Monitoring Shared Virtual Memory Performance on a Myrinet-based PC Cluster

Cheng Liao, Dongming Jiang, Liviu Iftode!, Margaret Martonosi, and Douglas W. Clark

Princeton University
Princeton, NJ 08544
{cliao, dj } @cs.princeton.edu

Abstract

Network-connected clusters of PCs or workstations are becoming a
widespread parallel computing platform. Performance methodolo-
gies that use either simulation or high-level software instrumenta-
tion cannot adequately measure the detailed behavior of such sys-
tems. The availability of new network technologies based on pro-
grammable network interfaces opens a new avenue of research in
analyzing and improving the performance of software shared mem-
ory protocols. We have developed monitoring firmware embedded
in the programmable network interfaces of a Myrinet-based PC
cluster. Timestamps on network packets facilitate the collection
of low-level statistics on, e.g., network latencies, interrupt handler
times and inter-node synchronization.

This paper describes our use of the low-level software perfor-
mance monitor to measure and understand the performance of a
Shared Virtual Memory (SVM) system implemented on a Myrinet-
based cluster, running the SPLASH-2 benchmarks. We measured
time spent in various communication stages during the main pro-
tocol operations: remote page fetch, remote lock synchronization,
and barriers. These data show that remote request contention in
the network interface and hosts can serialize their handling and ar-
tificially increase the page miss time. This increase then dilates
the critical section within which it occurs, increasing lock con-
tention and causing lock serialization. Furthermore, lock serializa-
tion is reflected in the waiting time at barriers. These results of our
study sharpen and deepen similar but higher-level speculations in
previous simulation-based SVM performance research. Moreover,
the insights about different layers, including communication archi-
tecture, SVM protocol, and applications, on real systems provide
guidelines for better designs in those layers.

1 Introduction

Network-connected clusters of PCs or workstations are becoming
a widespread parallel computing platform. To reduce the hardware
cost of these systems, cache coherence hardware is often foregone
in favor of software layers implementing Shared Virtual Memory
(SVM) [18] as illustrated in Figure 1.

Although SVM implementations have been the focus of sev-
eral past performance studies [12, 15, 17, 24], data-gathering ap-
proaches have varied widely. At the programming and protocol
layer, run-time tools and software instrumentation have been used
to detect high-level contributors to execution time: e.g., counts of
synchronizations, page faults, and messages. Prototype evaluations
in these studies indicate that the communication-related costs plus
the software overhead are responsible for limiting the performance
of the software shared memory approach.

Simulations have been the principal vehicle for much previous
research on SVM performance [3, 13, 14, 17]. However, the simu-

iftode@cs.rutgers.edu

Rutgers University?
Piscataway, NJ 08855
mrm@ee.princeton.edu doug@cs.princeton.edu

Applications
SVM Protocol
Communication Layer
Node Node Node

Host Memory

‘ Host Memory‘ ‘ Host Memory‘

< 1/O Bus > < 1/O Bus >
Network Network Network
Interface Interface Interface

Figure 1: Layers that affect the end performance of SVM applications.

lation approach has several limitations which constrain one’s trust
in its results. Namely, fast simulators usually make simplifying as-
sumptions about certain costs and behaviors, such as protocol costs
or bus and network contention.

The alternative to simulation is to collect detailed information
by monitoring the protocol execution in a real system. In this paper
we describe a software performance monitor which we have used
to understand the performance of a software shared memory pro-
totype implemented on a Myrinet-based [6] PC cluster. We have
embedded additional monitoring and global clock synchronization
code into the communication firmware running on the Myrinet net-
work interface card. This allows us to gather low-level statistics
on, e.g., network latencies, interrupt handler times and inter-node
synchronization. Although we initially designed this monitor to an-
alyze and tune message passing programs, this paper demonstrates
the flexibility of the approach by describing our experiments using
it to understand and tune a collection of SVM applications from the
SPLASH-2 [23] suite.

The performance monitor interacts with the SVM protocol via
a simple and efficient interface. By interfacing the performance
monitor with the SVM protocol we can track the time spent in var-
ious communication stages during main protocol operations: re-
mote page fetch, remote lock synchronization, and barriers (global
synchronization). Our detailed results show that the remote re-
quest contention in the hosts on interrupts can serialize their han-
dling and artificially increase the page miss time. In addition, con-
tention in the network and network interface can increase page miss
time as well. This increase then dilates the critical section within
which it occurs, increasing lock contention and thus causing lock
serialization. Furthermore, lock serialization is also reflected in
the waiting time at barriers. Although some of these effects have
been speculated from higher-level statistics and detailed simula-
tions [2, 3, 12, 13, 14, 15, 17, 24], the initial interrupt delay and
the exact succession of this cascade of effects could not have been
traced exactly without the performance monitor on real systems.

The contributions of this work are two-fold: we illustrate the
design of a firmware-based performance monitor and we apply it
to further understand application behavior on SVM systems.

The remainder of this paper is structured as follows. Section 2
describes the design of the SVM system and applications being
studied, and Section 3 describes the performance monitor we im-
plemented. Section 4 then presents a series of experiments done

using the performance monitor on the SVM protocol. Based on
the new insights got from these experiments, Section 5 outlines a
series of guidelines to SVM system implementers and application
programmers. Finally, Section 6 discusses related work and Sec-
tion 7 offers our conclusions.

2 Implementing SVM On A Myrinet-based PC Cluster

In this section, we describe the SVM prototype we implemented on
a Myrinet-based PC cluster [9] built at Princeton. Based on high-
level timings of the SVM system, we preview its performance. We
also show that some crucial performance characteristics are hard to
understand using high-level profiling alone.

