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isolate and highlight program memory bottlenecks, and how to gather such information efficiently.
These ideas are embodied in the MemSpy performance monitoring tool.

Orthogonal to previous code oriented statistics, MemSpy’s data oriented statistics form an
important new dimension in viewing and analyzing program behavior. Together, data and code
oriented statistics are a powerful approach for analyzing and tuning memory performance. In
addition, by offering detailed characterizations of the predominant causes of misses for each data
structure, MemSpy gives users important insights about the cause of memory bottlenecks, and how
to fix them.

Finally, key to implementing such detailed statistics is the ability to gather program information
efficiently. This work shows that simulation-based performance monitors can offer a feasible, effec-
tive, and inexpensive alternative to other data collection methods. By combining the optimizations
of hit bypassing and reference trace sampling, MemSpy overheads dropped to 3 to 10 fold for se-
quential applications and 8 to 25 fold for parallel applications. Overall, this work demonstrates the
utility of MemSpy’s detailed, data oriented statistics, and introduces methods for collecting them
with execution time overheads that make MemSpy an attractive alternative to other less detailed

approaches.
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Figure 11: Application characteristics and MemSpy usage.

references have little need for MemSpy tuning, so their potential for higher sampling error is less

relevant.

6.4.2 MemSpy Performance Using Sampling

Our primary purpose in using time sampling is to improve MemSpy’s performance. To implement
sampling, we add per-reference instrumentation, in which a sampling counter is decremented and
checked to see if simulation is currently on or off. If simulation is off, control branches around the
memory simulator procedure call. If simulation is on, MemSpy saves the application registers and
performs the cache hit check described in Section 6.3. Thus, we expect this sampling implementa-
tion to offer a modest performance improvement on cache hits (that can be bypassed anyway) and
a large performance improvement on cache misses. In other words, as with accuracy, we expect
sampling to yield the largest performance benefits on the applications most likely to be used with
MemSpy — those with poor memory behavior.

The lightly shaded bars in Figure 7 show simulation overhead using the time sampling approach
with the same parameters as in the preceding accuracy discussion. For the sequential benchmarks,
sampling results in a 1.7 to 3.1 fold performance improvement over hit bypassing alone. For the
parallel benchmarks, improvements are slightly larger, ranging from 2 to 5.4. These improvements
lead to attractive execution time overheads ranging from roughly 3 to 10 for sequential applications

and 8 to 25 for parallel applications.

7 Conclusions

Both sequential and parallel applications are currently facing a growing gap between processor
and memory speeds, and consequently, performance lost due to memory stalls can be substantial.
Despite this trend, performance monitoring tools have lagged in providing support for identifying
and characterizing memory bottlenecks. This paper has presented our views on what kinds of

information are useful for tuning memory performance, how to present such information in ways that
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Figure 10: Estimated and true cache miss rates for sequential and parallel applications.

6.4.1 MemSpy Accuracy Using Sampling

Overall, we find that time sampling is quite effective at accurately reproducing cache statistics
from a full simulation. For example, Figure 10 compares estimated cache miss rates from sampling
(using a 10% sampling ratio) to the program’s true miss rate calculated over all references. For
the sequential applications, the samples contain 0.5M references. (That is, we simulate 0.5M
references, then turn simulation off for 4.5M references before turning it on again.) For the parallel
benchmarks, samples are 3M references long, where a sample in this case is a group of references
from the interleaved reference traces of all processors. The largest absolute deviation between the
true miss rate (stars) and estimated miss rate (circles) is 0.74%, with small relative deviations as
well.

