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Abstract
Memory latency is an important bottleneck in system performance
that cannot be adequately solved by hardware alone. Several prom-
ising software techniques have been shown to address this problem
successfully in specific situations. However, the generality of these
software approaches has been limited because current architectures
do not provide a fine-grained, low-overhead mechanism for
observing and reacting to memory behavior directly. To fill this
need, we propose a new class of memory operations calledinform-
ing memory operations, which essentially consist of a memory
operation combined (either implicitly or explicitly) with a condi-
tional branch-and-link operation that is taken only if the reference
suffers a cache miss. We describe two different implementations of
informing memory operations—one based on a cache-outcome
condition code and another based on low-overhead traps—and find
that modern in-order-issue and out-of-order-issue superscalar pro-
cessors already contain the bulk of the necessary hardware support.
We describe how a number of software-based memory optimiza-
tions can exploit informing memory operations to enhance perfor-
mance, and look at cache coherence with fine-grained access
control as a case study. Our performance results demonstrate that
the runtime overhead of invoking the informing mechanism on the
Alpha 21164 and MIPS R10000 processors is generally small
enough to provide considerable flexibility to hardware and soft-
ware designers, and that the cache coherence application has
improved performance compared to other current solutions. We
believe that the inclusion of informing memory operations in
future processors may spur even more innovative performance
optimizations.

1 Introduction

As the gap between processor and memory speeds continues to
widen, memory latency has become a dominant bottleneck in over-
all application execution time. In current uniprocessor machines, a
reference to main memory can be 50 or more processor cycles;
multiprocessor latencies are even higher. To cope with memory
latency, most computer systems today rely on their cache hierarchy
to reduce the effective memory access time. While caches are an
important step toward addressing this problem, neither they nor

other purely hardware-based mechanisms (e.g., stream buffers
[Jou90]) are complete solutions.

In addition to hardware mechanisms, a number of promising soft-
ware techniques have been proposed to avoid or tolerate memory
latency. These software techniques have resorted to a variety of
different approaches for gathering information and reasoning about
memory performance. Compiler-based techniques, such as cache
blocking [AKL79,GJMS87,WL91] and prefetching [MLG92,
Por89] use static program analysis to predict which references are
likely to suffer misses. Memory performance tools have relied on
sampling or simulation-based approaches to gather memory statis-
tics [CMM+88,DBKF90,GH93,LW94,MGA95]. Operating sys-
tems have used coarse-grained system information to reduce
latencies by adjusting page coloring and migration strategies
[BLRC94,CDV+94]. Knowledge about memory referencing
behavior is also important for cache coherence and data access
control; for example, Wisconsin’s Blizzard systems implement
fine-grained access control in parallel programs by instrumenting
all shared data references or by modifying ECC fault handlers to
detect when data is potentially shared by multiple processors
[SFL+94].

While solutions exist for gathering some of the needed memory
performance information, they are handicapped by the fact that
software cannot directly observe its own memory behavior. The
fundamental problem is that load and store instructions were
defined when memory hierarchies were flat, and the abstraction
they present to software is one of a uniform high-speed memory.
Unlike branch instructions—which observably alter control flow
depending on which path is taken—loads and stores offer no direct
mechanism for software to determine if a particular reference was
a hit or a miss. Improving memory performance observability can
lead to improvements not just in performance monitoring tools, but
also in other areas, including prefetching, page mapping, and cache
coherence.

With memory system observation becoming more important,
machine designers are providing at least limited hardware support
for it. For example, hardware bus monitors have been used by
some applications to gather statistics about references visible on an
external bus [CDV+94, SG94, BLRC94, BM89]. A bus monitor’s
architectural independence allows for flexible implementations,
but also can result in high overhead to access the monitoring hard-
ware. Furthermore, such monitors only observe memory behavior
beyond the second or even third level cache. More recently, CPU
designers have provided user-accessible monitoring support on
microprocessor chips themselves. For example, the Pentium pro-
cessor has several performance counters, including reference and
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cache miss counters, and the MIPS R10000 and Alpha 21064 and
21164 also include memory performance counters [JHei95,
DEC92, ERB+95, Mat94]. Compared to bus monitors, on-chip
counters allow more fine-grained views of cache memory behav-
ior. Unfortunately, it is still difficult to use these counters to deter-
mine if a particular reference hits or misses in the cache. For
example, to determine if a particular reference is a miss (e.g., to
guide prefetching or context-switching decisions), one reads the
miss counter value just before and after each time that reference is
executed. This is extremely slow, and in addition, counters must be
carefully designed to give such fine-grained information correctly.
In an out-of-order issue machine like the MIPS R10000, one must
not reorder counter accesses around loads or stores; in fact, counter
accesses in the R10000 serialize the pipeline.

Overall, a number of disjoint and specialized solutions have been
proposed for different problems. Existing hardware monitoring
support is often either heavyweight (i.e., access to the monitoring
information greatly disrupts the behavior of the monitored pro-
gram) or coarse-grained (i.e., the monitoring information is only a
summary of the actual memory system behavior). These character-
istics are undesirable for software requiring on-the-fly, high-preci-
sion observation and reaction to memory system behavior. As an
alternative, we proposeinforming memory operations: mecha-
nisms specifically designed to help software make fine-grained
observations of its own memory referencing behavior, and to act
upon this knowledge inexpensively within the current software
context. An informing memory operation lets software react differ-
ently to the unexpected case of the referencemissing in the cache
and execute handler code under the miss, when the processor could
normally stall.

There are many alternative methods of achieving informing mem-
ory operations, and Section 2 describes three possible approaches:
(i) a cache outcome condition code, (ii) a memory operation with a
slot that is squashed if the reference hits, and (iii) a low-overhead
cache miss trap. In Section 3 we describe implementation issues in
the context of an in-order-issue and out-of-order-issue machine.
The hardware cost for these mechanisms is modest, yet they pro-
vide much lower overhead and more flexible methods of obtaining
information about the memory system than current counter-based
approaches. As discussed in Section 4, informing memory opera-
tions enable a wide range of possible applications—from fine-
grained cache miss counting that guides application prefetching
decisions, to more elaborate cache miss handlers that enforce
cache coherence or implement context-switch-on-a-miss multi-
threading. Section 5 summarizes our findings.

