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Abstract

This paper considerstwo implementationsof the Locus-
Routestandardcell routing program. One implementation
usesa messagepassingapproach,where global data dis-
tributed among the processess kept consistentthrough
explicit updatesusing messages. The other implementa-
tion usesa sharedmemory approachand relies on under-
lying coherencemechanismssuchas hardwarecacheco-
herenceprotocols,to keepthe dataconsistent.We discuss
the performanceof thesetwo mappingsin terms of the
network traffic, executiontime, and solution quality. We
explorea numberof updatestrategiesfor the data struc-
turesin the messagepassingimplementation,classifying
the methodsaccordingto whetherthey are sender initiated
or receiver initiated andwhetherthey are blocking or non-
blocking. Further we showthattheseexplicit methodsfor
interpracessorupdatescan reducenetwork traffic to as lit-
tle as 1% of the traffic requiredfor our sharedmemory
approach.Also, we examinemethodsfor task assignment
which take advantagef locality. While thesemethodscan
improve solution quality and reducethe needfor interpro-
cessorcommunicationin either paradigm,task assignment
basedstrictly on locality can lead to load imbalancesbe-
tweenprocessorsFinally, we examinethe effect of increas-
ing the numberof processor®n solutionquality, execution
time and networktraffic.

1 Introduction

Two commonparallelprogrammingparadigmsarethe mes-
sagepassingprogrammingmodel and the sharedmemory
programmingmodel. In the messagepassingstyle, data
is distributed amongthe processesif thereare global data
structurestheyarekeptup to dateby sendingmessagesin
suchan approachthe programmets responsibldor main-
tainingthe consistencyof the datastructures.In the shared
memorymodel, the datastructuresare storedin the shared
memory andthe consistencyf the sharedmemoryis guar-
anteedby an underlyingcoherencemechanismsuchas a
hardwarecachecoherenceprotocol.

In this paper we explainthe decisionsmadein encod-
ing the LocusRoute[8, 9] standardcell routing program
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in a messagepassingstyle, and make comparisongo the
original sharedmemory implementation.We comparethe
performanceof thesemappingsn termsof networktraffic,
executiontime, and solutionquality. In the messagegyass-
ing version,the strategyusedto keepthe global dataup to
date is an importantpart of the implementation. Updates
canbeeithersender initiated or receiver initiated. Receiver
initiated updatesare furtherbrokendowninto blocking and
non-blocking types, where a blocking update meansthat
the processothat requestsan updateis held idle until the
updatearrives. Also, eachupdatecan containeitherabso-
lute data, or datarelative to the last updatethat was sent.
Resultspresentedshow that, for LocusRoute,senderini-
tiated schemesproducequality which is slightly betteron
averagethanreceiverinitiated schemesbut with increased
executiontime comparedo the receiverinitiatedapproach,
and network traffic that is nearly an order of magnitude
largerthanthatfor receiverinitiated strategies Most of the
messagepassingupdateschedulesve usedproducequality
within 10% of the original sharedmemory version, with
networktraffic reducedsignificantlycomparedo the traffic
requiredby our sharedmemoryapproach.

We alsoexamineddifferentmethodsfor taskassignment
in eachparadigm.Both quality andtraffic canbeimproved
(by as much as 5% and 63% respectively)by making use
of locality when assigningtasks. In this study we exploit
locality by assigningeachprocessomires which are phys-
ically closeto eachotherin the circuit. However strict ap-
plicationof this heuristiccanleadto loadimbalancesvhich
degradeexecutiontime, if the circuit’'s wiresarenot spread
evenly over the areaof the circuit. Also, we examinethe
dependencef performanceon the numberof processors.
In either paradigm,the quality of the solutiondegradesas
the numberof processoréncreasespecausanore work is
beingperformedn parallel,andthe processorsio notknow
aboutthe work otherprocessorsre doing simultaneously

Becausdhe messagassingparadigmcanbe efficiently
supportedon a sharedmemory machine, the resultspre-
sentedheredo not necessariljfeadto architecturalkconclu-
sions,butratherreflectmore on the effect that programmer
effort can havein efficient managemenof datastructures,
andon efficient parallelprogrammingechniquesn general.
Although the resultspresentedn the paperare specificto
LocusRoutethegeneratechniquesliscussedreapplicable
to a variety of optimizationproblems.

The rest of the paperhasthe following structure. Sec-
tion 2 gives a brief descriptionof the tools and method-



ology usedto collect the data presentedchere. Section3
givesa generaldescriptionof the LocusRouteapplication,
andits sharedmemoryimplementation.Section4 explains
the designdecisionsmadein mappingthe applicationto a
messagepassingparadigm. Resultson the performanceof
LocusRoutewith thesedecisionsare presentedn Section
5, andfinally, conclusionsare presentedn Section6.

2 Tools and Methodology

This sectiondescribeshetoolsandbenchmarlcircuitsused
in collectingthe datato be presentedn this paper

2.1 CBS Message Passing Architecture Sim-
ulator

To simulate executionof the messagepassingversion of
LocusRoutewe usedthe cBs [7] messagegpassingarchi-
tecture simulator This simulator generatesuseful statis-
tics on network traffic and executiontime. cBs simulates
a k-ary n-dimensionahypercubemachine(with a total of
k™ processors).For the work describedhere, cBs simu-
lated a machinewith deterministicwormhole routing [3],
andwith a two—dimensionaineshinterconnectiori4]. cBs
alsomodelscontentioron the network. The numberof pro-
cessoravas varied by changingthe arity of the simulated
machine.Thereareunidirectionakhannelsonnectingeach
processoto two of its four neighbors.With no contention
andwith onebyte wide channelsthetotal time requiredfor
a packetof L bytesto travel D hopson the networkis:

2ProcessTime + HopTime(D + L).