The discussion in [11] presents more comprehensive sampling accuracy results, varying the
number of samples taken, the sample length, the cache size, and in the parallel case, the number
of processors. Overall, our results show that for sequential benchmarks with small and moderately
sized caches, miss rates can be estimated with small absolute deviations (< 0.5%) and relative
deviations of 10% or less. These estimates require sample lengths of only 0.5M references or less.
For good accuracy when simulating larger caches (> 1MB), longer samples are required to prime
the cache — 4M references or more. However, this still allows for aggressive sampling ratios on many
applications. Finally, we find that simulating parallel applications requires slightly longer samples
because parallel machines generally have more total cache. However, required sample length is not
proportional to total cache size for parallel applications, because coherence traffic can mitigate the
need for longer samples.

As illustrated in Figure 11, trace sampling is successful in MemSpy because the applications
most suited to sampling coincide well with the applications most in need of tuning. Applications
with high miss rates and many references are most amenable to sampling, because it is easier

to sample them with low relative errors. By contrast, applications with low miss rates and few
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bypassing path in Figure 8 shows how the cache hit check is embedded into the register saves. Thus,
we initially only save the registers required to check if the reference is a cache hit or cache miss. If
the reference is a cache miss, we complete the rest of the register saves and continue simulating. If
the reference is a cache hit, we restore the minimal subset of registers and return to the application,
bypassing the simulator call entirely. In parallel applications, writes that cause invalidations are
always simulated, but no statistics are kept on cache hits.

The middle columns in Figure 7 show the significant performance benefits of using hit bypassing.
With this technique, performance improves by factors of 1.5 to 3.4 compared to the baseline code.

MemSpy’s overhead factors drop to 8 to 17 for sequential code and 30 to 50 for parallel code.

6.4 Optimizing MemSpy Performance Using Sampling

In the second optimization, reference trace sampling, cache behavior is estimated while simulating
only portions of a reference trace, rather than simulating the full trace. Intuitively, sampling
is a promising technique because we expect to be able to approximate program behavior with
reasonable accuracy by taking intermittent snapshots of its activity. For example, sampling of
program counter values is already used in several tools such as Gprof [5]. Reference trace sampling
promises significant speedup, since one incurs the full simulation overhead only on a fraction of
the full reference stream. On the other hand, there is an inherent tradeoff between the fraction of
references simulated and the accuracy of the simulation results. Within the context of a performance
debugging tool, trace sampling can be used effectively to improve the tool’s performance while
retaining acceptable accuracy.

We focus here on the use of time sampling which, as shown in Figure 9, is implemented by
intermittently turning reference simulation on and off as a reference trace is processed. The two
key parameters in the implementation are (i) the sample length (or, number of references contained
in each sample), and (ii) the number of samples. A third dependent parameter is the sampling
ratio, the ratio of the total number of references within the samples, divided by the total number
of references in the run. In this paper, we present accuracy results for one setting of sampling
parameters, and briefly summarize other results. References [6], [10], and [11] discuss reference

trace sampling in more detail.
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Figure 8: MemSpy control flow: Baseline and Hit Bypassing versions.

of 18 to slightly under a factor of 60. The overheads for the parallel applications, ranging from
factors of 64 to 115, are higher than for the sequential benchmarks due to increased complexity in
simulating the parallel machine. !

For both the sequential and parallel benchmarks, 97% or more of MemSpy’s overhead is due
to processing memory references. Thus, we focus our discussion specifically on the processing
overhead required for memory references in MemSpy. The baseline path in Figure 8 shows the flow
of actions MemSpy performs on each simulated memory reference. These actions are categorized (by
shading) into three types of overhead: (i) memory simulation itself (roughly 45% of the overhead),
(ii) statistics bin searches (30%), and (iii) context switches (register saves and restores) entering
and exiting the simulator (25%). Based on this data, the performance optimizations presented in

Sections 6.3 and 6.4 will concentrate on reducing time spent in these three phases.

6.3 Optimizing Performance Using Hit Bypassing

Hit bypassing originates from the observation that the “interesting” memory events, from a per-
formance tuning point of view, are events that incur memory stalls. For most architectures, only
cache misses incur stalls; by keeping no cache hits statistics, we can avoid the significant overhead
on all cache hits, a majority of the references.