2 Informing Memory Operations

In contrast to current methods for collecting information about the
memory system, an informing memory operation can provide
detailed memory system performance information to the applica-
tion with very little runtime overhead. Ideally, an informing mem-
ory operation incurs no more overhead than a normal memory
operation if the reference is a primary data cache hit. On a cache
miss, the informing memory operation causes the processor to
transfer control of the program to code specific to the memory
operation that missed, thus providing a mechanism for fine-grained
observation of memory system activity.

We can essentially decompose the informing memory mechanism
into a memory operation and a conditional branch-and-link opera-
tion whose execution is predicated on the outcome of the memory
operation’s hit/miss signal. If the memory operation hits in the
cache, the transfer-of-control portion is nullified. If the memory
operation misses, control is transferred to the indicated target

address. Overall, our work has focused mainly on three architec-
tural methods of implementing fine-grained, low-overhead inform-
ing memory operations. Though similar in functionality, each
method differs in how it transfers control after a data cache miss.
In our first method, based on a cache outcome condition code, the
conditional branch-and-link operation is an explicit instruction in
the instruction stream, and we create user state that records the hit/
miss status of the previously executed reference. By allowing the
branch-and-link operation to test the value of this state bit, we pro-
vide the software with a mechanism to react to memory system
activity. Though simple, this mechanism offers quicker control
transfers than current cache miss counters.

Our second method (evaluated more fully in an earlier study
[HMMS95]) removes the explicit user state for the hit/miss infor-
mation, but retains the explicit dispatch instruction. In this case,
the machine “notifies” software that the informing operation was a
cache hit by squashing the instruction in the issue slot following
that informing operation. If the reference is a cache miss, this slot
instruction is executed. By placing a conventional branch-and-link
instruction in the slot, we effectively create a branch-and-link-if-
miss operation. Our experiments have shown that this second
method has similar performance to the cache condition code
approach, but with a slightly more complex hardware implementa-
tion. It requires two different sets of memory operations (since
users rarely wantall memory operations to be informing), and it
suffers from hardware designers’ aversions to delay slot semantics
in architectures for superscalar machines. For these reasons (as
well as space constraints) we do not consider it further here.

Our third informing memory operation mechanism,low-overhead
cache miss traps, removes both explicit user state for hit/miss
information and the explicit dispatch instruction. Here, a low-over-
head trap to user space is triggered on a primary data cache miss.
The target of this trap and the return address are kept in special
machine registers.

This remainder of this section describes the cache condition code
and low-overhead cache miss trap methods in more detail. We dis-
cuss the required hardware, instruction overheads, and critical soft-
ware issues for both methods. Section 3 presents implementation
specifics for one of these methods in both in-order-issue and out-
of-order-issue superscalar processors.

2.1 Cache Outcome Condition Code

In our first method, all memory operations become informing
memory operations by default. The hardware simply records hit/
miss results of each data memory operation in user-visible state,
and then relies on the software to place explicit checks of this state
in the program code where desired. To support this explicit check,
we add a new conditional branch-and-link instruction to the
instruction set. This new instruction tests the hit/miss result of the
previous memory operation, and it transfers control to the encoded
target address if that memory operation was a miss.

Most of the hardware needed to implement this functionality is
already in the base machine, especially if the machine supports
condition codes. Here, the cache miss simply becomes another
condition code. One only needs to add hardware to store this con-
dition code (and do the proper bypassing/renaming that is needed
in a modern processor).

In terms of run-time overhead, an application fetches an extra
instruction for every informing memory operation of interest—i.e.,
the conditional branch-and-link instruction. To minimize the cycle-
count overhead of this instruction, we would want to optimize its
execution for the common case, which is a data cache hit. In other
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words, we should predict the conditional branch-and-link instruc-
tion to be not taken. Therefore, the normal branch mispredict pen-
alty only applies to the cache miss case.

The strength of this scheme is its simplicity. The explicit check
instruction allows flexibility in several key areas. Because every
memory operation is potentially informing and because we can
easily specialize the action taken on any static data memory refer-
ence (through a unique target address in the hit/miss test instruc-
tion) we have a low, constant overhead per static reference of
interest over the entire range of instrumentation granularity. (The
overhead arises from the explicit check instruction that follows
each memory operation of interest; this instruction uses a fetch
slot, and must be placed before another memory operation is
issued.) Furthermore, we can extend this mechanism to support
gathering information about any other level of the memory hierar-
chy. This would entail the definition of new condition code bits
that represent the outcome results for the other hierarchy levels.

2.2 Low-Overhead Cache Miss Traps

Alternatively, we can design an informing mechanism that
removes the instruction overhead of an explicit miss check. To
accomplish this, our low-overhead cache miss trap method defines
the informing memory operation as a memory operation that trig-
gers a low-overhead trap to user space on a primary data cache
miss. The allure of this method is that a trapping mechanism
potentially incurs no overhead for cache hits. We avoid traditional
trap mechanisms that require hundreds of cycles to context switch
into the operating system and invoke the trap dispatch code, which
then context switches again to run the actual handler.

To reduce the overhead on a cache miss, we propose a cache miss
trap that is more like a conditional branch than a conventional trap.
The trap only changes the program counter of the running applica-
tion; it does not invoke any operating system code and saves only a
single user-visible machine register. To implement the trap, we
propose adding two user-visible registers to the machine architec-
ture. One register is the Miss Handler Address Register (MHAR),
which contains the instruction address of the handler to invoke on
an informing memory operation cache miss. The other register is
the Miss Handler Return Register (MHRR), into which the return
address is written when the trap occurs (i.e., the address of the
instruction after the memory operation that missed). In addition to
the registers, we define an instruction to load the MHAR and
another instruction to jump to the address in the MHRR. We
assume that a zero value in the MHAR disables trapping (when
observing cache misses is unwanted).1

There are two main issues involved in the implementation of a
low-overhead cache miss trap: the wiring of the MHAR and
MHRR into the existing processor datapath, and the implicit con-
trol flow change on a cache miss. The implementation of the
MHAR and MHRR is quite simple. The registers are located in the
execution unit (or in the PC unit or in both for speed) and operate
like other “special” machine registers. The MHRR captures the
next PC value and updates the PC on a low-overhead trap return
using the standard branch-and-link/jump-to-register-contents hard-
ware paths and control.