Processime is thetime for the entiremessagéo be copied
from the processonodeto the messagenetwork,andHop-

Time is the time requiredfor one byte to travel one hop

on the network. HopTime and Processiine were set to

100 ns and 2000 ns, respectively to roughly model the

performanceof the Ametek Series2010 messagepassing
computer[1, 10]. The simulationswere run on an Encore
Multimax computer[5].*

2.2 Tango Shared Memory Tracing System

Traffic data presentedfor the sharedmemory version of
LocusRoutewas calculatedby analyzingshareddatarefer-
encetracescollectedfrom multiprocessunsof LocusRoute
usingthe Tangotracing system[6]. Thesetracescontain
all shareddatareferenceanadeby the programduring ex-
ecution. For eachreference,the time, addressand refer-
encingprocessoarerecorded.The tracesare generatecn
a unipracessorby spawningthe specifiednumberof pro-
cessesand multiplexing their execution. This multiplexing

1 To simulatethe Ametek's MC68020processingiodes,
all timesfrom the EncoreMultimax clock were divided by
five, becausdhe Multimax usesNS32032microprocessors
which are aboutfive timeslesspowerful.
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is very fine grainedandis controlledto closelymodela run
on a multiprocessar

2.3 Benchmark Circuits

The datapresentechere was collectedfor two benchmark
circuits. The first circuit, bnrE, has 420 wires, a size of
10 channelsby 341 routing grids, and representsan actual
standardcell circuit developedat Bell-Northern Research
Ltd. The secondcircuit, MDC, has573 wires with a size
of 12 channeldy 386routinggrids,andwasdesignedatthe
Universityof TorontoMicroelectronicDevelopmentCentre.

3 LocusRoute: The Application

This section will give backgroundinformation on the
LocusRouteapplication, in preparationfor later sections
which describethe tradeofs involved with mappingLocus-
Routeto a messagepassingapproach.

LocusRoute[8, 9], originally written in a sharedmem-
ory style,is a commercialquality VLS| standarctell router
developedy JonatharRoseat StanfordUniversity Locus-
Routeroutesthe wires of a standardcell circuit, attempt-
ing to minimize the circuit area. LocusRoutes centraldata
structureisacost arr ay thatkeepsarecordof thenum-
ber of wiresrunningthougheachroutinggrid of the circuit.
The verticaldimensionof the arrayis the numberof routing
channelsin the circuit, andthe horizontaldimensionis the
numberof routinggrids. Eachwire is routedalongthe path
with the minimal sum of the cost array entries. Figure 1
showsa standardcell circuit and one of its wires, with the
correspondingost array. The highlighted portionsof
the costarray will be incrementedf this routeis chosen.
An iteration of routing is completedwhen eachwire has
beenroutedonce. Performingseveralof theseiterations,
with all wires routedonceper iteration,improvesthe final
solution quality [8]. However beforereroutinga wire in
a later iteration, the processomust “rip up” the previous
routing of the wire by decrementinghe costarraylocations
in its path.

In additionto producingthe routedcircuit, LocusRoute



also computesa measureof the overall solution quality.
Overall quality, also referredto as circuit height, is com-
putedas follows. For eachchannel,the numberof wires
usingthe channelwill vary acrossthe width of the circuit.
The numberof routingtracksrequiredby the channelis the
maximumnumberof wires runningthroughthe channelat
any point The circuit heightis the total numberof routing
tracksrequiredfor all channels. This measureof quality
is usefulbecausat is proportimal to the circuit area,and
thus, givesa meansof estimatingthe expectedareaof the
circuit. A secondmeasureof quality will be presentedn
somecasesaswell. The secondneasureof qualityis called
the occupancy factor. The occupancyfactor is computed
asfollows. Whena wire is routed,the costof a pathis the
sumof the costarrayentriesalongit. The occupancyfactor
is the sum, over all wires, of the pathcostsat the time the
wire is routed. The occupancyfactor givesan indicationof
the costof the wire's path at the time it was chosen. For
both of thesemeasuresa lower valuemeansbetterquality.

The sharedmemory implementationfollows fairly nat-
urally from the algorithm descriptionstatedabove. The
cost array isimplementedasanarrayin globalshared
memory All the processorgerform readsand writes on
it asthey routethe wires. Althoughit is possiblefor sev-
eral processego simultaneouslyattemptto read or write
the samearray location, the probability of suchcollisions
is low, and for this reason,accessedo the costarray are
not locked. Researcthasshownthat the solutionqualities
obtainedfrom the sharedmemoryversionswith and with-
out costarraylocking arenot significantlydifferent,andthe
performanceof the non—lockingversionis betterdueto the
decreasen serialization[9].

In this sharedmemoryimplementationwire distribuion
can be easily accomplishedusing a distribued loop, in
which processesirerepeatedlygivenwires to route. When
done with one wire, processegequestanotherwire sub-
script. When all the wires havebeengiven out, processes
areblockedat a barrieruntil all the processorarefinished.
While this original sharedmemoryapproachhassimplicity
on its side, it doesnot attemptto take advantageof local-
ity by assigningwires to processesuchthat eachprocess
works mainly in one region of the circuit and cost array
We will showthat a wire assignmenstrategywhich does
take advantageof locality in this way canresultin better
solution quality and lower network traffic, becauseinter-
ferenceamongprocessess they accessthe cost array is
greatlyreduced.

4 LocusRoute in a Message Passing
Style

This sectiondescribeghe tradeofs involvedin implement-
ing LocusRoutein a messagepassingstyle. LocusRoute
is an optimizationproblemwhich can tolerateout of date
informatin in its main datastructure,the cost arr ay,

so the programmerhas considerableflexibility in imple-

mentingit in a messagepassingstyle. In essenceappli-
cationslike LocusRouteallow the programmerto choose
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Figure2: Division of the costarray amongprocessors.

to simulatesharedmemory only up to the degreeof con-

sistencyrequiredby the algorithmfor the desiredsolution

quality. Many messagepassingmplementation®f Locus-

Routeare possible,dependingon (i) how the programmer
decidesto distributethe costarray (i) how wires are as-

signedto processorso berouted,(iii) whattypesof updates
areperformedon thecostarray and(iv) how frequentlyup-

datesare performed. The following subsection®laborate
on thesedecisions discussingalternativesor each.

