
Dynamic Adaptive Techniques for Learning
Application Delay Tolerance for Mobile Data Offloading

Ozlem Bilgir Yetim and Margaret Martonosi
Princeton University

Email:{obilgir, mrm}@princeton.edu

Abstract—Today’s worldwide mobile data traffic is roughly
18× larger than the full internet traffic in 2000, and continued
large growth is expected. High mobile data usage has implications
both for users and providers. For individual users, relying on
cellular data connectivity incurs high cellular data fees. For
cellular network providers, high mobile data usage requires
expensive, ongoing infrastructure upgrades. Cellular data usage
can be reduced by offloading to WiFi when available. If not
available, prior work has considered delaying transmissions to
wait for WiFi availability. While exploiting such application delay
tolerance offers significant energy and performance leverage for
data offloading and other techniques, a key question is: how long
to wait? Prior work does not discuss how to estimate application
delay tolerance without explicit help from programmers, nor how
to adjust the estimate dynamically.

This work proposes, implements, and evaluates four schemes
to dynamically and adaptively deduce an application’s delay
tolerance. These schemes (Adaptive, Decision Tree-Based, Hybrid
and Lazy) are low-overhead and effective. In our experiments,
they cut cellular usage by 2× or more compared to non-delay-
tolerant approaches. Furthermore, our dynamically adaptive de-
cision schemes achieve up to 15% further cellular data reduction
compared to fixed static delay tolerance values.

I. INTRODUCTION

Mobile data usage has been drastically increasing world-
wide. According to the Cisco Visual Networking Index [9],
global mobile data traffic grew by 81% in 2013 alone, and
by 2018, it is projected to grow 12× and reach 15 exabytes
per month. This heavy cellular network bandwidth usage
forces cellular network providers to frequently upgrade their
infrastructure to meet the demand. In addition to the burden
on cellular network providers, user phone bills increase with
high cellular data usage [2].

Fortunately, mobile devices are also equipped with WiFi
connectivity as an alternative to cellular. Offloading some
cellular traffic to WiFi is attractive to both users and network
operators. For users, such offloads can decrease their monthly
data usage bill or can improve smartphone battery life, since
per-bit energy consumption of WiFi is one order of magnitude
less than 3G [10]. For network operators, data offloading to
WiFi reduces congestion in cellular networks and results in
better network capacity management [18].

Exploiting application delay tolerance opens up additional
opportunities for WiFi offloading. Delay tolerance refers to
the amount of delay a mobile application or its user can
tolerate in exchange for some benefit in bytes usage or
energy consumption. Many applications have some amount
of delay tolerance, and using this time window to optimize
connectivity choices can greatly reduce reliance on cellular

Material based upon work supported by NSF Grant CNS-1135953.

data connectivity. However, relying on application developers
to select a delay tolerance value may not be acceptable to all
users of the application.

Previous researchers recognized that applications have de-
lay tolerance as well as studied mobile data offloading to WiFi
networks during this time window [3, 5, 6, 12]. The focus
in this prior work was on using fixed delay tolerance values
to guide optimal or heuristic policies for connectivity choice,
rather than on methods for how to estimate it dynamically.
No previous work has discussed methods for estimating delay
tolerance values or how to dynamically adjust them.

This work proposes dynamically, adaptively and automati-
cally deducing and exploiting per-user application delay toler-
ance for each data transfer by using current and past request
patterns for the application data. Our goal is to maximally
utilize delay tolerance while minimizing degradation of user
experiences (both for senders and receivers of the data). Thus,
we propose heuristic and statistical delay tolerance decision
schemes, which dynamically predict when to delay the data
item more (if it is not going to be accessed immediately)
and less (if other users want to retrieve the data). We show
how time information regarding data access demand can be
inferred using small amounts of metadata that is sent before
transmitting the data item.

This paper’s primary case study uses an email application,
but our framework is general and gives insight on how to
apply the proposed techniques to other applications as well.
We evaluate our delay tolerance estimators using email usage
traces. Our decision schemes, Adaptive, Decision Tree-based,
Hybrid and Lazy, take the receiver’s email reading request into
account while making a delay tolerance decision. We show
how offloading based on these delay tolerance estimates re-
duces sender cellular bytes usage and receiver user experience
compared to a fixed delay tolerance decision scheme.

The primary contributions of our work are as follows.
First, using application delay tolerance and postponing network
transmissions to the future has significant leverage for cellular
data savings, but must be applied intelligently. Assuming
simple, fixed delay tolerance can have negative impact on the
users waiting for that data transmission. We propose dynamic
delay tolerance estimators that offer better trade-offs between
cellular bytes saving and user impact.

Second, even within a single application, per-user adap-
tation of delay tolerance estimates is important. By using
real email traces, we quantify how a fixed, identical delay
tolerance can have varying impact depending on user data
access behavior. Our trace-based simulations show that fast
email readers can be affected 7× more than the slow email
readers.

(a) Baseline with no delay tolerance usage

(b) Under-estimated delay tolerance

(c) Over-estimated delay tolerance

Fig. 1: Toy example timeline of an email delivery. For sim-
plicity, we exclude the email servers in the middle.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F
 o

f
R

e
a
d
 L

a
te

n
c
y

 Read Latency (s)

user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8
user 9

Fig. 2: CDF of email read latency for different users.

Third, dynamic delay tolerance estimation substantially
decreases the delay impact on the users. Compared to a fixed
policy, the Adaptive scheme which adapts based on email-
reading delay patterns achieves the same cellular bytes usage
with considerably less (80s) effective delay. In addition to
email reading delay patterns, the email receive time and email
size can be used in delay tolerance decisions. This offers a
better Pareto curve. Our Decision tree-based scheme achieves
the same cellular bytes usage with around 200s less effective
delay. Moreover, the Lazy scheme tries to maximize the
cellular data savings with the minimal impact on the receivers.