Changing control flow on data cache misses means that the
machine must execute an implicit jump. This requires the machine
to nullify the subsequent instructions in the pipeline and direct the
fetcher to obtain a new instruction stream. This functionality is the

1.Alternately, we could define two sets of memory operations—those that
trap on a cache miss and those that do not.

same as a conditional-branch-and-link operation, so we use the
same mechanism to implement it. Conceptually, imagine that the
decode of an informing operation inserts two instructions into the
pipeline: (i) the memory operation to the memory unit and (ii) a
branch-and-link instruction that is predicated on the outcome of
the hit/miss result of the memory operation to the branch unit. The
target address for the branch-and-link is generated from the
MHAR, the branch-and-link destination is the MHRR, and the
predicate is assumed to be false (i.e., no dispatch) for an in-order
issue machine. (We present a detailed description of the hardware
implementation later in Section 3.)

The software overheads of this method depend on how it is used.
For collecting aggregate data about the memory system, a single or
small number of handlers is sufficient. If the handler address does
not need to be changed very often, we can achieve our goal of no
overhead for cache hits. When more detailed information is
required, a user can choose between a range of options. Users can
even set the MHAR before each memory operation, invoking a
separate handler for each miss, and incurring the one instruction of
overhead per memory operation2. Instead, one could create a sin-
gle handler that uses the return address to index into a hash table to
determine which instruction missed. This solution has a higher
miss cost (since you need to do the hash table lookup), but has no
overhead on a cache hit. We will quantify the overhead of fre-
quently changing the MHAR later in Section 4.2.

2.3 Summary

Compared to current approaches, the methods considered here
have several advantages:

• general: independent of a particular hardware organization;

• fine grained: allow low-level memory system observation;

• selective notification: invoked only on triggering action events;

• low overhead: little program perturbation unless invoked.

All of the proposed methods have similar performance and hard-
ware costs. The simplest approach adds an instruction to check the
status of the previous memory operation (in program order) and
incurs an overhead of one instruction in the case of a cache hit.
Later in the paper we show that the cost of the extra instruction per
informing memory operation is modest, but not zero. If zero over-
head in the hit case is desired, the low-overhead cache miss trap
can be used. This approach is slightly more complex, since the
control transfer instruction is implicit, rather than explicit as in the
first approach. While more complex, the latter mechanism has the
advantage that one can monitor whole system behavior without
program instrumentation, simply by having the MHAR default to a
general handler for all running processes. With cache outcome
condition codes, programs must be compiled or instrumented with
the new conditional branches to take advantage of the mechanism.

3 Implementation Issues

While the mechanisms proposed are architecturally different, the
complexity of each hardware implementation is similar and

2. Actually doing this operation in one instruction is a little tricky. For
example one could allow the MHAR to be the destination of an add-
immediate instruction, and have a GPR act as the “base” register, but
special registers generally cannot be used in ALU instructions. A more
plausible solution would be to make the load MHAR instruction have
the ability to add a small offset (or the contents of a register) to the PC to
generate the desired address. While possible, this latter solution requires
additional hardware.
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focuses on logic issues involved in the safe and efficient changing
of control flow when cache misses occur. We use the implementa-
tion of low-overhead cache miss traps to make these issues more
clear. As previously mentioned, the low-overhead cache miss trap
can be thought of as a load/store followed by an implicit condi-
tional branch-and-link instruction. The destination of the condi-
tional branch is the contents of the Miss Handler Address Register,
and the link value is placed in the Miss Handler Return Register.
What is encouraging about this proposal (and the other informing
memory options) is that most of the necessary hardware mecha-
nisms are the branch and exception mechanisms already present in
current machines. To see this in more detail, we discuss two differ-
ent implementations; we start with the simpler in-order-issue
implementation (using the Alpha 21164 as an example) and then
describe the implementation for an out-of-order machine (such as
MIPS R10000).

3.1 In-order-issue Machines

To be more concrete about the required hardware, this section
describes how low-overhead cache miss traps could be added to
the 21164 implementation of the Alpha architecture [ERB+95].
The 21164 is a superscalar machine that can execute up to 4
instructions per cycle. Its pipeline is shown in Figure 1; integer
operations complete in 6 stages. The machine uses an interesting
stall model. All register dependences are handled before an
instruction is issued (by using presence bits on the register file);
once an instruction is issued (stage 3) it cannot be stalled. Difficult
situations are handled using a “replay trap”, and one such situation
already involves the cache. Namely, if a load has been issued, and
an instruction that uses this data is waiting to issue, the machine
will issue the dependent instruction at the correct timing for a
cache hit (two cycles after the load). If the load does not hit in the
cache, the machine is in trouble, since there is no way to stall the
already-issued instruction. Instead, the machine takes a replay trap,
flushes the pipeline, and then restarts the same instruction. The
restarted instruction re-enters the issue stage during stage 11, one
cycle before the data is available from the second-level cache.

We use this same replay trap mechanism to implement our low-
overhead traps. In this case, the replay trap occurs simply because
of a cache miss signal and not in response to the speculative issu-
ing of a data-dependent instruction. Notice that this new replay
trap occurs for both load and store instructions (that are inform-
ing). Effectively, the instruction occurring immediately after an
informing memory operation is marked as dependent upon the
informing memory operation’s hit/miss signal and the memory
operation is predicted to hit in the cache. If the operation misses, a
replay trap occurs. Rather than re-issuing the marked instruction,
however, the machine issues the implicit branch-and-link instruc-
tion with a PC address equal to the informing memory operation
(so that the MHRR is loaded with the appropriate return address).
The non-blocking memory operation completes in this scenario
since the replay trap occurs on the next instruction. This imple-
mentation is slightly complicated by the fact that the cache miss
information is not saved in any user-visible state, so the hardware
must ensure that the informing memory operation and the trap are
atomic; hence external exceptions must either occur before the
memory operation or after the trap occurs. Though this issue does
make the exception control slightly more complex, it is a solvable
problem.

