
MRPB: Memory Request Prioritization for Massively Parallel Processors
Wenhao Jia

Princeton University
wjia@princeton.edu

Kelly A. Shaw
University of Richmond
kshaw@richmond.edu

Margaret Martonosi
Princeton University
mrm@princeton.edu

Abstract
Massively parallel, throughput-oriented systems such as

graphics processing units (GPUs) offer high performance
for a broad range of programs. They are, however, com-
plex to program, especially because of their intricate mem-
ory hierarchies with multiple address spaces. In response,
modern GPUs have widely adopted caches, hoping to pro-
viding smoother reductions in memory access traffic and
latency. Unfortunately, GPU caches often have mixed or
unpredictable performance impact due to cache contention
that results from the high thread counts in GPUs.

We propose the memory request prioritization buffer
(MRPB) to ease GPU programming and improve GPU
performance. This hardware structure improves caching
efficiency of massively parallel workloads by applying
two prioritization methods—request reordering and cache
bypassing—to memory requests before they access a cache.
MRPB then releases requests into the cache in a more
cache-friendly order. The result is drastically reduced cache
contention and improved use of the limited per-thread cache
capacity. For a simulated 16KB L1 cache, MRPB improves
the average performance of the entire PolyBench and Ro-
dinia suites by 2.65× and 1.27× respectively, outperform-
ing a state-of-the-art GPU cache management technique.

1. Introduction
Massively parallel, throughput-oriented systems such as

graphics processing units (GPUs) successfully accelerate
many general-purpose programs. However, programming
GPUs is still difficult, particularly due to their complex
memory hierarchies. These hierarchies contain many con-
ceptually separate memory address spaces, including some
that require explicit programmer management.

Originally, GPUs had little or no general-purpose
caching because conventional GPU workloads such as
graphics applications interleave many independent threads
to hide memory latency and use small read-only texture
caches to save memory bandwidth [5, 6, 11]. Recently, as
GPU application domains have broadened, general-purpose
read-write caches have been introduced on modern GPUs
both to service the increasingly diverse and irregular access
patterns [20] and to service regular access patterns without
using programmer-managed scratchpads (Section 5.6).

Unfortunately, despite continual industry efforts at im-
proving GPU cache design (Section 5.8), current GPU
caches often have mixed or unpredictable performance im-
pact [13, 21, 26]. Their design is still very similar to the
latency-optimized CPU caches; their low per-thread ca-
pacity, associativity, and other resources are easily over-
whelmed by the large number of incoming requests issued
by GPU applications, making GPU caches a system bot-
tleneck and causing performance unpredictability. For ex-
ample, for a typical 16KB GPU L1 data cache, the average
cache capacity per thread is only a few dozen bytes, as com-
pared to several kilobytes per thread in a CPU. Furthermore,
typical 4–16 way set-associativity and a few dozen MSHRs
might be enough for CPUs, but they struggle to cope with
the high thread counts and SIMD widths in GPUs. With
many active GPU threads, a conventionally-designed GPU
cache, which attempts to service all threads equally and as
fast as possible, is highly susceptible to thrashing.

Our work proposes hardware modifications tailored for
caches in massively parallel, throughput-oriented systems.
Our overarching design goals are: 1) increase the effective
per-thread cache capacity, 2) reduce contention for limited
cache resources such as associativity, 3) exploit the fact that
overall memory request processing throughput is more im-
portant than latency of individual requests, and 4) exploit
the weak GPU memory consistency model.

Due to the large number of active threads in GPUs, sig-
nificantly increasing per-thread capacity by increasing the
physical size of a cache is difficult. If physical capacity re-
mains constrained, then memory request prioritization must
be our core approach. Allowing all of a GPU’s many threads
equal access to caches often causes severe cache contention
(Section 2), slowing down every thread. To remedy this,
we judiciously prioritize a subset of the active threads to
fit their working set into the cache and speed up their ex-
ecution. Once these threads are finished, other threads are
given priority to the cache. This prioritized cache use re-
duces contention, increases per-thread cache utility, and im-
proves overall system throughput.

We propose a hardware structure called a memory re-
quest prioritization buffer (MRPB), which employs two
request prioritization techniques: request reordering and
cache bypassing. Request reordering allows MRPB to re-
arrange a memory reference stream so that requests from

related threads are grouped and sent to the cache together.
This significantly enhances memory access locality. Fur-
thermore, by letting the cache focus on a subset of threads
at a time, the effective working sets become smaller and
more likely to fit in the cache. MRPB’s second component,
cache bypassing, selectively allows certain requests to by-
pass the cache, when servicing these requests is predicted
to lead to thrashing or stalls. When bursts of conflicting
memory requests occur, cache bypassing increases request
processing throughput and prevents caches from becoming
congested. Together, reordering and bypassing significantly
reduce cache contention and improve system throughput.

This paper makes the following contributions:
1) We identify a key weakness in conventional GPU

cache designs: inadequate tailoring for high thread counts
leads to thrashing- and stall-prone GPU cache designs. We
present a taxonomy to characterize this inefficiency.

2) We propose a hardware structure, MRPB, which is
light on resources and energy-efficient, requires no change
to the rest of the system, and has no dynamic learning cost.
For a 16KB L1 cache, MRPB improves the geometric mean
IPC of PolyBench and Rodinia programs by 2.65× and
1.27× respectively. Many memory-sensitive workloads see
more than 10× and as much as 17.2× IPC improvement.

3) MRPB has simpler hardware and better performance
than a state-of-the-art technique, cache-conscious wave-
front scheduling (CCWS) [24]. In particular, while CCWS
only targets cross-warp cache contention, MRPB targets
both cross-warp and intra-warp cache contention, improv-
ing performance for a broader set of programs.

In the remainder of the paper, Section 2 characterizes
GPU cache contention. MRPB design issues are discussed
in Section 3. Using Section 4’s methodology, Section 5 ex-
plores the MRPB design space and presents performance
results. Section 6 details implementation issues. Finally,
Section 7 describes related work, and Section 8 concludes.

2. Characterization of GPU Cache Contention
2.1. Baseline GPU Cache Request Handling

We first describe how a typical GPU cache handles mem-
ory requests. This is critical for understanding sources of
cache contention and our work. Figure 1 illustrates a typi-
cal GPU design used as the baseline in our study1. A GPU
has multiple SIMD cores called streaming multiprocessors
(SMs). Inside each SM, a scalar front end fetches and de-
codes instructions for groups of threads called warps. All
threads in a warp have consecutive thread IDs and execute
concurrently on the SIMD backend. Multiple warps form
a (thread) block. During the issue pipeline stage, a warp
scheduler selects one of the ready warps to issue to the ex-
ecution/memory pipeline stage. There are several memory

1Throughout this paper, we use NVIDIA GPU terminology, but the
ideas apply to a broad range of massively parallel systems.

Figure 1. Baseline GPU with MRPB added.

storage units. Shared memory is a local, program-managed
scratchpad memory. Constant and texture caches (L1C and
L1T) are used for special read-only constant and texture
data. The remaining memory operations transfer content
to and from the DRAM called global memory.