II. MOTIVATION: DYNAMIC DELAY TOLERANCE

As previous work suggested [3, 5, 6, 12], delaying trans-
missions until some delay tolerance deadline in order to offload
them to WiFi can save cellular data usage. For intermittent
WiFi, a 2 hour delay tolerance can result in 70% cellular
data savings for large data transfer [12]. Such large delay
tolerances may, however, degrade user experiences. Our goal
is to automatically deduce and exploit delay tolerances that
are typically much smaller, and that are tailored to individual
users, applications, and usage scenarios.

A. Deducing Delay Tolerance
This paper discusses options in the context of an email

application since it is commonly used [11] and intuitively quite
delay tolerant. However, our framework also provides broader
opportunities for other applications. Increasing use of dropbox,

photo-gallery and other such mobile applications point to a
broad set of workloads that can benefit from our dynamic delay
tolerance decision techniques for better offloading.

To offer a simple motivating example and to define termi-
nology, Fig. 1 shows a timeline of an email delivery without
and with delay tolerance exploitation. Fig. 1a shows a case
where the email is sent right away after becoming ready.
Email delay tolerance is not being utilized here; if WiFi is not
immediately available, the data will be sent via cellular. We
define the difference between the read time and the receive
time of the email at the receiver as read latency. This is
the maximum invisible delay tolerance this email has without
affecting the receiver’s email read behavior.

In Fig. 1b, transmission is delayed until some delay
tolerance estimation (DTest) window with the hope to use
WiFi for delivery. However, since DTest is smaller than the
true maximum delay tolerance for this case, some offloading
opportunity is lost. If DTest had been bigger, the probability
of the sender finding WiFi connectivity would be greater.

In Fig. 1c, delay tolerance is over-estimated. As a result,
the email is not read by the receiver at the original read time
because it was not received yet. In this case, using the over-
estimated delay tolerance introduces some delay, which we
call effective delay on the receiver’s read request. On the other
hand, over-estimation can increase the offloading efficiency for
the sender since the window to wait for WiFi is longer.

To summarize, there is a clear trade-off between cellular
bytes saving and the impact on the users waiting for the data.
Our goal is to better manage this trade-off by deducing delay
tolerance of the application data and conservatively selecting
DTest for low effective delay.

B. User Study: Email Reading Behavior
There are many mobile applications where the data

transmissions can benefit from our delay tolerance decision
schemes. These include email, as well as widely-used cloud-
based file storage and file transfer applications. This paper uses
email as a the primary example, and here we discuss a user
study whose data drives our experiments.

User objectives and network conditions affect the degree
of application delay tolerance. For example, certain users
read emails faster than others. For such users, postponing the
network transmissions (to offload them to WiFi) can degrade
their experience at the receiving end, even though it can results
in better cellular data usage for the sender.

To understand the email reading behavior among different
users, we collected the time stamps of email send, receive
and read from 9 users for 10-15 days. Section IV explains our
methodology in detail. Here, we will discuss the email reading
latency as motivation for our per-user and adaptive strategies.
Our main observations and their implications are;

Email reading latency varies highly among users, as ex-
pected. Thus, DTest must be customized for each user. Some
users tend to check emails very frequently, while other users
read their emails very infrequently. Fig. 2 shows the CDF of
email read latency for different users. The CDF curves vary
considerable between users. For example, user 1 reads more
than 50% of the email in less than 100s whereas user 9 reads
less than 5% of the emails with the same latency.

In addition, there is a high variance of email read latency
among different emails for the same user. Thus, DTest might be

Parameter Description
Accbody Data body access
Dbody Data body
Dmeta Metadata
Ditem Data item; Dbody + Dmeta

Dhead First item in Q
DGraph Decision graph
H History of previous observations
I Increment value to increase DTest

Q Local queue, sorted by the deadlines
Qmeta Metadata queue, not shown to outside world
Rbody Request from receiver to get Dbody

RDTest Request to receiver to learn DTest

scale Scaling factor for DTree
Tdata Data transmission request
WSH Window size of H

TABLE I: Common parameters used in the algorithms.

// Library call for application data send
Procedure send data(Tdata):

set deadline(DTest);
store Ditem in Q wrt. its deadline;

end
// Offloading decision
Procedure make transfer():

while True do
if Q not empty and WiFi available then

send Ditem from Q using WiFi;
end

end
end
Procedure meet deadline():

while True do
if the deadline of Dhead expires then

send Ditem using available network;
end

end
end

Algorithm 1: Fixed offloading algorithm. DTest is same
for all data items. Procedure set deadline(DTest) sets the
deadline of the data items to the end of DTest window.

customized for each individual email. For example, for some
users, the CDF does not reach 1 because these users never
read some of their emails (mostly mailing list emails). With
very high read latency, these emails are very delay-tolerant.
Furthermore, user 3 does not read 30% of his/her emails but
he/she reads another 30% in under 200s. This also shows the
high variability of delay tolerance of different emails for a
single user.

These observations suggest that per-user, dynamic and
adaptive delay tolerance decision is necessary.

III. DELAY TOLERANCE ESTIMATION APPROACHES

We propose and evaluate schemes for deducing and decid-
ing delay tolerance for individual data transmissions: Adaptive
(Adapt), Decision Tree-based (DTree), Hybrid and Lazy. The
schemes then use this delay tolerance estimate to make offload-
ing decisions. The schemes vary in approach, but all prioritize
user experience over data savings. In addition, we also compare
against Greedy and Fixed decision (Fixed) schemes, with the
goal of having more cellular data savings than Greedy and
better user experience for a given savings than Fixed.