4.1 Distribution of Cost Array

In the sharedmemory versionof LocusRouteall proces-
sors have accessto a single, consistentcopy of the cost
array Whenencodingthe applicationin a messageassing
style, one must decide how the cost array should be im-
plemented sinceno sharedmemoryis available. The cost
array couldbe dividedinto portionsof approximatelyequal
size, allocatinga portionto eachprocessar Each proces-
sor performsall routing within the region allocatedto it.
If routing extendsinto anotherregion, the task is passed
to the processorowning that region. This implementation
hasload balancingproblemsif many wires lie in a single
processdis regionof the costarray Also, sincemostwires
spanmultiple regions,and since many routesare explored
for eachwire, this methodcould generatea large amount
of messageraffic.

Instead we chosea lessstrictapproach.The costarrayis
dividedinto sectionsandeachprocessois theownerof one
section. However eachprocessohasa view of the whole
costarray The processomwhich owns a certainregion of
the costarray is the owner processor for the region, and
the regionitself is the owned region. The four processor
examplein Figure2, showseachprocessdiscostarraywith
the owned regionshighlighted. Also, we add a new data
structure,known asthedel t a array. The deltaarray
hasthe samedimensionsasthe costarray and keepstrack
of changesmadeto the cost array betweenupdates. This
deltaarrayis usedto notify otherprocessorsf changeghat
have beenmade,and will be further discussedn Section
4.3.



4.2 Wire Assignment and Locality Updates

In the sharedmemory paradigm,wires can either be as-
signeddynamically using a distributed loop for example,
or statically using locality and load balancingheuristics.
In the messagepassingapproach,dynamicwire allocation
requiresmessageransactionson the network. Also, the
time spentwaiting for a requestedask canbe large. If the
processoreceivingthe taskrequestds alsorouting wires,
andif processor®nly checkfor newly receivedmessages
betweerroutingwires, a processomay haveto wait for an
entirewire to be routedbeforethe wire assignmenproces-
sor evenretrievesthe taskrequestmessagdrom its queue.

Sender Initiated Receiver Initiated

Blocking

/\

Absolute Delta

Non-Blocking

/\

Absolute Delta Absolute Delta

A variationon the first schemeis possibleif messages
arriving at a processorcan causethe processoto be inter-
rupted. The wire assignmeniprocessorrouteswires at a
low priority level, and respondgo wire requestinterrupts
from otherprocessorsit a higherpriority level. This solves
the problem of the first method,wherewire requestavere
only processedetweenwires. If the wire requestinterrupt
can be servicedwith low overheadthis methodcan offer
wire distribution with lower latencythanthe first method.
However becausehis methodis dynamic,it is difficult to
examinehow locality in the wire assignmenaffectsperfor-
mance.Also, cBs doesnot supportthe notion of interrupts
occurringon messagereception, so this wire assignment
methodis difficult to simulate.

For the abovereasons,we chosea static wire assign-
mentmethod. Becausehe costarrayis dividedinto owned
regions, the algorithm benefits from a wire assignment
methodthat attemptsto assignwires to the owner proces-
sor of the regionthey run through. To achievethis, wires
are assignedo the owner processorf the leftmost pin of
the wire. Unfortunately trials with this heuristichad very
poor load balancing,becauseno effort was madeto even
out the numberof wires eachprocessohad. We modified
the assignmenstrategyto avoid this. A cost measureis
computedfor eachwire, basedon its length. Any wire
with costlessthanthe parametefThr eshol dCost is as-
signedto the owner processorof the wire’s leftmost pin.
All longer wires, which have cost greaterthan Threshold-
Costandwhich havelimited locality anyway are held until
a final stepin the staticwire assignmenphase wherethey
are assignedo balancethe load, ignoring locality. By in-
creasingThresholdCostwe increasethe amountof locality
exploitedin thewire assignmentBy decreasind@ hreshold-
Cost,morewiresareassignean thebasisof loadbalancing
insteadof locality.

4.3 Update Mechanisms

In mostcircuits,wires assignedo oneprocessowill extend
into regionsownedby otherprocessorsso updatesof cost
array information betweenprocessorswill haveto occut

We explorethe efficiency of differentmethodsof updates.
Figure3 showsa classificationof the typesof updateghat

will be discussedn this section.

Figure 3: Classificationof typesof updates.

4.3.1 Structure of Updates

The structureof the updatepacketsshouldsatisfy several
requirements. First, it should maximize the useful infor-

mation per byte. However it mustalso be convenientto

assembleand disassembleso the processingoverheadof
sendingor receivinga messages not high.

One possible packet structureis baseddirectly on the
structureof the wires being routed. This packetstructure
would containcoordinate®f the startandendpointsof each
horizontalor vertical segmenbf the wire, alongwith a flag
indicatingwhetherthis wire hadbeenrippedup (decrement
costarray) or routed(incrementcostarray).

Another possiblestructurefor the packetis to havethe
updatepacketcontainthe valuesof an entire regionof the
costarray ownedby one of the processorsThis is simple
for the senderand receiverto process,and may be more
efficient thanthe wire basedpacketstructureif manywires
are changedbetweenupdates.On the otherhand,it usesa
large numberof bytes,which can increasethe processing
overheadt boththesendingandreceivingendsandcongest
the network.

We chosea third updatestrategy which is a simple op-
timization of the secondone. In this structure the sending
processoscansthe deltaarrayfor changesshownby non-
zeroelementsn thedeltaarray Foreachcostarrayregion,
the senderconstructsa packetwhich containsthe bounding
box of all the changesmadewithin thatregion,aswell as
the coordinatesof the boundingbox being sent. Because
thesendethasto scanthearrayfor changesthis methodhas
more overheadat the sendingendthanthe secondmethod
described.However it reducesetworktraffic comparedo
the other method,becauseusually only a small fraction of
the ownedregionhasbeenchanged.It alsoreducesmes-
sagereceptionoverheadat the receiver becausehereare
fewerbytesfor thereceiverto incorporatento its costarray

4.3.2 Sender Initiated Updates

We mustalso decidehow updatesshouldbe initiated. We
proposea generalclassificationinto four types of update
transactions.The first two typesof transactionsare called



sender initiated becausedhe processoto determinethatan
updateshouldbe initiatedis the onewhich sendsthe data.
The othertwo are receiver initiated and are discussedn
section4.3.3.