All global memory requests from all threads in the same
warp are coalesced into as few L1 cache line-sized, non-
redundant requests as possible, before accessing the L1 data
cache (L1D). On a cache hit, data are immediately sent
to registers. On a miss, the miss status holding registers
(MSHRs) are checked to see if the same request is currently
pending for another warp. If not, a cache line and an MSHR
entry are allocated for this request (potentially evicting an
existing cache line) before the request is sent to DRAM via
the interconnect; otherwise, a new request need not be sent,
and MSHRs ensure the returned request (a cache fill event)
services both warps in addition to filling in the allocated
cache line. A cache miss handler may fail due to several
resource unavailability events: all lines in a cache set are
allocated and not filled yet, no MSHR space available, miss
queue full, etc. The cache-set-full problem is an issue only
for allocate-on-miss caches, while the other problems occur
for all caches, including both allocate-on-miss and allocate-
on-fill caches. In such events, the cache cannot immediately
process the request and the memory stage is stalled. This re-
quest will retry every cycle until needed resources free up.
One goal of our work is to reduce memory stalls by reducing
such resource unavailability events.

A global interconnect connects all SMs to statically par-
titioned DRAM modules, each with its own L2 cache.
GPUs have a weak memory consistency model [20]: re-
quests from the same thread must be seen in order, but re-
quests from different threads can be arbitrarily interleaved
between synchronization barriers.

2.2. Terminology and Taxonomy

To motivate MRPB design choices, we first characterize
GPU cache contention and thread behavior. Figure 2 illus-
trates our terminology using a very simple code example,
the atax kernel in PolyBench (Section 4). While seem-

// Thread blocks are one-dimensional with 256 threads.
// A[], temp[], x[] and y[] are of type float.
// A[] is a 2048-by-2048 2D matrix stored as a 1D array.
__global__ kernel_1 {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = 0; i < NY; i++) // NY = 2048

temp[tid] += A[tid * NY + i] * x[i]; }
__global__ kernel_2 {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = 0; i < NX; i++) // NX = 2048

y[tid] += A[i * NY + tid] * temp[i]; }

Figure 2. atax’s two kernels access A in orthogonal di-
rections, causing conflict misses and memory stalls.

// Thread blocks are of size 16-by-16.
// J[N][N] is of type float.
// N is a large multiple-of-two number.
__shared__ float temp[16][16];
// All 16 target rows in J map to the same cache set.
temp[threadIdx.y][threadIdx.x] = J[N * 16 * blockIdx.y +

16 * blockIdx.x + N * threadIdx.y + threadIdx.x];

Figure 3. SRAD shows a common way to preload shared
memory that causes 16-way cache-set contention.

ingly pathological, our results show similar scenarios occur
frequently in GPUs, where thread counts are very high rel-
ative to associativity. (For example, Figure 3 shows a com-
mon way of loading data into shared memory that results
in many memory pipeline stalls in a cold allocate-on-miss
cache.) In Figure 2, on each loop iteration, the combined
threads in a warp load a 32-element column vector from
matrix A. These 32 elements have the same row offset i,
spreading over 32 consecutive rows of A. Recall that in a
4-way set-associative 16KB L1 cache, memory addresses
that are 4KB apart map to the same cache set. Because A’s
width (NY × 4B = 8KB, assuming 4B floats) is a multiple
of 4KB, all 32 elements loaded by a warp will map to the
same cache set, causing many conflict misses. Finally we
note that because a warp’s threads must operate in lockstep,
such conflicts can be recurring and difficult to avoid. Soft-
ware techniques such as padding can sometimes but not al-
ways eliminate these conflicts (Section 2.3). We categorize
GPU contention as follows.

Intra-warp (IW) Contention: In GPU kernels that exhibit
intra-warp contention, contending cache requests are from
the 32 threads in the same warp. Because the overall access
footprint of 32 threads does not usually exceed cache capac-
ity, intra-warp contention primarily causes conflict misses.
In Figure 2, the conflict misses caused by threads in the
same warp accessing the same cache set are considered
intra-warp contention. Compared to prior work, MRPB is
unique in tackling intra-warp contention. In particular, no
warp schedulers by nature can resolve this contention.

Cross-warp (XW) Contention: In GPU kernels that ex-
hibit cross-warp contention, contending cache requests are
from threads in different warps. Because multiple warps
are involved, their total access footprint can easily exceed
cache capacity. Therefore, misses caused by cross-warp
contention are frequently capacity misses, though conflict
misses are a secondary concern. For those workloads that

can run multiple blocks concurrently on an SM, warps
in these workloads may contend both within and across
blocks. Thus, we split cross-warp contention into two types:
cross-warp, intra-block and cross-warp, cross-block.
2.3 Limitation of Software Techniques

Veteran GPU programmers often painstakingly tailor a
program’s memory accesses to a particular GPU. How-
ever, compared to an automated hardware solution such as
MRPB, software techniques have limitations.

First, software techniques are applied on a case-by-case
basis and may not work for specific algorithms. For ex-
ample, neither transposing A nor padding A—two common
optimizations—eliminates the unintended conflict misses in
Figure 2. The former fails because the two kernels in atax
use A in conflicting ways, so transposing A would help
one but hurt the other. Padding fails because even though
cache set conflicts no longer occur, other finite resources
such as MSHRs and miss queues still limit how fast requests
can be processed, causing stalls. In fact, on a real GPU,
an NVIDIA Tesla C2070, we verified that no amount of
padding to A can noticeably improve atax’s performance.

Second, even when software techniques work, applying
them imposes extra programmer effort and may introduce
new issues. For example, because transposing and padding
are ruled out for Figure 2, a programmer may try to load A
into shared memory. However, it is easy to create the situa-
tion shown in Figure 3, i.e. shared memory loads conflicting
with each other, especially if the programmer is not highly
experienced with GPU programming. In other words, a
hardware solution has high ease-of-programming benefits.

Finally, software techniques often introduce platform-
specific code tailoring that is detrimental to cross-platform
performance portability. For example, Che et al. showed
that different OpenCL platforms often prefer vastly dif-
ferent and even conflicting code optimizations, such as
column-major vs. row-major storage order [3]. This makes
a case for platform-specific hardware solutions like ours
that automatically speed up generic cross-platform codes.
2.4. MRPB Performance Potential

Based on the preceding definitions, we quantify con-
tention’s impact in order to motivate MRPB’s performance
potential. When a cache miss occurs (after the initial cache
fill), a resident cache line, often originally requested by a
different thread, must be evicted. Depending on the rela-
tionship between these two request/eviction threads, each
cache miss can be categorized as one of the three types de-
scribed in Section 2.2. Figure 4 shows the results of this
categorization for PolyBench applications on Base-S. (See
Table 1 for our two baseline caches. Experiments on Base-
L yield similar results.) Six applications (2dconv, 2mm,
3dconv, 3mm, fdtd, and gemm) show low MPKI; we
categorize them as cache-insensitive (CI). The next four ap-
plications (atax, bicg, gesummv, and mvt) experience

 0

 20

 40

 60

 80

 100

 120

 140

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

M
P

K
I

intra-warp
cross-warp, intra-block
cross-warp, cross-block

Figure 4. Types of cache contention for each applica-
tion, in misses per thousand instructions (MPKI).

