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Abstract 
 

With increasing power density in modern 
processors, management of on-chip temperature is fast 
becoming a bottleneck for chip designers. To address 
this, beyond conventional power and energy analysis it 
is necessary to apply temperature-aware analysis. In 
this paper we present thermal-aware experiments on 
simultaneous multithreaded (SMT) and chip multi-
processor (CMP) architectures. Both SMT and CMP 
have been shown to improve ILP as well as energy 
efficiency, but in our experiments we also examine the 
temperature consequences of such multithreaded 
architectures. We use the SimpleScalar tool set 
combined with Wattch for power measurement in 
conjunction with the HotSpot thermal modeling tool. 
We begin with models for different processors using 
roughly equal silicon resources and develop 
parameters and floorplan layouts for each of these 
cases. Our findings show that large temperature 
gradients are prominent with either multithreading 
technique, but both architectures show promise as a 
basis for temperature-aware enhancements to mitigate 
the problem. We examine several techniques for 
managing peak temperature problems and find that 
allowing hot functional blocks to be allocated  more 
die area can reduce our processors’ hottest unit 
temperatures by as much as 12° Celsius. We scale our 
processors up to 4 contexts or 4 processor cores and 
find that these same temperature trends continue. 
 
1. Introduction 
 

Simultaneous multithreading and chip multi-
processing were originally proposed as methods to 
increase microprocessor performance [10, 26]. 
Recently, studies have also shown that both techniques 
are capable of reducing overall power consumption [20, 
21]. Until now, however, there has yet to be done an 

analysis comparing how each design methodology 
fares in the area of temperature-aware design.  

With increases in density of digital circuits without 
commensurate reduction in density of power 
consumption, heat dissipation is fast becoming the 
limiting factor in microprocessor performance [24]. In 
order to examine specifics of this problem, temperature 
analysis brings in the requirement of understanding 
how the output heat is spatially distributed across a die 
to result in temperature gradients. 

Microarchitectural methods to increase ILP have 
begun to involve steering toward multithreaded 
processors in the form of SMT and CMP, instead of 
continually increasing superscalar issue width. 
Because of the growing prominence of multithreaded 
processors, we perform an in-depth temperature 
analysis to examine the long term effects as processors 
move towards processing a greater number of threads. 
Some critical questions we wish to answer are: 
• Does either of the two processor design paradigms 

inherently give better thermal management 
alongside performance and power efficiency 
consequences? 

• With multithreading will thermal hotspots become 
even more of a problem? 

• And do thermal management techniques such as 
migration of computation retain their utility as we 
continue to scale up the number of threads or 
processor cores? 

In the next section we give brief overviews of the 
SMT and CMP concepts. Section 3 describes our 
simulation tools, benchmarks, and methodology. 
Section 4 summarizes our experiment results. Section 
5 discusses future work, and Section 6 concludes. 
 
2. Background and related work 
 

Simultaneous multithreading (SMT) was first 
described by Tullsen et al. as a technique by which 
processor resources could be more efficiently utilized 



due to issuing instructions from more than one thread 
[26]. SMT requires duplication of some essential 
resources such as architectural register files in order to 
maintain multiple thread contexts, but the principle 
theme of SMT is that performance is greatly increased 
by sharing most processor resources. SMT has been 
shown to be implementable by modifying existing 
superscalar processors with fairly minimal changes. 

Chip multiprocessing (CMP) is the concept of 
placing multiple processor cores on a single chip. The 
primary motivation is that instead of designing 
processors as large monolithic units, they can be 
broken down into simpler albeit less powerful units 
[10]. By dividing up our task into smaller units the 
design process is greatly simplified and through the 
combination of these simplified units we may actually 
increase the overall performance. 

Tullsen and Seng showed that simultaneous 
multithreading is capable of saving energy by reducing 
energy lost through mis-speculation [21]. Recent 
findings have shown CMP to be perhaps just as 
beneficial for energy savings when compared to SMT, 
and that in some cases chip multiprocessors are likely 
to be more energy-efficient than SMT processors [20]. 
Although the act of combining multiple units onto a 
single chip does not inherently save energy, energy 
savings are due to hardware simplification 
characteristic of the CMP theme. 