In the baseline implementation, we save a full set of registers, and then call the simulator to
check if the reference is a cache hit or miss. The cache check itself uses very few registers (roughly
4-7 depending on the simulator and the implementation), and if the reference is a hit, we return

almost immediately, restoring the full set of registers although only a handful were used. The hit

'For the parallel applications, the execution time overhead is shown relative to a uniprocessor execution time of
the program. To compare to an actual multiprocessor execution time, one multiplies these overheads by the expected

program speedup.
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tention is not modeled. All heap references and static data references in the code are instrumented
for simulation. For multiprocessor simulations, we simulate an invalidation-based protocol. When

simulating sequential machines we assume a 128KB direct-mapped data cache with 32 byte lines.
For parallel machines, we assume 16 CPUs, each with a 64KB direct-mapped cache with 32 byte

lines.

Benchmark Applications By evaluating MemSpy’s performance on substantial sequential and
parallel applications from the engineering and scientific community, we show that its simulation-
based implementation is practical on “real” benchmarks. The four sequential applications are:
(i) Blocked matrix multiply as described in Section 4, (ii) Espresso from the SPEC benchmark
suite, (iii) Tri, a sparse triangular matrix solver, and (iv) a uniprocessor run of Mp3d, a SPLASH
benchmark. The four parallel applications are all taken from the SPLASH benchmark suite: (i)
Mp3d, (ii) Cholesky, (iii) Water, and (iv) LocusRoute. These eight applications span a variety
of application domains including numerical computations, scientific, and engineering applications.
In addition, they span a range of cache miss rates (0.2% to 18.2%) and code sizes (500 to 14000
lines). As such, they demonstrate the variety of applications amenable to MemSpy’s performance

monitoring.

6.2 Performance of Baseline MemSpy Implementation

The leftmost (black) column for each application in Figure 7 shows the baseline performance over-
heads for MemSpy as measured on a DECstation 5000/240 workstation. The results are shown as
multiplicative factors comparing the time for a MemSpy run to the time for an uninstrumented run

of the same program. For the sequential applications, the overheads range from roughly a factor
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enough for clear bottlenecks to stand out. Moreover, statistics that are too fine-grained may also
be inefficient to implement in terms of (i) storage inefficiency, because more memory is needed
to maintain very fine-grained statistics, and (ii) execution time inefficiency, because extra time is
needed to manage and update the larger number of statistics bins.

In its code oriented statistics, MemSpy separates information by procedures. Since the MemSpy
simulator logs procedure entries and exits, it can easily maintain a shadow of the procedure call
stack to track the currently executing procedure. In most programs, procedure-oriented statistics
have been fine-grained enough to localize performance bugs, but future versions of MemSpy could
allow users to choose statistics on basic blocks, rather than procedures, for finer-grained monitoring
when needed.

In its data oriented statistics, MemSpy keeps aggregate data bins that encompass all memory
ranges allocated at the same point in the source code with identical dynamic procedure call paths.
When a heap allocation occurs, the current source code position and stack are noted. If the current
program counter, as well as all the program counters on the stack, identically match that for a
previously initialized bin, the statistics for this new range of memory are kept in that bin. The
rationale for this heuristic is that, in our experience, data objects allocated at the same point in
the source code via the same call path are usually similar in memory behavior. When memory is
allocated in separate calls to a procedure from different call paths, it is monitored in separate bins.

Integrated together, these methods for monitoring programs and generating data and code
oriented statistics at useful granularities have proven quite effective in practice. These techniques
have been used successfully on a variety of programs, including the SPLASH parallel benchmarks.
In addition, as will be discussed next, the implementation is efficient enough to allow these statistics

to be generated with competitive overheads as well.