SendLocData is usedto inform other processorof the
ownerprocessass view of its ownedregion. The receiving
processorseplacetheir view of the region being updated
with the updatedata. In general this type of updatecanbe
sentto anyprocessarbutasanoptimizationin LocusRoute,
thesepacketsare sentonly to the North, South,East, and
Westneighborsof the ownerprocessosendingthe update.

SendRmtData is usedto inform an owner processorof
changeghat anotherprocessohasmadeto the owner pro-
cessors ownedregion. The processorsendingthis update
is not the owner processorof the region, so it doesnot
sendthe absolutecost array entries. Rather it sendsthe
correspondindpcationsfrom the deltaarray indicatingthe
changedanadeto this regionsincethe last update.

To study the sensitivity of the LocusRoutealgorithmto
inconsistencie# the costarray the frequencywith which
updatesare performedwas allowedto vary. For eachtype
of senderinitiatedupdate,thereis a parameterindicating
how many wires should be routed betweenupdates. In
addition, if an updateis supposedo occut but no changes
have beenmadein the regionto be updated,the update
will not be sentout. The size of the updatevaries, but it
is alwaysthe rectangulatboundingbox of all the changes
thathaveoccurredin a given ownedregion.

4.3.3 Receiver Initiated Updates

In the receiverinitiated schemes,a processordetermines
(usingmethodgo be discussedater) thatan updateshould
occur It sendseither a RegLocData or a RegRmtData
packetto the appropriateprocessar Requestpacketsin-
clude coordinatesof the boundingbox of the region for
which an updateis requestedWhenthe destinatiorproces-
sor receivesthe request,it returnsa responsepacketwith
therequestediata,soin this case theinitiator of the trans-
actionis the receiverof the data.

RegRmtDatas usedwhen a processomwantsto update
its view of a remotelyownedregionof the costarray For
eachwire, a processodeterminesvhichregionscontainthe
wire, and incrementsa counterfor eachof thoseregions.
Whenthe countfor a regionreachesa specified(variable)
parametera ReqRmtDatgpacketis sentto the owner pro-
cessorof that region. The wire assignmenis static so a
processorknows in advancewhich wires will be routed
and can requestupdatesfor the appropriateregionsahead
of time. Requestingupdatesin advancehelpsensurethat
the updatewill arrive beforerouting for that wire actually
beginsbutupdatesrderedoo far in advancewill beout of
datebeforethey are used. As a compromisebetweenthese
two opposingfactors,we choseto haveprocessorsequest
updatedor five wires at a time.

RegLocDatais useful when an owner processomwishes
to bringits ownedregioninto a consistenstate. The owner
processomonitorsthe numberof ReqRmtDatgpacketsit

receivesfrom all the otherprocessorsif a remoteproces-
sor hasmademore than a certainnumberof RegRmtData
requeststhe owner processotrequestsan updatefrom the
remote processqar becausethe remote processorhas been
routingin the ownerprocessais region.

In the caseof receiverinitiatedupdatespnefurtherdeci-
sionremains.If a processohasrequestedn update,t can
eitherblock, andwait until the requestedipdatearrives,or
it can proceedwith its work. If it proceedsthe processor
neverneedso sit idle, waiting for the packet. On the other
hand,if it doesnotwait for the packet,the processomay
actually finish routing the wire for which the updatewas
requestedbeforethe updateevenarrives. Due to locality,
the processoris likely to be routing wires in that region
againsoon,andan updatethat arrivestoo late for onewire
can often be useful for otherones. Also, becauseseveral
iterationsof routing are performed,the processoiis guar-
anteed(excepton the last iteration)to routethe samewire
again, so the update,if not yet out of date,will be useful
for that. In fact, resultspresentedn Section5.1.3 show
thatthe quality usingthe non-blockingschemeis not worse
than when using the blocking scheme,and the execution
time is muchimproved.

5 Resaults

The previous sectionsintrodwed the implementationsof
LocusRoutdn sharedmemoryand messageassingstyles.
Here, we presentresultsto supportthe decisionsmadein
those approaches. Unless otherwise noted, the message
passingresultsare presentedor 16 processorarrangedn
a four by four grid. The sharedmemoryresultsare for 16
processorsisinga Write Back with Invalidatecachecoher-
enceprotocol[2].

5.1 Effectiveness of Message Passing Update
Strategies

The goal of the updatestrategyis to producea goodquality
resultwith the smallestamountof communicatiorpossible,
andwith a minimal amountof computationabverhead.The
following subsectionsvill presentdatashowingthe effect
of the updatestrategieutlinedin Section4.3 on solution
quality, executiontime, and networktraffic.

5.1.1 Sender Initiated Strategy

Table 1 showsresultsof running messagegpassingLocus-
Routeon thebnrE circuit usinga purely sendeiinitiatedup-
datescheme.The table showsthe frequencyof bothtypes
of sendeirinitiated updatesgivenin termsof the numberof
wires betweerupdatesandthe circuit heightresultingwith
eachupdateschedule.The quality of the messagepassing
versionusing senderinitiated updateds within 10% of the
sharedmemoryquality for mosttrials. Unfortunately qual-
ity measuredn termsof circuit heightseemsto havelittle
correlationwith the updatefrequency This is becausehe



Tablel1: Networktraffic usingsenderinitiated updates.

SendRmtDatal| Ckt | Occup.| MBytes
SendLocData|| Ht. Factor Xfrd. | Time (s)
2 1] 142 ] 426109 .862 1.893
5 || 143 | 428558 222 1.515
10 || 141 | 429589 .140 1.445
20 || 145 | 432360 101 1.426
5 1| 144 | 425576 .859 1.668
5 || 143 | 430046 212 1.306
10 || 146 | 430580 133 1.260
20 || 145 | 431366 .094 1.240
10 1| 142 | 426706 .840 1.553
5 || 143 | 429423 .208 1.282
10 || 146 | 431662 .128 1.243
20 || 145 | 432169 .087 1.219

circuit height only changeswhen routeswhich affect the
numberof routing tracks per channelare changed. Fur-
ther, the table indicatesthat the occupancyfactor is only
slighty sensitiveto changesin SendLocDatawith Send-
RmtDataheld constant.In bnrE, with SendRmtDataequal
to 2 wires, the occupancyfactor changesonly 2%.