Much work has been done on directly comparing 
the two methodologies. Tullsen, et al. showed that 
SMT outperforms a CMP of the same number of 
contexts [26], while Hammond et al. showed that the 
design simplification of CMP could in some cases 
allow it to outperform an SMT [10]. For power 
consumption, Kaxiras et al. demonstrated that on 
mobile phone workloads an SMT processor could 
outperform a CMP in terms of energy efficiency [13], 
and Li et al. recently performed an in depth study of 
the reasons for the energy efficiency of SMT [16]. 

To summarize the temperature differences across a 
chip, we can compare the nominal temperature and the 
hottest local temperature. The overall spatial average 
temperature represents how hot our chip is on the 
whole, and is likely to be consistent with values that 
we could calculate from power-aware analysis without 
involving spatial layout considerations. This “power 
envelope” technique has been used extensively 
because it serves as an accurate approximation as long 
as large spatial temperature gradients are not present 
[9]. However, from a temperature-aware design 
perspective these gradients are important to take into 
account. 
 

3. Experimental procedure 
 
3.1. Tools and benchmarks 
 

We use the HotSpot temperature modeling tool 
developed at the University of Virginia [24]. HotSpot 
can be plugged into a power-performance simulator 
such as SimpleScalar-Wattch [1]. HotSpot allows the 
user to specify a processor floorplan that gives the 
layout of a processor and its functional units. From this 
floorplan, it creates an equivalent circuit model that 
models heat transfer in a silicon processor with 
specified thermal packaging. We use Wattch as our 
basis to provide the power numbers to HotSpot. 

We have selectively chosen eight benchmarks from 
the SPEC 2000 suite. In order to rapidly simulate our 
benchmarks, we used empirically derived simulation 
points as described by Sherwood et al. to generate 
simulation statistics representative of each 
benchmark’s complete program behavior [18, 22]. 

We modified SimpleScalar to support simultaneous 
multithreaded and chip multiprocessors. For our SMT 
design, we allow complete sharing of the instruction 
issue bandwidth and functional units, and shared 
branch prediction. For simplicity, our current fetch 
policy is Icount, as described in [26]. Our CMP 
specifications require duplication of most resources for 
each effective processor. Communication between 
cores is done through the shared L2 cache, consistent 
with modern CMP designs such as Hydra and the IBM 
Power4 [10, 19]. Both our SMT and CMP simulator 
are designed for running distinct programs in parallel, 
although in the future we expect to add support for 
cooperating threads. 

 
3.2. Experiment parameters 

 
Our processor parameters are designed to use 

resources appropriate for a modern high performance 
multithreaded processor built on 0.13 micron 
technology such as had been planned for the Alpha 
21464 (EV8) [7]. The EV8 sought to support 4-context 
multithreading, the degree to which we experiment 
with in this paper. Using 0.13 micron technology, we 
have assumed features such as a clock rate of 3 GHz, a 
relatively large L2 cache, and other parameters scaled 
up accordingly. 

Our parameters for a single-context superscalar 
processor, SMT processor, and two CMP 
configurations are shown in Table 1. Our models 
assume the same parameters for SMT as the single-
context superscalar and CMP resources are mostly 
divided proportionally. 



 
 
 

Table 1. Processor parameters. 
 

 

Single-
context 
Super-
scalar 

SMT 

2-core 
CMP 
(per-
core 

params) 

4-core 
CMP 
(per-
core 

params) 
Clock 
speed 3 GHz 3 GHz 3 GHz 3 GHz 

Ifetch 
queue size 16 16 8 4 

Bpred table 
size 4096 4096 2048 1024 

Issue width 8 8 4 2 
Commit 
width 8 8 4 2 

RUU 
window 
size 

128 128 64 32 

Ld/Store 
Queue size 64 64 32 16 

L1 Dcache  128 KB 128 KB 64 KB 32 KB 

L1 Icache 128 KB 128 KB 64 KB 32 KB 

L2 cache 4 MB 4 MB 4 MB 4 MB 

  
 

Hammond et al. pointed out that a simpler core 
would allow a CMP to be clocked faster [10]. 
However, support for this argument has not held up 
according to recent findings [2, 6]. Arguably the more 
complex logic of a superscalar or SMT processor can 
make issue delays longer, but sensible long-term 
design would result in additional pipeline stages and 
not necessarily a slower clock. As such, for 
comparisons of this nature we use the same clock rate 
of 3 GHz for our SMT and CMP simulations even for 
the smallest cores. 