2.1 Myrinet-based PC Cluster

The Myrinet-based PC cluster implements the Virtual Memory-
Mapped Communication model (VMMC) [4] on a Myrinet net-
work of PCl-based PCs. Myrinet is a high-speed local/system area
network for computer systems [6]. A Myrinet network is com-
posed of point-to-point links that connect hosts and switches. The
Myrinet-based PC cluster used in this study consists of 8 PCI PCs
connected to a Myrinet switch via Myrinet PCI network interfaces.
Each PC is a Gateway P5-166 with a 166MHz Pentium CPU, and
has 512KB L2 cache and 64MB main memory. Each network in-
terface is controlled by a 33MHz LANai processor running com-
munication firmware. We embed our performance monitor in this
code.

2.2 SVM Implementation

The SVM system implements an all-software, home-based lazy re-
lease consistency (HLRC) protocol [24]. The HLRC protocol as-
signs each page to a homenode. To alleviate the false-sharing prob-
lem at page granularity, HLRC implements a multiple-writer proto-
col based on using “twins” and “diffs”. After an acquire operation,
each writer of a page is allowed to write into its local copy once
a clean version of the page (twin) has been created. Changes are
detected by comparing the current (dirty) copy with the clean ver-
sion (twin) and are recorded in a structure called a diff. At a release
operation, diffs are propagated to the designated home of the page,
not to other sharers. The home copy is thus kept up to date. Upon a
page fault following a causally-related acquire operation, the entire
page is fetched from the home.

2.3 Application Overview

2.3.1 Applications

Benchmarks Problem Size Speedup (8procs)
Barnes 8192particles 2.36
Cholesky tk14 131
FFT 256K points 4.25
Ocean 130 x 130 grids 412
Radix 2M keys 1.88
Volrend 1283 head 3.06
Water-Nsquared | 4096 molecules, 3 steps 7.06
Water-Spatial 4096 molecules, 5 steps 7.27

Table 1: Applications, problem sizes, and speedups on the SVM system on
the Myrinet-based PC cluster with 8 processors.

This study uses 8 SPLASH-2 [23] applications with a range of
characteristics. Table 1 shows the problem sizes of the 8 bench-
marks and their speedups on the SVM system with 8 processors.
We use important computational kernels as well as real applica-
tions, both regular and irregular. We also explore applications with
a range of behaviors: different inherent communication and data
referencing patterns, and different access granularities to data that

interact with SVM page granularity. We are especially interested
in applications that are challenging in performance on the SVM
system in this study, to demonstrate the need for performance de-
bugging tools in SVM system design and understanding.

2.3.2 Application Performance on the SVM System

Table 1 indicates that most of the benchmarks cannot reach more
than 50% of the parallel efficiency on the SVM system (i.e., a
speedup of 4 on 8 processors), while all of them are known to de-
liver very good scalability on hardware CC-NUMA machines of 8
processors. As a preview of some of the performance bottlenecks,
Figure 2 shows a breakdown of program execution times, obtained
from high-level profile timings of our SVM protocol.

100%

- AT AN
S P

m

25

N Protocol i3
Barrier

% Lock

2
g
_
_

= Data
0%
Waiting

miocal 30%
Compute

Barnes Cholesky ~ FFT Ocean Radix Volrend Water- Water-
Nsquared ~Spatial

Figure 2: Runtime breakdowns of applications. Local Compute time mainly
contains time spent on the local host, including instruction execution and
local memory time. Data Waiting time is the time spent waiting for data to
arrive at remote page faults. Lock and Barrier times include both the wait
time and the communication time of the synchronization events. Protocol
time is the time the processor spends in protocol processing on incoming
or outgoing transactions, including the time spent computing and applying
diffs and services to remote requests.

Figure 2 reveals that the bottlenecks of application performance
have much to do with the communication architecture of our SVM
system, including data waiting time, synchronization and protocol
overhead. The question is why and how they happen. While it
is relatively easy to get high-level breakdowns like Figure 2 from
instrumenting the SVM code itself, detailed low-level data is im-
possible to get with this approach. Since the network-layer per-
formance characteristics are crucial to the design and utilization of
SVM systems, they were studied through simulation in previous
research [3, 13, 14]. Most current SVM simulators are inadequate
in modeling contention effects on buses, network links, and at the
network interfaces. They are also slow. Given that many important
computational kernels and real applications do not perform well on
the SVM system, performance diagnosis tools are badly needed on
the real systems on which SVM is built.

3 Performance Monitoring in the Myrinet-based System

To gain insights into the behavior of applications on the Myrinet-
based PC cluster, we have built a performance monitoring tool for
this system. It is a purely firmware-based performance debugging
tool focused on collecting network-level data and tying it to higher-
level software events. The core of our monitor is firmware run by
the LANai processor on the Myrinet network interface card. Work-
ing at the network-firmware level gives us access to crucial deter-
minants of application performance not available in higher-level
software. Several pieces of the tool’s functionality would be infea-
sible or costly to implement in higher-level software, such as: (i)
a globally synchronized clock, (ii) the ability to measure network-
level latencies, and (iii) access to interrupt-driven handler invoca-
tion times. Network-level monitoring also allows us to build moni-
toring infrastructure that applies to a range of different higher-level
programming models. We have used our strategy to performance

debug several message passing applications in the past [19]; this
paper concentrates on its use for SVM applications.