Theexecutiortime variesa greatdealwith thefrequency
of updatesfrom a maximumvalueof 1.893secondgo min-
imum valueof 1.219seconds Becauseahe samestaticwire
assignments usedfor all the runsshownhere,the execu-
tion time is clearly a function of the frequencyof updates.
Timingtheassemblyanddisassemblyf packetsshowsthat
theseoperationgakeupto onefourth of the processindime
in runswith frequentupdates. To comparethe execution
timewith thatof thesharednemoryversion,recallthatcss
is simulatingprocessorsvhich arefive timesfasterthanthe
NS32032processor®f the EncoreMultimax. Therefore,a
roughcomparisoncan be obtainedby multiplying the exe-
cutiontimes of the messagepassingversionby five.? The
besttime for bnrEis 1.219secondswhich whenmultiplied
by five, is comparableo the sharedmemoryversion.

The numberof bytestransferreds alsoa clearfunction
of the updatefrequency However the increasein network
traffic is lessthan linear with the updatefrequency This
is dueto the form of the updates:a boundingbox of all
changesmadeto a region. When updatesare performed
after many wires, changesmay havebeenmadein several
different areasof the costarray region, and the bounding
box will containall the unchangedocationsbetweenthe
changedareas. When updatesoccur more frequently the
updatesnore closelymatchthe changeghat occurred,and
fewer extra bytesare sent. This leadsto the sublinearin-

2 Notethatsimplemultiplicationby a factorof five when
comparingthe executiontimesfavorsthe bus-baseghared
memory architecture. This is becauséf the processorsn
the sharedmemory machinereally were five times faster
therewould be more contentionon the bus,andthe overall
performancevould not improve by a factor of five.

creasein networktraffic with updatefrequency

5.1.2 Non-Blocking Receiver Initiated Strategy
Table 2 shows the quality, executiontime, and network
traffic for severalpurely receiverinitiated strategies. All

Table 2: Traffic using non-blockng receiverinitiated up-
dates.

RegLocData,/| Ckt | Occup.| MBytes
RegRmtData|| Ht. | Factor Xfrd. | Time (s)
1 5 || 144 | 430686 130 1.166
10 || 150 | 436496 .056 1.159
30 || 151 | 437956 .009 1.099
2 5| 143 | 431936 112 1.156
10 || 149 | 437088 .045 1.126
30 || 151 | 437956 .009 1.113
10 5 || 142 | 430868 .088 1.133
10 || 149 | 437797 .039 1.135
30 || 151 | 437956 .009 1.097

of thesestrategiesuse the non-blockingreceiver method,
in which processorslo not wait for the responseso their
requests.

The bestcircuit heightmeasurefor the non-blockingre-
ceiver initiated caseis slightly worsethan the bestcircuit
height measurefor the senderinitiated case. The small
overall degradationin output quality is due to the loose
coupling betweenupdaterequestsand wire routing. One
can seethatthe circuit heightis quite sensitiveto changes
in ReqRmtDataWhenRegRmtDatas increasedeyonds,
the quality of the routing dropsby about5%.

The executiontime is improvedover that for the sender
initiated strategies. The bestexecutiontime is 1.097 sec-
onds,ascomparedo 1.219seconddor the sendetinitiated
version. The large variationin executiontime with update
frequencythat was presentin the senderinitiated trials is
not presenthere, however The reasonfor this is that the
processorsn the senderinitiated approachare spendinga
large fraction of time processingmessages.Thereis less
traffic in the receiverinitiated approach,so the message
processingoverheadis lower, leadingto both less execu-
tion time overall, andlessdependencef the executiortime
on the frequencyof updates.

5.1.3 Other Strategies

Intuitively, oneexpectsa blockingreceiverinitiatedscheme
to give the bestquality. First, any processorcandetermine
if it needsan updateand order one. Second,becausehe
processoris forcedto block until theorderedupdatesarrive,
the processolis guaranteedo make the routing decisions
usinginformationthatis only asout of dateasthe network
delaythatwasrequiredto sendit to the requesterActually
though, the averagequality of the blocking receiveriniti-
atedrunsis aboutthe sameas that for the non-blockng



runs. Further blocking strategieshave executiontimes as
much as 75% larger than non-blockingschemesausing the
sameupdateschedule. With a higher performanceinter-
connectiometwork,lower overheacdn messageeception,
and a betterheuristicfor requestingupdatesthe blocking
strategywould probably becomemore effective than the
non-bbcking strategy

We also experimentedwith several update schedules
which were mixtures of senderand receiverinitiated up-
dates.Whenthe occupancyactoris usedasthe measureof
guality, mixed updateschemegyenerallygive an improve-
mentover senderor receiverinitiated schemeslone. For
example,a mixed schemewith parametersSendLocData=
5, SendRmtData 2, RegLocData= 1 andRegRmtData 5
givesan occupancyfactor of 424337.This quality is better
thanthat from the first line of Table 1, 430686,andis ob-
tainedusingonly .311 MBytes, lessthan half the network
traffic of the senderinitiated scheme. However when a
comparisorof quality is madeusingthe circuit heightmet-
ric, thesendeiinitiatedapproachalwaysproducegesultsof
similar or betterquality.

5.14 Summary of Update Strategy Results

The senderinitiated updatestrategygives the bestresults
in termsof circuit height. However the networktraffic can
be morethantentimeslargerfor a senderinitiated scheme
thanfor a receiverinitiated scheme. In situationswhere
qualityis requiredat any cost,the sendeiinitiatedapproach
will bethe preferredupdatemethodfor themessagg@assing
implementation.