 0

 10

 20

 30

 40

 50

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

at
ax

-L

bi
cg

-L

ge
su

m
m

v-
L

m
vt
-L

sy
r2

k-
L

sy
rk

-L

N
o
rm

a
liz

e
d

 I
P

C

 0

 10

 20

 30

 40

 50

 0

 10

 20

 30

 40

 50

4-way, 16KB
128-way, 16KB
128-way, 16MB
6-way, 48KB
384-way, 48KB
384-way, 48MB

Figure 5. Fully associative or larger caches reduce con-
flict and capacity misses and improve IPC.

primarily intra-warp (IW) contention. Because these four
applications cannot run more than one block concurrently
on an SM due to input size limits, their weak cross-warp
contention is of the intra-block type. For the remaining
two benchmarks, syr2k and syrk, more than half of their
cache misses are due to cross-warp (XW) contention.

We next focus on the cache-sensitive (IW and XW) ap-
plications. Our goal is to determine how their cache per-
formance would be improved by increases in either cache
associativity or capacity, to further confirm the role of con-
flict and capacity misses in IW and XW application per-
formance. Figure 5 shows normalized IPC for three varia-
tions of each of the two baseline configurations (Base-S and
Base-L). In addition to the baseline configuration, the sec-
ond bar in each three-bar group holds cache capacity con-
stant but makes the cache fully associative, i.e. 128-way for
Base-S and 384-way for Base-L. Then, relative to full asso-
ciativity, the third bar makes the capacity 1024× larger. The
second bar is difficult to implement, but shows the severity
of conflict misses by eliminating them. The third bar (even
more difficult to implement) should further eliminate most
if not all capacity misses relative to the second.

Intra-warp (IW) Contention: The IW applications
(atax, bicg, gesummv, and mvt) show substantial IPC
improvements when the cache becomes fully associative,

Figure 6. Reordering and bypassing are two request pri-
oritization techniques that reduce cache footprints of
active warps. A box’s color and the number after W both
indicate which warp a request comes from.

even without increasing its size (first bar vs. second bar
in Figure 5). This is particularly true for Base-L. The
intra-warp contention in these applications is effectively
eliminated by full associativity. However, building fully-
associative L1 caches is difficult, and MRPB offers similar
results with simpler hardware. No prior work has attacked
these intra-warp contention effects.

Cross-warp (XW) Contention: For syr2k and syrk,
full associativity alleviates cache demands, but a larger
cache improves performance even more for Base-S by elim-
inating all XW contention in the form of capacity misses.
Because increasing cache associativity or capacity is expen-
sive, MRPB uses a more cost-effective method, request pri-
oritization, to reduce XW contention.

3. MRPB: Design Issues
Our goal is to achieve higher computational throughput

by minimizing traffic between caches and memory, which is
achieved through lower cache contention and higher cache
hit rates. Memory request prioritization is at the core of
our approach. MRPB employs two different prioritization
techniques: request reordering and cache bypassing.

Request reordering, shown in Figure 6(b), rearranges
memory requests (boxes in the figure) from a thrashing-
prone reference stream into a more cache-friendly order.
Requests from the same source (e.g. warp, block, etc.) are
grouped together. These requests are likely to access the
same cache lines, resulting in better cache hit rates and less
contention. Our approach conforms to the GPU memory
consistency model by ensuring that requests are reordered
only between warps and never across barriers.

Figure 7. System diagram of MRPB with shading indi-
cating occupied queue entries.

Cache bypassing, shown in Figure 6(c), lets the most se-
vere contention-inducing requests forego filling cache en-
tries on cache misses, to reduce harmful cache pollution.
Unlike reordering, bypassing does not change the order of
requests in the original reference stream. Because GPU L1
caches are not write-back and not coherent between SMs, a
memory request can safely bypass a cache on a cache miss.
From the cache’s perspective, the warps issuing the non-
bypassed requests have priority to use the cache.

As shown later in the paper, reordering is more effec-
tive at reducing cross-warp contention and associated ca-
pacity misses, and bypassing is more effective at reducing
intra-warp contention and associated conflict misses. The
approaches can be used together, shown in Figure 6(d). We
now detail their individual designs and their combined use.

3.1. System Diagram

As shown in Figure 7, MRPB is composed of a num-
ber of first in, first out (FIFO) queues. Each queue holds
outstanding memory requests. Before entering the MRPB,
these requests have left the issue stage of the SIMD pipeline
and have been coalesced, but they have not yet accessed the
L1 cache. Requests are placed into a particular queue based
on a signature value. Signatures can take forms such as
block ID, warp ID, etc. Each queue is assigned a unique
signature value. A queue selector computes the signature
of each incoming request and enqueues the request at the
queue of that signature. If that queue is full, the mem-
ory pipeline stage is stalled. In each cycle, a designated
drain policy is used to select one request from one particular
queue to pass to the cache. These queues, together with the
signature and the drain policies, accomplish the reordering
part of prioritization. Bypassing is implemented indepen-
dent of reordering. After a request misses in the cache, an
optional cache bypass action can be taken.

3.2. Reordering: Signatures

MRPB places requests into different queues using a
signature-based mapping function. The selected signature
should satisfy several conditions. First, every request must
have one and only one signature value. Second, requests
with the same signature should be more likely to access the

same memory content. Third, signatures should never al-
low for the potential reordering of requests from the same
thread. Finally, signatures should be simple to compute.

Because memory requests from the same warp or the
same block might possess more locality than requests from
different warps or different blocks, it is reasonable to use
a request’s warp ID or block ID as its signature. These
signatures are easy to compute (from bits in the request
header) and have clear meanings. However, entirely differ-
ent classes of signatures, such as target memory addresses
or program counter values, are possible. We have experi-
mented with several signatures, but due to space constraints,
present results for three simple, effective signatures: block
ID, warp ID, and in-block warp ID.

Using block ID or warp ID as the request signature is
self-explanatory: take the block ID or warp ID of the thread
that issued the request. To compute a request’s in-block
warp ID, we first determine which warp issued the request.
The in-block warp ID of the request is the ordinal position
of this warp within its parent thread block. If multiple thread
blocks are running on an SM, the i-th warp of each of these
blocks has an identical in-block warp ID of i.

Because in-block warp ID does not distinguish between
different thread blocks, it does not handle cross-block con-
tention. However, a proper drain policy can enable in-block
warp ID to prioritize some warps within a thread block
over other warps from the same block, handling cross-warp,
intra-block contention. In comparison, block ID alone han-
dles cross-block contention but does not handle cross-warp,
intra-block contention, since all of a block’s warps have the
same ID. Warp ID combines the attributes of both signa-
tures: it handles both cross-warp, intra-block and cross-
block contention by giving each warp a unique ID.