6 MemSpy Performance

This section begins by describing the measurement setup and presenting MemSpy’s execution time
overheads for sequential and parallel applications on a “baseline” implementation. While the base-
line simulation overhead is already acceptable, we also describe two approaches for reducing Mem-
Spy’s runtimes into more interactive regimes: (i) optimizing simulation for the “common case”,
cache hits, and (ii) generating program statistics based on only samples of references, rather than

the full trace.

6.1 Performance Measurement Setup

To evaluate MemSpy’s overheads, the results presented in this paper were gathered using a simple
memory simulator with a single direct-mapped cache per processor. Cache hits execute in a single

processor cycle and cache misses take a fixed, parameterized latency to be serviced. Network con-
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detailed information on the causes of misses and the causes of replacements, it would have been
difficult to interpret this situation as self-interference. MemSpy has also been used to tune several
other programs as well. For example, it has identified performance bugs due to: (i) false sharing
and a “vestigial” (incremented but unused) variable in LocusRoute, a SPLASH benchmark, (ii) self-
interference in the ElementArray in Pthor [12], (iii) poor spatial locality in a sequential volume
rendering program, Vrender [7], and (iv) shared accesses to a private variable in a parallel version
of Vrender. Together these experiences have confirmed the utility of these detailed, data oriented

statistics.

5 MemSpy Implementation

In this section we address two principle design decisions in MemSpy: (i) how to gather this detailed
information efficiently and (ii) at what code and data granularity to present this information to

users.

5.1 Simulation-Based Monitoring

To present the performance information illustrated in Section 4, MemSpy must monitor at the
granularity of individual memory references in the code being studied. To accomplish this, we have
implemented MemSpy using a simulation-based approach. Simulation’s main advantage is that it
can be general and portable, since it relies on no specialized hardware support.

MemSpy is built on top of the Tango Lite reference generator [4]. Tango Lite is a direct
execution system that simulates the execution of both multiprocessor and uniprocessor machines on
uniprocessor workstations. In a direct execution simulation, “interesting” events are instrumented
at compile-time with additional code to call event simulators. For MemSpy, the following events
are instrumented: (i) memory references, (ii) procedure calls and returns, (iii) memory allocations,
and (iv) synchronizations. For each event, instrumentation code calls the MemSpy simulator that
maintains internal information on the state of the simulated memory hierarchy, as well as the profile

information required to report MemSpy’s statistics.

5.2 Granularity of Data and Code Oriented Statistics

A significant issue in implementing data and code oriented statistics is determining a natural
granularity at which to present statistics. MemSpy statistics are organized and managed in terms
of statistics bins containing program information (such as memory time, number of cache misses,
or causes of cache misses) collected either for particular data or code sections or for pairings of data
and code sections in the application. Choosing the right granularity in both data and code oriented
statistics is important because statistics that are too coarse-grained may not localize bottlenecks

well enough. On the other hand, statistics that are too fine-grained may not aggregate activity
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space constraints) of the causes of these replacements. Surprisingly, over 95% of the replacements
are due to the Y matrix itself.

Thus MemSpy, in this case, takes users to the point where they know (i) that the bottleneck is
in the Y matrix, (ii) that it is caused by excessive cache interference, and (iii) that this interference
is in fact self-interference, since the replacements are cause by the Y matrix itself. From this
information, programmers can determine that self-interference occurs here because the sub-rows
within the currently used block of Y are not stored contiguously, and thus do not map neatly
across the whole cache. Rather, as shown in Figure 6, sub-rows are separated from one another
by intervening amounts of matrix storage. This leads to cases where some sub-rows map on top of
one another in the cache, while other portions of the cache remain unused. The programmer can
minimize this effect by choosing a block size with less interference, or by copying the block so that
it occupies a contiguous region of memory.

Overall, the example’s message is that without MemSpy’s data oriented statistics, it would

have been difficult to see which matrix was causing the memory bottleneck. Furthermore, without



Figure 4: MatMul: Memory stall time in the block procedure attributed to the X, Y, and Z matrices.

To further understand and tune this code, users need information on whether a single matrix is a

bottleneck, or whether some interaction between the three matrices is causing the stalls.