5.2 Comparison of Shared Memory and Mes-
sage Passing Approaches

The previoussectiongave the performanceof the various
messag@assingupdatestrategiesn termsof networktraf-
fic, solution quality andexecutiontime. In this section,we
will comparethoseresultswith datafrom a sharedmemory
approach.

The metric of network traffic is an interestingbasisfor
comparisonbecauseit reflectsthe amountof interproces-
sor communicationrequiredby eachapproachto achieve
similar results. In a messagepassingarchitecture,there
is processingverheadassociatedvith sendingandreceiv-
ing updatemessagesso one would like to updateas in-
frequentlyas possible. In a sharedmemory architecture,
hardwarecacheconsistencyprotocolscauseextrabustraf-
fic dueto cacheline invalidations. Theseoperationscause
the processoto stall, andso, alsohurt performance.Traffic
in the sharedmemoryapproachis madeup of threeparts.
First, the processass initial accesdo a locationalwaysre-
sultsin a miss,andbringsthe line into the cache. Second,
thefirst write to a cleanlocationcausesa word write on the
sharedbus. The otherprocessorseethis write andinvali-
datethatcacheline if it is in their cache. Third, oncealine
hasbeeninvalidatedby a cache,it may needthe line again.
This leadsto refetchesof the datafrom memory Clearly,

traffic in the sharedmemoryapproachis a function of the
cachecoherenceprotocoland the line size of the cache?
For all the resultsgiven here,we useda Write Back with
Invalidatecoherenceprotocol[2].

Increasesin the cacheline size can have the effect of
eitherincreasingor decreasingraffic. First, with a longer
cacheline, dataitems that will never be used are more
likely to be broughtinto the cache. This will increasethe
traffic onthebus. Also, increasingheline sizemeanghere
will be more datain the cache (underthe infinite cache
assumptionand so processorare more likely to interfere
with each other and force invalidatiors in other caches.
Theseinvalidations, as well as the subsequentefetches,
also causethe traffic to increase.On the other hand,it is
possiblefor alongercacheline to causea traffic decreasas
well. If thereare severalshareddataitemsstoredrelatively
close to each other, then a single invalidation of a long
cacheline could causethemto all be invalidatedin one
operation.This candecreaséraffic comparedo the caseof
severalindividual invalidations. For the casesconsidered
here, this last situationhappensnfrequently so its effect
is minor comparedto the first two. Thus, we expectthat
increasinghe cacheline sizewill leadto anincreasdn the
numberof bytestransferred.

Table 3: Traffic as a function of cacheline size in shared
memoryversion.

| Circuit || CacheLine Size | MBytes Transferred]|

bnrE 4 2.15
8 3.73
16 6.87
32 13.5

As predicted,the datain Table 3 clearly showsthat the
traffic increasessignificantlyasthe line sizeincreasesFor
example,a cacheline size of 4 bytescauseghe total traffic
to be 2.15megabytesvhile a 32 byte cacheline causeghe
traffic to increaseto 13.5 megabytesmore than six times
asmuch.

Comparingthesefigureswith thosepresentedn Section
5.1, we seethat the communicatiortraffic in the message
passingapproachis 1-3 ordersof magnitudelessthanthat
for the sharedmemory approach. This surprisingy large
differencecanbe explainedby severalfactors. The updates
being performedin the messagepassingversionoccut, at
most, once per wire, so the write performedat the wire
rip up stageis handledat the sametime as the write per-
formed at the wire routingstage.Sincemuchof the wire’s
pathwill remainthe sameafter rerouting,thesetwo writes
will often canceleachotherin the delta array and many
of the locationswill not needto be updatedat all. By

3 Traffic is also a function of the cachesize, because
a small cachewill havea higher missrate requiringmore
datafetchesfrom main memory For the purposef this
study we haveassumedn infinite cache.



contrast the sharedmemoryapproachmay requireconsis-
tencyoperationn any individual reador write operation.
The cancellationpossiblein the messageassingapproach
removesmany of the write operations—asignificant ac-
complishmentsince over 80% of the bytestransferredin
the sharedmemoryversionare causedy writes.

The sharedmemoryversiongivesa circuit heightof 131
for thebnrEcircuit. This is about8% betterthanthatgiven
by the senderinitiated messagepassingapproach.Clearly,
the costof thisimprovedquality is in theincreasedetwork
traffic requiredto maintainconsistencyof the costarrayto
sucha large degree. However for massproductionsitua-
tionswherean improvementin routing quality canleadto
reducedmaterialscostsandhigheryields, the sharedmem-
ory versionappeargo be the methodof choice.

5.3 Effect of Locality

The solutionquality, executiontime andamountof network
traffic generatedn both the sharedmemory and message
passingversionsof LocusRoutedependon the degreeto
which locality can be exploited. Here, locality is a mea-
sure of how often a processoris routing wires within its
ownedregion or regionsclose by. (A quantitativemea-
sureis describedin Section5.3.3.) Architecturesbenefit
in differentwaysfrom exploitinglocality. Messagepassing
architecturepenefitfrom locality because¢he needfor mes-
sagetraffic to producea certainlevel of solutionquality is
reduced.In this sectionwe showthat messaggassingm-
plementationgaking advantageof locality can reducethe
total network traffic by as much as 63%. Sharedmem-
ory architecturedenefitfrom locality throughbettercache
behavior Specifically exploitinglocality in a sharedmem-
ory approactresultsin lessprocessolinterferencecausing
cachecoherenceraffic, and providesbetter spatial local-
ity. In the past,locality hasnot playeda major partin the
designof sharedmemory parallel programs. However in
hierarchicalsharedmemory architecturespow being con-
sideredbecausef their scalability a local referencecanbe
morethananorderof magnitudefasterthana non-localref-
erence. This architecturaltrend indicatesthat locality will
becomean importantpart of future programdesign.

