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Abstract other purely hardware-based mechanisms (e.g., streafarsuf

. . . Jou90]) are complete solutions.
Memory latency is an important bottleneck in system performance[ D P

that cannot be adequately solved by hardware alone. Several pronta addition to hardware mechanisms, a number of promising soft-
ising software techniques have been shown to address this problemare techniques have been proposed to avoid or tolerate memory
successfully in specific situations. Howewbe generality of these latency These software techniques have resorted to a variety of
software approaches has been limited because current architecturdgferent approaches for gathering information and reasoning about
do not provide a fine-grained, low-overhead mechanism formemory performance. Compiteased techniques, such as cache
observing and reacting to memory behavior direcity fill this blocking [AKL79,GIJMS87,WL91] and prefetching [MLG92,
need, we propose a new class of memory operations oaftbenh- Por89] use static program analysis to predict which references are
ing memory operations, which essentially consist of a memory likely to sufer misses. Memory performance tools have relied on
operation combined (either implicitly or explicitly) with a condi- sampling or simulation-based approaches to gather memory statis-
tional branch-and-link operation that is taken only if the referencetics [CMM+88,DBKF90,GH93,lW94,MGA95]. Operating sys-
suffers a cache miss. &8\describe two diérent implementations of tems have used coarse-grained system information to reduce
informing memory operations—one based on a cache-outcomdatencies by adjusting page coloring and migration strategies
condition code and another based on low-overhead traps—and fin{:BLRC94,CDV+94]. Knowledge about memory referencing
that modern in-ordessue and out-of-ordéssue superscalar pro- behavior is also important for cache coherence and data access
cessors already contain the bulk of the necessary hardware suppodontrol; for example, Wgconsins Blizzard systems implement

We describe how a number of software-based memory optimizafine-grained access control in parallel programs by instrumenting
tions can exploit informing memory operations to enhance perfor-all shared data references or by modifying ECC fault handlers to
mance, and look at cache coherence with fine-grained accesdetect when data is potentially shared by multiple processors
control as a case studur performance results demonstrate that [SFL+94].

the runtime overhead of invoking the informing mechanism on the
Alpha 21164 and MIPS R10000 processors is generally small
enough to provide considerable flexibility to hardware and soft-
ware designers, and that the cache coherence application h
improved performance compared to other current solutiors. W
believe that the inclusion of informing memory operations in
future processors may spur even more innovative performanc
optimizations.

While solutions exist for gathering some of the needed memory
performance information, they are handicapped by the fact that
ftware cannot directly observe its own memory behavior. The
undamental problem is that load and store instructions were
defined when memory hierarchies were flat, and the abstraction
hey present to software is one of a uniform high-speed memory
nlike branch instructions—which observably alter control flow
depending on which path is taken—loads and stofesmd direct
. mechanism for software to determine if a particular reference was
1 Introduction a hit or a miss. Improving memory performance observability can
) lead to improvements not just in performance monitoring tools, but
As the gap between processor and memory speeds continues Hso in other areas, including prefetching, page mapping, and cache
widen, memory latency has become a dominant bottleneck in overgoherence.
all application execution time. In current uniprocessor machines, a ] ] ]
reference to main memory can be 50 or more processor cyclesVith memory system observation becoming more important,
multiprocessor latencies are even higtir cope with memory maqhine designers are providing at Ieast' limited hardware support
latency most computer systems today rely on their cache hierarchyfor it. For example, hardware bus monitors have been used by
to reduce the &dctive memory access time. While caches are anSome applications to gather statistics about references visible on an

important step toward addressing this problem, neither they noexternal bus [CDV+94, SG94, BLRC94, BM89]. A bus mongtor
architectural independence allows for flexible implementations,

but also can result in high overhead to access the monitoring hard-
ware. Furthermore, such monitors only observe memory behavior
beyond the second or even third level cache. More rec&RlY
designers have provided usercessible monitoring support on
microprocessor chips themselves. For example, the Pentium pro-
cessor has several performance counters, including reference and
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cache miss counters, and the MIPS R10000 and Alpha 21064 andddress. Overall, our work has focused mainly on three architec-
21164 also include memory performance counters [JHei95,tural methods of implementing fine-grained, low-overhead inform-
DEC92, ERB+95, Mat94]. Compared to bus monitors, on-chiping memory operations. Though similar in functionaligach
counters allow more fine-grained views of cache memory behav-imethod difers in how it transfers control after a data cache miss.
ior. Unfortunatelyit is still difficult to use these counters to deter- In our first methogbased on @ache outcome condition code, the

mine if a particular reference hits or misses in the cache. For conditional branch-and-link operation is an explicit instruction in
example, to determine if a particular reference is a miss (e.g., tdhe instruction stream, and we create user state that records the hit/
guide prefetching or context-switching decisions), one reads themiss status of the previously executed reference. By allowing the
miss counter value just before and after each time that reference isranch-and-link operation to test the value of this state bit, we pro-
executed. This is extremely slpand in addition, counters must be vide the software with a mechanism to react to memory system
carefully designed to give such fine-grained information correctly activity. Though simple, this mechanismfes quicker control

In an out-of-order issue machine like the MIPS R10000, one mustransfers than current cache miss counters.

not reorder counter accesses around loads or stores; in fact, counter . .
accesses in the R10000 serialize the pipeline. ur second method (evaluated more fully in an earlier study

[HMMS95]) removes the explicit user state for the hit/miss infor-
Overall, a number of disjoint and specialized solutions have beemmation, but retains the explicit dispatch instruction. In this case,
proposed for dferent problems. Existing hardware monitoring the machine “notifies” software that the informing operation was a
support is often either heavyweight (i.e., access to the monitoringcache hit by squashing the instruction in the issue slot following
information greatly disrupts the behavior of the monitored pro- that informing operation. If the reference is a cache miss, this slot
gram) or coarse-grained (i.e., the monitoring information is only ainstruction is executed. By placing a conventional branch-and-link
summary of the actual memory system behavior). These characteinstruction in the slot, we fefctively create a branch-and-link-if-

istics are undesirable for software requiring on-thehiigh-preci- miss operation. Our experiments have shown that this second
sion observation and reaction to memory system beha\goan method has similar performance to the cache condition code
alternative, we proposenforming memory operations. mecha- approach, but with a slightly more complex hardware implementa-

nisms specifically designed to help software make fine-grainedtion. It requires two dferent sets of memory operations (since
observations of its own memory referencing behawdad to act users rarely warall memory operations to be informing), and it
upon this knowledge inexpensively within the current software suffers from hardware designers’ aversions to delay slot semantics
context. An informing memory operation lets software reafgrdif  in architectures for superscalar machines. For these reasons (as
ently to the unexpected case of the referemisaing in the cache  well as space constraints) we do not consider it further here.