Copies of the monitoring system run on each node’s network
interface. The monitor software adds time-stamps and sequencing
information to messages outgoing from a particular node, and also
processes this extra information as packets arrive at a node. As
incoming messages are processed, the firmware monitor measures
packet characteristics such as its size, and also computes network
latency by subtracting the packet’s time-stamp from the current
node time. For all programs, the monitor keeps a multidimensional
histogram of packet sizes, sending and receiving node IDs, and
packet latencies. As particular monitoring needs arise, however,
the firmware nature of the tool also allows the statistics gathered
to be easily customized to the particular experiment and protocol.
This allows us to gather some of the detailed lock and page acquire
statistics presented in Section 4. A globally-synchronized clock
is needed to keep the time-stamps generated by the sending node
consistent with the clock at the receiving node; this is described in
Section 3.1. Statistics data are kept in LANai data structures until
after the experiment has completed; at that point, the data can be
post-processed to be presented in a number of ways, including 3D
plots of latency statistics versus packet size, sending node, etc.

3.1 Global Clock Synchronization

To keep time consistent across the loosely coupled nodes, the mon-
itor employs a global clock synchronization algorithm based on
Christian’s algorithm [7]. In our current system, Node O is al-
ways responsible for collecting and distributing global clock in-
formation. Periodically, it contacts other nodes querying them for
their current time; when the answer is returned, Node 0 computes
the time difference between the pair. When Node 0 finishes the
collection, it broadcasts the time difference table to all the other
nodes. Other nodes then update their clocks based on the table re-
ceived from Node 0. The centralized role of Node 0 reduces clock
synchronization messages dramatically, but if this were our sole
means of aligning clocks, we would need to perform a global re-
synchronization roughly once per second. This frequent global re-
synchronization, unfortunately, would impose a rather heavy over-
head on the system.

Instead, to decrease global clock synchronization communi-
cation, we re-synchronize globally much less frequently, every 5
minutes in these experiments, rather than once per second. To
maintain acceptable accuracy, we note that clock drifts are roughly
constant within short time periods. With this assumption, we al-
low each node to “re-synchronize” without global communication
by interpolating current time differences based on measured drift
rates and the time difference table from the most recent global re-
synchronization.

3.2 Coordinating Performance Monitor and SVM System

The communication layer often induces high synchronization and
data waiting overheads in SVM systems. Figure 2 illustrates that
these overheads are quite significant in these applications. Thus,
in order to understand the performance issues, we have to study
the interactions between applications and underlying communica-
tion layer. In the SVM system, these protocol bottlenecks can
be a complex series of network messages, each following differ-
ent paths within the communication architecture. Spotting perfor-
mance problems in this complicated flow is particularly difficult
for the programmer and the SVM system designer. Since the per-
formance monitor is at the network level, it can be difficult to tie
low-level network statistics up to the particular program or SVM
events that cause them. This section will first consider how the
performance-intensive SVM operations interact with the commu-
nication layer; an understanding of this software structure will help

us describe, in the next subsection, the performance monitor inter-
face for SVM systems.

3.2.1 Background on SVM Operations

While there are several performance-critical SVM operations that
interact with the communication layer, we will summarize them
using two examples: remote page fetch and remote lock acquire.
These are described below.

Page Home

(Assigned by first
touch)

Page
Requester

Host Host
Wait until
reply
arrives

Notification
Handler

s

DMA to DMA to
NI

Host
ReplyPage j

Message

I

DMA to DMA to

Host
RequestPage

" \-t
Message

Figure 3: Remote page fetch operation.

Remote page fetch: In the HLRC SVM system considered,
each memory page is assigned a home node, which is the one
that first touches it. There are two messages involved in a remote
page fetch. When a page fault occurs on a node, it sends a request
message to the page’s home. The home node then deals with this
request and sends the page back. Meanwhile, the page requester
waits on the page fault. These two messages are drawn in Figure 3
as thick arrows between the two hosts. The hollow arrows inside
each host show data flow between the host memory and the net-
work interface memory on the Myrinet card. The page requesting
message is sent with “notification”. When such a message arrives
in the host memory at its destination node, an interrupt will be gen-
erated. If this interrupt, or notification, is not blocked, it can get
through immediately and a high-level handler is activated to deal
with the message. If notifications are blocked—either because the
host is activated in a notification handler already, or because no-
tification is intentionally blocked for mutual exclusion in protocol
operations—the handler execution is postponed until notifications
are unblocked.

Lock Last Lock
Requester Owner

Host
ait until

reply

arrives

DMA DMA to
to NI Host

NI
LockReply
Message

Lock Home
(Statically assigned)
LockRequest

Nolmcanon
Handler
Message
DM,
w |

Figure 4: Remote lock acquire operation.

Host

LockRequest
Message
Forwarded to Owner

Remote lock acquire: Each lock has a home node statically
assigned. In the most general case, a remote lock acquire is com-
posed of 3 messages: (i) a message sent from the lock requester
to the lock home, (ii) a message in which the lock home forwards
the request to the last lock owner, and (iii) one in which the last
lock owner grants the lock to the requester after it releases the lock.
These are shown as thick arrows in Figure 4. The data flows in-
side each node are identical to those in Figure 3. The “last lock

owner” represents the last node that requested the lock right before
the current requester. It is not guaranteed that the last lock owner
is holding the lock when the current lock request message arrives
at it—it may be waiting for the lock to be granted from its last lock
owner at the moment. We will discuss this situation in detail in
Section 4.2. The first two messages, the initial lock request and the
home’s request forwarding, are both sent with notifications. Mean-
while, the lock requester waits for arrival of the granting message.
Sometimes when the requester and the lock home are identical, or
the lock home is also the last lock owner, this 3-hop process turns
into 2 hops.

3.2.2 Qur SVM Monitoring Approach

With the preceding section as background, we introduce how the
performance monitor is used to diagnose performance issues for
the SVM system in this section.

Page Home

Page : .
(Assigned by first
Requester touch)
TP2 TP1
Host Host /
Handler |
DMA to DMA to DMA to DMA to
NI Host TP3 NI Host
{ yPage
Message
RequestPage
TPo Message

Figure 5: A remote page fetch operation traveling across the communica-
tion layer. The cycle is broken into 5 time segments.

