismatch between the ISA and
low-level quantum control. With two simple examples,
we demonstrate this mismatch.

1) We can consider the instruction sequence consists of
a CNOT gate followed by an X gate on the control
bit. In current compilation workflow, these two logical
gates will be further decomposed into the physical
ISA and be executed sequentially. However, on SC
QIP platforms, the microwave pulses that implement
these two instructions could in fact be applied simul-
taneously (because of their commutativity). Even the
commutativity can be captured by the ISA abstraction,
in the current compilation workflow, the compiled
control signals are suboptimal.

2) SWAP gate is an important quantum instruction
for circuit mapping. The SWAP operation is usually
decomposed as three CNOT operations, as realized
in the circuit below. This decomposition could be
thought of the implementation of in-place mem-
ory SWAPs with three alternating XORs for classi-
cal computation. However, for systems like quantum
dots [41], the SWAP operation is directly supported
by applying particular constant control signals for a
certain period of time. In this case, this decomposi-
tion of SWAP into three CNOTs introduces substantial
overhead.

In experimental physics settings, equivalences from sim-
ple gate sequences to control pulses can be hand opti-
mized [61]. However, when circuits become larger and
more complicated, this kind of hand optimization becomes

4 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

less efficient and the standard decomposition becomes less
favorable, motivating a shift toward numerical optimiza-
tion methods that are not limited by the ISA abstraction.

E. Quantum Optimal Control

Quantum optimal control (QOC) theory provides an
alternative in terms of finding the optimal evolution path
for the quantum compilation tasks. QOC algorithms typ-
ically perform analytical or numerical methods for this
optimization, among which, gradient ascent methods,
such as the GRadient Ascent Pulse Engineering (GRAPE)
[15], [33] algorithm, are widely used. The basic idea of
GRAPE is as follows: for optimizing the control signals of
M parameters (u1, . . . , uM) for a target quantum state,
in every iteration, GRAPE minimizes the deviation of the
system evolution by calculating the gradient of the final
fidelity with respect to the M control parameters in the
M -dimensional space. Then GRAPE will update the para-
meters in the direction of the gradient with adaptive step
size [15], [33], [39]. With a large number of iterations,
the optimized control signals are expected to converge and
find optimized pulses.

In [65], we utilize GRAPE to optimize our aggregated
instructions that are customized for each quantum circuit
as opposed to selecting instructions from a predefined
pulse sequences. However, one disadvantage of numer-
ical methods like GRAPE is that the running time and
memory use grow exponentially with the size of the
quantum system for optimization. In our work, we are
able to use GRAPE for optimizing quantum systems of
up to 10 qubits with the GPU-accelerated optimal control
unit [39]. As shown in our result, the limit of 10 qubits
does not put restrictions on the result of our compilation
methodology.

F. Pulse-Level Optimization: A Motivating
Example

Next, we will illustrate the workflow of our compila-
tion methodology with a circuit instance of the quantum
approximate optimization algorithm (QAOA) for solving
the MAXCUT problem on the triangle graph (see Fig. 3).1

This QAOA circuit with logical ISA (or variants of it up
to single qubit gates) can be reproduced by most existing
quantum compilers. This instance of the QAOA circuit is
generated by the ScaffCC compiler, as shown in Fig. 3(a).
We assume this circuit is executed on an SC architecture
with 1-D nearest neighbor qubit connectivity. A SWAP
instruction is inserted in the circuit to satisfy the linear
qubit connectivity constraints.

On the other hand, our compiler generates the aggre-
gated instruction setG1–G5 as illustrated in Fig. 3(b) auto-
matically, and uses GRAPE to produce highly optimized
pulse sequences for each aggregated instruction. In this

1The angle parameters γ and β can be determined by variational
methods [44] and are set to 5.67 and 1.26.

Fig. 3. Example of a QAOA circuit. (a) QAOA circuit with the logical

ISA. (b) QAOA circuit with aggregated instructions. (c) Generated

control pulses for G3 in the ISA-based compilation. (d) Control pulses

for G3 from aggregated instructions based compilation. Each curve

is the amplitude of a relevant control signal. The pulse sequences in

(d) provides a 3× speedup comparing to the pulse sequences in (c).

Pulse sequences reprinted with permission from [65].

minimal circuit instance, our compilation method reduces
the total execution time of the circuit by about 2.97× com-
pared to compilation with restricted ISA. Fig. 3(c) and (d)
shows the generated pulses forG3 with ISA-based compila-
tion and with our aggregated instruction based, pulse-level
optimized compilation.

G. Optimized Pulse-Level Compilation Using
Gate Aggregation: The Workflow

Now, we give a systematic view of the workflow of
our compiler. First, at the program level, our compiler

PROCEEDINGS OF THE IEEE 5

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 4. Example in Fig. 5 in the form of GDG. (a) Input GDG. (b) Commutativity detection. (c) Commutativity-aware scheduling.

performs module flattening and loop unrolling to pro-
duce the quantum assembly (QASM), which represents
a schedule of the logical operations. Next, the compiler
enters the commutativity detection phase. Different from
the ISA-based approach, in this phase, our compilation
process converts the QASM code to a more flexible logical
schedule that explores the commutativity between instruc-
tions. To further explore the commutativity in the schedule,
the compiler aggregates instructions in the schedule to
produce a new logical schedule with instructions that rep-
resents diagonal matrices (and are of high commutativity).
Then the compiler enters the scheduling and mapping
phase. Because of commutativity awareness, our compiler
can generate a much more efficient logical schedule by
rearranging the aggregated instructions with high com-
mutativity. The logical schedule is then converted to a
physical schedule after the qubit mapping stage. Then the
compiler generates the final aggregated instructions for
pulse optimization and use GRAPE for producing the corre-
sponding control pulses. The goal of the final aggregation
is to find the optimal instruction set that produces the
lowest-latency control pulses while preserving the paral-
lelism in the circuit aggregations that are small as much
as possible. Finally, our compiler outputs an optimized
physical schedule along with the corresponding optimized
control pulses. Fig. 4 shows the gate dependence graph
(GDG) of the QAOA circuit in Fig. 5 in different compila-
tion stages. Next, we walk through the compilation back-
end with this example, starting from the commutativity
detection phase.

1) Commutativity Detection: In the commutativity detec-
tion phase, the false dependence between commutative
instructions are removed and the GDG is restructureed.
This is because if a pair of gates commutes, the gates can
be scheduled in either order. Also, it can be further noticed
that, in many NISQ quantum algorithms, it is ubiquitous

Fig. 5. Example of CLS. With commutativity detected, the circuit

depth can be shortened. (a) Input circuit. (b) Commutativity

detection. (c) Commutativity-aware scheduling.

that for instructions within an instruction block to not
commute, but for the full instruction block to commute
with each other [19], [37]. As an example, in Fig. 5,
the CNOT-Rz-CNOT instruction blocks commute with each
other because these blocks correspond to diagonal unitary
matrices. However, each individual instruction in these

6 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

circuit blocks does not commute. Thus, after aggregating
these instructions, the compiler is able to schedule new
aggregated instructions in any order, which is impossible
before. This commutativity detection procedure opens up
opportunities for more efficient scheduling.

2) Scheduling and Mapping:
a) Commutativity-aware logical scheduling (CLS): In

our scheduling phase, our logical scheduling algorithm
is able to fully utilize the detected commutativity in the
last compilation phase. The CLS iteratively schedules the
available instructions on each qubits. At each iteration,
the CLS draws instruction candidates that can be executed
in the earliest time step to schedule.

b) Qubit mapping: In this phase of the compilation,
the compiler transform the circuit to a form that respect
the topological constraints of hardware connectivity [43].
To conform to the device topology, the logical instructions
are processed in two steps. First, we place frequently
interacting qubits near each other by bisecting the qubit
interaction graph along a cut with few crossing edges,
computed by the METIS graph partitioning library [32].
Once the initial mapping is generated, 2-qubit operations
between nonneighboring qubits are prepended with a
sequence of SWAP rearrangements that move the control
and target qubits to be adjacent.