// Library call for application data send
Procedure send data(Tdata):

if WiFi is available then
send Ditem;

else
send Dmeta;
send RDTest ;
store Dbody in Q;

end
end
// Offloading decision
Procedure make transfer():

while True do
if Q not empty and WiFi available then

send Dbody from Q using WiFi;
end

end
end
Procedure meet deadline():

while True do
if the deadline of Dhead expires then

send Dbody using available network;
end

end
end
Procedure set deadline(DTest):

set the deadline for Dbody at the end of DTest window;
end

Algorithm 2: Adapt and DTree decision scheme on the
sender device. Adapt uses Alg. 3 and DTree uses Alg. 4
to decide DTest for each data item individually.

(a) Communication Method 1

(b) Communication Method 2

(c) Communication Method 3

Fig. 3: Communication methods between the sender and the
receiver required by the different decision methods. Greedy
and Fixed use (a), Adapt, DTree and Hybrid use (b), and
Lazy uses (c).

A. System Overview
Fig. 3 shows the overall system diagram and the different

communication methods. In this implementation, we introduce
libraries both on the sender (application communicator in
sender, ACS) and the receiver (application communicator in
receiver, ACR). Different offloading schemes require different
communication support from these libraries.

ACS and ACR are the main libraries with which applica-
tions communicate for their data transmissions. Applications

Procedure build history():
while true do

if Dmeta is received then
store it in Qmeta ;

end
if Accbody then

forall the Dmeta in Qmeta do
mark Dmeta late;
update DT(True);

end
end
if Dbody is received then

if its Dmeta is not marked as late then
mark Dmeta early;
update DT(False);

end
end
if RDTest is received then

send DTest to the sender;
end

end
end
Procedure update DT(bool isBodyLate):

append isBodyLate to H;
median← median of last WSH items in H;
if median == True then

DTest ← DTest/2;
else

DTest ← DTest + I;
end

end
Algorithm 3: Adaptive decision scheme on the receiver
side, which continuously updates its DTest

 1

 10

 100

 1000

 10000

 100000

 1e+06

Day 1
00:00

Day 1
12:00

Day 2
00:00

Day 2
12:00

Day 3
00:00

Day 3
12:00

Day 4
00:00

Day 4
12:00

Day 5
00:00

Day 5
12:00

Day 6
00:00

Day 6
12:00

Day 7
00:00

R
e
a
d
 L

a
te

n
c
y
 (

s
)

Receive Time of the Day

Fig. 4: Read latency of all emails received in the first 6 days
for user 7. Relatively predictable variations in read latency
motivate Adapt and DTree approaches.

do not make offloading decisions or use the delay tolerance
directly. The only functionality required is to identify metadata
and the data body and to use send/receive functions to forward
them to these libraries. Both ACS and ACR are responsible for
handling the required communication. ACS is also responsible
for making the offloading decision.

ACS uses the migration and pausing modules proposed in
[6]. The migration module uses Serval [15] which provides
the necessary functionality to migrate flows seamlessly among
different network interfaces without application support. Serval
introduces a new layer to the network stack on top the of
network layer. Instead of necessitating IP address and port
number for network transmissions, it uses service IDs and flow
IDs to identify services and the transmissions, respectively.
In addition, this architecture also provides functionality to
connect to the services and hosts without keeping track of
their network address in the mobile environments.

The pausing module is responsible for delaying data trans-
fers by pausing TCP window management and resuming later.

Procedure set deadline(Ditem):
DTest ← c x (look up from the DGraph);
return DTest;

end
Algorithm 4: Deciding DTest by DTree on the sender.

Fig. 5: Example decision tree composed by using the email
receive times and size for user 7. Each leaf node shows the
percentage of emails whose receive times and size follow the
rules given at the parent nodes, and the resulting mean read
latency.

For example, if ACS makes an offloading decision for the
data item and some delay is necessary until the next WiFi
region, the pausing mechanism is used to freeze the TCP win-
dow management. Thus, the migration and pausing modules
together provide required seamless offloading mechanism.

ACS and ACR have three main communication methods,
as seen from Fig. 3. Decision schemes use one of these
communication methods depending on their implementation.

B. Greedy and Fixed Decision Schemes
The Greedy scheme is already supported on current phones,

and is our simplest baseline. Application delay tolerance is not
utilized in this scheme. If WiFi is available at the time of the
transmission, then it is used. Otherwise, cellular connectivity
is used for the transmission.

The Fixed decision scheme uses a constant DTest that is
the same for all of the data of the same application and for
all users. As shown in Alg. 1, the algorithm works similar
to the previously proposed chunking heuristic [6] offloading
scheme, but does not use WiFi prediction. Table I summarizes
terminology for this and other schemes. In Fixed, the data
items, Ditem, are stored in a pending queue, Q, sorted by pre-
determined fixed deadline. Whenever WiFi becomes available,
Fixed sends data items from Q until the connection is lost and
it continues the transfer at the next WiFi availability. If a data
item’s deadline is going to expire, it is sent immediately using
available cellular connectivity.

Implementation: The Greedy and Fixed schemes re-
quire common communication support, where ACS and ACR
send/receive data body and the metadata together, as shown in
Fig. 3a. This is the traditional communication method used by
applications. The other schemes send the body and metadata
together only if WiFi is available at the time of the original
send request from the application. Moreover, Greedy does not

// Library call for application data send
Procedure send data(Tdata):

if WiFi is available then
send Ditem;

else
send Dmeta;
store Dbody in Q;

end
end
// Offloading decision
Procedure make transfer():

while True do
if Q not empty and WiFi available then

send Dbody from Q using WiFi;
end

end
end
Procedure respond request(Rbody):

send Dbody using available;
end

Algorithm 5: Lazy offloading scheme on the sender
device. The receiver sends Rbody back if the user wants
to access the data body of the Dmeta.

need the migration and pausing mechanism since it does not
delay transfers.