3.2 Out-of-order-issue Machines

Compared to the implementation for an in-order-issue machine,
the hardware for low-overhead cache miss traps in an out-of-order

machine is more complex. We explore this complexity by describ-
ing the implementation of low-overhead traps for informing mem-
ory operations in the MIPS R10000. The key problem is keeping
track of dependences and ordering, since the order of operations is
not determined. As with the in-order machine, we mainly reuse
existing machine mechanisms to implement this functionality.

There are two types of dependences that out-of-order-issue
machines normally track. Since the machine must look like a sim-
ple in-order machine, it tracks instruction order, and maintains the
ability to execute precise interrupts. It also must track true data
dependences between the instructions, to ensure that it only lets
instructions execute when all the inputs are available. The former
constraints are tracked in the reorder buffer, which holds instruc-
tions after they are fetched until they “graduate” (i.e., are commit-
ted to the architectural state of the processor). The latter
constraints (data dependences) are tracked by the renaming logic.
This logic creates a new space for a register each time it is written,
and gives this identifier to all subsequent instructions that depend
on this value.

Branches and exceptions are normally some of the more difficult
situations to handle in out-of-order machines. When a branch
occurs, the machine’s fetch unit makes a prediction and continues
to fetch instructions. These speculative instructions are then
entered into the renaming logic and the reorder buffer. If the
branch is mispredicted, all these speculative instructions must be
squashed. In a similar manner, when an exception occurs, all the
instructions after the instruction that excepts must be squashed.
The R10000 uses two different mechanisms to handle these situa-
tions. For branches, it uses shadow state in the renaming logic.
Each time the renaming logic sees a branch, it creates a shadow
copy of its state, and increments a basic-block counter. For branch
misprediction, the rename state is rolled back to its state before the
branch, and all instructions in the machine with a basic-block
count greater than the branch are squashed. This allows the
machine to recover from misprediction as quickly as possible, but
requires substantial hardware support. In contrast, on an exception,
the key aspect of the hardware mechanism isnot to minimize the
delay between recognizing the exception and starting the resulting
action (as in the branch misprediction case), since exceptions
occur only rarely. Instead, we must guarantee that all preceding
instructions complete successfully before invoking the exception
handler. To accomplish this requirement, the R10000 waits until
the excepting instruction is at the top of the graduation queue. At
this point all previous instructions have completed, and all instruc-
tions in the machine need to be squashed; thus the machine is then
cleared and the exception vector is fetched.

Low-overhead cache miss traps can be implemented using either
the branch or exception mechanism in this machine. Using the
branch mechanism reduces the overhead on a cache miss, but has
more significant hardware implications. We convert the reference
into a reference and branch combination; the branch is dependent
on the cache missing and is predicted not-taken. The major hard-
ware cost is not adding new hardware functionality to the machine,
but rather that we need more of the existing resources, because we
consume them much faster than before. Since each branch requires
the machine to shadow the entire renaming space, the R10000 cur-
rently only allows three predicted branches in execution at any
time. If each reference becomes a potential branch, we will need
about 3 times as much shadow state to hold the same number of
issued instructions, since there are typically two memory opera-
tions per branch.

If this additional hardware is too costly, the low-overhead cache
miss trap can be treated more like an exception than a branch. In
this case the handler invocation time is longer since the machine



5

waits until the reference is at the top of the graduation queue
before the handler is started. The hardware needed for this scheme
is quite modest. The reorder buffer records whether a memory
operation missed. When an instruction that suffered a miss gradu-
ates, the machine is flushed as though an exception happened on
the next instruction, and the MHAR is loaded into the PC. As we
mention later during our experiments in Section 4.2, we have
observed a noticeable but not enormous performance difference
between these branch and exception-based techniques (a 7-9% per-
formance loss in the integer SPEC92 compress benchmark).

3.3 Cache as Visible State

Informing memory operations allow users get information about
the state of the cache. This creates a new issue for hardware
designers: what guarantees do they make about this state? In cur-
rent machines, the cache state is not a deterministic function of the
program since the cache is not saved and restored during a context
switch. If software is only using informing memory operations for
performance tuning, this non-determinism is not an issue—the
user simply wants to know how the machine is performing at this
instance. In contrast, there are other applications of informing
memory operations (e.g., cache coherence, as discussed later in
Section 4.3) which require thatevery time a new line is fetched
into the cache, the system will detect the miss, thus allowing it to
check “access rights” to this data. For such applications, the hard-
ware must guarantee that these access checks cannot be bypassed.
Unfortunately, today’s out-of-order issue machines allow the first-
level cache state to be updated speculatively. Since our architec-
tural mechanisms do not execute if a speculative informing mem-
ory operation is squashed, this section describes the hardware that
must be added to an out-of-order issue machine to permit specula-
tive execution of load instructions but yet prevent these speculative
loads from silently updating the first-level cache state.

Typically, the problem of speculative update occurs only with load
instructions. Most processors do not allow stores to probe the
cache until they commit, and thus the implementation described in
this section assumes that store probes are not done speculatively. It
is straightforward to extend our implementation for speculative
store problems.

The basic problem to address then is the updating of the cache
when an informing load operation misses and the load is later
invalidated. This situation arises in two ways: the informing load
was control-dependent on a preceding branch that was mispre-
dicted; or a preceding instruction signalled an exception flushing
the pipeline and the informing load. In both cases, the informing
load must have executed out-of-order and suffered a cache miss
(no problem exists for in-order issue machines since memory
requests are sent out only if the operation will complete). The miss
will start the execution of the cache miss handler, only to have the
reference and the miss handler squashed.