A number of different die area tradeoff trends have 
been proposed, but it remains challenging to define fair 
tradeoffs between the two paradigms. Burns and 
Gaudiot have developed sophisticated models that 
estimate die area consequences for both SMT and 
CMP [2, 3]. In this paper we have taken a simpler 
approach. For example, some resources such as the 
data cache are divided evenly when separated into two 
separate CMP cores. While we could attempt to 
appropriate processor resources using some more 
complex empirical formulas as done by [2], our overall 
purpose is not to do a strict head-to-head comparison. 
Instead, we are aiming to find the long-term 
temperature-aware trends seen for SMT and CMP and 
to identify solutions to such arising thermal problems. 
 
 

3.3. Floorplans 
 

HotSpot requires sketched floorplans to specify the 
relative physical locations of processor functional 
units. Our base floorplan and a floorplan derived from 
it are shown below in Figure 1 (a). Chip 
multiprocessors are formed using a script to duplicate, 
scale, and place new cores based on a starting 
floorplan while maintaining the same size L2 cache. 

 

 
(a) The basic floorplan we use for an SMT or 

single-context superscalar processor. 
 

 
(b) Floorplan of our basic 2-context CMP. 

Figure 1. Examples of two HotSpot floorplans 
used in our experiments. 



CMP has the benefit that almost all resources are 
reduced in size approximately proportionally to the 
degree of splitting. One such resource that is not sized 
down in this way is the set of architectural registers. 
However, since the register file did not become an 
object of excessive heat output even when compressed 
under our models, we used the simple approximation 
of resizing the register file along with the entire core. 
 
4. Results and discussion 

 
To gather an understanding of temperature 

characteristics, we begin by analyzing the related 
performance and energy consumption. 
 
4.1. Performance and energy efficiency 

 
Figure 2 shows our achieved IPC on three 

architectures: single-context superscalar, 2-context 
SMT, and 2-core CMP. The superscalar column is 
omitted for multithreaded workloads because it cannot 
run them without course-grained context-switching. As 
expected, both SMT and CMP achieve significantly 
higher IPC when running multiple benchmarks. CMP 
also carries its expected performance loss for single-
threaded benchmarks as compared to a single-context 
superscalar or SMT processor. 
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Figure 2. Performance on superscalar, 2-context 
SMT processor, and 2-core CMP. 

 
The IPC of mixed workloads depends largely on 

the IPC of the individual programs making up each 
multithreaded workload. For example, gzip and 
vortex can both sustain high ILP when running 
alone, and achieve even higher IPC when 
multithreaded together. On the other hand, the 
workload of art and mcf shows low IPC, brought 

about because mcf is a very memory intensive 
benchmark. In the next section we will see a 
significant correlation between high IPC and high 
processor temperature, so it is relevant to know how 
IPC is affected by multithreading to see the 
temperature effects from mixing various programs. 

For a more complete picture, consider also the 
energy per instruction (EPI) metric. Energy data for all 
three architectures is shown below in Figure 3. As with 
IPC, we see improvement in EPI on both multithreaded 
architectures.
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Figure 3. EPI for the three architectures. Lower 
EPI values indicate better energy efficiency. 
 

Neither the IPC nor EPI metric alone sufficiently 
represents overall execution quality, so we present 
both initial metrics so that we can examine the relation 
between performance, energy, and then temperature. 
As seen in Figure 3, both multithreading techniques 
improve energy efficiency as measured by EPI. SMT 
can accomplish this by reducing wasted energy due to 
lower penalties from speculated instructions such as 
mispredicted branches. Energy saved by CMP is 
essentially due to the hardware simplification of each 
smaller core. Both energy savings can be summarized 
as resulting from more efficient usage of hardware. 