Figure 5 breaks the whole cycle of remote page fetch—2 node-
to-node hops—into 5 time segments, from the performance mon-
itor’s point of view. In Figure 5 each thin arrow labeled by TP
defines a time segment. T'Py defines the period from the time the
requesting host issues the request message until the time when the
request message reaches the page home’s host memory. T'P; is the
time from when the request message gets to the page home’s host
memory until the notification handler starts to execute. T'P» is from
the point the notification handler is activated to the point the page
home sends the page reply message back to the requester. T Ps is
like T' P, except the starting and ending nodes are reversed. T' Py is
from the point the page reply message reaches the requester’s host
memory to the point the requester finally sees the page.

Lock Last Lock
Requester Owner

arrives

DMA DMA to
to NI Host

LockReply,
Message

Lock Home
(Statically assigned) TL2

Host
LockRequest

Message
Forwarded to Owner

LockRequest
Message

L w] dL

Figure 6: A remote lock acquire operation traveling across the communica-
tion layer. The cycle is broken into 7 time segments.

TLo

Similar to remote page fetch, remote lock acquire can be il-
lustrated from T' Lo to T Le, as shown in Figure 6. By breaking
the time SVM operations spent at the communication layer into
detailed pieces, we are able to separate performance characteris-
tics related to different paths, and we can thus see whether the net-

work latency, or the time blocked at notification (interrupt), or the
period spent in the notification handler, dominates the overhead.
Furthermore, some of the performance issues that are very hard to
detect elsewhere are now possible to illustrate using the rich set
of statistics from the performance monitor. Examples discussed in
Section 4 include the serialization effect on some lock-based syn-
chronization and contention problems in the system or application.

The performance monitor and the SVM system both hold some
information that is not visible to the other. The performance mon-
itor has no idea which messages belong to the same operation, nor
when the notification handler will start to execute. The SVM sys-
tem does not know how long the messages spend in crossing the
network or when the message arrives at the host memory. A key is-
sue in coordinating the performance monitor and the SVM system
is designing a clean interface for them to exchange information.
Our solution is very simple, consisting of a unique identifier and
two functions.

To inform the performance monitor of the time pieces in one
SVM operation described above, we assign a system-wide unique
sequence identifier to each operation, which is carried by all mes-
sages within the operation when traveling through the communi-
cation layer. In this way, in MCP firmware residing in the Myrinet
card, the performance monitor checks this identifier and recognizes
messages of the same operation. For example, consider a remote
lock acquire. When a message gets into host memory, the per-
formance monitor on that node records the message arrival time
associated with its identifier. When the node is able to send out a
message which carries its identifier, the performance monitor rec-
ognizes the identifier and retrieves the arrival time associated with
it. With arrival and departure time at hand, now we can get T'L,
and TLs + T L4. Time pieces spent on the network between hosts
are easy to get and only involve the performance monitor. As the
monitor uses the global synchronized clock previously described,
each outgoing message can carry a departure time-stamp so that
the time this message spent traveling through network can be used
for latency calculations at the receiving side. These include T'Lo,
TL> and TLs. TL4 and T Le are more difficult because they in-
volve activities that are only visible to the SVM system, which re-
flect the time the notification handler starts to execute and the time
the host finds out the reply has arrived. So we provide a simple
and efficient interface from the performance monitor for the SVM
software. GetCurrentRTC() returns the current time and GetRe-
gFinishTime(identifier) returns the arrival time of a message into
the host memory. It therefore becomes easy for the SVM software
to calculate and store T'L4 and T'Lg.

In addition to the unique operation identifier, we also record
the time-stamps when each notification happens. In this way, we
can build an operation log to show not only the relation between
messages within the same operation, but also the mutual effects
among different operation messages.

Up to this point, we have argued that the performance monitor
on the Myrinet-based PC cluster can be used efficiently and easily
for the SVM system to debug performance. Meanwhile a general
issue to consider is to what extent the performance monitor perturbs
the system it is trying to measure. The good news is that perturba-
tion from our performance monitor is quite small: less than 2.5%
for each of the SVM applications. The perturbations of the TPs and
TLs are also small, only several microseconds, as there are only a
few lines of code inserted into the sending and receiving path.

4 Monitoring SVM Performance

In this section, we present analyses of application performance on
the SVM system. In particular, we use the performance monitor
to consider the interactions of SVM with the communication ar-
chitecture of the Myrinet-based PC cluster. Interesting operations

that provoke these interactions include remote page fetch for coher-
ence and synchronization. This performance study will particularly
touch on the bottlenecks illustrated in Figure 2: data waiting time,
lock time and barrier time.

4.1 Remote Page Fetch

i

% X [an / % »TP1

200 i § e W\: i ZW VVVVVVVV =TPO
2R EE A e

sames Gholesky FFT | Ocean | Radix
sq
Figure 7: Breakdown of average page acquire latencies across applications.

Average is total time spent on remote page fetch on all nodes, over total
page-fetch acquires.

Figure 2, profiled by the SVM system, shows that the data waiting
time for remote page fetch operations is quite high for some ap-
plications, such as Cholesky, FFT, Radix and Volrend. As shown
in Figure 5, the performance monitor in the network interface can
break the overhead of page fetch operations into more detailed
components as shown in Figure 7. It illustrates that time spent on
the network (TP, T Ps) is quite consistent and small. Time spent
in the notification handler to deal with a page fetch request on the
home node and send out this page (7" P-) is also quite consistent at
about 70us. However, T'P;, time spent waiting for a request to be
handled (by an interrupt) is very high in Cholesky and Volrend.