For performance reasons, our solution to this problem must allow
for the expedient return of speculative load data to the out-of-order
execution engine. However, we must guarantee that the data
updates the first-level cache only when the informing load opera-
tion commits. Our solution actually permits the speculative
informing load operation to update the cache on a miss. More fre-
quently than not, the speculation is correct, and thus we have opti-
mized for the common case. To handle the case where the load
operation was squashed, we must now invalidate the data in the
first-level cache. This approach can reduce the cache performance
by flushing potentially useful data. However, this data often still
resides in the second-level cache, and we have effectively
prefetched the informing load data into the second-level cache.

To implement our invalidate mechanism, we extend the lifetime of
the Miss Status Handling Registers (MSHR), the data structure
used to track the outstanding misses in a lockup-free cache [FJ94].
This structure contains the address of the miss, the destination reg-
ister, and other bookkeeping information. Normally, when data
returns to the cache, the MSHR forwards the correct data to the
processor; if the load is squashed before the data returns, the
MSHR is notified to prevent it from forwarding data to a stale des-
tination. We slightly modify this functionality to remove unwanted
speculative load data. Since the MSHR already prevents the result
of a miss fetch from entering the first-level cache if a load instruc-
tion is squashed before the data returns, we simply have to solve
the problem of invalidating a cache line if an informing load miss
completes before the load is ultimately squashed. To do this, we
extend the lifetime of the MSHR so that registers are freed only
after a memory instruction is either squashed or graduates. If the

S0 S1 S2 S3

S4 S5 S6 S7

S4 S5 S6

Read instruction cache
Buffer instructions; Decode branches; Determine next ICache address.
Slot: Steer to execution pipeline
Determine whether instruction can issue; Read integer register file.

First integer pipeline stage.
Second integer pipeline stage.
Write integer register file

Integer Pipeline

Memory Access Pipeline

Calculate Virt. Address; Begin Dcache read
End DCache read

S8 S10S9 S11 S12

Use DCache data (hit); Write store data to DCache.

L2 Cache tag access
L2 Cache data access
DCache Fill
Use L2 Cache Data

FIGURE 1. Alpha 21164 integer and memory access pipeline stages [ERB+95].
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load is squashed (for either reason listed above), the address in the
MSHR is used to invalidate the line in the cache (i.e., change the
tag state) before the MSHR is freed for reuse. In our simulation
studies, extending the lifetime of these registers does not change
the required number of registers—eight was sufficient in all cases.

4 Uses of Informing Memory Operations

We now focus on how informing memory operations can be used
to enhance performance. We begin with short descriptions of soft-
ware techniques that can exploit informing memory operations.
We then quantify the execution overheads of invoking the inform-
ing mechanism in modern superscalar processors, and finally we
take a detailed look at cache coherence as a case study.

4.1 Description of Software Techniques

Informing memory operations can benefit a wide variety of soft-
ware-based memory optimizations, and we present only a partial
list of such techniques in this section. While the performance bene-
fit of each technique varies, the runtime overhead of using the
informing mechanism is largely dictated by (i) the amount of work
to be performed in response to a miss and (ii) how frequently the
handler address must be changed. The former property affects the
overhead per miss (the effect is not strictly linear since some han-
dler code may be overlapped with the miss), and the latter property
dictates the overhead even on hits. (Recall that low-overhead traps
eliminate hit overhead only if we reuse the same miss handler). We
address both of these issues in our discussion of each technique,
and we quantify their impact on performance in Section 4.2.

4.1.1 Performance Monitoring

Performance monitoring tools collect detailed information to guide
either the programmer or the compiler in identifying and eliminat-
ing memory performance bottlenecks [BM89, GH93, LW94,
MGA95]. A major difficulty with such tools is how to collect suffi-
ciently detailed information quickly and without perturbing the
monitored program. The high overheads of today’s memory-obser-
vation techniques have resulted in tools that either provide coarse-
grained information (e.g., at loop-level rather than reference-
level), or else rely on simulation (which is relatively slow, and
where speed improvements tend to reduce accuracy). Informing
memory operations enable a wide array of accurate and inexpen-
sive monitoring tools, ranging from simply counting cache misses
(a single register-increment miss handler) to correlating misses of
individual static references with high-level semantic information
such as the data structures being accessed and the control flow his-
tory. A previous study demonstrated that informing memory oper-
ations can be used to collect precise per-reference miss rates with
low runtime overheads (less than 25%) and tolerable data cache
perturbations [HMMS95]. This tool uses a single miss handler
containing roughly 10 instructions3 to increment a hash table entry
based on the branch-and-link return address (available in the
MHRR), thus distinguishing all static references. Overall, the
number of instructions in the miss handler of a performance moni-
toring tool might vary from one instruction to hundreds of instruc-
tions, depending on the sophistication of the tool.

3. The actual number of dynamic instructions can vary depending on
whether the hash probe hits.

4.1.2 Software-Controlled Prefetching

Software-controlled prefetching tolerates memory latency by mov-
ing data lines into the cache before they are needed [MLG92,
Por89, CMCH91]. A major challenge with prefetching is predict-
ing which dynamic references are likely to miss, since indiscrimi-
nately prefetching all the time results in too much overhead
[MLG92]. Informing memory operations can address this problem
in two ways. The first option is to recompile for a subsequent run
based on a detailed memory profile captured from earlier runs. The
second option is to generate code capable of adapting its prefetch-
ing behavior “on the fly” based on dynamic cache miss informa-
tion. This latter option can be accomplished either by generating
multiple versions of a piece of code (e.g., a loop) with different
prefetching strategies and using informing information to select
which version to run, or else by placing prefetches directly in the
miss handler itself so that prefetching overhead will only be
induced when the application is actually suffering from cache
misses (and hence prefetches should be beneficial). All of these
approaches were evaluated in a previous study and were shown to
be useful in improving prefetching performance [HMMS95]. The
size of a miss handler for prefetching is likely to be small (less than
10 instructions) since it is either launching a handful of prefetches
or else recording some simple statistics. Since we will want to tai-
lor a prefetching response to its context within the program, the
miss handler address is likely to change frequently.