4.1.1 Data Oriented Breakdown

To understand the stall time contributed by each data structure, MemSpy lets users click on the
memory portion of the block routine’s bar to request the next display. This display, shown in
Figure 4, gives a breakdown of the memory stall time into components incurred by each data
structure in this procedure. With these data oriented statistics, one can learn that the bottleneck
in this routine is almost entirely due to cache misses on references to the Y matrix. These misses
are responsible for over 85% of the total stall time in the program. Since the Y matrix is actually
the one that was blocked for good data reuse, it is surprising that Y is responsible for so much stall

time.

4.1.2 Detailed Statistics on Causes of Misses

At this point, while MemSpy has provided insight as to where the bottleneck is occurring, we still
have little understanding of why it would be occurring. To get more insight into the problem, we
can click on the Y bar in Figure 4 to bring up a cause of miss display. The bar chart in Figure 5
breaks down the causes of cache misses for the Y matrix in the block routine. In this routine, all of
Y’s misses are caused by previous replacements. That is, the data objects were all previously in the
cache, but have been replaced out of the cache before the re-references occurred that resulted in
cache misses. (The first reference misses for the Y matrix occur in a separate initialization routine.)
The high number of replacement misses incurred by Y indicates that the bottleneck is probably
related to cache interference effects. To understand the cause of the memory bottleneck, however,
users must know which accesses are causing the cache replacements. Clicking on the replacements

portion of the “causes of misses” bar in Figure 5, brings up a breakdown (not shown here due to
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Figure 3: MatMul: MemSpy overview statistics display.

powerful method for focusing the user’s attention on problem areas in the code. One also sees how
detailed statistics on the causes of cache misses are crucial for understanding why the performance

bottleneck is occurring.

4.1 Tuning Using MemSpy

To make the performance bug most evident, we show MemSpy’s output on one of the poor perfor-
mance cases from [8]. We multiply two 293 x 293 element matrices together, using a block size of
56. (A single 56 x 56 block requires roughly 25K bytes, and should easily fit into the 64KB cache.)

MemSpy begins by presenting the output shown in Figure 3. The program procedures are
indicated along the x axis of this graph, and the time (in processor cycles) spent on behalf of each
procedure is given on the y axis. The bar for each procedure breaks down the elapsed time by how
much of it was spent in computation and how much in memory stalls. In addition, for parallel
programs, the bar indicates synchronization time as well.

Figure 3 indicates that the bulk of the application’s time is spent in the block routine. It
accounts for over 90% of the execution time. Furthermore, the breakdown of time within the block
routine shows a clear memory bottleneck. While we expected the bulk of the computation to be
spent in block, the observation that roughly 80% of the time is spent on memory stalls is surprising,
since we expected the 25KB block to easily fit in the 64KB cache for the computation.

Within the block routine, most of the execution time is spent in line 13 of the code in Figure 2.
In this line, the appropriate elements of X (r) and Y are multiplied, and the result is accumulated in
an element of Z. Since all three matrices are accessed on source line 13, code oriented statistics alone

offer no help in determining the relative contributions of the three matrices towards the bottleneck.



1. block(X, Y, Z, N, B)

2. Matrix *X, *Y, *Z;

3. int N,B;

4. {

5. int kk,jj,i,j.k;

6. double r;

T. for kk = 1 to N by B do

8. for jj =1 to N by B do

9. for i =1 to N do
10. for k = kk to min(kk+B-1,N) do
11. r = X[i,k];
12. for j = jj to min(jj+B-1,N) do
13. Z[i,j] = z[i,j] + r*Y[k,jl;
14. }

Figure 2: Pseudo-code for blocked matrix multiply example.

The lack of detailed support for memory bottleneck identification stems partly from difficulty in
efficiently gathering memory system statistics. Gathering detailed memory statistics requires fine-
grained monitoring using either specialized hardware or software simulation. The drawback of
specialized hardware is that it can limit the generality of the tool, but on the other hand, software
simulation can often be too slow. This work offers optimizations that significantly improve the

efficiency of simulation-based monitoring.