C. Adaptive Decision Scheme
Increasing in sophistication level, it is natural to consider

dynamic adaptive schemes for deciding on DTest. Fig. 4
motivates our Adapt scheme by showing user 7’s read latency
for each data item over the first 6 days of logging. Each
point in the graph represents an email. From one email to
the next, transitions in read latency are relatively smooth and
predictable. Other users show similar data, and hence this
supports the intuition that reading patterns can help estimate
DTest. Adapt updates its current DTest continuously using the
observations on dela from previously received data.

In order to obtain timing information regarding the data
requests without sending the actual data item, we send small
hints or metadata about the data item to the receiver before
transmitting the data item [14, 24]. For the email application
we focus on, the metadata contains the email header infor-
mation [21], including the subject line, delivery timestamps,
sender information, and total email size (the including at-
tachments). In addition to email, other applications, like file
transfer or online file storage, can also have separate metadata
files which give information about the file content, but are
much smaller in size compared to the whole file. In our system,
metadata can be sent separately and some applications may
choose to display it to the user. We think of each data item
(i.e. email) as having two parts with different delay tolerance:
the delay intolerant metadata and delay tolerant data body. By
identifying the metadata to be delay intolerant and initiating its
transmission immediately, information about the access request
behavior can be caught or deduced at the recipient.

As Alg. 2 shows, when there is a new data transmission
request, in addition to the metadata, each sender sends a
RDTest

to the receiver to learn the DTest. After learning the
delay tolerance, the sender sets the deadline for the data body.
Before the deadline, data bodies are only sent if WiFi becomes
available. If the deadline is expiring, the data body is sent
through the available network immediately.

Alg. 3 shows how DTest is estimated. If the previous data
items waited for some time without any accesses (e.g. emails

are not read), then the receiver decides to increase DTest. If it
is suspected that the data would be accessed earlier, then this
scheme decides that DTest was too long, so it decreases it.
When a metadata is received without a body, it is enqueued
and hidden from the user. (The Lazy scheme below will handle
this differently.) The reason for concealing the metadata is that
it is present only as a hint to catch the user’s access intention
for this data item so that the delay tolerance decision can be
updated. The supposition in Adapt is that a user will not be
troubled by a few minutes of email delay if the user interface
does not explicitly expose it to them.

The receiver makes a decision of whether a data body
arrived early or late for each data item in two different
situations. First, if one data item is accessed (ACCbody),
then Adapt assumes any other email with metadata in the
queue might have been accessed as well if received. Thus,
this schemes decides that if DTest was shorter, the user might
have received and accessed them as well. Thus, Adapt calls its
updating procedure to reduce DTest. In the other case, when
a Dbody is received, if the metadata of this item is not marked
as late previously, then this scheme thinks that DTest is too
short, and updates accordingly.

The DTest updating procedure keeps a history (of size
WSH) of previous observations on the DTest being short or
long. Considering the median in the history, DTest adjustments
follow a linear increase/multiplicative decrease mechanism
similar to TCP congestion control [17]. If the median says
that DTest was short, then DTest is increased by I value. If
the median says that DTest was long, DTest is decreased to
half.

Implementation: The Adapt, DTree, and Hybrid methods
use the approach shown in Fig. 3b. These schemes need to
distinguish the metadata and body. Moreover, it is necessary
to match each data body with its metadata. For this purpose,
a 64-bit data ID is assigned to each data item. The data ID is
appended to the beginning of the payload of metadata and the
data body. Thus, both metadata and the body have the same
ID. The data ID together with the Serval service ID (256 bits)
is used to match the data body with its metadata.

In these schemes, ACS sends only the metadata at the time
of the original transmission request if WiFi is not available.
In addition, ACS sends a request to learn DTest for the data
item. ACS stores data bodies in the local queue until WiFi
becomes available and sets their transfer deadlines once DTest

information is received. ACS makes the offloading decision for
the data body for the earliest deadline.

On the receiver side, ACR is responsible for storing the
metadata locally until their bodies arrive. When a data body
is received, the data ID and the service ID are used to match
it with its metadata. ACR keeps track of the past observations
and the resulting read latency to decide on DTest.

D. Decision Tree-based Scheme
DTree uses Alg. 2 for offloading decision, similar to Adapt.

However, this scheme uses a decision tree approach—common
in machine learning [7]—to decide on the DTest for each
individual email using the past observations. We use this
method to map the information about a data item to previous
observations on the email size and receive time to correlate
with the read latency. Fig. 4 also motivates some of the
parameters used in DTree. As can be seen, email reading
behavior of the same user is similar every day. Each day,

around midnight, read latency increases and in the afternoon, it
decreases. This behavior can also help estimate delay tolerance
based on the trends on the previous days. Thus, DTree uses
the email receive time of the day as one of the parameters for
constructing its decision rules. In addition, total email size is
also used as a parameter.

Fig. 5 gives an example decision tree obtained by using the
receive times and email size of 3 days of observations for user
7. This shows the classification of these observations, ratio of
emails in each class and the mean read latency. The tree acts
as a set of rules to find which class the new data items fall
into. The receiver multiplies this value by a constant scale
to estimate DTest for a given email size and/or receive time.
The purpose of using scale is to able to have an impact on
the decision and adjust how conservative the delay will be.

Implementation: DTree uses the implementation flow
from Fig. 3b, but with additional metadata for training.