3.3. Reordering: Drain Policies

After memory requests are enqueued based on their sig-
nature values, a drain policy imposes a service priority be-
tween these queues. One straightforward drain policy is to
apply a fixed-order priority, i.e. an item from queue n can
be drained only if queues 1 to n− 1 have been emptied. At
the other extreme, a round-robin policy selects items from
queues in turn, e.g. one item per non-empty queue. An-
other policy is longest-first, which always selects an item
from the longest non-empty queue, breaking ties with queue
ID. Longest-first is more fair than fixed, because it prevents
queues from becoming too long, and prioritizes more than
round-robin, because a burst of requests into the same queue
would get serviced sooner by longest-first.

To investigate how many items should be drained from
a queue before moving to a different queue, we consider
greedy variations of these policies. A greedy variation must
empty a queue before it can use the underlying basic pol-
icy to select the next queue. For example, a greedy-then-
longest-first policy must drain all items from a queue, after

which it selects the current longest queue and repeats the
process. In comparison, our non-greedy policies can switch
to a different queue after just one item is drained. (Other
variations draining N items at a time are also possible.)

An additional option on the drain policy is the flush op-
tion. It deals with the finite queue length and reduces stor-
age needs by letting the buffer store only read requests. The
flush logic has three parts. 1) When a new read request
cannot enter a full queue, the drain policy controller priori-
tizes the full queue and drains one item from that queue to
make space for this request. This ensures that when a burst
of requests attempts to enter a low-priority queue with a fi-
nite length, they can be handled without having to wait for
high-priority queues to be processed first. 2) A flush is trig-
gered whenever an incoming request is a write request, re-
gardless of how many items are in the target queue. In this
situation, the controller empties the target queue and then
services the incoming write request, rather than enqueuing
it. This is because write requests are large. (After coalesc-
ing, write requests are up to 136 bytes—128B data plus an
8B header—compared to read requests which only have an
8B header.) Flush-before-write reduces queue size require-
ments because writes never need to be stored, and it ensures
requests in the same queue are not reordered relative to the
write. Because only one request is drained per cycle, a flush
operation may take multiple cycles to complete depending
on how full the target queue is. 3) If neither of the flush con-
ditions above is met, the normal drain policy is consulted to
select the next queue to drain.

3.4. Bypassing

While a signature and a drain policy together fulfill the
reordering part of prioritization, bypassing is an indepen-
dent technique that achieves a different form of prioritiza-
tion. In Section 2.1’s baseline architecture, a missed request
must allocate resources before the miss can be processed: a
cache line, an MSHR entry, a miss queue entry, etc. If any
of these resources are unavailable, the missed request can-
not be processed, stalling the pipeline. This request must
be retried in subsequent cycles until resources are available
to process it. With cache bypassing turned on, such read
requests can be immediately sent to main memory through
the interconnect, avoiding congesting the pipeline. Corre-
spondingly, when the responses return, the data are written
directly to the registers without filling the cache.

An important design decision concerns when to bypass.
Among resource unavailability stalls, the cache associativ-
ity stall has particularly severe impact. On a cache miss,
an associativity stall occurs when all cache lines in the tar-
get set have been allocated and are waiting to be filled by
outstanding requests to main memory, making it impossi-
ble to allocate a cache line and causing the memory stage
to stall. These stalls happen when a burst of requests ac-
cess the same cache set in a short period of time, as in

Base-S Base-L
of SMs 14
of threads / warp 32
Warp schedulers 2 round-robin warp schedulers / SM
Per-SM limit 1536 threads, 48 warps, 8 blocks, 32 MSHRs
Per-block limit 1024 threads, 32 warps
L1D / SM 16KB, 4-way 48KB, 6-way
Shared memory / SM 48KB 16KB
Unified L2 6 × 128KB, 16-way
DRAM FR-FCFS scheduler, GDDR5
L1D/L2 parameters 128B line size, LRU
L1D/L2 policies alloc-on-miss, write-evict L1D, write-back L2
L1D/L2 request size 8-byte reads, 136-byte writes
SM/DRAM clock 1150/750 MHz

Table 1. Baseline configurations of simulated GPU.

Figure 2. After responses for the first few requests return
and fill the cache, they are immediately evicted by other
stalled requests, while the rest wait. As described in Sec-
tion 2.1, even in allocate-on-fill caches these associativity
stalls can still turn into other types of stalls due to other re-
source limits such as MSHRs and miss queues. Worse still,
if all the requests are from the same warp, they must remain
in lockstep, so this thrashing can recur often, congesting the
pipeline and causing severe slowdowns even for unrelated
threads. Because threads within a warp operate in lockstep,
request reordering is often not helpful; bypassing mitigates
this intra-warp contention.

3.5. Design Summary

Table 4 summarizes the design options explored in Sec-
tion 5. The entries per queue and buffer delay options are
explained in Section 5.3. Overall, MRPB leverages sev-
eral key GPU attributes to work around the low per-thread
cache capacities, associativities, and other resources. In par-
ticular, request reordering and prioritization are motivated
in part by the GPU attribute that throughput is far more
important than latency. Our MRPB design has the same
peak request processing throughput as the baseline design:
in steady state, MRPB can enqueue and service the same
number of requests per cycle. In addition, MRPB abides
by GPU memory coherence and consistency models, but
exploits their relative weakness to improve cache request
footprints and conflict characteristics.

4. Experimental Methodology
Simulation environment: We use a cycle-level simula-

tor, GPGPU-Sim 3.2.0 [1], to evaluate our MRPB designs.
An NVIDIA Tesla C2050 GPU is simulated with two base-
line configurations (key parameters in Table 1, remainder
in GPGPU-Sim release). Baseline configuration S (Base-
S) models a 16KB 4-way set-associative L1 cache per SM.
Baseline configuration L (Base-L) models a 48KB 6-way
set-associative L1 cache per SM. In both cases, because the
L1 cache and the shared memory in the same SM share
64KB storage in total, the shared memory capacity is set
accordingly. These two configurations are taken from cur-
rent NVIDIA GPUs and represent distinct design points in
terms of resources dedicated to caches. With industry trend-

Name Program Type SF
2dconv 2D convolution CI 1
2mm 2-matrix multiply CI 1/4

3dconv 3D convolution CI 1
3mm 3-matrix multiply CI 1
fdtd 2D finite different time domain CI 1/8
gemm General matrix multiply CI 1
atax Matrix-transpose-vector multiply IW 1/2
bicg BiCGStab linear solver subkernel IW 1/2

gesummv Scalar-vector-matrix multiply IW 1/4
mvt Matrix-vector-product transpose IW 1/2
syr2k Symmetric rank-2k operations XW 1/16
syrk Symmetric rank-k operations XW 1/4

Table 2. PolyBench benchmarks. SF column shows
scaling factors of default inputs.

Name Program Input
BP, BP/U Backpropagation 65536 nodes

BFS Breadth-first search 65536 nodes
BT B+ tree 1M nodes
GM Gaussian matrix 208 × 208 elements

HS, HS/U Hotspot 512 × 512 elements
KMS K-means clustering 204800 34D points

LUD, LUD/U LU-decomposition 512 × 512 elements
NW, NW/U Needleman-Wunsch 2048 × 2048 elements
PF, PF/U Pathfinder 100K ×100 elements

SRAD, SRAD/U Graphic diffusion 1024 × 1024 pixels

Table 3. Rodinia benchmarks. All inputs are chosen
from default inputs. “/U” represents unshared versions.

ing towards smaller per-thread cache capacity, we evaluate
MRPB against both baselines to show broad applicability.