Given the less profound difference in EPI between 
different multithreaded workloads, IPC stands as a 
better candidate to correlate with thermal effects, and 
we shall shortly see the strong connection between 
high IPC and high processor temperatures. 
 
4.2. Temperature comparison 
 

HotSpot allows us to find the predicted final 
temperatures for an execution in the case where we 
suppose that the power values from that sample of 
execution would remain consistent in the limit as time 



approaches infinity. These steady-state temperatures 
are the primary measurements used in our experiments. 
Our steady-state temperatures for all benchmarks 
initially revealed large temperature gradients including 
prominent hot spot; in our case result bus and 
instruction window are typically the hottest units. The 
coldest component is always the L2 cache, as one 
would expect given its relative large size and 
infrequent usage. The difference between this apparent 
chip temperature and the temperature of the 
processor’s hottest units ranges from 5° to 25°, and the 
area-average chip temperatures for various 
benchmarks differ widely as well.  
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(a) Initial temperatures from our SMT 

configuration. Single-threaded workloads 
represent also represent a superscalar. 
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(b) Initial temperature data from our CMP 2-

core configuration. 
Figure 4. Nominal temperatures and hottest unit 
temperatures running various workloads. 

For example, multithreading gzip with vortex 
on an SMT processor results in an overall quite warm 
processor, registering 85.5° C as the apparent (area-
averaged) chip temperature. On the other hand, when a 
low IPC benchmark such as ammp runs alone on a 
single-context superscalar processor, we see a much 
lower apparent temperature (63.7°) and the hottest unit 
on that die registers at 72.2°. Yet despite the difference 
in magnitude, we find the hottest units among each 
workload are usually the same: in our case, the 
instruction window and result bus. Our steady-state 
temperatures including the hottest unit temperatures 
and chip-area average temperatures for both our SMT 
architecture and CMP architecture are shown in Figure 
4 (a). Likewise Figure 4 (b) contains corresponding 
temperature data for our 2-core CMP architecture. 

The existence of similar spatial temperature profile 
trends extends to even 2-core CMP chips running 
different benchmarks. For example, when running 
gzip and applu on two separate cores of a CMP, we 
find that the core running applu is generally 6° 
cooler than the core running gzip with respect to each 
core’s corresponding functional block units, and yet 
the instruction window and result bus are still found to 
be the hottest units on both cores. 

Modern processors are designed for adequate 
average power consumption and then rely on various 
forms of dynamic thermal management (DTM) to deal 
with peak thermal constraints [4]. Although maximum 
chip temperatures for typical desktop microprocessors 
such as the Intel Celeron are marked at around 85-90° 
C, our architectures often reach beyond this range for 
SPEC benchmarks. As processors become more 
thermal-limited in the future, the common operating 
regime will likely come closer to the more thermal 
limited cases such as the ones analyzed in our 
experiments [11]. 
 
4.3. Temperature-aware design enhancements 
 

Since the difference between the chip’s apparent 
temperature and its hottest unit’s temperature is a 
problem, we wish to seek techniques that reduce this 
gap even if they do not necessarily lower the 
temperature on the cooler locations of the processor. 
Skadron et al. proposed migrating computation (MC), 
whereby a single hot unit is duplicated and a backup 
structure located further away could be used when the 
original unit becomes too hot [24]. The motivation 
behind this was that intuitively it is most desirable to 
move hot units far apart from each other, but it is 
preferred to do this in some way that doesn’t 



significantly damage overall performance because of 
communication delay.  

For our first thermal improvement test, we notice 
that CMP’s property of separate cores enables moving 
entire cores around the processor layout. We target 
CMP cores because the flexibility inherent in separate 
cores makes this option most likely to have small 
performance consequences. Our modified layout 
reflecting relocated cores is shown below in Figure 5, 
which should be compared with Figure 1 (b). 