4.1.3 Software-Controlled Multithreading

Multithreading tolerates memory latency by switching from one
thread (or “context”) to another at the start of a cache miss [Smi81,
AKK+93, LGH94, TE94, ACC+90]. Multithreading implementa-
tions to date have generally relied upon hardware to manage and
switch between threads. However, informing memory operations
enable a software-based approach where a single miss handler
could save and restart threads (all under software control) upon
cache misses. Two optimizations would help the performance of
this scheme. First, invoke a thread switch only onsecondary
(rather than primary) cache misses—such references could be iso-
lated through a combination of static prediction and dynamic
observation4, thus allowing us to selectively enable the miss han-
dler accordingly. Second, the overhead of saving and restoring reg-
ister state could be minimized through compiler optimizations
(e.g., statically partition the register set amongst threads, only save
or restore registers that are live, etc.), or perhaps through hardware
support (e.g., something similar to the SPARC register windows
[Pau94]). A single miss handler should suffice (although it may be
selectively enabled to isolate secondary misses) and its length may
vary from a handful to over 100 instructions depending on how
aggressively we can eliminate register saving/restoring overhead.

4.1.4 Enforcing Cache Coherence

An application that demonstrates the versatility of informing mem-
ory operations is the enforcement of cache coherence with fine-
grained access control. We discuss this application in detail later in
Section 4.3, but for now, the key parameters are the following:
only a single miss handler is required, it is enabled for all poten-
tially-shared references, the handler typically executes 20-30
instructions to check the coherence state, and the dependence
chain through these instructions is roughly 10 cycles long.

4. For example, observing the cache outcome condition code on the sec-
ondary cache.
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4.2 Overhead of Generic Miss Handlers

Each of the techniques we just described has a benefit and a poten-
tial cost in terms of performance. While the benefit is specific to
the particular technique, the cost can be abstracted as a function of
the length of the miss handler and how frequently the miss handler
address must be changed. In this section, we vary these parameters
to measure the execution overhead of several “generic” miss han-
dlers on modern superscalar processors. Given the ability of these
processors to exploit instruction-level parallelism and overlap
computation with cache misses, the translation of increased
instruction count into execution overhead is not immediately obvi-
ous without experimentation.

4.2.1 Experimental Framework

We performed detailed cycle-by-cycle simulations of two state-of-
the-art processors: an out-of-order machine based on the MIPS
R10000, and an in-order machine based on the Alpha 21164. Our
model varies slightly from the actual processors (e.g., we assume
that all functional units are fully-pipelined, and we simulate a two-
level rather than a three-level cache hierarchy for the Alpha
21164), but we do model the rich details of these processors
including the pipeline, register renaming, the reorder buffer (for
the R10000), branch prediction, instruction fetching, branching
penalties, the memory hierarchy (including contention), etc. The
parameters of our two machine models are shown in Table 1. We
simulated fourteen SPEC92 benchmarks (five integer and nine
floating-point) [Dix92], all of which were compiled with -O2 using
the standard MIPS compilers under IRIX 5.3.

We simulate 1, 10, and 100-instruction generic miss handlers, and
we pessimistically assume that all instructions within the handlers
are data-dependent on each other (hence a 10-instruction handler
requires 10 cycles to execute). We simulate both a case with no
overhead on hits (i.e., low-overhead cache miss traps with a single
handler) and also a case where a single instruction is added before
every memory reference to specify the handler address or to repre-
sent the explicit cache check. We model the full details of fetching
and executing all instructions associated with informing memory
operations.

4.2.2 Experimental Results

Our results with 1 and 10-instruction miss handlers are shown in
Figures 2 and 3. (The su2cor benchmark is shown separately in
Figure 3 since it behaves differently and requires a larger y-axis
scale). For each benchmark, we show five bars: the case without
informing memory operations (N), and cases with a single miss
handler (S) and unique miss handlers per reference (U) for both
miss handler sizes. These bars represent execution time normal-
ized to the case without informing loads, and they are broken down
into three categories explaining what happened during all potential
graduation slots.5 The bottom section is the number of slots where
instructions actually graduate,6 the top section is any lost gradua-
tion slots that are immediately caused by the oldest instruction suf-
fering a data cache miss, and the middle section is all other slots
where instructions do not graduate. Note that the “cache stall” sec-
tion is only a first-order approximation of the performance loss due
to cache stalls, since these delays also exacerbate subsequent data
dependence stalls.

Starting with Figure2, we see that for twelve of these thirteen
benchmarks (all but tomcatv), the execution overhead of using
informing memory operations is less than 40% under both proces-
sor models. Even in tomcatv, the execution overhead is less than
25% in all cases except the 10-instruction miss handlers on the in-
order machine. Applications that suffer more from cache stalls
tend to have larger overheads, which makes sense since they
invoke the handler code more frequently. Another trend (particu-
larly in the out-of-order model) is that a significant fraction of the
additional instructions needed to specify unique handler addresses
can be overlapped with other computation, thereby having only a
relatively small impact on execution time. For example, the
instruction count for both mdljsp2 and alvinn under the out-of-
order model increases by over 30%, but the execution time only
increases by 1%. This means that techniques that need to modify
the MHAR frequently (e.g., prefetching, multithreading, cache

5. The number of graduation slots is the issue width (4 for both processors)
multiplied by the number of cycles. We focus on graduation rather than
issue slots to avoid counting speculative operations that are squashed.

6. This fraction multiplied by the issue width (4) gives us the IPC (instruc-
tions per clock) of the machine.

Memory Parameters Out-Of-Order In-Order

Primary Instruction and
Data Caches

32KB, 2-way
set-associative

8KB, direct-
mapped

Unified Secondary Cache 2MB, 2-way
set-associative

2MB, 4-way
set-associative

Line Size 32B 32B

Primary-to-Secondary
Miss Latency

12 cycles 11 cycles

Primary-to-Memory
Miss Latency

75 cycles 50 cycles

MSHRs 8 8

Data Cache Banks 2 2

Data Cache Fill Time 4 cycles 4 cycles

Main Memory
Bandwidth

1 access per
20 cycles

1 access per
20 cycles

Pipeline Parameters Out-Of-Order In-Order

Issue Width 4 4

Functional Units 2 INT, 2 FP, 1
Branch, 1
Memory

2 INT, 2 FP, 1
Branch

Reorder Buffer Size 32 N/A

Integer Multiply 12 cycles 12 cycles

Integer Divide 76 cycles 76 cycles

FP Divide 15 cycles 17 cycles

FP Square Root 20 cycles 20 cycles

All Other FP 2 cycles 4 cycles

Branch Prediction
Scheme

2-bit Counters 2-bit Counters

TABLE 1. Simulation parameters for superscalar processors. (These parameters are roughly based on the MIPS R10000 and the Alpha
21164 processors, with a few modifications.)