and execute handler code under the miss, when the processor co

u . . . .
normally stall. gur third informing memory operation mechanigow-overhead

cache miss traps, removes both explicit user state for hit/miss
There are many alternative methods of achieving informing mem-information and the explicit dispatch instruction. Here, a low-over-
ory operations, and Section 2 describes three possible approachdsead trap to user space is triggered on a primary data cache miss.
(i) a cache outcome condition code, (ii) a memory operation with aThe taget of this trap and the return address are kept in special
slot that is squashed if the reference hits, and (iii) a low-overheadnachine registers.

cache miss trap. In Section 3 we describe implementation issues i
the context of an in-ordéssue and out-of-ordéssue machine. . . L
The hardware cost for these mechanisms is modest, yet they pr and low-overhead cache miss trap methods in more detalis¥

vide much lower overhead and more flexible methods of obtainingcuss the required hardware, instruction overheads, and critical soft-
information about the memory system than current cotnateed ware issues for both methods. Section 3 presents implementation

approaches. As discussed in Section 4, informing memory opera§pecifics for one of these methods in both in-erstare and out-

tions enable a wide range of possible applications—from fine-Of-Orderissue superscalar processors.

grained cache miss counting that guides application prefetching .

decisions, to more elaborate cache miss handlers that enforc2.1 Cache Outcome Condition Code

cache coherence or implement context-switch-on-a-miss multi-

threading. Section 5 summarizes our findings. In our first method, all memory operations become informing
memory operations by default. The hardware simply records hit/
miss results of each data memory operation in-uséile state,

and then relies on the software to place explicit checks of this state

In contrast to current methods for collecting information about the N te program code where desired.sTipport this explicit check,
we add a new conditional branch-and-link instruction to the

memory system, an informing memory operation can provide - - . i L
detaileé/ m)e/mory system perfo%mance ir{forpmation to the gppnca_lnstructlon set. This new instruction tests the hit/miss result of the
tion with very little runtime overhead. Ideallgn informing mem-  Prévious memory operation, and it transfers control to the encoded
ory operation incurs no more overhead than a normal memory29et address if that memory operation was a miss.

operation if the reference is a primary data cache hit. On a cachgjost of the hardware needed to implement this functionality is

miss, the informing memory operation causes the processor tjready in the base machine, especially if the machine supports
transfer control of the program to code specific to the memorycondition codes. Here, the cache miss simply becomes another
operation that missed, thus providing a mechanism for fine-grainectondition code. One only needs to add hardware to store this con-
observation of memory system activity dition code (and do the proper bypassing/renaming that is needed

We can essentially decompose the informing memory mechanisni? @ modemn processor).

into a memory operation and a conditional branch-and-link opera-n terms of run-time overhead, an application fetches an extra
tion whose execution is predicated on the outcome of the memorynstruction for every informing memory operation of interest—i.e.,
operations hit/miss signal. If the memory operation hits in the the conditional branch-and-link instructior inimize the cycle-
cache, the transtaf-control portion is nullified. If the memory  count overhead of this instruction, we would want to optimize its
operation misses, control is transferred to the indicategbttar execution for the common case, which is a data cache hit. In other

?his remainder of this section describes the cache condition code

2 Informing Memory Operations



words, we should predict the conditional branch-and-link instruc- same as a conditional-branch-and-link operation, so we use the
tion to be not taken. Therefore, the normal branch mispredict pensame mechanism to implement it. Conceptyahagine that the

alty only applies to the cache miss case. decode of an informing operation inserts two instructions into the
pipeline: (i) the memory operation to the memory unit and (ii) a
branch-and-link instruction that is predicated on the outcome of

instruction allows flexibility in several key areas. Because everyy,q piymiss result of the memory operation to the branch unit. The
memory operation is potentially informing and because we Cantarget address for the branch-and-link is generated from the

easily tsrﬁ)eciagze the action talézn on ‘f’m)t’hswﬁif/ data tmet”.‘oﬁt/ referf AR, the branch-and-link destination is the MHRR, and the
ence (through a unique gt address in the hit/miss test instruc- o qicate is assumed to be false (i.e., no dispatch) for an in-order

_tlc;n) Wte havizha IO\;\_/constant c:‘v_erhtead p(tart_statlc reftlerﬁnce of issue machine. (@/present a detailed description of the hardware
interest over the entire range of instrumentation granul#fibye implementation later in Section 3.)

overhead arises from the explicit check instruction that follows
each memory operation of interest; this instruction uses a fetchlrhe software overheads of this method depend on how it is used.
slot, and must be placed before another memory operation ig-or collecting aggregate data about the memory system, a single or
issued.) Furthermore, we can extend this mechanism to suppodmall number of handlers is fiafent. If the handler address does
gathering information about any other level of the memory hierar-not need to be changed very often, we can achieve our goal of no
chy. This would entail the definition of new condition code bits overhead for cache hits. When more detailed information is
that represent the outcome results for the other hierarchy levels. required, a user can choose between a range of options. Users can
even set the MHAR before each memory operation, invoking a
22 Low-Overhead Cache Miss Tr aps separate handler for each miss, and incurring the one instruction of
overhead per memory operatfoinstead, one could create a sin-
Alternatively we can design an informing mechanism that gle han_dler th"?lt uses the _return_address to index_into a hash t_able to
removes the instruction overhead of an explicit miss chek. T détermine which instruction missed. This solution has a higher
accomplish this, our low-overhead cache miss trap method define8!iSS cost (since you need to do the hash table lookup), but has no
the informing memory operation as a memory operation that trig_overhead on a cache hit.eWill q_uantlfy_ the overhead of fre-
gers a low-overhead trap to user space on a primary data cactfé#/€ntly changing the MHAR later in Section 4.2.
miss. The allure of this method is that a trapping mechanism
potentially incurs no overhead for cache hite &Void traditonal 2.3  Summary
trap mechanisms that require hundreds of cycles to context switch
into the operating system and invoke the trap dispatch code, whiclCompared to current approaches, the methods considered here
then context switches again to run the actual handler have several advantages:

The strength of this scheme is its simplicifihe explicit check

To reduce the overhead on a cache miss, we propose a cache missgeneral:independent of a particular hardwargaotization;
trap that is more like a conditional branch than a conventional trap,
The trap only changes the program counter of the running applica-
tion; it does not invoke any operating system code and saves only a selective notificationinvoked only on triggering action events;
single usewisible machine registeffo implement the trap, we
propose adding two usegisible registers to the machine architec-
ture. One register is the Miss Handler Address Register (MHAR),All of the proposed methods have similar performance and hard-
which contains the instruction address of the handler to invoke onware costs. The simplest approach adds an instruction to check the
an informing memory operation cache miss. The other register isstatus of the previous memory operation (in program order) and
the Miss Handler Return Register (MHRR), into which the return incurs an overhead of one instruction in the case of a cache hit.
address is written when the trap occurs (i.e., the address of theater in the paper we show that the cost of the extra instruction per
instruction after the memory operation that missed). In addition toinforming memory operation is modest, but not zero. If zero over-
the registers, we define an instruction to load the MHAR andhead in the hit case is desired, the low-overhead cache miss trap
another instruction to jump to the address in the MHRR. W can be used. This approach is slightly more complex, since the
assume that a zero value in the MHAR disables trapping (whercontrol transfer instruction is implicit, rather than explicit as in the
observing cache misses is unwanted). first approach. While more complex, the latter mechanism has the
advantage that one can monitor whole system behavior without
program instrumentation, simply by having the MHAR default to a
general handler for all running processesthWache outcome
condition codes, programs must be compiled or instrumented with
the new conditional branches to take advantage of the mechanism.

fine grained:allow low-level memory system observation;

« low ovehead:little program perturbation unless invoked.

There are two main issues involved in the implementation of a
low-overhead cache miss trap: the wiring of the MHAR and
MHRR into the existing processor datapath, and the implicit con-
trol flow change on a cache miss. The implementation of the
MHAR and MHRR is quite simple. The registers are located in the
execution unit (or in the PC unit or in both for speed) and operate .

like other “special” machine registers. The MHRR captures the3 | mplementation | ssues
next PC value and updates the PC on a low-overhead trap return

using the standard branch-and-link/jump-to-registettents hard- ~ While the mechanisms proposed are architecturalfgrelift, the
ware paths and control. complexity of each hardware implementation is similar and

Changing control flow on data cache misses means that th

maCh'!“e must execute an 'mp“C'.tJum.p' This requires the T“aCh'” example one could allow the MHAR to be the destination of an add-

to nullify the subsequent instructions in the pipeline and direct the 1 adiate instruction. and have a GPR act as the “base” redister

fetcher to obtain a new instruction stream. This functionality is the special registers generally cannot be used in ALU instructions. A more
plausible solution would be to make the load MHAR instruction have

1 Alternately we could define two sets of memory operations—those that ~ the ability to add a small fsiet (or the contents of a register) to the PC to
trap on a cache miss and those that do not. generate the desired address. While possible, this latter solution requires

additional hardware.

. Actually doing this operation in one instruction is a little triclképr




focuses on logic issues involved in the safe afidieft changing machine is more complex.a\éxplore this complexity by describ-

of control flow when cache misses ocde use the implementa- ing the implementation of low-overhead traps for informing mem-
tion of low-overhead cache miss traps to make these issues morery operations in the MIPS R10000. The key problem is keeping
clear As previously mentioned, the low-overhead cache miss traptrack of dependences and ordering, since the order of operations is
can be thought of as a load/store followed by an implicit condi- not determined. As with the in-order machine, we mainly reuse
tional branch-and-link instruction. The destination of the condi- existing machine mechanisms to implement this functionality

tional branch is the contents of the Miss Handler Address Register. .
and the link value is placed in the Miss Handler Return Register | €€ are two types of dependences that out-of-Gsdae
What is encouraging about this proposal (and the other informingh@chines normally track. Since the machine must look like a sim-
memory options) is that most of the necessary hardware mechaR!€ in-order machine, it tracks instruction orderd maintains the

nisms are the branch and exception mechanisms already present ¢!y 10 éxecute precise interrupts. It also must track true data
current machines.orsee this in more detail. we discuss tweéedif ependences between the instructions, to ensure that it only lets
ent implementatibnS' we start with the’ simpler in-oideue instructions execute when all the inputs are available. The former

implementation (using the Alpha P84 as an example) and then constraints are tracked in the reorderfémfwvhich holds instruc-

describe the implementation for an out-of-order machine (such a%ions after they are fetched until they “graduate” (i.e., are commit-
MIPS R10000). ed to the architectural state of the processor). The latter