4 Using MemSpy: A Case Study

This section illustrates MemSpy’s detailed, data oriented statistics on a particular program, MatMul,
which performs a blocked matrix multiply. Although this is a fairly simple application, it is a case
where the common intuitions about the code’s behavior are incorrect, and tools like MemSpy are
helpful in guiding the programmer to the bottleneck.

The blocked matrix multiplication code (computing Z = X X Y) is shown in Figure 2. Unlike
standard matrix algorithms, blocked algorithms such as this are coded to operate on sub-matrices
or blocks of the original matrix. These sub-blocks are sized to fit in the cache, to maximize reuse
of the data. By iterating over all sub-blocks, the full matrix multiplication can be performed,
ostensibly with better cache performance due to the blocking.

As Lam et al. reported in [8], the performance of such blocked operations is often erratic, and is
quite sensitive to even small changes in the matrix size, the block size, and the cache organization.
For a DECstation 3100, they report that a 300 by 300 blocked matrix multiply (with 56 by 56 block
size) executes at 4.0 MFLOPS, while by contrast, an only slightly smaller 293 by 293 matrix with
the same block size executes at only 2.0 MFLOPS on the same machine. Thus, the goal of this case
study is to show how MemSpy can be used to guide programmers through the tuning process for

this program. As we proceed through the case study, one can see that data oriented statistics are a
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Figure 1: Decomposing programs into data and code statistical bins.

Figure 1 gives an abstract illustration of possible code oriented and data oriented subdivisions
in a program. While code oriented statistics only divide program statistics along one dimension,
the key contribution of data oriented statistics is that they allow for statistics to be presented
along a second dimension of this space, by subdividing the program according to source-level
application data structures. Because of the inherent link between memory performance and the
access patterns of particular data structures, these statistics can be crucial to reasoning about
memory behavior. (Echoing this message, CPROF [9], developed independently, also implemented
data oriented statistics.)

Data oriented statistics are especially useful in cases in which a particular data structure may
constitute a memory bottleneck, but accesses to it are distributed across several procedures. For
example, in Pthor (a SPLASH benchmark [12]) the ElementArray is responsible for more of the
program’s cache misses than any other variable, but these misses are distributed across several
procedures. Code oriented output cannot emphasize ElementArray’s performance problems as
well as data oriented output can, because no single section of code is the bottleneck. In this case,
the bottleneck lends itself to data oriented viewing. Furthermore, combinations of data and code

oriented statistics can also be instrumental in isolating particular memory bottlenecks.

3.2.2 Statistics on Causes of Cache Misses

After determining where program bottlenecks lie, users need progressively more detail to understand
why bottlenecks are occurring. As discussed in Section 3.1, cache misses occur for one of three
reasons: (i) due to first reference, (ii) due to replacement, or (iii) due to invalidation. By presenting
detailed statistics on the frequency and primary causes of cache misses, MemSpy can give the
programmer insight about the type of memory performance bottleneck present, and how to tune
it.

In spite of the importance of detailed information in understanding memory performance, most
existing tools have provided no statistics on memory system behavior at all. Other tools, such as

Mtool [3], give only high-level information about which parts of the code cause memory bottlenecks.



performance tuning.

Some programs may suffer from performance bottlenecks due to cache interference. Here,
multiple memory lines mapping to the same cache line can compete for cache space and result
in excessive cache misses. Tools can help programmers identify interference by pointing out data
structures with excessive replacement misses. Replacement misses occur if a particular memory
line has been referenced before, but has been replaced out of the cache by an intervening reference
to another line competing for the same space in the cache. In such programs, simple adjustments
or coloring strategies to stagger data structures in the cache can significantly improve performance.