E. Hybrid Scheme
Because we wish to prioritize the user experience, we

also implemented a hybrid scheme is more conservative than
both the Adapt and DTree. For Hybrid, it calculates DTest

using both the Adapt and DTree methods, and then chooses
the smaller of the two values. Naturally it follows that its
implementation uses the flow in Fig. 3b.

F. Lazy Scheme
The core idea of Lazy, as the name suggests, is being lazy

in the transmissions. Its goal is to utilize the maximum delay
tolerance by deferring transmission of the data body until data
is actually requested. An explicit DTest is not kept in this
scheme. Instead, data is assumed to be tolerant to delays until
requested. Thus, in this scheme, data is only transmitted if (1)
there is a WiFi connection, or (2) data is requested.

Alg. 5 explains how Lazy works. If there is no WiFi
availability at the time of the data transmission, Lazy only
sends the metadata and the body is stored in the local Q.
Whenever WiFi becomes available at the sender, the data
bodies are opportunistically sent from Q until the connection
is lost. In the meantime, the metadata will be received at
the destination. Unlike Adapt, here in Lazy, the metadata are
actually exposed to the user, for example as email headers. If
the user tries to access the data item before the body arrives,
an Rbody request is triggered from the receiver to the original
sender to ask for the rest of the data item. When the sender
receives this request, the data body is sent immediately.

Implementation: Lazy uses the communication method
shown in Fig. 3c. Here, unlike Fig. 3b, ACR does not queue the
metadata until their bodies arrive. Instead, metadata is given
to the application as soon as it is received. At this point, if
the user wants to access the data item (e.g. wants to read
the email after they see the header), ACR triggers a request
to ACS to fetch the body. Until the data body returns, users
cannot access it and the delay due to the lazy-fetch is fully
exposed to them. Thus, unlike other methods, in this scheme,
users have an opportunity to access the email bodies whenever
they want. On the other hand, they are explicitly aware of the
delay until the body is fully received. Since our schemes rely
on Serval for host discovery, the approach is robust to changes
due to the sender mobility. ACR can easily communicate back
to ACS when data body is requested, and ACS can return the
matching data body to the requesting ACR.

IV. METHODOLOGY

We perform our evaluations using trace-based simulations,
comparing the total cellular bytes usage, the average effective
delay per email and the relative network energy consumption.
The simulator, written in C++, uses gathered email usage traces
to mimic data send and receives between different users at
given times. We use email traces in our simulations, but other
application traces could also be used.

A. Email Trace Collection
We collected our email traces from 9 gmail users for a time

frame between 10-15 days. For each user, we collected the
email size, send time (i.e. the time when the email originated
from the sender), receive time (i.e. the time when the email
reached receiver) and the read time (i.e. the time when the
email is read at the receiver) for all the emails received to the
gmail All Mail mailbox in our data collection period.

We use JavaMail 1.5.1 API to access the user mail boxes
and collect traces [16, 25]. This API provides libraries to
connect to an email account and access information about the
emails received to an email folder. Gmail has an option to set
filters to store emails to specific folders. However, by collecting
traces for All Mail folder in gmail, we can access all of the
emails received to all mailboxes (except the spam folder). For
privacy reasons, we did not access sender information. Instead
we assumed that each email originates from a different sender,
but our schemes are general and do not rely on this.

Email send, receive time and size can easily be accessed
using the methods provided by the JavaMail API. However,
read time is not normally displayed at the headers and cannot
be accessed using the JavaMail API. Instead, we use email
read/unread status, which is provided. Thus, in order to collect
email read time, we check the email read status every 2 mins
and log the time when the status changes from unread to read.

Email read latency is the difference between read time and
the receive time. Some users did not read certain emails in
our data collection period. For those emails, we cap the delay
tolerance at 10 days delay. To prevent miscalculation of the
read latency for emails received on the last day of the data
collection period, we take out the emails that are received in
the last 24 hours but not read. (We picked the 24 hour threshold
since for all of the users, most emails have < 24 hour read
latency if they were ever read at all.)

Transmission time is calculated as the time difference
between the receive and the send time. However, queuing
and processing delays at the email servers are also included
in this time. Occasionally due to slow or overloaded email
servers, they can dominate the transmission time. Thus, to be
conservative and avoid overstating user delay tolerance, we
exclude all emails whose calculated transmission time is more
than 10 minutes, about 10% of emails per person.

B. Scheme Parameters
For DTree, we use first 3 days of emails as the training set.

Thus, for all of our schemes, we only use the rest of the trace
as test trace. We use the rpart package from R as our statistical
tool to generate the regression trees [13]. In addition, we vary
the parameter scale from 1/256 to 64 to cover a wide range
of decisions. For Adapt, in order to see the effect of window
size and the increment value, we vary the WSH from 1 to
32 and I from 1 to 32 mins. Previous work studied delay
tolerance values ranging from 1 min to 12 hours [3, 12]. In

 0

 200

 400

 600

 800

 1000

 1200

u1 u2 u3 u4 u5 u6 u7 u8 u9 avg

A
v
g
.

E
ff
e

c
ti
v
e
 D

e
la

y
 (

s
)

Fixed(5 mins)
Fixed(10 mins)
Fixed(20 mins)
Fixed(40 mins)
Fixed(80 mins)

Fig. 6: If the delay tolerance is high, data offloading results in
an increased effective delay for the email readers.