Benchmarks (PolyBench and Rodinia): Tables 2 and
3 summarize the benchmarks used in this study, from Poly-
Bench [9] and Rodinia [2]. We simulate all GPGPU-Sim-
compatible PolyBench and Rodinia applications using de-
fault grid and block dimensions as well as default inputs,
scaled if necessary. Other work has used similar input scal-
ing [14, 19]. As in [24], we simulate 17M–3.7B GPU in-
structions (to program completion).

PolyBench includes GPU ports of CPU multi-threaded
programs. These programs have highly diverse and very
intensive memory access patterns, resulting in relatively
high performance sensitivity to caching. In Section 2.4,
we grouped these applications into three types based on our
characterization of their cache behavior: cache insensitive
(CI), primarily intra-warp contention (IW), and primarily
cross-warp contention (XW) (shown in Table 2).

Rodinia’s programs have been carefully hand-tuned—
often extensively using shared memory—and are thus less
sensitive to caching. For some Rodinia programs that use
shared memory, we create a separate “unshared” version,
which uses global memory instead. These unshared pro-
grams represent a potential use of MRPB-like structures—
developers may spend less time optimizing programs to use
shared memory if caches can achieve high efficiency auto-
matically (Section 5.6).

5. Experimental Results
In this section, we first explore MRPB’s design space

using PolyBench, making sure we do not harm the perfor-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

N
o
rm

a
liz

e
d
 I

P
C

block ID
in-block warp ID
warp ID

Figure 8. Block ID and in-block warp ID signatures re-
duce cross-warp, cross-block and cross-warp, intra-
block contention respectively. Warp ID reduces both.

mance of CI applications while improving the performance
of both IW and XW applications. (PolyBench applications
exhibit cache-sensitivity expected in future cross-platform
heterogeneous code without much platform-specific tuning
and in code written by non-GPU specialists.) Due to space
limits we omit 10 out of 12 -L PolyBench applications be-
cause they show similar behavior as their -S counterparts.

We then evaluate the best MRPB design (found from
PolyBench) on Rodinia applications, which are overall bet-
ter optimized and less cache-sensitive than PolyBench ap-
plications. The results show MRPB’s ability to improve the
performance of even relatively well-optimized GPU code.

Benchmarks are ordered as CI (left), IW (middle), and
XW (right). All IPC values in this section are normalized
against Base-S for -S applications and Base-L for -L appli-
cations. All average numbers are geometric means.
5.1. Signatures

The purpose of a signature is to place memory requests
into different queues, such that requests in the same queue
have improved access locality and reduced cache con-
tention. We evaluate three signatures: block ID, in-block
warp ID, and warp ID. As in Table 1, a block can have at
most 32 warps, and thus we use 32 queues in MRPB when
in-block warp ID is used as a signature. Likewise, block ID
and warp ID use 8 and 48 queues respectively. To evalu-
ate these three signatures, we use a fixed-order drain policy
(Section 5.2 shows this is the best), unlimited queue sizes
and a 3-cycle buffer latency (studied in Section 5.3), and no
bypassing (evaluated in Section 5.4).

Figure 8 shows the effectiveness of these signatures on
improving IPC. All three signatures work well on the types
of contention they target and have minimal impact on most
cache insensitive applications. Because the IW applica-
tions experience some cross-warp, intra-block contention
but no cross-warp, cross-block contention, their IPC im-
proves only when in-block warp ID and warp ID signatures
are used. Because XW applications exhibit cross-warp,
cross-block contention, their IPC improves when block ID

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

N
o
rm

a
liz

e
d
 I

P
C

fixed
longest-first
round-robin
greedy-then-fixed
greedy-then-longest-first
greedy-then-round-robin

Figure 9. A fixed-order drain policy provides the best
overall performance improvement.

and warp ID signatures are used. At smaller cache sizes,
these applications experience some cross-warp, intra-block
contention, which the in-block warp ID signature can im-
pact slightly, but the lack of this type of contention at larger
capacities makes the in-block warp ID signature ineffective.

Over all applications, warp ID performs the best, but
uses moderately more queues. In fact, it is a hybrid whose
performance is usually close to the better of the other two,
particularly true for IW and XW-L applications. Thus the
rest of the paper uses warp ID as MRPB’s request signa-
ture. One notable exception is 2dconv-S which prefers
in-block warp ID instead of warp ID as a signature, but its
performance is saved by bypassing in Section 5.4 because
bypassing serves a similar purpose as in-block warp ID.

5.2. Drain Policy

Figure 9 shows the performance of all 6 policies assum-
ing unlimited queue lengths and no flushing. In these exper-
iments, warp ID is used as the signature. Notably, longest-
first performs very well for XW because warps in these ap-
plications frequently issue intense bursts of requests, which
are easily captured by a longest-first drain policy. However,
longest-first’s advantage on XW applications is diminished
when the buffer size takes a more realistic value in Sec-
tion 5.3. Overall, the fixed-order policy performs the best on
average and for most programs. This is because the fixed-
order policy introduces the most queue prioritization, which
is beneficial for reducing cache footprints and improving
performance. We select it as MRPB’s drain policy.

5.3. Buffer Size, Flush, and Buffer Latency

Thus far, we have selected a signature (warp ID) and a
drain policy (fixed-priority-order) while assuming queues in
the buffer have unbounded capacity in order to hold as many
read and write requests as needed. Here we explore how
sizing and resource choices impact MRPB performance.

With the flush option still off and a 3-cycle buffer latency,
we let the queues have a finite length, though each entry is
still wide enough to hold either a read or a write request.
Figure 10 shows that for most applications short queue

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

N
o
rm

a
liz

e
d
 I

P
C

32 entries per queue without flush
16 entries per queue without flush
8 entries per queue without flush
4 entries per queue without flush

Figure 10. With the flush option off, most programs are
insensitive to the number of entries per queue.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

N
o

rm
a

liz
e

d
 I
P

C

32 entries per queue with flush
16 entries per queue with flush
8 entries per queue with flush
4 entries per queue with flush

Figure 11. Smaller buffers benefit from the flush option.

lengths suffice, because real applications achieve some de-
gree of coalescing and, hence, a warp usually issues fewer
than 32 requests. However, a few applications in IW and
XW-L do benefit from longer queue lengths. To balance
resource requirements and performance improvements, we
select 8 entries per queue as the buffer size.

When the flush option is used, writes no longer en-
ter the queues, and each queue entry can be made much
smaller to hold just reads. Figure 11 shows the flush option
slightly improves application performance on buffers with
smaller queue lengths. For example, atax, bicg, mvt,
and syr2k-L have improved IPC values at 8 entries in Fig-
ure 11 compared to Figure 10. Because the flush option is
very helpful in reducing buffer entry width without hurting
performance, the final MRPB design uses this option.