Using CMP core relocation, we ran new 
simulations with the modified layout and compared 
our final steady-state hottest-unit temperatures with 
the original values. We find that insignificant 
temperature drops are achieved as shown in Figure 5. 

 

 
 
Figure 5. Modified 2-core CMP layout with cores 
relocated to corners of the chip. 
 

Not shown here is the area-average chip 
temperature. Our new layout structure attempts to 
redistribute the heat, not reduce the average quantity of 
it on the die, and so there is no noticeable drop in the 
nominal temperature. What is surprising, however, is 
that the hottest unit temperatures as shown in Figure 6 
showed a practically insignificant 1° reduction at most. 

This disappointing result suggests that lateral heat 
transfer perhaps does not play a significant role in 
creating thermal hotspots. Since heat dissipation 
appears to be much stronger through the vertical 
packaging technology than through adjacent silicon, 
enlarging the area of computation rather than 
relocation may be the important factor.  
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Figure 6. Changes in hot unit temperature due to 
moving CMP cores to corners of the layout. 
 

Although somewhat larger improvements can be 
obtained by selectively relocating the hottest units 
themselves—which is likely to be more costly from a 
design standpoint—these gains are still small 
compared to what we find from our next technique. 
Heo et al. have pointed out that as die thickness 
reduces with respect to lateral chip dimensions that 
lateral heat transfer may become even less significant 
for future die technologies [11]. Since most of the heat 
is dissipated vertically through the heat sink, 
increasing the area of a unit could be much more 
relevant than actually separating the unit into distally 
located components. 

MC actually causes both effects at the same time, 
but in our experiment we allow a unit only to consume 
extra area to see if temperature reduction might owe 
simply to increased thermal contact area. Our new 
layout involves increasing the size of the hot area, as 
shown in Figure 7, and the results of the layout 
changes are shown in Figure 8. We see a noticeable 
drop in temperature owing to enlarging the hot units. 
Moreover, despite the smaller sized cores of a 2-core 
CMP we see approximately the same benefit. 

Relocating functional units or processor cores can 
result in unnecessary communication overheads. If 
little temperature benefit is achieved this way, 
unnecessary separation may be completely 
unnecessary to combine with simple unit enlargement. 

 



 
Figure 7. New core layout with increased spread 
of the result bus and instruction window. 
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Figure 8. Temperatures resulting from allowing 
the heating structure to take up more local area. 

 
Although we have now seen that increasing the die 

area of a particular unit can have temperature benefits, 
a question that arises now is what does it exactly mean 
to simply enlarge a processor unit. There are a number 
of ways by which extra space can be added to such 
units, and these methods along with their various costs 
are discussed in Section 4.5. 
 
4.4. Four-context/four-core processors 
 

To see how these trends continue as the number of 
threads is increased, we ran two four-benchmark 
mixes. We have used two thread mixes, the first 

described as all memory-intensive programs while the 
second consists of four high-ILP programs as 
classified by [25]. For the 4-context SMT we used the 
same layout as with single-context and 2-context 
executions, while the 4-core CMP was generated the 
same way we expanded our initial layout to the 2-core 
chip from Figure 1 (b). For the 4-thread cases, again 
relocating CMP cores to the die corner proved 
ineffective, so here we shall present only our results 
from hot unit enlargement. The modifications shown in 
Figure 7 were applied and duplicated to each core in 
the CMP 4-core layout. The original hottest-unit 
temperatures and improved temperatures are shown in 
Figure 9. 
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Figure 9.  Original and final temperatures for 
four-context SMT and CMP workloads. 
 

The improvements in the SMT configuration are 
still significant (6° and 11° respectively). When 
explaining the large improvement, one must also take 
into account that the original temperature gap was 
large as well. In the CMP configuration we see a 
similar benefit. Repetitive architectures have the 
benefit of reduced complexity of design, and recently 
these arguments have been extended to power savings 
in that power-efficient design on a repeated structure 
can create multiplicative power saving in reduced 
design time [14], and a similar argument can be made 
for temperature effects. 
 