Event Arrival | Time Waiting For | Handler Execution
Time (us) Interrupt (us) Time (us)

T 168.0 63.0

T+ 16 287.5 715

z 440 361.0 64.0

T + 56 425.0 64.5

T + 80 489.5 64.0

T+ 104 553.0 60.0

Table 2: Queuing effect of interrupts for remote page fetches in Volrend.

By sorting the arrival time of each request on certain nodes (i.e.,
the starting point of 7' P;) we found that the high 7'P; in Cholesky
and Volrend is caused by a queuing effect in waiting for notifica-
tions attached to the page acquires to be activated. In our current
system, a notification cannot be delivered when the node is already
active in a notification handler. The upcoming notifications have
to be queued and served in a FIFO manner. Put another way, it
is the situation that many requests rush into the same home at al-
most the same time and have to wait for an interrupt, which may
take a long time due to the serialization. Using data from the per-
formance monitor, Table 2 shows a snapshot of this queuing effect
on interrupts in Volrend’s page fetch operations. We can clearly
see that the handler execution time is short and almost constant. In
contrast, the interrupt waiting time grows from 168.0us to 553.0us
from one request to the next in a queue.

Unlike Cholesky and Volrend, FFT and Radix, whose data wait-
ing times are also very high (see Figure 2), do not show high notifi-
cation blocking time in Figure 7. To explore the possible amortiza-
tion effect of averaging in Figure 7, Figure 8 gives the breakdown
across nodes for FFT, which illustrates that the distribution of dif-
ferent time pieces is balanced across nodes. Thus, there seems to
be no particular bottleneck. However, compared to a microbench-
mark measurement of “ideal” remote page fetch overhead, the over-

F

250

7
Tl
B
e
B
-
e

200 -
wTP4

;T . .
s e L . Y L L L N
5150— § § § § § N § § § 2 TP1
z \ § § § § \ § § mTPO
100—% §>§ % >§ § §

- 2 2 7 7 7
50*% % % % %% % %

o4
Node 0 Nodel Node2 Node3 Node4 Node5 Node6 Node 7

Figure 8: Per-node overhead breakdown of average page fetches in FFT.

head of such an operation in FFT is 50% higher. In particular, time
spent on the network to transfer a page from the home to the re-
quester (T'Ps) in FFT is much higher: more than 2.5 times higher
than that for the ideal case. This fact tells us that contention in
the network and network interface is a problem for FFT, and this
contention arising from all-to-all communication is quite uniform
across links between different nodes. Experiments for Radix indi-
cates that contention in the network and network interface is also
a severe problem. However, we find that this contention is quite
imbalanced across links for different nodes. In particular, deeper
monitoring shows that Radix’s permutation phase, in which scat-
tered writes are carried out within the second and third loops, is the
substantial bottleneck in the application.

To summarize, the performance monitor reveals that interrupt
overhead in remote page fetch is high, and even dominates in some
cases, such as Volrend. The queuing effect on interrupt waits relates
to the strategy used to assign page homes. If the home distribution
is not fair enough, a popular home becomes a bottleneck that causes
contention in the host. For applications with all-to-all communica-
tion patterns, FFT and Radix for example, contention in network
and network interface is clearly a problem. Node-to-network band-
width is the bottleneck.

4.2 Lock-based Synchronization

In SVM systems, lock-based synchronization is expensive due to
the inherent cost of the messages and the fact that coherence proto-
col activity is required at synchronization points. For applications
like Barnes, Cholesky and Volrend (Figure 2) in which locks are
extensively used, time spent on locks is substantial. But is it due
to the overhead of synchronization or due to serialization of lock
acquire requests because of dilated critical sections?

4.2.1 Components of Lock Overhead

2500

s
N S
2000 + § - - §
1750 \ :) \ wmTLE
Z 1500 \ B B \ TLS
. , N
g s § § e
— 1000 Riiia \ \ - - \ mTLO
750 § § § - - §
500 \ \ >//A - \
N § VVVVVVVVV 7 §

Barnes Cholesky Ocean Radix Volrend Water- Water-
Nsquared ~ Spatial

Figure 9: Breakdown of an average lock acquire execution across applica-
tions. The average is calculated by total time spent on lock acquire opera-
tions on all nodes over the total number of lock acquire operations.

By breaking the time spent on lock acquire into the 7 segments
shown in Figure 6, Figure 9 exhibits the breakdowns of an average
lock acquire execution across applications. From Figure 9 we can

see that the time spent for messages traveling through the network
for a lock acquire (T'Lo, T Lo, T Ls) is quite consistent across dif-
ferent applications and relatively small (about 35us). In contrast,
time spent for handling the SVM protocol inside the host is much
higher, including TL; and T L3 + T L4.

TL, is especially high for Cholesky and Volrend. Like T'P; in
a remote page fetch execution, TL; is mainly the overhead in wait-
ing for an interrupt. This contention is particularly a problem for
Cholesky and Volrend because they use task queues with task re-
distribution and task stealing. When task stealing or redistribution
happens, it is likely that multiple processors try to enter a single
critical section (a task queue) at the same time. On the other hand,
TLs is less a problem, because every time an acquire of the same
lock is forwarded, the last owner changes to the current request-
ing node, with the result that the burst at the lock home node is
distributed into different nodes.

We also find that 7' L4 is extremely high for most of our bench-
marks. T L4 represents the time that the last lock owner starts pro-
cessing the lock request until it is finally able to release the lock to
the next requesting node. Within 7Ly, the last lock owner sends
out the lock immediately if it is already released. It may have to
postpone the send until the release operation and related coher-
ence activities are done. In the worst case, it may not get the lock
yet so it has to wait for the lock to arrive before finishing work
within the critical section, and finally be able to release the lock to
the requester. Therefore, T'L4 spans a large range of time for dif-
ferent situations described above. Over the different applications,
this overhead ranges from less than 100us per average operation in
Radix to about 1800us in Volrend. Though lock cost is significant
in the total execution time of Barnes, Cholesky and Volrend and
T L4 is the highest segment in the whole lock acquire time for all
of them, Figure 9 indicates that T'L4 plays different roles among
them. In Barnes, T'L4 occupies less than half of the total latency,
while T'L4 significantly dominates in Cholesky and Volrend. Since
Barnes uses many locks (i.e., thousands), Figure 9 implies that it
is the high operation overhead in SVM that makes lock time a per-
formance bottleneck in it. In Cholesky and Volrend, however, the
issue is serializations on lock synchronization.