Figure 12 (with 8 entries per queue and flush on)
explores MRPB’s processing latency; MRPB is highly
latency-insensitive. Buffer delays (from enqueuing to de-
queuing the same request) of 3 to 18 cycles can all be
tolerated with little performance impact. Thus, while we
have explored fairly simple enqueue signatures and drain
selectors, one could implement more sophisticated policies
within these ample cycle counts. For the rest of this pa-
per, our models conservatively assume a 5-cycle MRPB
enqueue-to-dequeue latency, but faster enqueue/dequeue
options are available.

 0

 0.5

 1

 1.5

 2

 2.5

 3

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

N
o
rm

a
liz

e
d
 I

P
C

3 cycles
4 cycles
6 cycles
10 cycles
18 cycles

Figure 12. IPC is largely insensitive to buffer latency.

 0

 2

 4

 6

 8

 10

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

N
o

rm
a

liz
e

d
 I
P

C

13.4 13.1

bypass-on-assoc-stalls
bypass-on-all-stalls

Figure 13. Bypassing reduces impact of IW contention.

5.4. Bypass Option

Prior sections have explored MRPB’s reordering, and
this section now explores the impact of bypassing with no
reordering used. Section 5.5 then combines the two ap-
proaches. Here, MRPB simply has a single slot that ac-
cepts one incoming read or write request and sends it to the
cache every cycle. If the cache rejects this request due to
resource limits, MRPB can choose to let this request bypass
the cache. Otherwise, this request stalls the memory stage
and retries every cycle until the cache accepts it.

Figure 13 shows the IPC effects of two different
bypassing options: bypass-on-all-stalls and bypass-on-
associativity-stalls. We make three observations. 1) By-
passing works well for IW applications. IW applications
have strong intra-warp contention; bypassing is the primary
way to resolve such contention. 2) Bypassing is ineffective
at dealing with cross-warp contention. Bypassing too ag-
gressively denies warps from accruing caching benefits and
the bypassed requests can cause congestion in the lower-
level memory subsystem. In particular, XW-L applications
see little performance improvement from bypassing as they
do not have much intra-warp contention and suffer from re-
source contention in the L2 cache. 3) Bypassing can de-
grade the performance of the CI applications. Of the two
bypassing options, bypass-on-associativity-stalls is less ag-
gressive and causes less performance degradation on CI ap-
plications. We use it in the final design.

Parameters Values

Signature
block-ID (resulting in 8 queues),
in-block ID (resulting in 32 queues),
warp ID (resulting in 48 queues)

Drain policy
(non-greedy-)fixed-order, greedy-fixed-order,
(non-greedy-)longest-first, greedy-longest-first,
(non-greedy-)round-robin, greedy-round-robin

Flush option off, on
Buffer size 4–32 entries per queue, with 8 finally chosen
Buffer latency 3–18 cycles, with 5 finally chosen
Bypass option off, bypass-on-all-stalls, bypass-on-assoc-stalls

Table 4. MRPB design space. Final choices in bold.

5.5. Overall Performance

The final MRPB design has the bold parameter values
in Table 4. Figure 14 shows results for this design over all
PolyBench and Rodinia applications. Because bypassing
reduces the impact of intra-warp contention while reorder-
ing handles both types of cross-warp contention, the com-
bined techniques obtain larger performance improvements
than either alone. Figure 14 shows our final MRPB design
improves the geometric mean IPC of PolyBench by 2.65×
over Base-S and by 2.23× over Base-L. It also improves the
geometric mean IPC of Rodinia by 1.27× over Base-S and
by 1.15× over Base-L. Some applications see an IPC im-
provement of more than 10× and up to 17.2× in one case.

While MRPB offers impressive speedups against both
baselines, Base-S benefits more from MRPB than Base-L.
This is mainly because Base-S’s smaller (16KB) and less as-
sociative (4-way) L1 cache is more likely to experience con-
tention than Base-L’s larger (48KB) and more associative
(6-way) counterpart. More cache contention gives MRPB
more opportunities to reduce conflict and improve IPC.

The performance improvements for Rodinia are signifi-
cant though smaller than those for PolyBench because Ro-
dinia programs are more thoroughly optimized. In partic-
ular, many Rodinia programs are hand-tuned so well that
the memory subsystem’s efficiency has little performance
impact. Even so, MRPB still improves the IPC of a few
original and modified Rodinia programs by more than 2×.

Further analysis shows that MRPB achieves such effec-
tive IPC improvements by significantly reducing memory
traffic and consequently increasing system throughput. For
PolyBench-S and Rodinia-S programs, using MRPB results
in 26.7% and 15.4% L2-to-L1 memory traffic reductions (in
terms of the number of interconnect packets) respectively.
Meanwhile, the average cache miss counts are reduced by
54.6% and 37.9% for PolyBench-S and Rodinia-S respec-
tively. -L benchmarks show similar results.

Figure 14 also shows the IPC values achieved by a state-
of-the-art GPU cache management technique, CCWS’s
static wavefront limiting (CCWS-SWL) [24]. MRPB per-
forms better over all four scenarios in terms of geometric
mean IPC improvements. It also has a simpler design with
lower hardware requirements. One factor in achieving these
gains is MRPB’s ability to reduce the impact of intra-warp
contention. SWL does not consider intra-warp contention.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2d
co

nv
-S

2m
m

-S

3d
co

nv
-S

3m
m

-S

fd
td

-S

ge
m

m
-S

at
ax

-S

bi
cg

-S

ge
su

m
m

v-
S

m
vt
-S

sy
r2

k-
S

sy
rk

-S

G
EO

 M
EAN

2d
co

nv
-L

2m
m

-L

3d
co

nv
-L

3m
m

-L

fd
td

-L

ge
m

m
-L

at
ax

-L

bi
cg

-L

ge
su

m
m

v-
L

m
vt
-L

sy
r2

k-
L

sy
rk

-L

G
EO

 M
EAN

BP-S

BP/U
-S

BFS-S
BT-S

G
M

-S

H
S-S

H
S/U

-S

KM
S-S

LU
D
-S

LU
D
/U

-S

N
W

-S

N
W

/U
-S
PF-S

PF/U
-S

SR
AD

-S

SR
AD

/U
-S

ge
o

m
ea

n
BP-L

BP/U
-L

BFS-L
BT-L

G
M

-L

H
S-L

H
S/U

-L

KM
S-L

LU
D
-L

LU
D
/U

-L

N
W

-L

N
W

/U
-L
PF-L

PF/U
-L

SR
AD

-L

SR
AD

/U
-L

ge
o

m
ea

n

N
o

rm
a

liz
e

d
 I

P
C

10
.3
10

.4
17

.2
10

.4
7.

2
7.

1
5.

3
7.

2

PolyBench-S PolyBench-L Rodinia-S Rodinia-L

MRPB
CCWS-SWL

Figure 14. MRPB improves PolyBench and Rodinia IPC substantially over two baselines.

 0

 0.5

 1

 1.5

 2

 2.5

SRAD-S SRAD/U-S SRAD-L SRAD/U-L

N
o

rm
a

li
z
e

d
 I

P
C

MRPB off

MRPB on

Figure 15. MRPB enables simpler code with better per-
formance. (Normalized to SRAD-S with no MRPB.)