3) Instruction Aggregation: In this phase, the compiler
iterates with the optimal control unit to generate the final
aggregated instructions for the circuit. Then, the optimal
control unit optimizes each instruction individually with
GRAPE.

4) Physical Execution: Finally, the circuit will be sched-
uled again using the CLS from Section II-G2, the physical
schedules will be sent to the control unit of the underly-
ing quantum hardware and trigger the optimized control
pulses at appropriate timing and the physical execution.

H. Discussion

In [65], we selected nine important quantum/classical-
quantum hybrid algorithms in the NISQ era as our
benchmarks. Across all nine benchmarks, our compilation
scheme achieves a geometric mean of 5.07× pulse time
reduction comparing to the standard gate-based compi-
lation. The result in [65] indicates that addressing the
mismatch between quantum gates and the control pulses
by breaking the ISA abstraction can greatly improve the
compilation efficiency. Going beyond the ISA-based com-
pilation, this article opens up a door to new QC system
designs.

III. B R E A K I N G T H E I S A A B S T R A C T I O N
U S I N G N O I S E - A D A P T I V E
C O M P I L AT I O N
In recent years, QC compute stacks have been devel-
oped using abstractions inspired from classical computing.
The ISA is a fundamental abstraction which defines the

Fig. 6. Daily variations in qubit coherence time (larger is better)

and gate error rates (lower is better) for selected qubits and gates

in IBM’s 16-qubit system. The most or least reliable system

elements change across days. (a) Coherence time (T2). (b) CNOT

gate error rate.

interface between the hardware and software. The ISA
abstraction allows software to execute correctly on any
hardware which implements the interface. This enables
application portability and decouples hardware and soft-
ware development.

For QC systems, the hardware–software interface is typ-
ically defined as a set of legal instructions and the con-
nectivity topology of the qubits [14], [20]–[22], [58]—it
does not include information about qubit quality, gate
fidelity, or micro-operations used to implement the ISA
instructions. While technology independent abstractions
are desirable in the long run, our work [46], [47]
reveals that such abstractions are detrimental to program
correctness in NISQ quantum computers. By exposing
microarchitectural details to software and using intelligent
compilation techniques, we show that program reliability
can be improved significantly.

A. Noise Characteristics of QC Systems

QC systems have spatial and temporal variations in
noise due to manufacturing imperfections, imprecise qubit
control, and external interference. To motivate the neces-
sity for breaking the ISA abstraction barrier, we present
real-system statistics of hardware noise in systems from
three leading QC vendors—IBM, Rigetti, and University
of Maryland. IBM and Rigetti systems use SC qubits
[10], [12] and the University of Maryland (UMD) uses

PROCEEDINGS OF THE IEEE 7

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 7. (a) IR of the Bernstein-Vazirani algorithm (BV4). Each horizontal line represents a program qubit. X and H are single qubit gates.

The CNOT gates from each qubit p0−−2 to p3 are marked by vertical lines with XOR connectors. The readout operation is indicated by the

meter. (b) Qubit layout in IBMQ16, a naive mapping of BV4 onto this system. The black circles denote qubits and the edges indicate hardware

CNOT gates. The edges are labeled with CNOT gate error (×10−2). The hatched qubits and crossed gates are unreliable. In this mapping,

a SWAP operation is required to perform the CNOT between p1 and p3 and error-prone operations are used. (c) Mapping for BV4 where qubit

movement is not required and unreliable qubits and gates are avoided.

trapped ion qubits [16]. The gates in these systems are
periodically calibrated and their error rates are measured.

Fig. 6 shows the coherence times and 2-qubit gate error
rates in IBM’s 16-qubit system (ibmnamefull). From daily
calibration logs we find that, the average qubit coherence
time is 40 μs, 2-qubit gate error rate is 7%, readout
error rate is 4%, and single qubit error rate is 0.2%. The
2-qubit and readout errors are the dominant noise sources
and vary up to 9× across gates and calibration cycles.
Rigetti’s systems also exhibit error rates and variations
of comparable magnitude. These noise variations in SC
systems emerge from material defects due to lithographic
manufacturing, and are expected in the future systems
also [35], [36].

Trapped ion systems also have noise fluctuations even
though the individual qubits are identical and defect-free.
On a 5-qubit trapped ion system from UMD, we observed
up to 3× variation in the 2-qubit gate error rates because
of fundamental challenges in qubit control using lasers and
their sensitivity to motional mode drifts from temperature
fluctuations.

We found that these microarchitectural noise variations
dramatically influence program correctness. When a pro-
gram is executed on a noisy QC system, the results may be
corrupted by gate errors, decoherence, or readout errors on
the hardware qubits used for execution. Therefore, it is cru-
cial to select the most reliable hardware qubits to improve
the success rate of the program (the likelihood of correct
execution). The success rate is determined by executing
a program multiple times and measuring the fraction of
runs that produce the correct output. High success rate
is important to ensure that the program execution is not
dominated by noise.

B. Noise-Adaptive Compilation: Key Ideas

Our work breaks the ISA abstraction barrier by develop-
ing compiler optimizations which use hardware calibration
data. These optimizations boost the success rate a program
run by avoiding portions of the machine with poor coher-
ence time and operational error rates.

We first review the key components in a QC compiler.
The input to the compiler is a high-level language program

(Scaffold in our framework) and the output is machine
executable assembly code. First, the compiler converts the
program to an intermediate representation (IR) composed
of single and 2-qubit gates by decomposing high-level QC
operations, unrolling all loops and inlining all functions.
Fig. 7(a) shows an example IR. The qubits in the IR
(program qubits) are mapped to distinct qubits in the hard-
ware, typically in a way that reduces qubit communication.
Next, gates are scheduled while respecting data depen-
dences. Finally, on hardware with limited connectivity,
such as SC systems, the compiler inserts SWAP operations
to enable 2-qubit operations between nonadjacent qubits.

Fig. 7(a) and (b) shows two compiler mappings for a
4-qubit program on IBM’s 16-qubit system. In the first
mapping, the compiler must insert SWAPs to perform the
2-qubit gate between p1 and p3. Since SWAP operations
are composed of three 2-qubit gates, they are highly error
prone. In contrast, the second mapping requires no SWAPs
because the qubits required for the CNOTs are adjacent.
Although SWAP optimizations can be performed using the
device ISA, the second mapping is also noise-optimized,
that is, it uses qubits with high coherence time and low
operational error rates. By considering microarchitectural
noise characteristics, our compiler can determine such
noise-optimized mappings to improve the program success
rate.

We developed three strategies for noise optimization.
First, our compiler maps program qubits onto hardware
locations with high reliability, based on the noise data.
We choose the initial mapping based on 2-qubit and read-
out error rates because they are the dominant sources of
error. Second, to mitigate decoherence errors, all gates are
scheduled to finish before the coherence time of the hard-
ware qubits. Third, our compiler optimizes the reliability
of SWAP operations by minimizing the number of SWAPs
whenever possible and performing SWAPs along reliable
hardware paths.

C. Implementation Using Satisfiability Modulo
Theory (SMT) Optimization

Our compiler implements the above strategies by find-
ing the solution to a constrained optimization problem

8 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 8. Noise-adaptive compilation using SMT optimization. Inputs

are a QC program IR, details about the hardware qubit

configuration, and a set of options, such as routing policy and solver

options. From these, compiler generates a set of appropriate

constraints and uses them to map program qubits to hardware

qubits and schedule operations. The output of the optimization is

used to generate an executable version of the program.

using an SMT solver. The variables and constraints in the
optimization encode program information, device topology
constraints, and noise information. The variables express
the choices for program qubit mappings, gate start times,
and routing paths. The constraints specify that qubit
mappings should be distinct, the schedule should respect
program dependences, and that routing paths should be
nonoverlapping. Fig. 8 summarizes the optimization-based
compilation pipeline for IBMQ16.

The objective of our optimization is to maximize the
success rate of a program execution. Since the success rate
can be determined only from a real-system run, we model
it at compile time as the program reliablity. We define the
reliability of a program as the product of reliability of all
gates in the program. Although this is not a perfect model
for the success rate, it serves as a useful measure of overall
correctness [7], [40]. For a given mapping, the solver
determines the reliability of each 2-qubit and readout
operation and computes an overall reliability score. The
solver maximizes the reliability score over all mappings by
tracking and adapting to the error rates, coherence limits,
and qubit movement based on program qubit locations.