 0

 100

 200

 300

 400

 500

 600

 700

0% 10% 20% 30% 40% 50% 60%

A
v
g

.
E

ff
e

c
ti
v
e
 D

e
la

y
 (

s
)

Cellular Bytes Percentage

Greedy
Fixed

DTree (Receive Time)
DTree (Size)

DTree (Size + Receive Time)
Adapt (I: 1 min)
Adapt (WSH: 1)

Lazy

Fig. 7: Average effective delay - cellular bytes usage tradeoff
where schemes use an upper bound in their decision. Dynamic
schemes almost always better than fixed decision scheme and
DTree forms the Pareto frontier among all schemes.

this paper, we vary the fixed delay tolerance values from 5
to 80 minutes. We assume that extra transmissions in Adapt,
DTree and Lazy for requesting/responding DTest information
are small transmissions sized 1KB.

All schemes cap DTest to an upper bound, beyond which it
never goes. The reason for the upper bound is to cap worst-case
effective delay at receivers. We use 80 mins (i.e. the maximum
delay used in Fixed) as an upper bound for all of the schemes.

C. Network Availability
We assume that 3G is always available during our simula-

tions but this is not a requirement. In order to mimic different
WiFi duration and inter-connection times, we use exponential
distributions with different average values. Previous work
showed that the average WiFi duration and inter-connection
times can be a few seconds to a few hours [8, 12]. Thus, in
order to cover a different range of WiFi scenarios, we vary
the average duration and inter-connection times from 450s to
2 hours. We repeat each experiments 10 times since the WiFi
behavior is generated from a random distribution.

D. Energy Calculation
We also compare the network energy usage of different

schemes. Our focus is the transfer energy as well as the pro-
motion and tail energy of WiFi and 3G networks. Promotion
energy is spent when the interface goes from idle to high power
active state, whereas tail energy is spent in high power states
at the end of the transfer [4]. We use 0.29 uJ/bit for WiFi
transfers and 5.86 uJ/bit for 3G transfers [10]. For WiFi, we use
0.01J for promotion energy (0.08s) and 0.028J for tail energy
(0.238s). For 3G, we use 0.383J for promotion energy (0.582s),
6.5J for DCH tail energy (8.0882s) and 0.5J for FACH tail
energy (0.824s) [10].

 0

 100

 200

 300

 400

 500

 600

 700

0% 10% 20% 30% 40% 50% 60%

A
v
g
.

E
ff
e

c
ti
v
e
 D

e
la

y
 (

s
)

Cellular Bytes Percentage

I: 8 mins

I: 64 mins

DTree (Size + Receive Time)
Adapt (WSH: 1)

Hybrid (Size+ReceiveTime, I: 8 mins)
Hybrid (Size+ReceiveTime, I: 64 mins)

Fig. 8: The Hybrid scheme is more conservative than Adapt
and DTree since it chooses the minimum DTest.

 0

 100

 200

 300

 400

 500

 600

 700

u1 u2 u3 u4 u5 u6 u7 u8 u9 avg

A
v
g
.

E
ff

e
c
ti
v
e
 D

e
la

y
 (

s
)

Fixed
Adapt
DTree

Lazy

Fig. 9: Detailed analysis of effective delay for all the users
with different schemes. Apart from Lazy, scheme parameters
are chosen to achieve 25% cellular data usage.

V. RESULTS

This section presents our quantitative results, applying
dynamic delay tolerance schemes in data offloading and com-
paring them in terms of resulting cellular bytes usage, average
effective delay and network energy usage. Unless otherwise
stated, graphs are averaged over all users and the average WiFi
duration and inter-connection times are 1 hour.

A. Fixed Delay Decision for Different Users
Fig. 6 compares the average effective delay results using

Fixed for different DTest. Using a high DTest decreases the
cellular data usage greatly. On average, 80 mins DTest can
reduce cellular data usage 35% more than Greedy, which
already results in ∼50% cellular data reduction compared
to all-cellular. On the other hand, with Fixed, higher DTest

also increases the effective delay at the receiver. Even though
Greedy (non-delay-tolerant) does not reduce cellular usage as
much as delay-tolerant schemes do, it incurs zero effective
delay since it does not delay transmissions. For Fixed, 80 mins
of delay tolerance causes the effective delay to be ∼22× larger
than the value at 5 mins delay tolerance. Moreover, this effect
is even worse for users with faster email reading behavior. For
example, user 1 (our dataset’s fastest email reader) experiences
∼1150s effective delay on average. This is ∼7× more than the
slowest reader’s experience. These results show that a fixed
delay tolerance across all users is unlikely to work well.

B. Tradeoffs of Effective Delay and Cellular Usage
Fig. 7 shows the average effective delay-cellular bytes

usage trade-off curves for all schemes. Plotting to show Pareto
tradeoffs, better solutions (i.e. lower cellular bytes usage with
lower effective delay) are near the origin in the lower-left
corner. Each point on the curves represent different values for
key parameters used in schemes (i.e. I and WSH for Adapt,
scale for DTree, DTest for Fixed). Increases in I and scale
lead to more aggressive delay tolerance decisions. Greedy and

Scheme Transfer Promotion + Tail Total
Fixed 83 % 82 % 83 %
Adapt 74 % 240 % 78 %
Lazy 66 % 147 % 69 %

DTree 57 % 218 % 61 %

TABLE II: Average energy consumption of different schemes
normalized to Greedy.

 0
 100
 200
 300
 400
 500
 600
 700
 800

7.5 mins 15 mins 30 mins 1 hour 2 hours

A
v
g
.

E
ff
e

c
ti
v
e
 D

e
la

y
 (

s
)

Greedy
Fixed(5 mins)
Fixed(80 mins)
Adapt
DTree
Lazy

(a)

0%

20%

40%

60%

80%

100%

7.5 mins 15 mins 30 mins 1 hour 2 hoursC
e
llu

la
r

B
y
te

s
 P

e
rc

e
n

ta
g

e

(b)

Fig. 10: Effective delay and cellular data usage at different
WiFi settings. WSH , I and scale are set to one.