constraints (data dependences) are tracked by the renaming logic.
. . This logic creates a new space for a register each time it is written,
3.1 In-order-issue Machines and gives this identifier to all subsequent instructions that depend
on this value.
To be more concrete about the required hardware, this section ) o
describes how low-overhead cache miss traps could be added f8ranches and exceptions are normally some of the mdieutlif
the 21164 implementation of the Alpha architecture [ERB+95]. Situations to handle in out-of-order machines. When a branch
The 21164 is a superscalar machine that can execute up to #ccurs, the machinefetch unit makes a prediction and continues
instructions per Cyc|e_ Its pipe”ne is shown in Figure 1; integerto fetch .|nStrUCt|0nS. T.hese S_peculatlve instructions are then
operations complete in 6 stages. The machine uses an interestirgjtered into the renaming logic and the reordefebuff the
stall model. All register dependences are handled before arbranch is mispredicted, all these speculative instructions must be
instruction is issued (by using presence bits on the register file)squashed. In a similar mannehen an exception occurs, all the
once an instruction is issued (stage 3) it cannot be stalldubif ~ Instructions after the instruction that excepts must be squashed.
situations are handled using a “replay trap”, and one such situatiod he R10000 uses two téfent mechanisms to handle these situa-
already involves the cache. Namefya load has been issued, and tions. For branches, it uses shadow state in the renaming logic.
an instruction that uses this data is waiting to issue, the machin&ach time the renaming logic sees a branch, it creates a shadow
will issue the dependent instruction at the correct timing for acopy of its state, and increments a basic-block caufterbranch
cache hit (two cycles after the load). If the load does not hit in themisprediction, the rename state is rolled back to its state before the
cache, the machine is in trouble, since there is no way to stall théranch, and all instructions in the machine with a basic-block
already-issued instruction. Instead, the machine takes a replay tragount greater than the branch are squashed. This allows the
flushes the pipeline, and then restarts the same instruction. Thelachine to recover from misprediction as quickly as possible, but
restarted instruction re-enters the issue stage during staged requires substantial hardware support. In contrast, on an exception,

cycle before the data is available from the second-level cache.  the key aspect of the hardware mechanisnoigo minimize the
delay between recognizing the exception and starting the resulting

We use this same replay trap mechanism to implement our lowaction (as in the branch misprediction case), since exceptions
overhead traps. In this case, the replay trap occurs simply becausgcur only rarely Instead, we must guarantee that all preceding
of a cache miss signal and not in response to the speculative issihstructions complete successfully before invoking the exception
ing of a data-dependent instruction. Notice that this new replayhandler To accomplish this requirement, the R10000 waits until
trap occurs for both load and store instructions (that are inform-the excepting instruction is at the top of the graduation queue. At
ing). Effectively, the instruction occurring immediately after an  thjs point all previous instructions have completed, and all instruc-
informing memory operation is marked as dependent upon the&jons in the machine need to be squashed; thus the machine is then
informing memory operatios’ hit/miss signal and the memory cleared and the exception vector is fetched.

operation is predicted to hit in the cache. If the operation misses, a ] ) ) )
replay trap occurs. Rather than re-issuing the marked instructionLow-overhead cache miss traps can be implemented using either
however the machine issues the implicit branch-and-link instruc- the branch or exception mechanism in this machine. Using the
tion with a PC address equal to the informing memory operationbranch mechanism reduces the overhead on a cache miss, but has
(so that the MHRR s loaded with the appropriate return address)more significant hardware implicationseWonvert the reference

The non-blocking memory operation completes in this scenariointo a reference and branch combination; the branch is dependent
since the replay trap occurs on the next instruction. This imple-On the cache missing and is predicted not-taken. The major hard-
mentation is slightly complicated by the fact that the cache missware cost is not adding new hardware functionality to the machine,
information is not saved in any usésible state, so the hardware but rather that we need more of the existing resources, because we
must ensure that the informing memory operation and the trap ar@onsume.them much faster tha.n before. Since each branch requires
atomic; hence external exceptions must either occur before théhe machine to shadow the entire renaming space, the R10000 cur-
memory operation or after the trap occurs. Though this issue doekently only allows three predicted branches in execution at any

make the exception control slightly more complex, it is a solvabletime. If each reference becomes a potential branch, we will need
problem. about 3 times as much shadow state to hold the same number of

issued instructions, since there are typically two memory opera-

3.2 Out-of-order-issue Machines tions per branch.

If this additional hardware is too costiye low-overhead cache
Compared to the implementation for an in-ofdsue machine,  miss trap can be treated more like an exception than a branch. In
the hardware for low-overhead cache miss traps in an out-of-ordethis case the handler invocation time is longer since the machine



Read instruction cache
Buffer instructions; Decode branches; Determine next ICache address.
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L2 Cache data access
DCache Fill
Use L2 Cache Data

FIGURE 1. Alpha 21164 integer and memory access pipeline stages [ERB+95].

waits until the reference is at the top of the graduation queueThe basic problem to address then is the updating of the cache
before the handler is started. The hardware needed for this schenwhen an informing load operation misses and the load is later
is quite modest. The reorder ferf records whether a memory invalidated. This situation arises in two ways: the informing load
operation missed. When an instruction thatesefl a miss gradu-  was control-dependent on a preceding branch that was mispre-
ates, the machine is flushed as though an exception happened dlicted; or a preceding instruction signalled an exception flushing
the next instruction, and the MHAR is loaded into the PC. As wethe pipeline and the informing load. In both cases, the informing
mention later during our experiments in Section 4.2, we haveload must have executed out-of-order andesefl a cache miss
observed a noticeable but not enormous performanteratite (no problem exists for in-order issue machines since memory
between these branch and exception-based techniques (a 7-9% peequests are sent out only if the operation will complete). The miss

formance loss in the integer SPEC92 compress benchmark). will start the execution of the cache miss handialy to have the
reference and the miss handler squashed.
3.3 CacheasVisble State For performance reasons, our solution to this problem must allow

. . . . for the expedient return of speculative load data to the out-of-order
Informing memory operations allow users get information about execution engine. Howevewe must guarantee that the data
the .State of the cache. This creates a new |SSU(::“ for hardWargpdates the first-level cache 0n|y when the informing load opera-
designers: what guarantees do they make about this state? In CUjon commits. Our solution actually permits the speculative
rent machines, the cache state is not a deterministic function of thﬁ]form|ng load Operation to update the cache on a miss. More fre-
program since the cache is not saved and restored during a contegfiently than not, the speculation is correct, and thus we have opti-
switch. If software is only using informing memory operations for mized for the common caseo handle the case where the load
performance tuning, this non-determinism is not an issue—thegperation was squashed, we must now invalidate the data in the
user simply wants to know how the machine is performing at thisfirst-level cache. This approach can reduce the cache performance
instance. In contrast, there are other applications of informingpy flushing potentially useful data. Howeyveéis data often still
memory operations (e.g., cache coherence, as discussed later jasjdes in the second-level cache, and we hatectiskly