Consequently, MRPB often outperforms SWL by several
times for applications with significant intra-warp contention
(e.g. PolyBench’s IW and Rodinia’s Base-S programs).

Finally, MRPB never degrades performance below base-
line in any tested scenario, particularly for CI applications.
5.6. Improving Ease of Programming

Rodinia benchmarks are heavily tuned to use
programmer-managed shared memory, requiring sig-
nificant programmer effort. In current GPUs, codes using
shared memory usually perform better than those that do
not, but MRPB allows the latter to approach or outperform
the former. Figure 15 shows the performance of the origi-
nal SRAD along with SRAD/U which does not use shared
memory. On Base-S with no MRPB, there is a trade-off
between programming difficulty and performance: the
unshared version is easier to write but performs 18% worse.
However, on Base-S with MRPB, both versions perform
much better. On Base-L without MRPB, SRAD/U performs
better than SRAD, because SRAD’s shared memory usage
limits its concurrent thread block count. Turning MRPB on
further improves performance for both cases.

Across all 8 scenarios, the best performance is achieved
with the unshared SRAD/U running on a 48KB L1 cache
with MRPB. Similar results are seen for HS. In fact, while
the six unshared programs run 37% slower than the baseline
on average, turning on MRPB reduces the performance gap
to only 9%. This makes a case for using MRPB-enabled

 0

 0.5

 1

 1.5

 2

 2.5

 3

PolyBench-S Rodinia-S PolyBench-L Rodinia-L

G
e

o
m

e
tr

ic
 M

e
a

n
 o

f
N

o
rm

a
liz

e
d

 I
P

C

RR
RR with MRPB
RR with CCWS-SWL

GTO
GTO with MRPB
GTO with CCWS-SWL

Figure 16. MRPB improves application performance
over different warp schedulers. Results are normalized
within each of the four groups of bars.

caches instead of shared memory, to ease programming
without significant performance sacrifices.

5.7. Interaction with Warp Schedulers

Prior sections used the default round-robin (RR) warp
scheduler; here we consider other warp schedulers. To our
knowledge, the cache-conscious warp scheduler (CCWS)
is the only warp scheduler that specifically targets GPU
caches [24]. It preserves intra-block access locality by re-
ducing cross-warp cache contention. The authors propose
two schedulers: a simpler static wavefront limiting (SWL)
scheduler and a more complex victim cache-based sched-
uler. We compare MRPB against SWL because it is the bet-
ter performing of the two schedulers. Both CCWS sched-
ulers use a base scheduler, and [24] finds a greedy-then-
oldest (GTO) warp scheduler to be better than a RR sched-
uler because GTO preserves intra-warp access locality. We
evaluate both MRPB and SWL on top of RR and GTO. Fig-
ure 16 shows the performance of these four combinations
plus the two baselines. While GTO alone significantly out-
performs RR, MRPB improves IPC substantially over GTO
and RR. Notably, MRPB outperforms SWL on top of both
GTO and RR. The intra-warp contention targeted by MRPB
cannot be eliminated by any warp scheduler; warp sched-
ulers by nature only target cross-warp contention.

5.8. Comparison with High Associativity

General-purpose caches are a relatively new addition to
GPUs, and they continue to see ongoing design changes.
One design trend is the attempt to mitigate associativity
contention. For example, AMD’s Graphics Core Next
(GCN) GPUs use 64-way associativity for their 16KB L1
caches. We have simulated a 64-way set-associative 16KB
L1 cache with a fairly idealistic 1-cycle hit latency, and
MRPB still outperforms this cache by a geometric mean of
4% for all -S benchmarks. Thus, MRPB is an effective alter-
native to high-associativity caches, especially considering a
straightforward associativity increase has high latency and
energy costs while MRPB can more cost-effectively achieve
high effective associativity.

6. Hardware Implementation Details
Figure 7 illustrates a possible MRPB design. While we

refer to MRPB in terms of logical FIFO queues, such FIFOs
are usually implemented as SRAM [22], with head and tail
“pointers” addressing a queue like a circular buffer. The
FIFO queues (one per warp) are 48 logical rows in SRAM
(although their physical layout would be more square). To
select a queue to write to, the warp ID (or other signature) is
used as a logical row address. For addressing within these
areas, each queue has its own read (dequeue from head) and
write (enqueue at tail) addresses. Enqueue/dequeue pointers
are small, well-studied shift registers [22].

The largest MRPB we consider is less than 3KB of
SRAM, and it considerably outperforms caches simply en-
larged by that amount. For example, increasing Base-S to
20KB capacity (5-way set associative) only improves IPC
by 1.2× for PolyBench and 1.06× for Rodinia. In addition,
MRPB also outperforms large increases in associativity as
described in Section 5.8.

To dequeue a request, the drain selector unit selects a
queue to read from based on its policy, and applies that as
a logical row address. The drain selector internally keeps
queue lengths as a set of counters, in order to generate queue
full/empty signals. A round-robin drain selector can simply
rotate between the row addresses, while the fixed-order pol-
icy can be implemented as a 48-to-6 priority encoder with
full/empty signals as input. MRPB can operate in a split-
cycle fashion, with each cycle supporting first an enqueue
(write) operation followed by a dequeue (read) operation.
(Dual-porting is another option, but the split-cycle approach
uses less area.) Drain latency may vary with the imple-
mented drain policy, but the throughput is not sensitive to
this. As Figure 12 shows, MRPB performance is insensi-
tive to enqueue/dequeue latency. Finally, requests in the
outbound buffer are considered for bypassing based on the
resource-conflict stall signal from the cache. Future work
can consider richer bypassing policies using MRPB inter-
nal states such as request signatures.

We estimate MRPB’s timing and area with Cacti
6.5 [18]. The proposed design can operate at 2.6GHz, more
than twice the GPU’s 1.15GHz core frequency and enough
to support a split-cycle operation. The circuit uses 0.0126
mm2 per core at 45nm or 0.04% of the simulated Tesla
GPU’s die area. Relative to the area cost of a 16KB L1
cache with an area-efficient design (e.g. a 4- rather than 1-
cycle hit latency), MRPB only adds 10.5% to area. It adds
even less relative to a larger (e.g. 48KB) or faster cache.

MRPB also compares favorably against CCWS, outper-
forming it despite using less area (0.026 mm2 per core
in [24] or at least 0.0141 mm2 per core with Cacti 6.5 at
45nm). Likewise, MRPB significantly outperforms caches
with more capacity, even when those options are conserva-
tively afforded more space than MRPB.

Finally, we consider MRPB’s energy efficiency. Al-
though SRAM-based, MRPB does not need a large part
of conventional cache logic circuitry such as tag compu-
tation and comparison. Thus MRPB consumes less power
than a similarly-sized cache. Furthermore, as stated in [24],
cache management techniques such as CCWS and MRPB
have important power saving leverage because they elim-
inate many power-hungry cache misses. Since MRPB re-
duces cache misses by up to 55%, it offers substantial power
improvements for the GPU memory subsystem.