4.2.2 Lock Serialization

Acquire l
Lock work '
critical |

Page Section |

Misses

‘Work
Reloase Critical
oc! Page Section
Misses

Work

Page
Misses

Critical
Section

Figure 10: Lock serialization effects.

Before introducing our experiments, Figure 10 briefly describes
how lock serializations occur. Because locks are expensive in SVM
systems, this serialization effect hurts performance. Furthermore,
page misses within a critical section can greatly exaggerate the crit-
ical section due to the overhead of remote page fetch operations, es-
pecially when contention happens during the remote requests. The
dilated critical section thus makes the lock serialization even worse.

The performance monitor makes it possible to detect this lock
serialization effect on real problems. To demonstrate what the per-
formance monitor can show us in this effort, let us look at the time
distribution the performance monitor generates for Ocean. Since
Ocean has only a few coarse-grained locks, Figure 11 illustrates
the lock serialization phenomenon in a particularly obvious way.

wTL6

TLS
NTL4
ZTL3

TL2
®TLL
=mTLO

Emnin,

e

z
Q
a
@
o
z
Q
a
@
2
z
o
a
[
N
z
o
a
o
®
z
o
a
[
S
z
o
a
o
a
z
o
a
@
o
z
o
a
[
%

Figure 11: A lock serialization effect in Ocean.

T Ly in this case ranges from about 100us on node 7 (the first re-
quester) to about 27005 on node 1 (the last requester) in this chain
for one lock acquisition.

Even though the lock-based synchronization is more compli-
cated in Cholesky and Volrend, statistics generated by the perfor-
mance monitor can still demonstrate that lock serialization is the
main reason for high lock overheads. Table 3 gives one piece of
the statistics data that exhibits the serialization on a lock in Vol-
rend. Let us first focus on the first three rows in Table 3. When
Node 1 is interrupted by Node 4 for a lock acquire at time z + 9.0,
Node 1 has to wait for another 99us (108.0 — 9.0) to catch the
lock. Therefore Node 4 has to wait a long time (7'L4 = 915us) for
Node 1 to first get the lock, then enter the critical section, and fi-
nally release the lock. Attime « +1461.0, Node 4 is interrupted by
Node 2 while Node 4 is likely still holding the lock (granted at time
x + 954.0) and working in the critical section. Node 2 then has to
wait until Node 4 releases the lock. As a result, 7L, in Node 2’s
request time is still relatively long compared to that in the situation
in which the lock is immediately served. The rest of the table can be
explained in the same way. Then the question is why nodes spend
so long a time in critical sections even though it is known that crit-
ical sections in Volrend are very small. Volrend uses a task queue
and task stealing that features a migratory data referencing pattern.
Analyzing statistics data provided by the performance monitor, we
find that page misses occur quite often within critical sections. As
we have mentioned earlier, page misses artificially dilate the criti-
cal sections, which increases serialization at the locks dramatically.
Cholesky shows similar effects.

Requesting | Time Last Owner’s Time Lock TLy
Node Notification Handler Granted (us)
Start to Execute (1) (us)
Node 1 T T + 108.0 75.5
Node 4 T+ 9.0 T + 954.0 915.0
Node 2 z + 1461.0 z + 1898.0 389.0
Node 0 T + 1628.0 z + 2810.0 | 1155.0
Node 3 T + 2665.5 z + 3209.0 518.0
Node 1 T + 2688.5 T + 3899.0 | 1203.0

Table 3: A lock serialization effect in Volrend.

To summarize, the performance monitor demonstrates two ma-
jor causes for high synchronization overhead on locks: waiting for
interrupts, and serializations for lock acquires. The former is more
communication architecture oriented while the latter is related to
both the communication architecture and the SVM protocol. These
two lock performance issues were previously known, but no prior
efforts have successfully illustrated them with real numbers.

4.3 Barrier-based Synchronization

Like lock operations, barrier synchronization incurs coherence pro-
tocol activities. Unlike locks, however, barriers are a global syn-
chronization. This global characteristic makes it an even more ex-
pensive operation in the SVM system. Our SVM protocol imple-

ments a simple n? barrier algorithm, in which each node has to
communicate with all the others to keep coherent. In our bench-
mark suite, Ocean and Radix are clearly sensitive to barrier over-
head, as shown in Figure 2. Barrier overhead is high in Ocean
simply because Ocean uses a large number of barriers (98 in our
experiment) between series of time steps. Radix is a more interest-
ing example, however, because the reason for its barrier overhead
is not obvious, and performance monitoring greatly helps.

800

600 v wmn

.....

Time (ms)

Diff
Computation

= Waiting

Node O Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Figure 12: Barrier overhead breakdown after permutation phase in the sec-
ond loop in Radix. Waiting time: time spent in waiting for coherence in-
formation from other nodes. Diff Computation time: time spent on diff
computation for pages that have been written on this node before the bar-
rier. Diff Communication time: time spent to send the diffs to the homes of
the corresponding pages. Other Protocol Action contains protocol overhead
to send and process data of bins, time-stamps, write-notices, etc.