In practice, we use the Z3 SMT solver to express and
solve this optimization. Since the reliability objective is a
nonlinear product, we linearize the objective by optimizing
for the additive logarithms of the reliability scores of each
gate. We term this algorithm as R-SMT� . The output of
the SMT solver is used to create machine executable code
in the vendor-specified assembly language.

Fig. 9. Measured success rate of R-SMT�compared to Qiskit and

T-SMT�. (Of 8192 trials per execution, success rate is the

percentage that achieve the correct answer in real-system

execution.) ω is a weight factor for readout error terms in the

R-SMT�objective, 0.5 is equal weight for CNOT and readout errors.

R-SMT�obtains higher success rate than Qiskit because it adapts

the qubit mappings according to dynamic error rates and also avoids

unnecessary qubit communication.

D. Real-System Evaluation

We present real-system evaluation on IBMQ16. Our eval-
uation uses 12 common QC benchmarks, compiled using
R-SMT�and T-SMT� which are variants of our compiler
and IBM’s Qiskit compiler (version 0.5.7) [6] which is the
default for this system. R-SMT� optimizes the reliability of
the program using hardware noise data. T-SMT� optimizes
the execution time of the program considering real-system
gate durations and coherence times, but not operational
error rates. IBM Qiskit is also noise-unaware and uses
randomized algorithms for SWAP optimization. For each
benchmark and compiler, we measured the success rate on
IBMQ16 system using 8192 trials per program. A success
rate of 1 indicates a perfect noise-free execution.

Fig. 9 shows the success rate for the three compilers
on all the benchmarks. R-SMT� has higher success rate
than both baselines on all benchmarks, demonstrating the
effectiveness of noise-adaptive compilation. Across bench-
marks R-SMT� obtains geomean 2.9× improvement over
Qiskit, with up to 18× gain. Fig. 10 shows the mapping
used by Qiskit, T-SMT�, and R-SMT�for BV4. Qiskit places
qubits in a lexicographic order without considering CNOT

and readout errors and incurs extra swap operations. Sim-
ilarly, T-SMT�is also unaware of noise variations across
the device, resulting in mappings which use unreliable
hardware. R-SMT�outperforms these baselines because
it maximizes the likelihood of reliable execution by
leveraging microarchitectural noise characteristics during
compilation.

Full results of our evaluation on seven QC systems from
IBM, Rigetti, and UMD can be found in [47] and [48].

E. Discussion

Our work represents one of the first efforts to exploit
hardware noise characteristics during compilation. We
developed optimal and heuristic techniques for noise

PROCEEDINGS OF THE IEEE 9

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 10. For real data/experiment, on IBMQ16, qubit mappings for Qiskit and our compiler with three optimization objectives, varying the

type of noise-awareness. The edge labels indicate the CNOT gate error rate (×10−2), and the node labels indicate the qubit’s readout error

rate (×10−2). The thin red arrows indicate CNOT gates. The thick yellow arrows indicate SWAP operations. ω is a weight factor for readout

error terms in the R-SMT�objective. (a) Qiskit finds a mapping which requires SWAP operations and uses hardware qubits with high readout

errors. (b), T-SMT�finds a a mapping which requires no SWAP operations, but it uses an unreliable hardware CNOT between p3 and p0.

(c) Program qubits are placed on the best readout qubits, but p0 and p3 communicate using swaps. (d) R-SMT�finds a mapping which has the

best reliability where the best CNOTs and readout qubits are used. It also requires no SWAP operations. (a) IBM Qiskit. (b) T-SMT�:Optimize

duration without error data. (c) R-SMT�(ω � 1): Optimize readout reliability. (d) R-SMT�(ω � 0.5): Optimize CNOT�readout reliability.

adaptivity and performed comprehensive evaluations on
several real QC systems [47]. We also developed tech-
niques to mitigate crosstalk, another major source of
errors in QC systems, using compiler techniques that
schedule programs using crosstalk characterization data
from the hardware [48]. In addition, our techniques
are already being used in industry toolflows [54], [59].
Recognizing the importance of efficient compilation, other
research groups have also recently developed mapping and
routing heuristics [11], [72] and techniques to handle
noise [67], [68].

Our noise-adaptivity optimizations offer large gains in
success rate. These gains mean the difference between
executions which yield correct and usable results and
executions where the results are dominated by noise.
These improvements are also multiplicative against bene-
fits obtained elsewhere in the stack and will be instrumen-
tal in closing the gap between near-term QC algorithms
and hardware. Our work also indicates that it is important
to accurately characterize hardware and expose charac-
terization data to software instead of hiding it behind a
device-independent ISA layer. Additionally, our work also
proposes that QC programs should be compiled once-per-
execution using the latest hardware characterization data
to obtain the best executions.

Going beyond noise characteristics, we also studied
the importance of exposing other microarchitectural infor-
mation to software. We found that when the compiler
has access to the native gates available in the hard-
ware (micro operations used to implement ISA-level
gates), it can further optimize programs and improve
success rates. Overall, our work indicates that QC
machines are not yet ready for technology independent

abstractions that shield the software from hardware.
Bridging the information gap between software and hard-
ware by breaking abstraction barriers will be increas-
ingly important on the path toward practically useful
NISQ devices.

IV. B R E A K I N G T H E Q U B I T
A B S T R A C T I O N V I A T H E
T H I R D E N E R G Y L E V E L
Although quantum computation is typically expressed with
the two-level binary abstraction of qubits, the underlying
physics of quantum systems are not intrinsically binary.
Whereas classical computers operate in binary states at the
physical level (e.g., clipping above and below a threshold
voltage), quantum computers have natural access to an
infinite spectrum of discrete energy levels. In fact, hard-
ware must actively suppress higher level states in order
to realize an engineered two-level qubit approximation.
In this sense, using three-level qutrits (quantum trits) is
simply a choice of including an additional discrete energy
level within the computational space. Thus, it is appealing
to explore what gains can be realized by breaking the
binary qubit abstraction.

In prior work on qutrits (or more generally, d-level
qudits), researchers identified only constant factor gains
from extending beyond qubits. In general, this prior work
[53] has emphasized the information compression advan-
tages of qutrits. For example, N qubits can be expressed as
(N/ log2(3)) qutrits, which leads to log2(3) ≈ 1.6-constant
factor improvements in runtimes.

Recently, however, our research group demonstrated a
novel qutrit approach that leads to exponentially faster
runtimes (i.e., shorter in circuit depth) than qubit-only

10 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

approaches [26], [27]. The key idea underlying the
approach is to use the third state of a qutrit as temporary
storage. Although qutrits incur higher per-operation error
rates than qubits, this is compensated by dramatic reduc-
tions in runtimes and quantum gate counts. Moreover, our
approach applies qutrit operations only in an intermedi-
ary stage: the input and output are still qubits, which is
important for initialization and measurement on practical
quantum devices [56], [57].

The net result of our work is to extend the frontier
of what quantum computers can compute. In particular,
the frontier is defined by the zone in which every machine
qubit is a data qubit, for example a 100-qubit algorithm
running on a 100-qubit machine. In this frontier zone,
we do not have space for nondata workspace qubits known
as ancilla. The lack of ancilla in the frontier zone is a
costly constraint that generally leads to inefficient circuits.
For this reason, typical circuits instead operate below the
frontier zone, with many machine qubits used as ancilla.
Our work demonstrates that ancilla can be substituted with
qutrits, enabling us to operate efficiently within the ancilla-
free frontier zone.

A. Qutrit-Assisted AND Gate

We develop the intuition for how qutrits can be useful
by considering the example of constructing an AND gate.
In the framework of QC, which requires reversibility, AND

is not permitted directly. For example, consider the output
of 0 from an AND gate with two inputs. With only this
information about the output, the value of the inputs
cannot be uniquely determined (00, 01, and 10 all yield
an AND output of 0). However, these operations can be
made reversible by the addition of an extra, temporary
workspace bit initialized to 0. Using a single additional
such as ancilla, the AND operation can be computed
reversibly as in Fig. 11. Although this approach works,
it is expensive—in order to decompose the Toffoli gate
in Fig. 11 into hardware-implementable one- and two-
input gates, it is decomposed into at least six CNOT gates.