7. Related Work
Warp Scheduling: Some related work improves warp

schedulers to optimize GPU memory access efficiency [19,
24]. Other work improves warp schedulers mainly targeting
branch divergence instead of memory accesses [7, 8, 17].
Among the former, a two-level warp scheduler [19] runs
a subset of warps (called a fetch group) as long as possi-
ble until they all hit long-latency operations. CCWS [24]
improves upon this by using a victim cache tag array to in-
fer cross-warp cache contention. The warp scheduler pe-
riodically uses this information to dynamically throttle the
active warp count. In contrast, MRPB attacks intra-warp
(in addition to cross-warp) contention, which cannot be ad-
dressed by warp schedulers. Further, because MRPB at-
tacks cache contention in the cache hierarchy itself, it is
highly-effective, despite requiring simpler hardware. As
Section 5.5 showed, MRPB outperforms CCWS, which out-
performs the two-level warp scheduler.

Software Techniques: Several software studies have
characterized or optimized GPU cache performance. [26]
notes that blindly turning on L1 caches on Fermi GPUs may
occasionally harm instead of improve application perfor-
mance. Some other studies have proposed analytical mod-
els for estimating optimal active thread counts [4, 10]. Our
prior work proposed a GPU memory access locality taxon-
omy and a compile-time algorithm to improve caching util-
ity [13]. Some techniques adjust GPU program data layout

to reduce main-memory-to-core traffic [3, 25]. In contrast,
MRPB needs no profiling or access to program source code.

Other Cache Management: Our work also relates to
memory request prioritization outside the GPU domain
itself. In CMP and CPU-GPU heterogeneous systems,
prior work includes sophisticated replacement algorithms,
bypassing techniques, and cache placement optimization
to improve cache hit rates of multi-threaded CPU work-
loads [12, 16]. TAP modulates cache usage when GPU pro-
grams share part of the hierarchy with CPU programs, but
its goal is to protect CPU runtimes, not optimize GPU per-
formance [15]. Other work prefetches into the GPU hierar-
chy [14], which does not help memory bandwidth-limited
applications MRPB targets. MRPB also relates to tradi-
tional DRAM scheduling algorithms [23]. Compared to
prior work, our work mainly aims to improve the caching
and runtime efficiency of a GPU program itself, rather than
coordinate its interactions with CPUs.

8. Conclusion
This paper proposes the memory request prioritization

buffer, a hardware structure that can effectively improve
the utility of cache for a massively-parallel, throughput-
oriented program. We first characterize GPU cache con-
tention to motivate MRPB. We then describe the various
design issues of MRPB and numerically demonstrate the
implication of different design choices. Our final MRPB de-
sign, chosen based on a systematic design exploration, im-
proves the geometric mean IPC of PolyBench and Rodinia
suites by 2.65× and 1.27× respectively over two evaluated
baseline configurations.

GPU cache trends have proven difficult to predict, but
all indications are that increases in thread counts and com-
putational density will likely outpace increases in cache ca-
pacity, leading to ongoing decreases in per-thread cache ca-
pacity. Consequently, we believe that techniques such as
MRPB that effectively prioritize cache usage and mitigate
cache performance unpredictability will continue to grow
in importance.

Acknowledgements: This work was supported in part
by funding and donations from NSF, DARPA, the C-FAR
STARNet center, and equipment donations from NVIDIA
and AMD. We thank Kevin Skadron, Daniel Lustig, and the
anonymous reviewers for their feedback.

References
[1] A. Bakhoda et al. Analyzing CUDA workloads using a de-

tailed GPU simulator. In Intl. Symp. on Performance Analysis
of Systems and Software, 2009.

[2] S. Che et al. Rodinia: A benchmark suite for heterogeneous
computing. In Intl. Symp. Workload Characterization, 2009.

[3] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: Optimiz-
ing memory access patterns for heterogeneous systems. In
Intl. Conf. High Performance Computing, Networking, Stor-
age and Analysis, 2011.

[4] H.-Y. Cheng et al. Memory latency reduction via thread throt-
tling. In Intl. Symp. Microarchitecture, 2010.

[5] W. J. Dally et al. Merrimac: Supercomputing with streams.
In ACM/IEEE Conf. Supercomputing, 2003.

[6] K. Fatahalian and M. Houston. A closer look at GPUs. Com-
munications of the ACM, 51(10):50–57, October 2008.

[7] W. W. L. Fung and T. M. Aamodt. Thread block compaction
for efficient SIMD control flow. In Intl. Symp. on High Per-
formance Computer Architecture, 2011.

[8] M. Gebhart et al. Energy-efficient mechanisms for manag-
ing thread context in throughput processors. In Intl. Symp.
Computer Architecture, 2011.

[9] S. Grauer-Gray et al. Auto-tuning a high-level language tar-
geted to GPU codes. In Innovative Parallel Computing, 2012.

[10] Z. Guz et al. Many-core vs. many-thread machines: Stay
away from the valley. IEEE Computer Architecture Letters,
8(1):25–28, January–June 2009.

[11] Z. S. Hakura and A. Gupta. The design and analysis of a
cache architecture for texture mapping. In Intl. Symp. Com-
puter Architecture, 1997.

[12] A. Jaleel et al. High performance cache replacement us-
ing re-reference interval prediction (RRIP). In Intl. Symp.
on Computer Architecture, 2010.

[13] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and
improving the use of demand-fetched caches in GPUs. In
Intl. Conf. on Supercomputing, 2012.

[14] J. Lee et al. Many-thread aware prefetching mechanisms for
GPGPU applications. In Intl. Symp. Microarchitecture, 2010.

[15] J. Lee and H. Kim. Tap: A TLP-aware cache management
policy for a CPU-GPU heterogeneous architecture. In Intl.
Symp. on High Performance Computer Architecture, 2012.

[16] J. Meng and K. Skadron. Avoiding cache thrashing due to
private data placement in last-level cache for manycore scal-
ing. In Intl. Conf. Computer Design, 2009.

[17] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivi-
sion for integrated branch and memory divergence tolerance.
In Intl. Symp. Computer Architecture, 2010.

[18] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
Cacti 6.0: A tool to model large caches. Technical report, HP
Laboratories, 2009.

[19] V. Narasiman et al. Improving GPU performance via large
warps and two-level warp scheduling. In Intl. Symp. Microar-
chitecture, 2011.

[20] NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi, 2009. v. 1.1.

[21] NVIDIA Corp. Tuning CUDA Applications for Fermi, 2011.
v. 1.5.

[22] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital In-
tegrated Circuits: A Design Perspective, chapter 12. Prentice
Hall, 2nd edition, 2003.

[23] S. Rixner et al. Memory access scheduling. In Intl. Symp.
Computer Architecture, 2000.

[24] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-
conscious wavefront scheduling. In Intl. Symp. Microarchi-
tecture, 2012.

[25] I.-J. Sung, D. Liu, and W.-M. Hwu. DL: A data layout trans-
formation system for heterogeneous computing. In Innova-
tive Parallel Computing, 2012.

[26] Y. Torres and A. Gonzales-Escribano. Understanding the im-
pact of CUDA tuning techniques for Fermi. In Intl. Conf. on
High Performance Computing and Simulation, 2011.