8

coherence) will not suffer much of a performance penalty for
doing so. It also means that the performance lost by using an
explicit cache condition code check will be small.

Another interesting comparison is the ability of each processor
model to hide the overhead of 10 vs. 1-instruction miss handlers.
While the results are somewhat mixed for the integer benchmarks,

FIGURE 3. Performance of the SU2COR benchmark with generic
miss handlers containing 1 and 10 instructions. (N = no miss
handler, S = single miss handler, U = unique miss handler per
static reference.)
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the clear trend in the floating-point benchmarks is that the out-of-
order model suffers a much smaller relative performance loss than
the in-order model with larger miss handlers. This effect is particu-
larly dramatic in tomcatv, where the difference in overhead is
under 10% for the out-of-order model, but greater than 45% for the
in-order model. This makes sense because the high branch predic-
tion accuracies in the floating point benchmarks give the out-of-
order machine ample time to overlap miss handler processing.

In contrast to the other thirteen benchmarks, the su2cor benchmark
shown in Figure3 has considerably larger execution overheads,
particularly for the in-order model. The problem in the in-order
model is that su2cor suffers from severe cache conflicts in the 8KB
direct-mapped primary data cache, hence triggering the 10-instruc-
tion miss handler frequently enough to quintuple the instruction
count and triple the execution time. (A similar problem occurs to a
lesser extent in tomcatv.) The surprising result that this application
sometimes runs faster with unique handlers than with a single han-
dler is because different handlers are not data-dependent on each
other in our model, whereas a single handler is data-dependent on
its last invocation. Therefore having independent handlers happens
to result in more parallelism in these experiments.

We also simulated generic miss handlers containing 100 data-
dependent instructions, and found that the execution times
increased significantly for the applications that suffer the most
from cache misses (e.g., 6 times slower for compress, and 7 times
slower for su2cor). For applications with few cache misses, the
overheads remained low (e.g., only a 2% overhead for ora). The
only technique likely to use such expensive miss handlers would

(a) Out-Of-Order Machine (MIPS R10000)

(b) In-Order Machine (Alpha 21164)

FIGURE 2. Performance of generic miss handlers containing 1 and 10 instructions. (N = no miss handler, S = single miss handler, U =
unique miss handler per static reference.)
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be fancy performance monitoring tools, and in that case optimiza-
tions such as sampling could be used to reduce the overhead.

All of our out-of-order experiments so far used the model where an
informing trap is handled the same way as a mispredicted branch
(as discussed earlier in Section 3.2). We also simulated the case
where informing traps are treated as exceptions (i.e., the trap is
postponed until the informing operation reaches the head of the
reorder buffer), and found that this increased the execution times
for 1 and 10-instruction handlers by 9% and 7%, respectively, for
the compress benchmark. Therefore the additional complexity of
handling informing traps as mispredicted branches does buy us
something in terms of performance.

In summary, we have seen that the overheads of informing mem-
ory operations are generally small for 1 or 10-instruction miss han-
dlers, but the overheads can become large in some cases. Whether
the overhead is acceptably small depends on how informing mem-
ory operations are being used. For example, a performance moni-
toring tool can potentially tolerate a two-fold increase in execution
time provided that the tool is still providing useful information. On
the other hand, an application that is attempting to improve mem-
ory performance on-the-fly (e.g., software-controlled multithread-
ing) obviously cannot tolerate an overhead that exceeds its
reduction in memory stall time. Given the wide spectrum of
approaches enabled by informing memory operations, the software
designer has the flexibility to choose the right balance for their par-
ticular application. As for the hardware designer, the fact that there
is generally little runtime cost in executing one extra instruction
per memory reference (either to check cache state or set a miss
handler address) gives them considerable flexibility in how an
informing mechanism is implemented.

4.3 Case Study: Cache Coherence with
Fine-Grained Access Control

We now take a detailed look at one of the applications mentioned
previously: fine-grained access control for parallel programs.
Access control selectively limits read and write accesses to shared
data, to guarantee that multiple processors see a coherent view of
the shared data. It requires triggering handlers selectively on cer-
tain memory references, and writing these handlers to respond to
these memory references with a corresponding action (such as
changing a block’s state or sending out invalidations). As dis-
cussed by Schoinaset al. [SFL+94], there are many implementa-
tion tradeoffs. In some machines, access control is implemented
using bus-snooping hardware, auxiliary protocol processors, or
specialized cache or memory controllers [NAB+94, ABC+95].
Using software-based techniques, one can instrument individual
memory references with extra code to check protocol state and
update it accordingly. Noting the close match between the require-
ments of fine-grained access control and the features of informing
memory operations, this section discusses implementing fine-
grained access control using informing memory operations.

4.3.1 Overview of Approach

Our approach is similar to the Blizzard E scheme described by
Schoinaset al. [SFL+94]. In that scheme, blocks are put into an
invalid state by writing them out to memory with invalid ECC.
Subsequent accesses to these blocks trap to the ECC fault handler,
and the coherence protocol operations are implemented within the
fault handler. In our approach, informing memory operations are
used to implement the block-level handlers that are invoked on
read misses and on writes that change the line’s state; blocks that
are invalid are evicted from the cache. When they are referenced, a

cache miss occurs, which causes the informing memory opera-
tion’s miss handler to run. The protocol operations are imple-
mented in the cache miss handler; because it is tightly coupled to
the cache access, the miss handler has a smaller invocation time
than the ECC fault handler. The miss handler code maintains a per-
cache-line data structure that summarizes protection information
about the line’s “state”; a line can either currently be INVALID,
READONLY, or READWRITE. (As in the Blizzard systems,
page-level handlers are also invoked when a page is first refer-
enced by a processor.)