However, if we break the qubit abstraction and allow
occupation of a higher qutrit energy level, the cost of the
Toffoli AND operation is greatly diminished. Before pro-
ceeding, we review the basics of qutrits, which have three

Fig. 11. Reversible AND circuit using a single ancilla bit. The

inputs are on the left, and time flows rightward to the outputs. This

AND gate is implemented using a Toffoli (CCNOT) gate with inputs

q0, q1 and a single ancilla initialized to 0. At the end of the circuit,

q0 and q1 are preserved, and the ancilla bit is set to 1 if and only if

both other inputs are 1.

Fig. 12. Toffoli decomposition via qutrits. Each input and output is

a qubit. The red controls activate on |1� and the blue controls

activate on |2�. The first gate temporarily elevates q1 to |2� if both
q0 and q1 were |1�. We then perform the X operation only if q1 is |2�.
The final gate restores q0 and q1 to their original state.

computational basis states: |0�, |1�, and |2�. A qutrit state
|ψ� may be represented analogously to a qubit as |ψ� =

α|0� + β|1� + γ|2�, where �α�2 + �β�2 + �γ�2 = 1. Qutrits
are manipulated in a similar manner to qubits; however,
there are additional gates which may be performed on
qutrits. We focus on the X+1 and X−1 operations, which
are addition and subtraction gates, modulo 3. For example,
X+1 elevates |0� to |1� and elevates |1� to |2�, while
wrapping |2� to |0�.

Just as single-qubit gates have qutrit analogs, the same
holds for two-qutrit gates. For example, consider the
CNOT operation, where an X gate is performed condi-
tioned on the control being in the |1� state. For qutrits,
an X+1 or X−1 gate may be performed, conditioned on
the control being in any of the three possible basis states.
Just as qubit gates are extended to take multiple controls,
qutrit gates are extended similarly.

In Fig. 12, a Toffoli decomposition using qutrits is given.
A similar construction for the Toffoli gate is known from
the past work [38], [55]. The goal is to perform an X

operation on the last (target) input qubit q2 if and only
if the two control qubits, q0 and q1, are both |1�. First,
a |1�-controlled X+1 is performed on q0 and q1. This
elevates q1 to |2� if and only if q0 and q1 were both |1�.
Then, a |2�-controlledX gate is applied to q2. Therefore,X
is performed only when both q0 and q1 were |1�, as desired.
The controls are restored to their original states by a
|1�-controlled X−1 gate, which undoes the effect of the
first gate. The key intuition in this decomposition is that
the qutrit |2� state can be used instead of ancilla to store
temporary information.

B. Generalized Toffoli Gate

The intuition of our technique extends to more
complicated gates. In particular, we consider the
generalized Toffoli gate, a ubiquitous quantum operation
which extends the Toffoli gate to have any number of
control inputs. The target input is flipped if and only if
all of the controls are activated. Our qutrit-based circuit
decomposition for the generalized Toffoli gate is presented
in Fig. 13. The decomposition is expressed in terms of
three-qutrit gates (two controls and one target) instead
of single- and two- qutrit gates because the circuit can
be understood purely classically at this granularity.

PROCEEDINGS OF THE IEEE 11

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 13. Our circuit decomposition for the generalized Toffoli gate

is shown for 15 controls and 1 target. The inputs and outputs are

both qubits, but we allow occupation of the |2� qutrit state in

between. The circuit has a tree structure and maintains the property

that the root of each subtree can only be elevated to |2� if all of its
control leaves were |1�. Thus, the U gate is only executed if all

controls are |1�. The right-half of the circuit performs uncomputation

to restore the controls to their original state. This construction

applies more generally to any multiply controlled U gate. Note that

the three-input gates are decomposed into six two-input and seven

single-input gates in our actual simulation, as based on the

decomposition in [17].

In actual implementation and in our simulation,
we used a decomposition [17] that requires six two-
qutrit and seven single-qutrit physically implementable
quantum gates.

Our circuit decomposition is most intuitively understood
by treating the left half of the circuit as a tree. The desired
property is that the root of the tree, q7, is |2� if and
only if each of the 15 controls was originally in the |1�
state. To verify this property, we observe the root q7 can
only become |2� if and only ifq7 was originally |1� and
q3 and q11 were both previously |2�. At the next level of
the tree, we see q3 could have only been |2� if q3 was
originally |1� and both q1 and q5 were previously |2�, and
similarly for the other triplets. At the bottom level of the
tree, the triplets are controlled on the |1� state, which are
activated only when the even-index controls are all |1�.
Thus, if any of the controls were not |1�, the |2� states
would fail to propagate to the root of the tree. The right-
half of the circuit performs uncomputation to restore the
controls to their original state.

After each subsequent level of the tree structure,
the number of qubits under consideration is reduced by
a factor of ∼2. Thus, the circuit depth is logarithmic in N ,
which is exponentially smaller than ancilla-free qubit-only
circuits. Moreover, each qutrit is operated on by a constant
number of gates, so the total number of gates is linear
in N .

Table 1 Scaling of Circuit Depths and Two-Qudit Gate Counts for All

Three Benchmarked Circuit Constructions for the N-Controlled General-

ized Toffoli

We verified our circuits, both formally and via sim-
ulation. Our verification scripts are available on our
GitHub [4].

C. Simulation Results

Table 1 shows the scaling of circuit depths and two-qudit
gate counts for all three benchmarked circuits. The QUBIT-
based circuit constructions from the past work are linear in
depth and have a high linearity constant. Augmenting with
a single borrowed ancilla (QUBIT+ANCILLA) reduces the
circuit depth by a factor of 8. However, both circuit con-
structions are significantly outperformed by our QUTRIT
construction, which scales logarithmically in N and has a
relatively small leading coefficient. Although there is not
an asymptotic scaling advantage for two-qudit gate count,
the linearity constant for our QUTRIT circuit is 70× smaller
than for the equivalent ancilla-free QUBIT circuit.

We ran simulations under realistic SC and trapped ion
device noise. The simulations were run in parallel on
over 100 n1-standard-4 Google Cloud instances. These
simulations represent over 20 000 CPU hours, which were
sufficient to estimate mean fidelity to an error of 2σ < 0.1%

for each circuit-noise model pair.
The full results of our circuit simulations are shown

in Fig. 14. All simulations are for the 14-input (13 controls
and 1 target) generalized Toffoli gate. We simulated each
of the three circuit benchmarks against each of our noise
models (when applicable), yielding the 16 bars in the
figure. Note that our qutrit circuit consistently outper-
forms qubit circuits, with advantages ranging from 2× to
10 000×.

D. Discussion

The results presented in our work in [26] and [27] are
applicable to QC in the near term, on machines that are
expected within the next five years. By breaking the qubit
abstraction barrier, we extend the frontier of what is com-
putable by quantum hardware right now, without needing
to wait for better hardware. As verified by our open-source
circuit simulator coupled with realistic noise models, our
circuits are more reliable than qubit-only equivalents, sug-
gesting that qutrits offer a promising path toward scal-
ing quantum computers. We propose further investigation
into what advantage qutrits or qudits may confer. More
broadly, it is critical for quantum architects to bear in
mind that standard abstractions in classical computing do
not necessarily transfer to quantum computation. Often,

12 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 14. Circuit simulation results for all possible pairs of circuit constructions and noise models. Each bar represents 1000� trials, so the

error bars are all 2σ < 0.1�. Our QUTRIT construction significantly outperforms the QUBIT construction. The QUBIT�ANCILLA bars are drawn

with dashed lines to emphasize that it has access to an extra ancilla bit, unlike our construction. Figure reprinted with permission from [27].

this presents unrealized opportunities, as in the case
of qutrits.