Section 4.3) which require thavery time a new line is fetched  prefetched the informing load data into the second-level cache.
into the cache, the system will detect the miss, thus allowing it to

check “access rights” to this data. For such applications, the hardT0 implement our invalidate mechanism, we extend the lifetime of
ware must guarantee that these access checks cannot be bypasdég. Miss Status Handling Registers (MSHR), the data structure
Unfortunately todays out-of-order issue machines allow the first- Used to track the outstanding misses in a lockup-free cache [FJ94].
level cache state to be updated Specu|ati\&m6 our architec- This structure contains the address of the miss, the destination reg-
tural mechanisms do not execute if a speculative informing memdster, and other bookkeeping information. Normalyhen data
ory operation is squashed, this section describes the hardware thigturns to the cache, the MSHR forwards the correct data to the
must be added to an out-of-order issue machine to permit speculdrocessor; if the load is squashed before the data returns, the
tive execution of load instructions but yet prevent these speculativd/SHR is notified to prevent it from forwarding data to a stale des-
loads from silently updating the first-level cache state. tination. We slightly modify this functionality to remove unwanted

) . ] speculative load data. Since the MSHR already prevents the result
Typically, the problem of speculative update occurs only with load of a miss fetch from entering the first-level cache if a load instruc-
instructions. Most processors do not allow stores to probe thajon is squashed before the data returns, we simply have to solve
cache until they commit, and thus the implementation described inhe problem of invalidating a cache line if an informing load miss
this section assumes that store probes are not done speculétively completes before the load is ultimately squasheddd this, we
is straightforward to extend our implementation for speculative extend the lifetime of the MSHR so that registers are freed only
store problems. after a memory instruction is either squashed or graduates. If the



load is squashed (for either reason listed above), the address in thg 1.2 Software-Controlled Pr efetching

MSHR is used to invalidate the line in the cache (i.e., change the

tag state) before the MSHR is freed for reuse. In our simulationsoftware-controlled prefetching tolerates memory latency by mov-

studies, extending the lifetime of these registers does not changgg data lines into the cache before they are needed [MLG92,

the required number of registers—eight wadiceht in all cases.  por89, CMCH91]. A major challenge with prefetching is predict-
ing which dynamic references are likely to miss, since indiscrimi-

i i nately prefetching all the time results in too much overhead
4 Usesof Informlng M emory Oper ations [MLG92]. Informing memaory operations can address this problem

We now focus on how informing memory operations can be usedn two ways. The first option is to recompile for a subsequent run
to enhance performance eWldegin with short descriptions of soft- based on a detailed memory profile captured from earlier runs. The
ware techniques that can exploit informing memory operations.S€cond option is to generate code capable of adapting its prefetch-
We then quantify the execution overheads of invoking the inform-ing behavior “on the fly” based on dynamic cache miss informa-
ing mechanism in modern superscalar processors, and finally w&on. This latter option can be accomplished either by generating

take a detailed look at cache coherence as a case study multiple versions of a piece of code (e.g., a loop) witfersht
prefetching strategies and using informing information to select

which version to run, or else by placing prefetches directly in the
miss handler itself so that prefetching overhead will only be
induced when the application is actually fetihg from cache
isses (and hence prefetches should be beneficial). All of these
pproaches were evaluated in a previous study and were shown to
e useful in improving prefetching performance [HMMS95]. The
ize of a miss handler for prefetching is likely to be small (less than
0 instructions) since it is either launching a handful of prefetches
r else recording some simple statistics. Since we will want to tai-

4.1 Description of Software Techniques

Informing memory operations can benefit a wide variety of soft-
ware-based memory optimizations, and we present only a partia
list of such techniques in this section. While the performance beneb
fit of each technique varies, the runtime overhead of using th%
informing mechanism is Igely dictated by (i) the amount of work 4
to be performed in response to a miss and (ii) how frequently theo
handler address must be changed. The former propégtsathe |, 5 hrefetching response to its context within the program, the
overhead per miss (thefedt is not strictly linear since some han- miss handler address is likely to change frequently

dler code may be overlapped with the miss), and the latter property
dictates the overhead even on hits. (Recall that low-overhead trap . .
eliminate hit overhead only if we reuse the same miss handler). WZQL:L-3 Software-Controlled Multithreading
address both of these issues in our discussion of each technique,

and we quantify their impact on performance in Section 4.2. Multithreading tolerates memory latency by switching from one
thread (or “context”) to another at the start of a cache miss [Smi81,

AKK+93, LGH94, TE94, ACC+90]. Multithreading implementa-
tions to date have generally relied upon hardware to manage and
switch between threads. Howeyerforming memory operations
enable a software-based approach where a single miss handler
could save and restart threads (all under software control) upon
cache misses.wio optimizations would help the performance of
this scheme. First, invoke a thread switch only secondary
(rather than primary) cache misses—such references could be iso-
lated through a combination of static prediction and dynamic
Cobservatiof, thus allowing us to selectively enable the miss han-

? . Lo : “dler accordinglySecond, the overhead of saving and restoring reg-
level), or else_rely on simulation (which is relatively sland ._ister state could be minimized through compiler optimizations
where speed improvements tend to reduce accuracy). Informinge o satically partition the register set amongst threads, only save
memory operations enable a wide array of accurate and inexper restore registers that are live, etc.), or perhaps through hardware
sive monitoring tools, ranging from simply counting cache MISSeS g hnort (e.g., something similar to theABR register windows

(a single registeincrement miss handler) to correlating misses of [Pau94)). A s,ingle miss handler shouldfief (although it may be
individual static references with high-level semantic information selectively enabled to isolate secondary misses) and its length may
such as the data structures being accessed and the control flow h\?éry from a handful to over 100 instructions depending on how

tory. A previous study demonstrated that informing memory oper- o4 qressively we can eliminate register saving/restoring overhead.
ations can be used to collect precisenpégrence miss rates with

low runtime overheads (less than 25%) and tolerable data cachﬁ .

perturbations [HMMS95]. This tool uses a single miss handler4.1.4 Enforcing Cache Coherence

containing roughly 10 instructioh$o increment a hash table entry o - ] ]

based on the branch-and-link return address (available in thé\n application that demonstrates the versatility of informing mem-

MHRR), thus distinguishing all static references. Overall, the Ory operations is the enforcement of cache coherence with fine-

number of instructions in the miss handler of a performance moni-grained access control.édiscuss this application in detail later in

toring tool might vary from one instruction to hundreds of instruc- Section 4.3, but for nowthe key parameters are the following:

tions, depending on the sophistication of the tool. only a single miss handler is required, it is enabled for all poten-
tially-shared references, the handler typically executes 20-30
instructions to check the coherence state, and the dependence
chain through these instructions is roughly 10 cycles long.