As another example, poor spatial locality occurs when a program’s data access order is not well
correlated with the data storage order; because of this, it may not make efficient use of the full
line of data fetched on a cache miss. Poor spatial locality can be especially pronounced in parallel
code, because data structures that were stored and accessed contiguously in the sequential case may
become distributed over several processors in the parallel case. Frequently, poor spatial locality can
be deduced from seeing large memory stalls due to first reference misses. (Other metrics, such as
counts of the number of bytes accessed per cache line between cache misses, can also be useful for
noticing poor spatial locality.) Spatial locality can then be improved by restructuring data accesses
or storage schemes to pack cache lines more efficiently with useful data.

Finally, in multiprocessors, programs may also have poor memory performance due to ezcessive
interprocessor sharing, resulting in large amounts of cache coherence traffic. Since shared data is
used for interprocessor communication in shared memory parallel programs, some memory stalls due
to sharing are unavoidable. However, an excess of invalidation misses can indicate data structures or
code sections where restructuring to minimize the required communication would be most fruitful.
In addition, programs can also often be restructured to reduce false sharing, in which multiple
processors actively read and write different variables on the same cache line.

Overall, the message here is that by understanding the underlying causes of memory bottlenecks,

a programmer gains significant insight towards tuning them.

3.2 MemSpy Statistics for Tuning Memory Bottlenecks

An effective performance tool must offer programmers information on both where and why bottle-
necks are occurring in their code. To answer the “where” question, MemSpy presents statistics in
terms of the application’s data, as well as code, structures. To answer the “why” question, MemSpy
presents statistics on the frequency and causes of cache misses that can be instrumental in guiding
programmers and compilers towards effective program transformations. This section describes each

of these approaches.

3.2.1 Data and Code Oriented Statistics



2 Previous Performance Monitoring Approaches

For the most part, previous work on performance tools has not focused on support for memory
performance tuning. For example, Gprof [5], a widely-used tool, offers per-procedure rankings of
execution time spent in the code, but gives programmers little intuition about what is causing
a particular bottleneck, and whether memory behavior may be responsible. Other tools such as
Quartz [1] have been aimed specifically at parallel programming; they offer support for discerning
synchronization, as well as computation, bottlenecks in the code. However, as with Gprof, Quartz
offers no specific information for understanding application memory performance.

Mtool [3] is an example of a tool which does provide support for memory performance tun-
ing. Mtool provides information on which code fragments are memory bottlenecks by presenting
per-basic-block statistics on the amount of time spent on memory stalls. However, this level of
detail offers little insight as to why bottlenecks are occurring, or which data structures are most
responsible. Without more detailed information, it is often difficult to discern the problem and
develop a strategy for remedying it.

At the other extreme of more detailed program information, SHMAP [2] provides a reference-by-
reference animation of the program memory behavior. This animation of cache activity can allow
programmers to discern memory performance pitfalls, but it offers little summary information or
support for automatically analyzing the memory behavior. Especially in irregular, non-scientific
code, reference patterns and performance bugs may be difficult to understand through this almost
purely visual approach, and the volume of animation data required to analyze real benchmarks can

be overwhelming. MemSpy attempts to address some of the shortcomings of previous tools.

3 Tuning Program Memory Behavior

Tools can assist in diagnosing and tuning memory performance bugs by providing specific types of
information on program memory behavior. In general, a tool’s first step in identifying performance
bottlenecks should be to point out where bottlenecks are occurring by pointing out data structures
or sections of code where the memory stall time attributed to it is both “large” in an absolute
sense, and “larger than expected” in a relative sense. Beyond this, additional tuning support is
required to point out why memory bottlenecks are occurring; the nature of this support depends

on the specific types of performance bugs encountered, as described below.