V. B R E A K I N G T H E Q U B I T A B S T R A C -
T I O N V I A T H E G K P E N C O D I N G
Currently, there are many competing physical qubit imple-
mentations. For example, the transmon qubits [2] are
encoded in the lowest two energy levels of the charge
states in SC LC circuits with Josephson junctions; trapped
ion qubits can be encoded in two ground state hyperfine
levels [9] or a ground state level and an excited level
of an ion [13]; quantum dot qubits use electron spin
triplets [41]. These QIP platforms have rather distinct
physical characteristics, but they are all exposed to the
other layers in the stack as qubits and other implemen-
tation details are often hidden. This abstraction is nat-
ural for classical computing stack because the robustness
of classical bits decouples the programming logic from
physical properties of the transistors except the logical
value. In contrast, qubits are fragile so there are more
than (superpositions of) the logical values that we want
to know about the implementation. For example, in the
transmon qubits and trapped ion qubits, logical states can
be transferred to higher levels of the physical space by
unwanted operations and this can cause leakage errors
[24], [71]. It will be useful for other layers in the stack
to access this error information and develop methods
to mitigate it. In Section IV, we discussed the qutrit
approach that directly uses the third level for information
processing, however, it could be more interesting if we
can encode the qubit (qudit) using the whole physical
Hilbert space to avoid leakage errors systematically and
use the redundant degrees of freedom to reveal infor-
mation about the noise in the encoding. The encoding
proposed by Gottesman et al. [29] provides such an exam-
ple. GKP encoding is free of leakage errors and other
errors (in the form of small shifts in phase space) can
be identified and corrected by quantum nondemolition
(QND) measurements and simple linear optical operations.
In realistic implementations of approximate GKP states

(see Section V-C), there are leakage errors between logical
states, but the transfer probability is estimated to be at the
order of 10−10 with current techonology, thus negligible.

A. Phase Space Diagram

We describe the GKP qubits in the phase space. For a
comparison, we first discuss the phase space diagram for a
classical harmonic oscillator (CHO) and an SC qubit.

1) Classical Harmonic Oscillators: Examples of CHOs
include LC circuits, springs, and pendulums with small dis-
placement. The voltage/displacement (denoted as p) and
the current/momentum (denoted as q) value completely
characterize the dynamics of CHO systems. The phase
space diagram plots p versus q, which for CHOs are circles
(up to normalization) with the radius representing the
system energy. The energy of CHOs can be any nonnegative
real value.

2) Quantum Harmonic Oscillators: The QHO is the quan-
tized version of the CHO and is the physical model for
SC LC circuits and SC cavity modes. One of the values
get quantized for QHOs is the system energy, which can
only take equally spaced nonzero discrete values (see
Fig. 16). The lowest allowed energy is not 0 but (1/2)

(up to normalization). We call the quantum state with the
lowest energy the ground state. For a motion with a certain
energy, the phase space diagram is not a circle anymore but
a quasidistribution that can be described by the Wigner
function. We say the distribution is a “quasi” distribution
because the probability can be negative. The phase space
diagram for the ground state and first excited state is plot
in Fig. 15.

3) SC Charge Qubits: The QHO does not allow us selec-
tively address the energy levels, thus leakage errors will
occur if we use the lowest two levels as the qubit logic
space. For example, a control signal that provides the
energy difference ΔE enables the transition |0� → |1�,
but will also make the transition |1� → |2� which brings
the state out of the logic space. To avoid this problem,

PROCEEDINGS OF THE IEEE 13

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 15. Phase space diagrams for a CHO, the ground state, and the first excited state of a QHO and the logic 0 and 1 state of the GKP

qubit. For quantum phase space diagrams, the plotted distribution is the Wigner quasi-probability function, where red indicates positive

values and blue indicates negative values.

Fig. 16. Left: an LC circuit. In SC LC circuits, normal current

becomes SC current. Right: the energy potential of a harmonic

oscillator. In QHOs like the SC LC circuits, the system energy

becomes equally spaced discrete values. The plotted two levels are

the ground state and the first excited state.

the Cooper pair box (CPB) design of an SC charge qubit
replaces the inductor (see Fig. 17) with a Josephson junc-
tion, making the circuit an anharmonic oscillator, in which
the energy levels are not equally spaced anymore. The
Wigner function for CPB eigenstates are visually similar to
those of QHO and only differ from them to the first order
of the anharmonicity, thus we do not plot them in Fig. 15
separately.

B. Heisenberg Uncertainty Principle

We hope that with utilizing the whole physical states
(higher energy levels), we can use the redundant
space to encode and extract error information. However,
the Heisenberg uncertainty principle sets the fundamental
limit on what error information we can extract from the
physical states—the more we know about the q variable,
the less we know about the p variable. For example, we can

Fig. 17. Left: an LC circuit. In SC LC circuits, normal current

becomes SC current. Right: the energy potential of a harmonic

oscillator. In QHOs like the SC LC circuits, the system energy

becomes equally spaced discrete values. The plotted two levels are

the ground state and the first excited state.

Fig. 18. Squeezed vacuum state.

“squeeze” the ground state of the QHO (also known as the
vacuum state) in the p-direction; however, the distribution
in the q-direction spreads, as shown in Fig. 18. Usually,
we have to know both the p and q values to characterize
the error information unless we know the error is biased.
Thus, it is a great challenge to design encodings in the
phase space to reveal error information.

C. GKP Encoding

The GKP states are also called the grid states because
each of them is a rectangular lattice in the phase space (see
Fig. 15). There are also other types of lattice in the GKP
family, for example, the hexagonal GKP [29]. Intuitively,
the GKP encoding “breaks” the Heisenberg uncertainty
principle—we do not know what are the measured p and
q values of the state (thus expected values of p and q

remain uncertain), but we do know that they must be
integer multiples of the spacing of the grid. Thus, we have
access to the error information in both directions and if
we measure values that are not multiples of the spacing of
the grid, we know there must be errors. Formally, the ideal
GKP logical states are given by

|0�gkp =

∞�

k=−∞
Sk

p |q = 0�

|1�gkp =
∞�

k=−∞
Sk

p |q =
√
π� (1)

14 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 19. Approximate GKP |0� state in q- and p-axis.

where Sp = e−2i(π)1/2p is the displacement operator in
q space, which shifts a wave function in the q-direction
by 2(π)1/2. These definitions show that for GKP logical
0 and 1, the spacing of the grid in q-direction is 2(π)1/2

and the spacing in p is (π)1/2. In q-direction, the logical
|0� state has peaks at even multiples of (π)1/2, and the
logical |1� state has peaks at odd multiples of (π)1/2.
For logical |+� and |−�, the spacing in p and q grids is
switched.

1) Approximate GKP States: The ideal GKP states require
infinite energy, thus they are not realistic. In the laboratory,
we can prepare approximate GKP states as illustrated
in Fig. 19, where peaks and the envelope are Gaussian
curve.

2) Error Correction With GKP Qubits: GKP qubits are
designed to correct shift errors in q- and p-axis. A simple
decoding strategy will be shifting the GKP state back to
the closest peak. For example, if we measure a q value
to be 2(π)1/2 + Δq, where Δq < ((π)1/2/2), then we
can shift it back to 2(π)1/2. With this simple decoding,
GKP can correct all shift errors smaller than ((π)1/2/2).
While there are other proposals for encoding qubits in
QHO [45], [50], [52] that are designed for realistic errors
such as photon loss, it is shown that GKP qubits have the
most error correcting ability in the regime of experimental
relevance [5].

In addition, GKP qubits can also provide error correc-
tion information when concatenating with quantum error
correction codes (QECCs) and yield higher thresholds. For
example, when combining the GKP qubits with a surface
code, the measured continuous p and q values in the
stabilizer measurement can reveal more about the error
distribution than traditional qubits [23], [51], [69].

Finally, it has been shown that given a supply of GKP-
encoded Pauli eigenstates, universal fault-tolerant quan-
tum computation can be achieved using only Gaussian
operations [8]. Compared to qubit error correction codes,
the GKP encoding enables much simpler fault-tolerant
constructions.

D. Fault-Tolerant Preparation of
Approximate GKP States

The GKP encoding has straightforward logical oper-
ation and promising error correcting performance.