Lazy are shown as single points since they do not have any
parameter variability.

Comparing Different Schemes: Greedy saves around 50%
cellular bytes usage with zero effective delay on the receiver.
Since Lazy postpones the transmissions until either there is
WiFi or the user explicitly requests the data body, it achieves
the maximum cellular bytes saving for the resulting effective
delay. The average effective delay is ∼20s while the cellular
bytes usage is reduced to 30%. However, even though this is
a small delay, this delay is actually explicitly exposed in the
user interface, unlike the other schemes.

All the dynamic decision schemes have better trade-off
curves than Fixed, because they better track DTest. For exam-
ple, in order to get ∼75% total savings on cellular bytes, Fixed
introduces 355s effective delay on average. On the other hand,
Adapt (where window size is 1) and DTree (size + receive
time) can achieve the same cellular bytes saving with much
smaller effective delay. Similarly, if the goal is to introduce
no more than 100s effective delay, Fixed can only save 60%
of cellular bytes whereas Adapt (where window size is 1)
and DTree (size + receive time) can save around 65% and
75%, respectively. When DTree uses both size and receive time
information, accuracy improves. Both play an important role
in gauging delay tolerance.

If we focus on Adapt where we fix I to 1 min and increase
window size, the tradeoff curve gets closer to the Fixed curve
and sometime gets even a little worse. This shows that using
a longer history does not improve DTest. If WSH is set to 1
and I is increased, the curve gets closer to Fixed. This shows
that if the increment value is high, then since DTest changes
more drastically, sometimes with higher inaccuracy.

Hybrid Scheme: Fig. 8 shows the trade-off curve for
Hybrid when DTree and Adapt (8 and 64 mins increment
values, window size 1) are used. Since Hybrid conservatively
chooses the minimum DTest decided by Adapt and DTree, it
provides a trade-off curve which is between these two schemes.
Even though DTree generally performs better than Adapt, there
are some cases where Adapt achieves better results. Hybrid can
provide a better trade-off between the two.

C. Effective Delay on Different Users
Fig. 9 shows per-user average effective delay for four

schemes. For Fixed, Adapt and DTree, the operating point is
chosen to keep the the cellular byte usage at 25%. For Lazy,
which has no controllable parameters, cellular bytes usage is
between 20% and 35% for different users. For almost all users,
dynamic decision schemes result in better (lower) effective
delay than Fixed, with DTree typically inducing less delay than
Adapt. Lazy can achieve∼20s effective delay on average which
is the lowest among all of the schemes. However, unlike the
other schemes, this delay is actually experienced by the users
since the metadata has exposed the existence of this email to
them. We have also measured how DTest tracks read latency,
and have found that on average, only 25% of DTree DTest

estimations have more than 1000s over-estimation which is
almost half of Fixed. To sum up, dynamic schemes can better
estimate delay tolerance. For the same cellular bytes usage,
dynamic decision schemes offer much better effective delays.

D. Energy Usage
Table II shows the ratio network energy usage of different

schemes compared to Greedy when the effective delay is less
than 100s. Overall, all decision schemes reduce the total energy
compared to Greedy and Fixed. For example, compared to
Fixed which already reduces Greedy’s network energy by 17%,
Adapt and DTree reduce another 5% and 21%, respectively.

Table II also shows the ratio of transfer and tail + promo-
tion energy separately. Adapt, Lazy and DTree have higher
promotion + tail energy compared to other schemes. This
is because these schemes make multiple transmissions for a
single data request if WiFi is not available at the original
transmission time. For example, if WiFi is not available, Adapt
sends the metadata first and send the body later depending
on DTest. Moreover, the incoming receiver DTest response
can also trigger a change in network state. Especially for 3G,
these different transmissions incur extra high promotion and
tail energy. (If transmission occurs in the tail time before the
network goes idle, it incurs less tail energy). Even though the
promotion + tail energy can be very high compared to Greedy
and Fixed, total energy is still much lower.

E. Varying WiFi Availability
Fig. 10 shows the average effective delay and cellular bytes

usage at different WiFi duration and inter-connection times.
WSH , I and scale are set to one as default. As the WiFi
duration and inter-connection time decrease, cellular usage
decreases for all schemes except for Greedy. Our schemes
have better savings and lower effective delay at more frequent
WiFi connections since frequent WiFi availability increases the
probability of finding WiFi for every transmission.

Even though Fixed with 80 mins DTest achieves the best
cellular data usage, it can have up to 4× more effective
delay compared to DTree. Even though DTree achieves the

best tradeoff as before, Adapt can result in very low effective
delay at all different WiFi availability. This is because Adapt
estimates DTest online using the immediate observations,
hence it does not increase DTest drastically even when WiFi
is scarcely available.

F. Results Summary
Exploiting WiFi using application delay tolerance has great

potential in reducing cellular data usage, but delay tolerance
needs to be estimated properly to reduce the effective delay
at receivers. Even though Fixed can save up to 85% cellular
usage on average for our data trace when DTest is high, it can
incur a high ∼1150s effective delay on the fast email readers.

Dynamic decision schemes provide better tradeoffs be-
tween cellular bytes usage and effective delay. DTree can
estimate delay tolerance the best and decrease the effective
delay by 50% compared to Fixed. For individual users, this
ratio can go up to 80% for the same cellular usage of 25%.
Adapt is the most robust to scarce WiFi availability since it
adjusts its decision online depending on the observed delay.
Lazy provides the lowest effective delay of average ∼20s for
30% cellular data usage, but this delay is actually experienced
by the users who are waiting for the email to read. All are
easily implemented within real systems.