4.5. Detail level for area-enlarging techniques 
 

In Sections 4.4 and 4.5 we found that enlarging hot 
units could significantly reduce temperature gradients, 
although it may not yet be clear what sort of a design 
technique could be used to accomplish this. Deeney 
has suggested that thermal hot spots can be mitigated 
by placing blank silicon nearby as a very coarse-grain 
method [5]. Unfortunately as we have observed and is 



noted by [11], the lateral heat transfer may be so small 
that we cannot expect significant transfer between the 
active unit and the adjacent empty silicon. 

If we place blank spots throughout the unit on a 
more fine grain level, however, we can eventually 
approach uniform heat distribution. To find what level 
of granularity is appropriate, we used our floorplan 
modeling to break the hottest units into granular blocks 
and measured how fine grain the distribution must be 
in order to adequately distribute heat. Since our end 
results for this granularity experiment are quite 
negative in terms of thermal manageability, we use as 
our single workload the SMT combination of gzip-
vortex because it gives a large (111.2° down to 
99.4°) temperature gap. In Figure 10 we show how 
heat spreading could be distributed within the layout of 
the hottest units, and the resulting thermal hot spot 
temperatures from such models are shown in Figure 11. 
The single-block case represents no blank silicon 
patches hence ideal uniform heat distribution 
throughout each unit. Breaking the hot units into two 
blocks (one on and one off) is a non-ideal situation that 
gives very little benefit over the original non-spread 
configuration that registered 111.2°. Increasing the 
granularity of spreading to 441 pieces for both the 
instruction window and result bus does improve heat 
spreading, but even at this level there is still a 5° 
difference between the average of the “on” and “off” 
spots. Exponentially increasing the number of pieces in 
our model is not feasible because the execution time of 
HotSpot is tied to the number of layout block units. 

 
Figure 10.  Sample (n = 9) core layout to find the 
granularity necessary for sufficient temperature 
distribution. 
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Figure 11.  Temperatures of hottest unit 
(instruction window) for gzip-vortex under 
SMT with granularly enlarging hot units. At an 
infinite number of pieces, the averages of the 
active pieces and blank pieces should both 
converge to the single-piece temperature. 

 
Disappointingly, here we have found that spreading 

a block must be done very finely in order to reduce its 
likelihood of it being a set of hot spots. 

Fortunately, we need not restrict ourselves to 
designs that consist only of a component’s original 
structure alongside blank silicon. MC is performed 
instead by creating only two duplicate units and 
alternating calculation between the two. Somehow the 
units must be able to copy over any stored data when 
switching between the two duplicate units. Since this 
copying operation may be expensive, it is important to 
limit how often this occurs. Heo et al. showed that this 
activity migration could be performed on the level of 
microseconds and achieve its desired effect [11]. 
Under the various methods presented, expanding of 
units can incur costs in terms of die area and timing 
difficulties, and these tradeoffs must be taken into 
consideration.  

The granularity experiment presented in this section 
also gives us an idea of how precise our floorplan 
modeling scheme is. We have used strong assumptions 
that various blocks are monolithic units with a single 
temperature. Here we see evidence that we may need 
to model at a much more precise level for accurate 
temperature effects because assumptions of simple 
“spreading” may be too strong for large units with a 
heterogeneous structure. 
 



4.6. Performance and thermal tradeoffs 
 

When compared to SMT, the primary weakness of 
CMP is poor single-threaded performance. From the 
temperature-level design perspective, we see that this 
problem worsens. Because most heat dissipation is 
largely through the vertical heat sink directly above the 
core and not through an indirect path through other 
core, the heat generation of a single core is largely its 
own localized problem even when the other cores are 
idle. On the other hand, CMP research is largely 
geared toward compiler enhancements to enable thread 
level speculation and parallelize single threaded 
programs to run on multi-core processors [17]. With 
these enhancements, the isolation problem for single-
threaded programs can be less significant. 
Furthermore, chip multiprocessors are largely geared 
toward server or network environments with many 
clients and so peak performance may not be a big 
issue. In the single-threaded case SMT did well in 
performance, but high-IPC executions often came 
alongside high temperatures almost as often as with 
multithreaded workloads. 