However, the difficulty of using GKP qubits in QIP plat-
forms lies in its preparation since they live in highly non-
classical states with relatively high mean photon number
(i.e., the average energy levels). Thus, reliable prepa-
ration of encoded GKP states is an important problem.
In [64], we gave fault-tolerance definitions for GKP prepa-
ration in SC cavities and designed a protocol that fault-
tolerantly prepares the GKP states. We briefly describe the
main ideas.

1) Goodness of Approximate GKP States: Naturally,
because of the finite width of the peaks of approximate
GKP states, it will not be possible to correct a shift error in
p or q of magnitude at most ((π)1/2/2) with certainty. For
example, suppose we have an approximate |0� GKP state
with a peak at q = 0 subject to a shift error e−ivp with
|v| ≤ ((π)1/2/2). The finite width of the Gaussian peaks
will have a nonzero overlap in the region ((π)1/2/2) < q <

(3(π)1/2/2) and (−3(π)1/2/2) < q < (−(π)1/2/2). Thus,
with nonzero probability the state can be decoded to |1�
instead of |0� (see Fig. 20 for an illustration).

In general, if an approximate GKP state is afflicted by
a correctable shift error, we would like the probability of
decoding to the incorrect logical state to be as small as
possible. A smaller overlap of the approximate GKP state
in regions in q and p space that lead to decoding the state
to the wrong logical state will lead to a higher proba-
bility of correcting a correctable shift error by a perfect
GKP state.

2) Preparation of Approximate GKP States Using Phase
Estimation: We observe that the GKP states are the eigen-
states of the Sp operator, thus we can use phase estima-
tion to gradually project a squeezed vacuum state to an
approximate GKP state. The phase estimation circuit for
preparing an approximate |0̃� GKP state is given in Fig. 21.
The first horizontal line represents the cavity mode that
we want to prepare the GKP states. The second line is a

Fig. 20. Peaks centered at even integer multiples of �π�1/2 in q

space. The peak on the left contains large tails that extend into the

region where a shift error is decoded to the logical |1� state. The
peak on the right is much narrower. Consequently for some

interval δ, the peak on the right will correct shift errors of size

��π�1/2/2�− δ with higher probability than the peak on the left.

PROCEEDINGS OF THE IEEE 15

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

Fig. 21. Phase estimation circuit with the flag qubit. The protocol

is aborted if the flag qubit measurement is nontrivial.

transmon ancilla initialized to |+�. The third line is a
transmon flag qubit initialized to |0�. The H gate is the
Hadamard gate. Λ(eiγ) = diag(1, eiγ) is the gate with a
control parameter γ in each round of the phase estimation
to increase the probability of projecting the cavity state to
an approximate eigenstate of the displacement operator
after the measurement. After applying several rounds of
the circuit in Fig. 21, the input squeezed vacuum state
is projected onto an approximate eigenstate of Sp with
some random eigenvalue eiθ. Additionally, an estimated
value for the phase θ is obtained. After computing the
phase, the state can be shifted back to an approximate +1

eigenstate of Sp.
In our protocol, we use a flag qubit to detect any damp-

ing event during the controlled-displacement gate, if a
nontrivial measurement is obtained, we abort the protocol
and start over. Using our simulation results, we also find
a subset of output states that are robust to measurement
errors in the transmon ancilla and only accept states in
that subset. We proved that our protocol is fault-tolerant
according to the definition we gave. In practice, our pro-
tocol produces “good” approximate GKP states with high
probability and we expect to see experimental efforts to
implement our protocol.

E. Discussion

The GKP qubit architecture is a promising candidate
for both near-term and fault-tolerant QC implementations.
With intrinsic error-correcting capabilities, the GKP qubit
breaks the abstraction layer between error correction and
the physical implementation of qubits. In [64], we dis-
cussed the fault-tolerant preparation of GKP qubits and
realistic experimental difficulties. We believe that qubit
encodings like the GKP encoding will be useful for reli-
able QC.

VI. C O N C L U S I O N A N D F U T U R E
D I R E C T I O N S
In this review, we proposed that greater quantum efficiency
can be achieved by breaking abstraction layers in the QC
stack. We examined some of the previous work in this

direction that are closing the gap between current quan-
tum technology and real-world QC applications. We would
also like to briefly discuss some promising future directions
along this line.

A. Noise-Tailoring Compilation

We can further explore the idea of breaking the ISA
abstraction. Near-term quantum devices have errors from
elementary operations like 1- and 2-qubit gates, but
also emergent error modes like crosstalk. Emergent error
modes are hard to characterize and to mitigate. Recently,
it has been shown that randomized compiling could trans-
form complicated noise channels including crosstalk, SPAM
errors, and readout errors into simple stochastic Pauli
errors [70], which could potentially enable subsequent
noise-adaptive compilation optimizations. We believe if
compilation schemes that combine noise tailoring and
noise adaptation could be designed, they will outperform
existing compilation methods.

B. Algorithm-Level Error Correction

Near-term quantum algorithms such as variational
quantum eigensolver (VQE) and QAOA are tailored for
NISQ hardware, breaking the circuit/ISA abstraction.
We could take a step further and look at high-
level algorithms equipped with customized error
correction/mitigation schemes. Prominent examples
of this idea are the generalized superfast encoding
(GSE) [63] and the Majorana loop stabilizer code
(MLSC) [30] for quantum chemistry. In GSE and MLSC,
the overhead of mapping Fermionic operators onto qubit
operators stays constant with the qubit number (as
opposed to linear scaling in the usual Jordan–Wigner
encoding or logarithmic in Bravyi–Kitaev encoding).
On the other hand, qubit operators in these mappings are
logical operators of a distance 3 stabilizer error correction
code so that we can correct all weight 1-qubit errors in
the algorithm with stabilizer measurements. These works
are the first attempts to algorithm-level error correction,
and we are expecting to see more efforts of this kind to
improve the robustness of near-term algorithms.

C. Dissipation-Assisted Error Mitigation

We generally think of dissipation as competing with
quantum coherence. However, with careful design of the
quantum system, dissipation can be engineered and used
for improving the stability of the underlying qubit state.
Previous work on autonomous qubit stabilization [42] and
error correction [31] suggests that properly engineered
dissipation could largely extend qubit coherence time.
Exploring the design space of such systems and their asso-
ciated error correction/mitigation schemes might provide
alternative paths to an efficient and scalable QC stack.

16 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

R E F E R E N C E S
[1] Cramming More Power Into a Quantum Device.

Accessed: Aug. 30, 2010. [Online]. Available:
https://www.ibm.com/blogs/research/2019/
03/power-quantum-device/

[2] J. Koch, “Charge-insensitive qubit design derived
from the Cooper pair box,” Phys. Rev. A, Gen. Phys.,
vol. 76, no. 4, Oct. 2007, Art. no. 042319.

[3] (2018). Cirq: A Python Framework for Creating,
Editing, and Invoking Noisy Intermediate Scale
Quantum (NISQ) Circuits. [Online]. Available:
https://github.com/quantumlib/Cirq

[4] (2019). Code for Asymptotic Improvements to
Quantum Circuits Via Qutrits. [Online]. Available:
https://github.com/epiqc/qutrits

[5] V. V. Albert et al., “Performance and structure of
single-mode bosonic codes,” Phys. Rev. A, Gen.
Phys., vol. 97, no. 3, p. 32346, Mar. 2018.

[6] G. Aleksandrowicz et al., “Qiskit: An open-source
framework for quantum computing,” IBM T.J
Watson Res. Center, New York, NY, USA,
Tech. Rep., 2019, doi: 10.5281/zenodo.2562111.

[7] F. Arute et al., “Quantum supremacy using a
programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[8] B. Q. Baragiola, G. Pantaleoni, R. N. Alexander,
A. Karanjai, and N. C. Menicucci, “All-Gaussian
universality and fault tolerance with the
Gottesman-Kitaev-Preskill code,” 2019,
arXiv:1903.00012. [Online]. Available:
http://arxiv.org/abs/1903.00012

[9] B. B. Blinov, D. Leibfried, C. Monroe, and
D. J. Wineland, “Quantum computing with trapped
ion hyperfine qubits,” in Experimental Aspects of
Quantum Computing. New York, NY, USA: Springer,
2005, pp. 45–59.