VI. RELATED WORK

Network discovery and selection problems are defined in
RFC 5113 [1], however this definition does not discuss appli-
cation delay tolerance. Qualcomm introduced a framework for
operators to improve network selection and benefit from the
WiFi offloading [18]. However, the framework does not use
application delay tolerance for offloading and it only focuses
on network provider policies. Power/performance effects of
using different wireless channels have also been investigated
by previous authors [20, 22]. However, these do not exploit
delay tolerance either.

Utilizing delay tolerance for lower 3G usage has been
studied as a 3G/WiFi network selection problem [3, 12]. [3]
develops a heuristic method for delaying and offloading trans-
fers. In [12], the authors studied the potential cellular bytes
savings from a delay-tolerant offloading scheduler. However,
both these works assume that the application delay tolerance
is already provided. They do not explore how delay tolerance
could be estimated.

In our previous work [5], we formulate the WiFi/cellular
scheduling problem as an optimization problem for cellular
data usage. We also proposed simpler heuristics which are
easier to build, provide close-to-optimal performance when
WiFi prediction is accurate, and also more robust to real-world
prediction errors compared to power- and compute-intensive
optimal schedulers [6]. Moreover, we built a real-system im-
plementation which support delaying transmissions. However,
previous work does not propose solutions for estimating delay
tolerance, instead relies either on the programmers or users
themselves to provide it.

Previous researchers have extensively studied decision tree
learning for data classification, data mining and machine learn-
ing in many different areas [7, 19, 23]. Our work relies on the
basic fundamentals of such methods. More advanced decision
tree algorithms can be used to improve the performance of our
DTree method.

VII. CONCLUSION

Delay-tolerant WiFi offloading has great potential in re-
ducing cellular data usage, but simple fixed schemes for
estimating delay tolerance can expose too much delay to users.
In our work, we first defined our impact metric, effective
delay which can be used as performance metric for delay
tolerance decision. We defined dynamic adaptive estimators
that learn delay tolerance during execution, and that can be
used to improve cellular bytes usage with much less impact
on user experience. While our work focused here on email as
a case study, our approach is more broadly applicable across
important application classes including file transfer or online
photo/file sharing.

REFERENCES
[1] J. Arkko et al., “Network discovery and selection problem,” in RFC

5113. IETF, 2008.
[2] AT&T. (2012) Data plans from AT&T. [Online]. Avail-

able: http://www.att.com/shop/wireless/plans/data-plans.jsp?WT.srch=
1&fbid=qJecLd0u-5

[3] A. Balasubramanian et al., “Augmenting mobile 3G using WiFi,” in
ACM MobiSys, 2010.

[4] N. Balasubramanian et al., “Energy consumption in mobile phones: A
measurement study and implications for network applications,” in ACM
IMC, 2009.

[5] O. Bilgir Yetim and M. Martonosi, “Adaptive usage of cellular and WiFi
bandwidth: An optimal scheduling formulation,” in Proc. 7th ACM Intl.
Workshop on Challenged Networks (CHANTS), 2012.

[6] O. Bilgir Yetim and M. Martonosi, “Adaptive Delay-Tolerant Schedul-
ing for Efficient Cellular and WiFi Usage,” in Proc. IEEE WoWMoM,
2014.

[7] L. Breiman et al., Classification and Regression Trees. Wadsworth
and Brooks, 1984.

[8] V. Bychkovsky et al., “A measurement study of vehicular internet access
using in situ Wi-Fi networks,” in ACM MobiCom, 2006.

[9] Cisco White Paper, “Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2013-2018,” 2014.

[10] J. Huang et al., “A close examination of performance and power
characteristics of 4G LTE networks,” in ACM MobiSys, 2012.

[11] IDC, “Always Connected: How smartphones and social media keep us
engaged,” IDC Research, October 2013.

[12] K. Lee et al., “Mobile data offloading: How much can WiFi deliver?”
in ACM Co-NEXT, 2010.

[13] J. Maindonald and J. Braun, Data Analysis and Graphics Using R.
Cambridge University Press, 2007.

[14] NISO, Understanding metadata, National Information Standards
Organization, 2004. [Online]. Available: http://www.niso.org/standards/
resources/UnderstandingMetadata.pdf

[15] E. Nordström et al., “Serval: An end-host stack for service-centric
networking,” in NSDI, 2012.

[16] Oracle. JavaMail. [Online]. Available: http://www.oracle.com/
technetwork/java/javamail/index.html

[17] L. L. Peterson and B. S. Davie, Computer Networks: A Systems
Approach. Morgan Kaufmann, 2007.

[18] Qualcomm Incorporated White Paper, “A 3G/LTE Wi-Fi Offload
Framework: Connectivity Engine (CnE) to Manage Inter-System Radio
Connections and Applications,” 2011.

[19] J. R. Quinlan, “Induction of Decision Trees,” in Machine Learning,
1986.

[20] A. Rahmati and L. Zhong, “Context-based network estimation for
energy-efficient ubiquitous wireless connectivity,” IEEE Trans. Mobile
Computing, vol. 10, no. 1, 2011.

[21] P. W. Resnick, “Internet Message Format,” Internet RFC 5322, 2008.
[22] P. Rodriguez et al., “MAR: a commuter router infrastructure for the

mobile internet,” in ACM MobiSys, 2004.
[23] S. Safavian and D. Landgrebe, “A survey of decision tree classifier

methodology,” IEEE Trans. Systems, Man and Cybernetics, 1991.
[24] J. Smith and P. Schirling, “Metadata standards roundup,” MultiMedia,

IEEE, vol. 13, no. 2, pp. 84–88, 2006.
[25] Sun Microsystems, Inc. (2007) Package javax.mail. [Online]. Available:

http://docs.oracle.com/javaee/5/api/javax/mail/package-summary.html