4.1.1 Performance Monitoring

Performance monitoring tools collect detailed information to guide
either the programmer or the compiler in identifying and eliminat-
ing memory performance bottlenecks [BM89, GH93V94,
MGA95]. A major dificulty with such tools is how to collect $iuf
ciently detailed information quickly and without perturbing the
monitored program. The high overheads of toglayemory-obser-
vation techniques have resulted in tools that either provide coars
grained information (e.g., at loop-level rather than reference

3. The actual number of dynamic instructions can vary depending on4. For example, observing the cache outcome condition code on the sec-
whether the hash probe hits. ondary cache.



TABLE 1. Simulation parameters for superscalar processors. (These parameters are roughly based on the MIPS R10000 and t
21164 processors, with a few modifications.)

Pipeline Parameters || Out-Of-Order In-Order Memory Parameters || Out-Of-Order In-Order
Issue Vidth 4 4 Primary Instruction and || 32KB, 2-way 8KB, direct-
Functional Units 2INT,2FP1 | 2INT,2FP1 Data Caches set-associative)  mapped

Branch, 1 Branch Unified Secondary Cachg 2MB, 2-way 2MB, 4-way
Memory set-associative| set-associative
Reorder Bufer Size 32 N/A Line Size 32B 32B
Integer Multiply 12 cycles 12 cycles Primary-to-Secondary 12 cycles 11 cycles
Integer Divide 76 cycles 76 cycles Miss Latency
FP Divide 15 cycles 17 cycles Prlmary-to-Memory 75 cycles 50 cycles
Miss Latency
FP Square Root 20 cycles 20 cycles
MSHRs 8 8
All Other FP 2 cycles 4 cycles
Data Cache Banks 2 2
Branch Prediction 2-bit Counters | 2-bit Counters Cache Fill | I
Scheme Data Cache Fill ime 4 cycles 4 cycles
Main Memory 1 access per 1 access per
Bandwidth 20 cycles 20 cycles

4.2 Overhead of Generic MissHandlers 4.2.2 Experimental Results

Each of the techniques we just described has a benefit and a pote®ur results with 1 and 10-instruction miss handlers are shown in
tial cost in terms of performance. While the benefit is specific to Figures 2 and 3. (The su2cor benchmark is shown separately in
the particular technique, the cost can be abstracted as a function &figure 3 since it behaves f@ifently and requires a ar y-axis

the length of the miss handler and how frequently the miss handlescale). For each benchmark, we show five bars: the case without
address must be changed. In this section, we vary these parametargorming memory operationdNj, and cases with a single miss

to measure the execution overhead of several “generic” miss hankandler §) and unique miss handlers per refererdg for both

dlers on modern superscalar processors. Given the ability of thesmiss handler sizes. These bars represent execution time normal-
processors to exploit instruction-level parallelism and overlapized to the case without informing loads, and they are broken down
computation with cache misses, the translation of increasednto three categories explaining what happened during all potential
instruction count into execution overhead is not immediately obvi- graduation slots.The bottom section is the number of slots where
ous without experimentation. instructions actually graduatethe top section is any lost gradua-
tion slots that are immediately caused by the oldest instruction suf-
fering a data cache miss, and the middle section is all other slots
where instructions do not graduate. Note that the “cache stall” sec-
We performed detailed cycle-by-cycle simulations of two state-of- tion is only a first-order approximation of the performance loss due
the-art processors: an out-of-order machine based on the MIP$ cache stalls, since these delays also exacerbate subsequent data
R10000, and an in-order machine based on the Alph&42Dur dependence stalls.

model varies slightly from the actual processors (e.g., we assum%tarting with Figur®, we see that for twelve of these thirteen

that all functional units are fully-pipelined, and we simulate a two- . .
level rather than a three-level cache hierarchy for the AIphabenChm"’”kS (all but tomcatv), the execution overhead of using

21164), but we do model the rich details of these processord"fOrming memory operations is less than 40% under both proces-
including the pipeline, register renaming, the reordefebuyfor sor models. Even in tomcathe execution overhead is less than
the R10000), branch prediction, instruction fetching, branching 25% in all cases except t_he 10-instruction miss handlers on the in-
penalties, the memory hierarchy (including contention), etc. The@'der machine. Applications that frf more from cache stalls
parameters of our two machine models are showralieTL. V¢ tend to have lger overheads, which makes sense since they
simulated fourteen SPEC92 benchmarks (five integer and nin nvoke the handler code more frequentiypother trend (particu-

floating-point) [Dix92], all of which were compiled with -O2 using 211y in the out-of-order model) is that a significant fraction of the
the standard MIPS cc;mpilers under IRIX 5.3. additional instructions needed to specify unique handler addresses

can be overlapped with other computation, thereby having only a
We simulate 1, 10, and 100-instruction generic miss handlers, andelatively small impact on execution time. For example, the
we pessimistically assume that all instructions within the handlersinstruction count for both mdljsp2 and alvinn under the out-of-
are data-dependent on each other (hence a 10-instruction handlerder model increases by over 30%, but the execution time only
requires 10 cycles to execute)eWimulate both a case with no increases by 1%. This means that techniques that need to modify
overhead on hits (i.e., low-overhead cache miss traps with a singl¢the MHAR frequently (e.g., prefetching, multithreading, cache
handler) and also a case where a single instruction is added before
every memory reference to specify the handler address or to repres-'
sent the explicit cache checkeWWodel the full details of fetching

and executing all instructions associated with informing memory o
operations.