Even though the total barrier overhead appears to be almost
identical across different nodes in Radix, deeper performance mon-
itoring finds that it is actually quite imbalanced for particular bot-
tleneck phases in different loops. One example is shown in Fig-
ure 12. We have several important observations from this figure.
First, waiting time is high and extremely imbalanced. However,
the number of pages fetched by each node is quite balanced before
this barrier. This indicates that the contention problem due to high
data and control traffic arises from scattered writes to remote data
in the permutation phase. This demonstrates how expenses from
other operations can accrue to barriers. Second, time spent in diff
computation is surprisingly high because the number of pages that
have been updated is large due to scattered writes. This raises ques-
tions regarding the diff operation cost. Third, diff communication
overhead is high compared to microbenchmark numbers, indicat-
ing that contention is also a problem, and that the home node is
a bottleneck. Fourth, time spent on other protocol actions, mostly
communication time, is also high and imbalanced. Given that the
number of control messages from each node are almost the same,
contention of control messages is a problem too. This points out
the need for a better barrier algorithm that decreases control mes-
sages. In response to these measurements, we have implemented a
centralized barrier algorithm and are now working to characterize
its performance.

5 Guidelines

Incorporating our firmware-based performance monitor with the
SVM system plays an essential role in debugging SVM perfor-
mance on the Myrinet-based PC cluster. Going into successively
deeper details of performance characteristics, from the SVM pro-
tocol layer to the base Myrinet communication layer, points us to
insights on a range of SVM performance issues.

5.1 Communication Layer

As processor speeds keep increasing, it is important to provide
high bandwidth both within compute nodes and across the network.
This is demonstrated by the network and network interface con-
tention seen when running applications with bursty and all-to-all

communication patterns on SVM (barrier and remote page fetch
in Radix, remote page fetch in FFT). Although fast system inter-
connects are available, low level communication libraries often fail
to approach raw hardware performance. Therefore more efficient
low-level communication interfaces may be helpful in providing
low-cost, high-performance SVM systems.

The performance monitor also demonstrates that interrupt over-
heads usually stand in the way of good performance on the SVM
system. Reducing interrupt overhead at the system level would help
to improve SVM performance. Another solution is to remove in-
terrupts by using a “smart” network interface—programmable by
customers on Myrinet—instead of the processor in the host, to deal
with corresponding SVM protocol operations.

5.2 SVM Protocol Layer

In studying bottlenecks in synchronization and remote page fetch
operations in the SVM system, the performance monitor reveals
that system contention can be high. The problem of contention
in remote page fetch stems from the home assignment strategy
the SVM protocol applies. While it is difficult to adopt a general
and fair scheme to distribute the homes for pages, the performance
monitor makes a better strategy possible on real systems. Combin-
ing the SVM system with the performance monitor, it is now possi-
ble for the SVM system to adjust the home distribution in real-time
whenever contention is detected by the performance monitor. We
are currently working on such an approach.

Lock serialization effects are usually substantial in applications
with migratory data referencing patterns, which may cause frequent
page misses within the critical section. Thus critical sections are
artificially dilated, which causes subsequent lock acquires to be se-
rialized. The key to eliminating this effect is then to decrease data
migration in critical sections. One solution is to choose homes of
locks dynamically rather than assigning them statically. Another
solution is to return the lock to its home each time the lock is re-
leased (cheap with a “smart” network interface on Myrinet).

5.3 Application Layer

A previous simulation study [14] shows that understanding how
an application behaves and restructuring it properly can dramati-
cally improve performance on SVM systems. This however is not
always easy, especially on real systems. Insufficient tools are avail-
able in parallel systems to help discover the causes of bottlenecks
and obtain insight about application restructuring needs, especially
when contention is a major problem, as it often is in commodity-
based communication architectures. Our firmware-based perfor-
mance monitor on the Myrinet-based PC cluster eases the task of
understanding and restructuring applications for better SVM per-
formance. In particular, by successively deeper detections, the
monitor helps the programmers spot the sources of the performance
bottlenecks.

6 Related Work

This research builds on prior work on performance tools and SVM
systems. Our performance monitoring approach is similar to tech-
niques from the FlashPoint system [20]. That performance moni-
toring system embedded extra monitoring code into the cache co-
herence protocol handlers running on the FLASH multiprocessor’s
MAGIC chip. Our Myrinet-based PC cluster is expected to be used
on a much wider variety of programs than FLASH: both shared-
memory programs running via SVM and also message passing pro-
grams.

Our SVM system implements an HLRC protocol on a Myrinet-
based PC cluster. The same HLRC protocol was previously im-
plemented on Intel-Paragon [24], Wisconsin Typhoon-Zero [10]

and SHRIMP [5] (a PC-based cluster interconnected with a cus-
tom designed network interface). The HLRC implementation on
Typhoon-zero used active messages for communication support.
Our HLRC implementation uses the VMMC-2 library [9] and in
this sense is similar to the HLRC implementation on SHRIMP [11]
which also uses a memory-mapped communication library.

SVM performance has been studied, both in simulations [3, 13,
14, 17] and on real systems [1, 15, 16]. But our work is the first,
to our knowledge, in incorporating the SVM system and a perfor-
mance debugging tool embedded into Myrinet firmware for per-
formance study on a real system. Also, our work is different from
other performance evaluations of real (not simulated) Myrinet-
based systems, which have relied on microbenchmarks and higher-
level system measurements [8, 21, 22]. This limits their ability to
make lower-level determinations of how different components of
communication impact performance.

7 Conclusions

This paper has presented an empirical discussion of an HLRC-
based SVM system and a software performance monitor residing
in low-level Myrinet firmware. Our hierarchical approach for per-
formance analysis on a real system allows us to diagnose SVM per-
formance characteristics in deeper detail than previously available.