3.1 Common Memory Performance Bugs

Three frequently occurring memory performance bugs in sequential and parallel applications are:
(i) cache interference, (ii) poor spatial locality, and (iii) interprocessor sharing. Because of their
differing characteristics, they are recognized and tuned in different ways. The descriptions in this

section will drive our discussion in Section 3.2 of features provided by MemSpy to support memory



cessors, latencies can be over a hundred cycles. These figures are likely to become even larger in the
future. Architects have responded to this trend by adding one or more levels of cache into memory
hierarchies between the processor and main memory. Even with these hierarchies, however, many
programs still have poor performance due to memory stalls.

To improve program memory performance, compilers and programmers can transform the ap-
plication so that its memory referencing behavior takes better advantage of the memory hierarchy.
The challenge in performing these transformations, however, is that an application’s referencing
behavior and interactions with the memory system can be difficult to statically analyze or reason
about. Furthermore, the high-level information collected by many existing performance monitoring
tools is not sufficiently detailed to analyze specific memory performance bugs. Thus, the focus
of our work has been on devising techniques to efficiently collect detailed statistics on application
memory behavior and to effectively organize the large volumes of data collected.

This paper describes MemSpy, a performance monitoring tool designed to help programmers or
compilers discern where and why memory bottlenecks are actually occurring, and to guide them to-
wards the program transformations that improve memory performance. MemSpy provides statistics
on the frequency and causes of cache misses; these can be crucial in understanding why particular
memory bottlenecks are occurring. In addition, because of the natural link between data reference
patterns and memory performance, MemSpy allows users to understand interactions of different
data structures and code segments by presenting statistics in terms of both data and code structures
in the program, rather than solely in terms of code structures.

To gather statistics at this level of detail, MemSpy uses a simulation-based approach. Since
efficiency is a key concern in simulation-based performance monitoring, we introduce and evaluate
two main optimizations, hit bypassing and reference trace sampling, that reduce the execution time
overhead required to gather such information. Used together, these techniques reduce simulation
time by nearly an order of magnitude. MemSpy overheads range from factors of 3 to 10 for sequential
applications and 8 to 25 for parallel applications for a simple memory simulator. Overall, our
experiences using MemSpy to tune several sequential and parallel applications demonstrate that it
generates effective memory performance profiles, at speeds that make it an attractive alternative
to previous approaches.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss related
work. Section 3 discusses the main types of memory performance bugs, and uses this to motivate a
discussion of MemSpy’s features and contributions. Section 4 shows an example of MemSpy’s use
to tune a program’s memory behavior. Following this, in Section 5, we discuss the implementation
issues of MemSpy’s detailed, data oriented statistics. Since the overhead of running the tool is such
an important factor in the usefulness of the tool, Section 6 evaluates the performance of a baseline
MemSpy implementation and presents two optimizations for improving MemSpy’s performance. In

Section 7 we present conclusions.
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Abstract

Recent architecture and technology trends have led to a significant and increasing gap be-
tween processor and main memory speeds. Caches hide these latencies to some extent, but when
cache misses are frequent, memory stalls can significantly degrade program execution time. This
paper describes MemSpy, a performance monitoring system designed to help identify and fix
program memory bottlenecks. The natural interrelationship between memory bottlenecks and
program data structures motivates MemSpy’s introduction of data oriented statistics for mem-
ory performance information. Furthermore, MemSpy’s detailed statistics on the causes of cache
misses are crucial for determining sources of memory bottlenecks.

Since tool efficiency is important, a key focus of this work is on performance optimizations
for MemSpy’s simulation-based monitoring. Two optimizations discussed here, hit bypassing
and reference trace sampling, reduce simulation time by nearly an order of magnitude. Overall,
our experiences using MemSpy to tune several sequential and parallel applications demonstrate
that it generates effective memory performance profiles, at speeds that make it an attractive

alternative to previous approaches.
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1 Introduction

Processor speeds in modern computers are improving at a much faster rate than main memory
speeds, and as a result, relative latencies from processors to main memory have dramatically in-

creased. In uniprocessors, main memory latencies can be tens of processor cycles, while in multipro-
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