4.2.1 Experimental Framework

The number of graduation slots is the issue width (4 for both processors)
multiplied by the number of cycles.@Nocus on graduation rather than
issue slots to avoid counting speculative operations that are squashed.
This fraction multiplied by the issue width (4) gives us the IPC (instruc-
tions per clock) of the machine.
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FIGURE 2. Performance of generic miss handlers containing 1 and 10 instructions. (N = no miss 8andlagle miss hand|dy =
unique miss handler per static reference.)

the clear trend in the floating-point benchmarks is that the out-of-

as order model sidiérs a much smaller relative performance loss than

Q
.E a0l 305 :inis‘;[hﬁasﬁa” the in-order model with lger miss handlers. Thisfett is particu-
c Y larly dramatic in tomcatvwhere the dference in overhead is
S under 10% for the out-of-order model, but greater than 45% for the
§ 201 in-order model. This makes sense because the high branch predic-
5 o0k tion accuracies in the floating point benchmarks give the out-of-
E s order machine ample time to overlap miss handler processing.
— 159
E sof- i R In contrast to the other thirteen benchmarks, the su2cor benchmark
5 " " shoyvn in Figure3 has considerably iger execution overheads,
Z 100¢- particularly for the in-order model. The problem in the in-order
model is that su2cor defs from severe cache conflicts in the 8KB
501 direct-mapped primary data cache, hence triggering the 10-instruc-
tion miss handler frequently enough to quintuple the instruction
= s 50U N SU sSuU count and triple the execution time. (A similar problem occurs to a
Handler Size: 1 10 1 10 lesser extent in tomcajvlhe surprising result that this application

sometimes runs faster with unique handlers than with a single han-
dler is because ddrent handlers are not data-dependent on each
other in our model, whereas a single handler is data-dependent on
its last invocation. Therefore having independent handlers happens
to result in more parallelism in these experiments.

Out-Of-Order In-Order

FIGURE 3. Performance of the SU2COR benchmark with ger
miss handlers containing 1 and 10 instructions. (N = no miss
handler S = single miss handléd = unique miss handler per
static reference.) We also simulated generic miss handlers containing 100 data-
coherence) will not stér much of a performance penalty for dependent instructions, and found that the execution times
doing so. It also means that the performance lost by using anncreased significantly for the applications thatfesuthe most |
explicit cache condition code check will be small. from cache misses (e.g., 6 times slower for compress, and 7 times

slower for su2cor). For applications with few cache misses, the
Another interesting comparison is the ability of each processoroverheads remained low (e.g., only a 2% overhead for ora). The
model to hide the overhead of 10 vs. l-instruction miss handlersonly technique likely to use such expensive miss handlers would
While the results are somewhat mixed for the integer benchmarks,



be fancy performance monitoring tools, and in that case optimiza-

. - TABLE 2. Machine and experiment parameters fofedint
tions such as sampling could be used to reduce the overhead. ! xper P

access control methods.

All of our out-of-order experiments so far used the model where an
informing trap is handled the same way as a mispredicted brancl| Machine ®16 processors
(as discussed earlier in Section 3.2e Wso simulated the case Parameters| e16KB L1 cache/ proc (10 cycle miss penalty’

where informing traps are treated as exceptions (i.e., the trap i ©128KB L2 cache/ proc (25 cycle miss penalj
postponed until the informing operation reaches the head of the *32 byte coherence unit
reorder bufer), and found that this increased the execution times *900 cycle 1-way message latency

for 1 and 10-instruction handlers by 9% and 7%, respectifaly -
the compress benchmark. Therefore the additional complexity of| Reference | *18 cycle lookup time
handling informing traps as mispredicted branches does buy u:| ¢heckin *25 cycle state change time

something in terms of performance. Approac
In summarywe have seen that the overheads of informing mem- ECCH *250 cycle for read to invalid block
ory operations are generally small for 1 or 10-instruction miss han-| 22S¢ *230 cycles for writes to a block on a page

dlers, but the overheads can becomgelan some cases. Whether Approach | ith any READONL data
the overhead is acceptably small depends on how informing mem - - - -
ory operations are being used. For example, a performance mon Héonﬂrgwg ® 33 cycle lookup time (includes 6 cycle pipe
toring tool can potentially tolerate a two-fold increase in execution | Approach line delay + 9 handler cycles to determine if
time provided that the tool is still providing useful information. On load or store) _

the other hand, an application that is attempting to improve mem- ® 25 cycle state change time

ory performance on-the-fly (e.g., software-controlled multithread- -, e~ mjss occurs, which causes the informing memory opera-

Sion’s miss handler to run. The protocol operations are imple-
mented in the cache miss handler; because it is tightly coupled to
e cache access, the miss handler has a smaller invocation time

reduction in memory stall time. Given the wide spectrum of
approaches enabled by informing memory operations, the softwar
designer has the flexibility to choose the right balance for their par

ticul lication. As for the hard desi fact that th han the ECC fault handleFhe miss handler code maintains & per
ticular application. As for the hardware designee fact that there ., pe jine data structure that summarizes protection information
is generally little runtime cost in executing one extra instruction

. about the lines “state”; a line can either currently be INMD,

per memory reference (either to check cache state or set a MISSEADONLY. or READWRITE (As in the Blizzard systems
handler address) gives them considerable flexibility in how anaqe jevel handlers are also invoked when a page is first refer-
informing mechanism is implemented. enced by a processpr

4.3 Case Study' Cache Coherence with The cache miss handler performs a lookup of the current address in
. . ) the protection state table. Based on whether the invoking reference
Fine-Grained Access Control is a read or a write, the handler determines if thedlioetrent pro-