In studying applications with a range of behaviors, especially
those with poor SVM performance, the performance monitor helps
discover the causes of bottlenecks particularly when contention is
a major problem, as it often is in commodity-based communica-
tion architectures. The performance monitor was designed to work
well with a wide range of software, including both message pass-
ing and shared-memory programs. The simple and clean interface
eases the process of interfacing the SVM system (or other high-
level software) with the performance monitor.

In measuring the real SVM system, we detected a number of
interesting performance effects. We observed lock serializations
arising from dilated critical sections and contention on interrupts
waiting to be activated in the hosts. These observations reinforce
previous thoughts on the importance of properly assigning homes,
either for data pages or for locks, in home-based SVM protocols.
Fair distributions of homes for data pages is the key to solve the
contention problem in hosts. To eliminate lock serializations, it is
crucial to allocate lock homes dynamically, so that the home of a
lock is also the home of the data the lock protects.

Overall, our research provides a combination of real system
measurements and detailed monitoring methodology that should
effectively complement the body of high-level measurements and
simulation data currently available for SVM researchers.

Acknowledgments

This work was supported in part by DARPA contract N000014-
95-1-1144, NSF grant MIP-9420653, NSF Career Award CCR-95-
02516 (Martonosi), and Intel Corporation. We thank the referees
for their helpful suggestions.

References

[1] R. Bianchini, L. Kontothanassis, R. Pinto, et al. Hiding communi-
cation latency and coherence overhead in software DSMs. In The
7th Intl. Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 1996.

[2] A.Bilas, L. Iftode, R. Samanta, and J. P. Singh. Supporting a coherent
shared address space across SMP nodes: An application-driven inves-
tigation. IMA Volumesin Mathematics and its Applications, 1998.

[3] A. Bilas and J. P. Singh. The effects of communication parameters
on end performance of shared virtual memory clusters. In In Proc. of
Supercomputing 97, San Jose, CA, Nov. 1997.

[4] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sand-
berg. A virtual memory mapped network interface for the SHRIMP
multicomputer. In Proc. of the 21st Annual Symposium on Computer
Architecture, Apr. 1994.

[5] M. A. Blumrich, R. D. Alpert, Y. Chen, et al. Design choices in the
SHRIMP system: An empirical study. In Proc. of the 25th Annual
Symposium on Computer Architecture, June 1998.

[6] N.J. Boden, D. Cohen, R. E. Felderman, et al. Myrinet: A gigabit-
per-second local area network. |IEEE Micro, 15(1):29-36, Feb. 1995.

F. Christian. Probabilistic Clock Synchronization. Distributed Com-
puting, vol 3:146-158, 1989.

D. Culler et al. Assessing fast network interfaces. |EEE Micro, Feb.
1996.

C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2:
Efficient support for reliable, connection-oriented communication. In
Proceedings of Hot Interconnects, Aug. 1997.

[10] M. D.Hill, Y. Zhou, I. Schoinas, et al. Relaxed consistency and coher-
ence granularity in DSM systems: A performance evaluation. Tech-
nical Report TR-535-96, Department of Computer Science, Princeton
University, Dec. 1996.

[11] L. Iftode, M. Blumrich, C. Dubnicki, et al. Shared Virtual Memory
with Automatic Update Support. Technical Report TR-575-98, De-
partment of Computer Science, Princeton University, 1998.

[12] L. Iftode, C. Dubnicki, E. Felten, and K. Li. Improving release-
consistent shared virtual memory using automatic update. In The 2nd
Symposium on High-Performance Computer Architecture, Feb. 1996.

[13] L. Iftode, J. P. Singh, and K. Li. Understanding the performance of
shared virtual memory from an applications perspective. In Proc. of
the 23rd Annual Symposium on Computer Architecture, May 1996.

[14] D.Jiang, H. Shan, and J. P. Singh. Application restructuring and per-
formance portability on shared virtual memory and hardware-coherent
multiprocessors. In 6th ACM Symposium on Principles and Practice
of Parallel Programming, June 1997.

[15] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks:
Distributed shared memory on standard workstations and operating
systems. In Proc. of the Winter USENIX Conference, Jan. 1994.

[16] L. Kontothanassis, G. Hunt, R. Stets, et al. VM-based shared memory
on low-latency, remote-memory-access networks. In Proc. of the 24th
Annual Symposium on Computer Architecture, June 1997.

[17] L. Kontothanassis and M. Scott. Using memory-mapped network in-
terfaces to improve the performance of distributed shared memory.
In The 2nd Symposium on High-Performance Computer Architecture,
Feb. 1996.

[18] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. In Proc. of the 5th Annual ACM Symposium on Principles of
Distributed Computing, pages 229-239, Aug. 1986.

[19] C. Liao, M. Martonosi, and D. W. Clark. Performance monitoring in
a Myrinet-connected SHRIMP cluster. In Proc. of 2nd SGMETRICS
Symposium on Parallel and Distributed Tools, Aug. 1998. To appear.

[20] M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Performance
Monitoring and Communication in Parallel Computers. In Proc. ACM
S GMETRICS Conf. on Meas. and Modeling of Computer Systems,
May 1996.

[21] S. Pakin et al. Fast messages: efficient, portable communication for
workstation clusters and MPPs. |EEE Concurrency, Apr. 1997.

[22] T. von Eicken, D. Culler, et al. Active messages: a mechanism for
integrated communication and computation. In Proc. 19th Annual
Intl. Symposium on Computer Architecture, May 1992.

[23] S.Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. Methodological
considerations and characterization of the SPLASH-2 parallel appli-
cation suite. In Proc. of the 23rd Annual Symposium on Computer
Architecture, May 1996.

[24] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-
based lazy release consistency protocols for shared virtual memory
systems. In Proc. of the Operating Systems Design and Implementa-
tion Symposium, Oct. 1996.

[7

—

[8

—_

[9

—