[10] S. A. Caldwell et al., “Parametrically activated
entangling gates using transmon qubits,” Phys. Rev.
A, Gen. Phys. Appl., vol. 10, no. 3, Sep. 2018,
Art. no. 034050.

[11] A. M. Childs, E. Schoute, and C. M. Unsal, “Circuit
transformations for quantum architectures,”
Tech. Rep., 2019, doi: 10.4230/LIPIcs.TQC.2019.3.

[12] J. M. Chow et al., “Simple all-microwave entangling
gate for fixed-frequency superconducting qubits,”
Phys. Rev. Lett., vol. 107, no. 8, Aug. 2011,
Art. no. 080502.

[13] J. I. Cirac and P. Zoller, “Quantum computations
with cold trapped ions,” Phys. Rev. Lett., vol. 74,
no. 20, pp. 4091–4094, May 1995.

[14] W. A. Cross, S. L. Bishop, A. J. Smolin, and
M. J. Gambetta, “Open quantum assembly
language,” 2017, arXiv:1707.03429. [Online].
Available: https://arxiv.org/abs/1707.03429

[15] P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and
I. Kuprov, “Second order gradient ascent pulse
engineering,” J. Magn. Reson., vol. 212, no. 2,
pp. 412–417, Oct. 2011.

[16] S. Debnath, N. M. Linke, C. Figgatt,
K. A. Landsman, K. Wright, and C. Monroe,
“Demonstration of a small programmable quantum
computer with atomic qubits,” Nature, vol. 536,
no. 7614, pp. 63–66, Aug. 2016.

[17] Y.-M. Di and H.-R. Wei, “Elementary gates for
ternary quantum logic circuit,” 2011,
arXiv:1105.5485. [Online]. Available:
http://arxiv.org/abs/1105.5485

[18] A. Erhard et al., “Characterizing large-scale
quantum computers via cycle benchmarking,”
Nature Commun., vol. 10, no. 1, p. 5347, Nov.
2019, doi: 10.1038/s41467-019-13068-7.

[19] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum
approximate optimization algorithm,” 2014,
arXiv:1411.4028. [Online]. Available:
http://arxiv.org/abs/1411.4028

[20] X. Fu et al., “eQASM: An executable quantum
instruction set architecture,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), 2019,
pp. 224–237.

[21] X. Fu et al., “An experimental microarchitecture for
a superconducting quantum processor,” in Proc.
50th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2017, pp. 813–825.

[22] X. Fu et al., “A microarchitecture for a

superconducting quantum processor,” IEEE Micro,
vol. 38, no. 3, pp. 40–47, May 2018.

[23] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii,
“High-threshold fault-tolerant quantum
computation with analog quantum error
correction,” Phys. Rev. X, vol. 8, no. 2, May 2018,
Art. no. 021054.

[24] J. Ghosh, A. G. Fowler, J. M. Martinis, and
M. R. Geller, “Understanding the effects of leakage
in superconducting quantum-error-detection
circuits,” Phys. Rev. A, Gen. Phys., vol. 88, no. 6,
Dec. 2013, Art. no. 062329.

[25] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch,
W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy,
S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and
F. K. Wilhelm, “Training Schrödinger’s cat:
Quantum optimal control,” Eur. Phys. J. D, vol. 69,
no. 12, p. 279, Dec. 2015.

[26] P. Gokhale, J. M. Baker, C. Duckering, F. T. Chong,
N. C. Brown, and K. R. Brown, “Extending the
frontier of quantum computers with qutrits,” IEEE
Micro, vol. 40, no. 3, pp. 64–72, 2020.

[27] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown,
K. R. Brown, and F. T. Chong, “Asymptotic
improvements to quantum circuits via qutrits,” in
Proc. 46th Int. Symp. Comput. Architectural,
New York, NY, USA, Jun. 2019, pp. 554–566, doi:
10.1145/3307650.3322253.

[28] P. Gokhale et al., “Partial compilation of variational
algorithms for noisy intermediate-scale quantum
machines,” in Proc. 52nd Annu. IEEE/ACM Int.
Symp. Microarchitecture, New York, NY, USA,
Oct. 2019, pp. 266–278.

[29] D. Gottesman, A. Kitaev, and J. Preskill, “Encoding
a qubit in an oscillator,” Phys. Rev. A, Gen. Phys.,
vol. 64, no. 1, p. 12310, Jun. 2001.

[30] Z. Jiang, J. McClean, R. Babbush, and H. Neven,
“Majorana loop stabilizer codes for error mitigation
in fermionic quantum simulations,” Phys. Rev.
Appl., vol. 12, no. 6, pp. 064041-1–064041-17,
Dec. 2019. [Online]. Available: https://link.aps.
org/doi/10.1103/PhysRevApplied.12.064041,
doi: 10.1103/PhysRevApplied.12.064041.

[31] E. Kapit, “Hardware-efficient and fully autonomous
quantum error correction in superconducting
circuits,” Phys. Rev. Lett., vol. 116, no. 15,
Apr. 2016, Art. no. 150501.

[32] G. Karypis and V. Kumar, “A fast and high quality
multilevel scheme for partitioning irregular
graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Jan. 1998.

[33] N. Khaneja, T. Reiss, C. Kehlet,
T. Schulte-Herbrüggen, and S. J. Glaser, “Optimal
control of coupled spin dynamics: Design of NMR
pulse sequences by gradient ascent algorithms,”
J. Magn. Reson., vol. 172, no. 2, pp. 296–305,
Feb. 2005.

[34] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical
and Quantum Computation. Providence, RI, USA:
AMS, 2002.

[35] P. V. Klimov et al., “Fluctuations of energy-relaxation
times in superconducting qubits,” Phys. Rev. Lett.,
vol. 121, Aug. 2018, Art. no. 090502.

[36] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando,
S. Gustavsson, and W. D. Oliver, “A quantum
engineer’s guide to superconducting qubits,” Appl.
Phys. Rev., vol. 6, no. 2, Jun. 2019, Art. no. 021318.

[37] B. P. Lanyon et al., “Towards quantum chemistry on
a quantum computer,” Nature Chem., vol. 2, no. 2,
pp. 106–111, Feb. 2010.

[38] B. P. Lanyon et al., “Simplifying quantum logic
using higher-dimensional Hilbert spaces,” Nature
Phys., vol. 5, no. 2, pp. 134–140, Feb. 2009.

[39] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster,
“Speedup for quantum optimal control from
automatic differentiation based on graphics
processing units,” Phys. Rev. A, Gen. Phys., vol. 95,
no. 4, Apr. 2017, Art. no. 042318.

[40] N. M. Linke et al., “Experimental comparison of two
quantum computing architectures,” Proc. Nat. Acad.
Sci. USA, vol. 114, no. 13, pp. 3305–3310,
Mar. 2017.

[41] D. Loss and D. P. DiVincenzo, “Quantum

computation with quantum dots,” Phys. Rev. A, Gen.
Phys., vol. 57, no. 1, pp. 120–126, Jan. 1998.

[42] Y. Lu et al., “Universal stabilization of a
parametrically coupled qubit,” Phys. Rev. Lett.,
vol. 119, no. 15, Oct. 2017.

[43] D. Maslov, S. M. Falconer, and M. Mosca, “Quantum
circuit placement,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 4,
pp. 752–763, Apr. 2008.

[44] J. R. McClean, J. Romero, R. Babbush, and
A. Aspuru-Guzik, “The theory of variational hybrid
quantum-classical algorithms,” New J. Phys.,
vol. 18, no. 2, 2016, Art. no. 023023.

[45] M. H. Michael et al., “New class of quantum
error-correcting codes for a bosonic mode,” Phys.
Rev. X, vol. 6, no. 3, Jul. 2016, Art. no. 031006.

[46] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong,
and M. Martonosi, “Noise-adaptive compiler
mappings for noisy intermediate-scale quantum
computers,” in Proc. 24th Int. Conf. Architectural
Support Program. Lang. Operating Syst. (ASPLOS),
New York, NY, USA, Apr. 2019, pp. 1015–1029.