The cache miss handler performs a lookup of the current address in
the protection state table. Based on whether the invoking reference
is a read or a write, the handler determines if the line’s current pro-
tection level is adequate for the access (READWRITE for a store,
READONLY or READWRITE for a load). If so, the reference
continues, with no state changes and no further delay. If the current
level is inadequate (INVALID on loads, INVALID or REA-
DONLY on stores) protocol operations are needed. Local protocol
operations are user-level changes to the state table, and some of the
instructions needed for these changes may be overlapped with the
miss latency itself. When remote protocol operations are needed, a
handler running on one processor will need to induce an action (a
cache invalidation) at another node. In our experiments, we
assume remote operations are accomplished without interrupting
the remote processor—e.g., using a user-level DMA engine and
network interface per compute node [BLA+94].7

4.3.2 Results

We present performance results for an informing memory opera-
tions implementation of access control, assuming the low-over-
head cache miss trap scheme described in Sections 2 and 3. To
gather statistics on parallel applications with meaningfully long
runtimes, these results were generated using a parallel system sim-
ulator based on TangoLite, as opposed to the detailed uniprocessor
simulator previously described. On application loads and stores,
application processes incur additional delays for lookup and state
change overheads when the access permissions need to be checked
(on a miss). These are given in Table 2. To give a feel for the rela-
tive performance of our access control method, we have also com-

7. User level operations cause DMAs at another processor, and these
induce invalidations of data cached at the remote node. Similar function-
ality could be implemented using a message passing machine and active
messages [ECGS92].

TABLE 2. Machine and experiment parameters for different
access control methods.

Machine
Parameters

•16 processors
•16KB L1 cache/ proc (10 cycle miss penalty)
•128KB L2 cache/ proc (25 cycle miss penalty)
•32 byte coherence unit
•900 cycle 1-way message latency

Reference
Checking
Approach

•18 cycle lookup time
•25 cycle state change time

ECC-
based
Approach

•250 cycle for read to invalid block
•230 cycles for writes to a block on a page
with any READONLY data

Informing
Memory
Approach

• 33 cycle lookup time (includes 6 cycle pipe-
line delay + 9 handler cycles to determine if
load or store)
• 25 cycle state change time
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pared our approach to two other access control systems: (i) based
on per-reference-checking (protection lookup on each potentially
shared reference) and (ii) based on ECC faults8. These approaches
are similar to Wisconsin Blizzard-S and Blizzard-E systems,
respectively; we simulated their lookup and state-change times
using parameters described in [SFL+94] and are also listed in
Table 2.

We simulated all three access control methods using identical
machine assumptions and parameters. Figure4 shows the perfor-
mance of an informing-memory-based coherence scheme com-
pared to software-based or trap-based approaches. While the
relative performance of the reference-checking and ECC-based
approaches fluctuates depending on application parameters (such
as the frequency of reads vs. writes), the informing-op-based
approach always out-performs both of them. For these applica-
tions, the informing memory scheme is an average of 18% faster
than the ECC-based scheme, and 24% faster than the reference-
checking scheme. Compared to the ECC-based scheme, the
informing memory approach benefits from improved coherence
action times. Compared to the reference-checking scheme, our
approach benefits (in the no-coherence-action case) from perform-
ing lookups only on cache misses rather than on all references.
Further experiments have also shown that either smaller network
latencies or larger primary cache sizes tend to improve the relative
performance of the informing memory implementation.

Clearly, access control and cache coherence are complicated issues
with many tradeoffs; space constraints prevent us from discussing
them in detail. Our main goal in this section is not the details of
each of the access control implementations, but rather demonstrat-
ing that informing memory operations— included on commodity
processors—provide another economical method for implement-
ing access control.

8. Our informing memory approach does not rely on hardwarespecialized
for multi-process access control, and for this reason, we compare our-
selves to two published approaches that similarly do not rely on special
access control hardware. Systems with hardware support for cache
coherence [KOH+94] or access control [RLW94], offer better perfor-
mance, but at the cost of more (and more specialized) hardware.
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5 Conclusions

Informing memory operations are a general primitive for allowing
software to observe and react to its own memory referencing
behavior. For both of the implementations discussed in detail—
cache outcome condition codes and low-overhead cache miss
traps—modern processors already contain the bulk of the neces-
sary hardware support; it is used to support branches and excep-
tions. Cache outcome condition codes have minimal hardware
requirements: simply a condition code bit that is set on a cache
miss. Despite their simplicity, this mechanism allows lower-over-
head responses than current non-architected miss counters, since
conditionally branching on this code need not serialize the pipe-
line. Even for the more general low-overhead cache miss trap,
hardware requirements are modest. For an in-order-issue machine,
the main complexity is getting the trap to logically occur at the cor-
rect time. An out-of-order machine can use either its branch or
exception mechanism to handle the trap, but may also need to pro-
vide guarantees about the cache state. For many applications, these
guarantees are not strictly necessary, but when desired, modest
hardware changes can prevent speculative data from entering the
primary cache.

These two mechanisms also offer different tradeoffs on the soft-
ware side as well. Cache outcome condition codes have simpler
hardware requirements, but require executables to be compiled or
edited with explicit branch-on-cache-miss instructions to invoke
cache miss handlers. Low-overhead cache miss traps, on the other
hand, allow for monitoring without special compilers or execut-
able editors; this would facilitate monitoring commercial software
for which source is unavailable, or operating system code where
instrumentation may be inconvenient or impossible.

Exposing memory behavior to software is obviously important for
performance monitoring. The significance of informing memory
operations, however, is that they provide basic primitives which
also support a much broader range of applications beyond perfor-
mance tools. While it may not be cost-effective for all commodity
microprocessors to includeseparate support for memory reference
counting, multithreading, access control mechanisms, etc., inform-
ing memory operations as proposed here provide basic hardware
support that is general enough to apply to many such uniprocessor
and multiprocessor applications. This generality makes it an attrac-
tive feature for future processors, and the availability of informing
memory operations in real hardware may spur further innovative
uses.
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