. L . ection level is adequate for the access (READWRITE for a store,
We now take a detailed look at one of the applications mentioneth e ApONLY or READWRITE for a load). If so, the reference

previously: fine-grain_ed access control fo_r parallel programs. ontinues, with no state changes and no further délidne current
Access control selectively limits read and write accesses to share%vel is inadequate (INMLID on loads, INVALID or REA-

data, to guarantee that multiple processors see a coherent view g v on stores) protocol operations are needed. Local protocol
the shared data. It requires triggering handlers selectively on cer:

tai P d writng th handlers t d toperations are uségvel changes to the state table, and some of the
ain memory relerences, and writing these handiers 10 respond s ctions needed for these changes may be overlapped with the

these memory references with a corresponding action (such ag,iss |atency itself. When remote protocol operations are needed, a
changing a bIoc_ls state or sending out |nvaI|dat|qns). As dis- handler running on one processor will need to induce an action (a
cussed by Schoinas al. [SFL+94], there are many implementa- .5 he inyalidation) at another node. In our experiments, we

tion tradeofs. In some machines, access control is implemented s me remote operations are accomplished without interrupting
using bus-snooping hardware, auxiliary protocol processors, Olhe remote processor—e.g., using a {seel DMA engine and

specialized cache or memory controllers [NAB+94, ABC+95]. etwork interface per compute node [BLA+94]
Using software-based techniques, one can instrument individua[1 ’

memory references with extra code to check protocol state anQL3_2 Results
update it accordinglyNoting the close match between the require-
ments of fine-grained access control and the features of informin
memory operations, this section discusses implementing fin
grained access control using informing memory operations.

Yve present performance results for an informing memory opera-
€tions implementation of access control, assuming the low-over-
head cache miss trap scheme described in Sections 2 and 3. T
. gather statistics on parallel applications with meaningfully long
4.3.1 Overview of Approach runtimes, these results were generated using a parallel system sim-
ulator based onangolite, as opposed to the detailed uniprocessor
Our approach is similar to the Blizzard E scheme described bysimulator previously described. On application loads and stores,
Schoinaset al. [SFL+94]. In that scheme, blocks are put into an application processes incur additional delays for lookup and state
invalid state by writing them out to memory with invalid ECC. change overheads when the access permissions need to be checked
Subsequent accesses to these blocks trap to the ECC fault handléon a miss). These are given iable 2. D give a feel for the rela-
and the coherence protocol operations are implemented within théive performance of our access control method, we have also com-
fault handler In our approach, informing memory operations are -
used to implement the block-level handlers that are invoked on’- User level operations cause DMAs at another processut these
read misses and on writes that change theslisiate; blocks that induce invalidations of data cached at the remote node. Similar function-

. . . ality could be implemented using a message passing machine and active
are invalid are evicted from the cache. When they are referenced, a messages [ECGS92].




5 Conclusions

200 = Informing Mem. Ops. Informing memory operations are a general primitive for allowing
ECC-based Traps software to observe and react to its own memory referencing

Software Checking behavior For both of the implementations discussed in detail—
cache outcome condition codes and low-overhead cache miss
150 — traps—modern processors already contain the bulk of the neces-

sary hardware support; it is used to support branches and excep-
tions. Cache outcome condition codes have minimal hardware
requirements: simply a condition code bit that is set on a cache
1004+ - - - - - miss. Despite their simplicitthis mechanism allows lowewer-

head responses than current non-architected miss counters, since
conditionally branching on this code need not serialize the pipe-
line. Even for the more general low-overhead cache miss trap,
hardware requirements are modest. For an in-ésdae machine,

Normalized Execution Time (% of Inf-op Version.)

01 the main complexity is getting the trap to logically occur at the cor-
rect time. An out-of-order machine can use either its branch or
exception mechanism to handle the trap, but may also need to pro-
vide guarantees about the cache state. For many applications, these

0 guarantees are not strictly necessdyt when desired, modest

water barnes lu mp3d cholesky hardware changes can prevent speculative data from entering the
primary cache.

FIGURE 4. Normalized execution times for three access cor

methods. These two mechanisms alsdenfdifferent tradeds on the soft-

ware side as well. Cache outcome condition codes have simpler
A?Jardware requirements, but require executables to be compiled or
edited with explicit branch-on-cache-miss instructions to invoke
cache miss handlers. Low-overhead cache miss traps, on the other
hand, allow for monitoring without special compilers or execut-

ble editors; this would facilitate monitoring commercial software
or which source is unavailable, or operating system code where
Instrumentation may be inconvenient or impossible.

pared our approach to two other access control systems: (i) bas
on perreferencechecking (protection lookup on each potentially
shared reference) and (ii) based on ECC faulisese approaches
are similar to Wsconsin Blizzard-S and Blizzard-E systems,
respectively; we simulated their lookup and state-change time
using parameters described in [SFL+94] and are also listed i
Table 2.

,Exposing memory behavior to software is obviously important for

We simulated all three access control methods using identica o R h )

machine assumptions and parameters. Figigleows the perfor- perforr_nance monitoring. The S|gn|f|qance O.f '“f‘?mﬁ'.“g memory
mance of an informing-memory-based coherence scheme comgperations, howeveis that they provide basic primitives which
pared to software-based or trap-based approaches. While thalso support a much broader range of applications beyond perfor-

relative performance of the reference-checking and ECC-base ance tools. While it may not be cosfeetive for all commodity

approaches fluctuates depending on application parameters (Sud’HICI’OPt'OCESS(?rS to |qcIUMparate;upport for memory refere.nce
as the frequency of reads vs. writes), the informing-op-base ounting, multithreading, access control mechanisms, etc., inform-

approach always out-performs both of them. For these applica-'ng memory operations as proposed here provide basnc_ hardware
tions, the informing memory scheme is an average of 18% fastep"PPOrt t_hat is general gnoggh to apply to many such uniprocessor
than the ECC-based scheme, and 24% faster than the referenc nd multiprocessor applications. This generallt_y m_akes itan attrac-
checking scheme. Compare(’j to the ECC-based scheme, tha/® feature for future processors, and the availability of informing

informing memory approach benefits from improved coherenceMemory operations in real hardware may spur further innovative
action times. Compared to the reference-checking scheme, ouySes:

approach benefits (in the no-coherence-action case) from perform-
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