[47] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari,
N. H. Nguyen, and C. H. Alderete, “Full-stack,
real-system quantum computer studies:
Architectural comparisons and design insights,” in
Proc. 46th Int. Symp. Comput. Architectural (ISCA),
New York, NY, USA, Jun. 2019, pp. 527–540.

[48] P. Murali, D. C. Mckay, M. Martonosi, and
A. Javadi-Abhari, “Software mitigation of crosstalk
on noisy intermediate-scale quantum computers,”
in Proc. 25th Int. Conf. Architectural Support
Program. Lang. Operating Syst. (ASPLOS),
New York, NY, USA, Mar. 2020, pp. 1001–1016.

[49] A. M. Nielsen and L. I. Chuang, Quantum
Computation and Quantum Information: 10th
Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge Univ. Press, 2011.

[50] K. Noh, V. V. Albert, and L. Jiang, “Quantum
capacity bounds of Gaussian thermal loss channels
and achievable rates with
Gottesman-Kitaev-Preskill codes,” IEEE Trans. Inf.
Theory, vol. 65, no. 4, pp. 2563–2582, Apr. 2019.

[51] K. Noh and C. Chamberland, “Fault-tolerant
bosonic quantum error correction with the
surface-Gottesman-Kitaev-Preskill code,” Phys. Rev.
A, Gen. Phys., vol. 101, no. 1, Jan. 2020,
Art. no. 012316.

[52] N. Ofek et al., “Demonstrating quantum error
correction that extends the lifetime of quantum
information,” 2016, arXiv:1602.04768. [Online].
Available: http://arxiv.org/abs/1602.04768

[53] A. Pavlidis and E. Floratos, “Arithmetic circuits for
multilevel qudits based on quantum Fourier
transform,” 2017, arXiv:1707.08834. [Online].
Available: http://arxiv.org/abs/1707.08834

[54] Qiskit. (2019). Qiskit NoiseAdaptiveLayout Pass.
Accessed: Aug. 1, 2019. [Online]. Available:
https://github.com/Qiskit/qiskit-terra/pull/2089

[55] T. C. Ralph, K. J. Resch, and A. Gilchrist, “Efficient
Toffoli gates using qudits,” Phys. Rev. A, Gen. Phys.,
vol. 75, no. 2, Feb. 2007, Art. no. 022313.

[56] J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt,
N. V. Vitanov, and W. K. Hensinger, “Generation of
high-fidelity quantum control methods for
multilevel systems,” Phys. Rev. A, Gen. Phys.,
vol. 98, no. 4, Oct. 2018, Art. no. 043414.

[57] J. Randall et al., “Efficient preparation and
detection of microwave dressed-state qubits and
qutrits with trapped ions,” Phys. Rev. A, Gen. Phys.,
vol. 91, no. 1, Jan. 2015, Art. no. 012322.

[58] Rigetti. (2019). PyQuil. Accessed: Aug. 1, 2019.
[Online]. Available:
https://github.com/rigetticomputing/pyquil

[59] R. Quilc. (2019). Use Swap Fidelity Instead of Gate
Time as a Distance Metric. Accessed: Aug. 1, 2019.
[Online]. Available:
https://github.com/rigetti/quilc/pull/395

[60] M. Sarovar, T. Proctor, K. Rudinger, K. Young,
E. Nielsen, and R. Blume-Kohout, “Detecting
crosstalk errors in quantum information
processors,” 2019, arXiv:1908.09855. [Online].
Available: https://arxiv.org/abs/1908.09855

PROCEEDINGS OF THE IEEE 17

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.5281/zenodo.2562111
http://dx.doi.org/10.4230/LIPIcs.TQC.2019.3
http://dx.doi.org/10.1038/s41467-019-13068-7
http://dx.doi.org/10.1145/3307650.3322253
http://dx.doi.org/10.1103/PhysRevApplied.12.064041
http://dx.doi.org/10.1103/PhysRevApplied.12.064041

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Shi et al.: Resource-Efficient Quantum Computing by Breaking Abstractions

[61] N. Schuch and J. Siewert, “Natural two-qubit gate
for quantum computation using theXYinteraction,”
Phys. Rev. A, Gen. Phys., vol. 67, no. 3, Mar. 2003,
Art. no. 032301.

[62] T. Schulte-Herbrueggen, A. Spoerl, and S. J. Glaser,
“Quantum CISC compilation by optimal control and
scalable assembly of complex instruction sets
beyond two-qubit gates,” 2007, arXiv:0712.3227.
[Online]. Available:
http://arxiv.org/abs/0712.3227

[63] K. Setia, S. Bravyi, A. Mezzacapo, and
J. D. Whitfield, “Superfast encodings for fermionic
quantum simulation,” Phys. Rev. Res., vol. 1, no. 3,
pp. 033033-1–033033-8, Oct. 2019. [Online].
Available: https://link.aps.org/doi/10.1103/
PhysRevResearch.1.033033, doi: 10.1103/
PhysRevResearch.1.033033.

[64] Y. Shi, C. Chamberland, and A. Cross,
“Fault-tolerant preparation of approximate GKP
states,” New J. Phys., vol. 21, no. 9, 2019,
Art. no. 093007.

[65] Y. Shi et al., “Optimized compilation of aggregated
instructions for realistic quantum computers,” in
Proc. 24th Int. Conf. Architectural Support Program.

Lang. Operating Syst. (ASPLOS), New York, NY,
USA, Apr. 2019, pp. 1031–1044, doi:
10.1145/3297858.3304018.

[66] Strawberry Fields, Xanadu, Toronto, ON, Canada,
2016.

[67] S. S. Tannu and M. Qureshi, “Ensemble of diverse
mappings: Improving reliability of quantum
computers by orchestrating dissimilar mistakes,” in
Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), New York, NY, USA,
Oct. 2019, pp. 253–265.

[68] S. S. Tannu and M. K. Qureshi, “Not all qubits are
created equal: A case for variability-aware policies
for NISQ-era quantum computers,” in Proc. 24th
Int. Conf. Architectural Support Program. Lang.
Operating Syst. (ASPLOS), New York, NY, USA,
Apr. 2019, pp. 987–999.

[69] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and
B. M. Terhal, “Quantum error correction with the
toric Gottesman-Kitaev-Preskill code,” Phys. Rev. A,
Gen. Phys., vol. 99, no. 3, Mar. 2019,
Art. no. 032344.

[70] J. J. Wallman and J. Emerson, “Noise tailoring for
scalable quantum computation via randomized

compiling,” Phys. Rev. A, Gen. Phys., vol. 94, no. 5,
Nov. 2016, Art. no. 052325.

[71] C. J. Wood and J. M. Gambetta, “Quantification
and characterization of leakage errors,” Phys. Rev.
A, Gen. Phys., vol. 97, no. 3, Mar. 2018.

[72] A. Zulehner, A. Paler, and R. Wille, “An efficient
methodology for mapping quantum circuits to the
IBM QX architectures,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 38, no. 7,
pp. 1226–1236, 2019.

[73] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh,
and R. Wisnieff, “Leveraging secondary storage to
simulate deep 54-qubit sycamore circuits,” 2019,
arXiv:1910.09534. [Online]. Available:
https://arxiv.org/abs/1910.09534

[74] C. Huang et al., “Classical simulation of quantum
supremacy circuits,” 2020, arXiv:2005.06787.
[Online]. Available:
https://arxiv.org/abs/2005.06787

[75] M. Kjaergaard et al., “Superconducting qubits:
Current state of play,” Annu. Rev. Condens. Matter
Phys., vol. 11, no. 1, pp. 369–395, 2020,
doi: 10.1146/annurev-conmatphys-031119-
050605.

18 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18,2020 at 11:45:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3297858.3304018
http://dx.doi.org/10.1103/PhysRevResearch.1.033033
http://dx.doi.org/10.1103/PhysRevResearch.1.033033
http://dx.doi.org/10.1103/PhysRevResearch.1.033033
http://dx.doi.org/10.1103/PhysRevResearch.1.033033
http://dx.doi.org/10.1103/PhysRevResearch.1.033033
http://dx.doi.org/10.1103/PhysRevResearch.1.033033
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050605
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050605