For the corresponding temperature effects we saw 
in the beginning that high temperatures correlated 
strongly with high IPC workloads. This indicates that 
any ILP gains that we have achieved through 
multithreading may quickly be mitigated if we operate 
within the temperature limited regime. However, if we 
have methods to deal with these temperature problems 
in our architectures, there is certainly promise in ways 
to continue achieving improved performance. Our 
layout restructuring techniques tend to give better 
temperature improvements for the SMT architecture, 
although we also had worse temperature gradients for 
the SMT architecture to begin with. As such, it seems 
both SMT and CMP are viable multithreaded 
architectures amenable to thermal management 
techniques. 
 
5. Future work 
 

The models used in this paper to specify parameters 
for SMT and CMP were quite simple. Use of more 
detailed transistor-count estimation tools could 
automate comparative simulations [8, 23]. Their 
benefit is twofold: allowing us to estimate the 
microarchitecture parameters as well as providing 
information to generate more accurate HotSpot 
floorplans. 

HotSpot’s model has been validated using 
Floworks, an industry level computational fluid 
dynamics tool [24], and using a thermal test chip [12]. 

However, now that there are existing fabricated SMT 
and CMP processors, through the use of temperature 
sensors we have a possible real-chip method by which 
we can analyze and validate temperature-aware 
simulation techniques, and we expect to do this in the 
near future. 

Also, all the experiments outlined in this paper were 
done using the steady-state temperatures, which fail to 
account for the transient nature of temperature. 
Thermal management is generally quite a dynamic 
problem that involves active techniques such as 
dynamic frequency and voltage scaling (DVFS). And 
so in the future we intend to do a temporal—not 
merely steady-state—study of temperature effects and 
thermal management. 
 
6. Conclusions 
 

Recall that this paper began with three questions: 
• Does either of the two processor design paradigms 

inherently give better thermal management 
alongside performance and power efficiency 
consequences? 

Our temperature results indicate higher 
temperatures and larger temperature gradients for SMT 
as opposed to CMP. However we also see these 
temperature problems receiving excellent improvement 
from our layout restructuring experiments particularly 
in the SMT case. When taking performance into 
account, we saw an IPC increase due to multithreading 
from both architectures, although the best IPC 
improvements came alongside high temperatures. All 
in all, both multithreaded architectures as a means to 
improvement ILP and both show promise in that we 
have ways of dealing with the ensuing thermal 
problems. 
• With multithreading will thermal hotspots become 

even more of a problem? 
While higher IPC results in overall high 

temperatures, we fortunately found that there was a 
high degree of predictability. Although the hot spots 
become hotter, we were not likely to see new hotspots 
in different locations. For the SMT case, large peak 
temperature problems are often present but these 
usually correspond with high IPC and the single-
threaded temperature emergencies. Having consistently 
the same pattern in the sequence of hottest units, we 
see that there is much predictability that makes thermal 
problems manageable 

In the CMP case, we have a very similar scenario. 
An added difference is that here we have multiple 
cores, and usually a single core sets the characteristic 
peak temperature even if the other cores carry much 



lower temperatures. Fortunately the simpler cores 
inherent in CMP serve as somewhat of a balance to 
avoid extremes, which is why we see less extreme 
temperatures in CMP. Furthermore, possibly a single 
core approaching high temperatures may adversely 
affect other cores if we limit processor operation with 
DTM. Large-scale multiprocessors such as Raw and 
TRIPS use sophisticated interfaces that require 
synchronized operation. On the other hand, recent 
studies have shown the benefits of heterogeneous cores 
within a single architecture in order to gain flexibility 
[15].  
• And do thermal management techniques such as 

migration of computation retain their utility as we 
continue to scale up the number of threads or 
processor cores? 

Encouragingly, our tested solution for thermal 
management is increasing the size of only hot units, 
and we found that this general technique retains its 
utility for as many as four simultaneously 
multithreaded contexts or four processor cores. 
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