5.3.1 Locality in the Message Passing Approach

Table4 showsthe effect of variouswire assignmenstrate-
gieson the quality of the routedcircuit, the executiontime,
andthe numberof bytestransferred.The extremenon-local
caseis onewhichusesroundrobinwire assignmentandthe
extremelocal case(ThresholdCost infinity) is one where
eachwire is assignedo the processomwhoseownedregion
containsits leftmost pin. Clearly, wire assignmentsvhich
do not take advantageof locality, suchasroundrobin, re-
sultin poorerqualitythanthosethatdo, suchasassignments
madewith ThresholdCossetequalto 1000o0r infinity. (See
Sectiond.2 for an explanatiorof the ThresholdCosparam-
eter)

The effect of locality on the network traffic depends
on the type of updatestrategyused. In the senderiniti-

atedscheme updatesare sentout if the sendets array has
changed.A reductionin traffic dueto locality will occurbe-
causechangesaremadein fewerandsmallerregionsof the
costarray The changein traffic for senderinitiatedupdates
from a fully local assignmento a roundrobin assignment
is 11%. The receiverinitiated schemeis more sensitive
to locality, becausen this strategy poor locality resultsin
frequentinterprocessodatarequests.Traffic is reducedas
much as 63% going from a round-robinassignmenpolicy

to alocal one.

Table 4: Effect of locality (Senderinitiated).

Asmt. Ckt. | MBytes

Ckt. | Method Ht. Xfrd. | Time (s)

bnrE | roundrobin 147 .156 1.478
ThresholdCost 30 141 .153 1.392
ThresholdCost 1000 | 141 .140 1.445
ThresholdCost inf. 140 .139 2.468

MDC | roundrobin 150 .242 2.181
ThresholdCost 30 146 .232 1.768
ThresholdCost 1000 | 147 217 1.866
ThresholdCost inf. 146 .220 3.684

Locality also hasan effect on the quality of the output
and executiontime requiredby LocusRoute. By using a
totally local wire assignmentthe solutionquality improves
as much as 5%. When processorgoute in localized re-
gions, eachhas a fairly consistentview of the areait is
routingin. Ultimately, this is a more effective way to pro-
duce good solution quality than nonlocalizedrouting with
periodicupdates.

5.3.2 Locality in the Shared Memory Approach

This sectionexamineghe sensitivityof the sharedmemory
approachto locality. Table5 showsthe solutionquality and
amountof traffic generatedas a function of the amountof
locality exploitedin the application.

Table5: Effect of locality in sharedmemoryversion.

Asmt. Ckt. | Mbytes
Ckt. | Method Height Xfrd.
bnrE | roundrobin 139 3.96
ThresholdCost 30 134 3.77
ThresholdCost 1000 131 3.73
ThresholdCost infinity 139 3.73
MDC | roundrobin 144 4.833
ThresholdCost 30 138 4.625
ThresholdCost 1000 143 4.600
ThresholdCost infinity 143 | 4.687




For bnrE with 8 byte cachelines, total global bus traf-
fic can be reduced5.8% by taking advantageof locality
in the assignmentbf wires. While a small reduction, it
will still be an importantfactor in the performanceof a
hierarchicalsharedmemory machine,in which non-local
memoryaccessegan be more thanan order of magnitude
slowerthanlocal memoryaccessesin mostcases,a local
wire assignmentesultsin improvedquality over the round
robin assignmenias well. Quality is improvedby nearly
6%. Becausethe improvementin quality comeswithout
any increasein networktraffic, it is definitely a useful op-
timization Thesesmall gainsin circuit quality canleadto
large payofs in termsof materialcostsandyield.

5.3.3 Limitations on Exploiting L ocality

Exploiting locality to reducenetwork traffic and increase
quality has clear benefits. However severalfactors limit
the amountto be gainedby taking advantageof locality in
a problem.

First,the standardaell circuitshaveonly alimited amount
of locality. If the circuit’'s wires are long enoughto pass
throudh the regionsof severalprocessorsthereis an un-
avoidableamountof interprocessocommunicatiorthatwill
takeplaceto performthe necessarypdates.To determine
an upperboundon the locality LocusRoutecould exploit,
we developeda measureof the locality in standardcell
circuits. The locality measures a weightedaverageindi-
catingthe averagedistance(in horizontalor vertical hops)
betweerthe processoactuallyroutinga wire segmentand
the processorthat owns the region that segmentlies in.
Thus, a locality measureof 0 indicatesthat all segments
were routed by the region owner, giving perfect locality.
Increasesn this measurdndicatethatthe averagesegment
is beingroutedat a distancefurther from the owner

Compuing the locality for the bnrE circuit with several
wire allocationstrategieswe find that evenwith the most
local wire assignmenstrategieswire segmentsre routed
anaverageof 1.21processorawayfrom the ownerproces-
sor. The MDC circuit hadbetterlocality, with wiresrouted
anaverageof 0.91processorawayfrom the owner As the
numberof processorss increased the locality of the cir-
cuit will be degradedbecauseahe regionof the costarray
ownedby eachprocessomwill becomesmaller

The secondlimitation to exploiting locality is the con-
straint that the processorshave balancedworkloads. If
manywireslie within a singleprocessdisregion,thencon-
sideringlocality alone,thatprocessoshouldroutethemall.
However this can give that processoln unfair amountof
work, resultingin a load imbalanceand poor performance.
To someextent, a circuit with good locality will require
fewer updates,and therefore,lesstime to execute. How-
ever the effect of a loadimbalancecanoutweighthe subtle
effect of the differencein updatetime. Therefore,in terms
of executiontime, the optimal point is neithera fully load
balancectircuit, nor a fully local circuit, but rathera point
betweenthe two. For example,in Table 4, the bestexe-
cutiontime is alwaysgiven by the wire assignmentvith a
ThresholdCosbf 30.

5.4 Number of Processors

The behaviorof a parallel programas the numberof pro-
cessorss increaseds animportantconsiderationvhenpar-
allelizing an application.In this case the mainlimitation to
scalingthe messagepassingL.ocusRouteapplicationis the
distributedcostarray As the costarrayis divided among
more processorsmore frequentupdateswill be neededto
keepit consistent.Theseupdateswill takeextraprocessing
time. Also, the optimizationin the senderinitiated up-
datestrategyto sendabsoluteupdatesonly to the four near
neighborsof the senderwill be less effective, becauseas
the ownedregionsdecreasédn size, an increasingnumber
of processorsvill needtheupdate.Table6 showsthe effect
of increasingthe numberof processor®n the measure®f
quality, time, and networktraffic.

Table 6: Effect of numberof processorgSendernitiated).

Num | Ckt. | Occup.| MBytes
Ckt || Procs.| Ht. | Factor Xfrd. | Time (s)
bnrE 2| 131 | 415142 .245 8.438
4| 137 | 421041 .263 4.378
9 | 143 | 425426 178 2.184
16 | 141 | 429589 .140 1.445

As expectedthe occupancyfactor and circuit heightare
degradedby the addition of more processors. For these
circuits, the circuit height degradations around6%. As
the numberof processess increasedfurther, the number
of wires being simultaneouslyroutedwill increase. Also,
the numberof cost array regions spannedby each wire
will increase. For a fixed updateschedule both of these
factorswill leadto poorerquality resultsas the numberof
processorgs increased. The sharedmemory versionalso
producegoorerquality resultsasthe numberof processors
is increased9]. For a larger numberof processorsbetter
heuristicsor locality basedwire assignmentandmorestrict
methodsfor maintainingconsistencyn the distributedcost
array will be requiredto maintaina usefullevel of routing
quality.

Next, we examinethe effect increasingthe number of
processorshas on executiontime. (Here we calculate
speedupwith respectto the two processorun, and then
multiply by two.) Using the bnrE circuit, for 16 proces-
sors,the speedugs 12 with a senderinitiated updatestrat-
egy. For MDC, a larger circuit, the speedupis slightly
better reachingl2.8for the sendeiinitiatedstrategy These
speedupvaluesare comparablewith the speedupmeasured
for the original sharedmemoryprogram.

The networktraffic alsodependsn the numberof pro-
cessors.After four processorsthe networktraffic actually
beginsto decreaseas the numberof processorsncreases.
However this is not an indicationthat lesscommunication
is required. Clearly, sincethe quality is rapidly degrading,
morefrequentupdatesarerequiredasthe numberof proces-
sorsincreases Whatthis decreasen networktraffic shows



is that the updatessentout for eachownedregion, which
are boundirg boxesof all the changesmadein the region,
containfewer wastedbytes, becausethe ownedregion is
smaller Exceptfor this effect, one expectsthe needfor
communicatiorto increaseas the numberof processorss
increased.

6 Conclusions

We haveexaminedwo versionsof the LocusRouteapplica-
tion, written in messageassingandsharedmemorystyles.
In the messagepassingapproach the global cost array is
keptconsistenusingmessageso performexplicit updates.
For this approachwe exploreda numberof strategiesor
updatingthe costarray The sharedmemoryapproachuses
a centralizedcost array relying on underlyingcoherence
mechanismgo keepthe dataconsistent.

In general,the sharedmemory version of LocusRoute
gives better solution quality thanthe messagepassingap-
proachfor any of the updatestrategies. Intuitively, this
is becausghe sharedmemory approachmaintainsgreater
consistencyf the costarraythanany of the messageass-
ing strategies. For a circuit that will be massproduced,
the 5-15%improvementin quality afforded by the shared
memoryapproachcan representa significantcost savings.
Of the messagepassingstrategiessenderinitiated updates
producedhe resultswith the bestcircuit height.

However better solution quality has a cost associated
with it. The networktraffic measuredor the sharedmem-
ory approachwas significantly higherthanthat for any of
the messag@assingapproachesgspeciallythereceiverini-
tiated updatemethodwhich had the lowest network traf-
fic. The network traffic of the sharedmemory approach
wasabout10 timeshigherthanthatfor the senderinitiated
messaggassingstrategywhich in turn wasabout10 times
higherthanthatfor the receiverinitiated strategy

Exploiting locality in the taskassignments an effective
way of improving the quality of resultsin boththe shared
memory and messagepassingapproach. In the message
passingapproach, solution quality was improved nearly
10% by assigningwires to processor®n the basisof their
locationin thecircuit. Exploitinglocality alsodecreasethe
networktraffic by up to 63%. Making useof locality in the
sharedmemoryapproachalsohada favorableeffect on so-
lution quality andnetworktraffic. Quality canbe improved
by about 6% by assigningwires to processordasedon
their locationin the circuit. With this quality improvement
comesa reductionin network traffic as well. We further
note that the amountof locality in a typical standardcell
circuit is limited becausdong wires can stretchacrossthe
ownedregionsof severalprocessorsAlso, wire assignment
policieswhich strictly enforcelocality canleadto poorload
balancingwith large executiontime degradationMore so-
phisticatedwire assignmenheuristicsmay furtherimprove
quality and reducetraffic, but may increasethe time spent
on the staticwire assignmenphase.

The solutionquality andnetworktraffic arealsostrongly
dependenbn the numberof processordeingused. As the

numberof processorsncreasesthe numberof wires being
routedin parallelincreasesso the informationavailableto
each processoras it routesa wire is lessaccurate. Both
the sharedmemoryand messagepassingapproachesuffer
quality degradation®f 5-10%as the numberof processors
is increasedto 16. However our methodsfor exploiting
locality can mitigate somewhatthe effects of scalingto a
larger numberof processors.

Sincethe messageassingstyle of programmingcan be
efficiently implementedon sharedmemory machines,the
resultspresentedhereare not intendedto makea statement
abouttherelativemeritsof sharedmemoryor messag@ass-
ing architectures. Rather our resultsstressthe effect that
programmereffort can have on the efficiency of the data
structures,and on the parallel decompositionin general.
The messagassingparadigmrequiresthe programmeito
explicitly grapplewith how to keep shareddatastructures
consistent. This extra effort can resultin lower network
traffic than the sharedmemory approachwhich might be
consideredhe more“natural” implementation However if
theamountof traffic presenin the sharedmemoryapproach
is not excessivelyhigh, thenthe extraeffort requiredto im-
plementthe distributedapproachmay not be worthwhile.
Finally, while our resultsapply specificallyto LocusRoute,
the analysisperformedhereshouldserveasa guidefor the
implementatiorof othersimilar applications.
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