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Abstract
With technology advancing toward deep submicron, leak-

age energy is of increasing concern, especially for large on-
chip array structures such as caches and branch predictors.
Recent work has suggested that even larger branch predictors
can and should be used in order to improve microprocessor
performance. A further consideration is that the branch pre-
dictor is a thermal hot spot, thus further increasing its leak-
age. For these reasons, it is natural to consider applying de-
cay techniques—already shown to reduce leakage energy for
caches—to branch-prediction structures.

Due to the structural difference between caches and branch
predictors, applying decay techniques to branch predictors is
not straightforward. This paper explores the strategies for
exploiting spatial and temporal locality to make decay effec-
tive for bimodal, gshare, and hybrid predictors, as well as the
branch target buffer. Overall, this paper demonstrates that
decay techniques apply more broadly than just to caches, but
that careful policy and implementation make the difference
between success and failure in building decay-based branch
predictors. Multi-component hybrid predictors offer espe-
cially interesting implementation tradeoffs for decay.

1 Introduction
As fabrication processes have worked to improve clock

speeds while scaling supply voltage, threshold voltages are
being lowered to the point where leakage has become an im-
portant and growing fraction of total power dissipation in
high-performance CMOS CPUs. If it is not addressed through
fabrication or circuit-level changes, some forecasts predict as
much as a five-fold increase in leakage energy per technology
generation [1]. At such rates, the current leakage component,
roughly 5% of total chip power now, would balloon to 50% or
more in just a few generations.

In response to this trend, researchers have proposed circuit-
and architecture-level mechanisms for managing leakage en-
ergy [8, 10, 19]. In particular, prior work by Kaxiras et al. on
cache decay techniques [10] showed that turning cache lines
off if they have not been used in a long time can be effective
in reducing leakage energy with little performance impact.

After caches, branch predictors are among the largest and
most power-consuming array structures in current CPUs. Cur-
rent predictors are 4–8 Kbytes in size, already the size of a
small cache. They dissipate about 10% of the processor’s
total dynamic power dissipation [14]. Cycle-time, power-
dissipation, and thermal concerns tend to keep predictors from
growing larger. However, Jiménez et al. [9] pointed out that
two-level predictors can avoid cycle-time constraints and that
large second-level predictors can give substantial increases
in prediction accuracy, resulting in predictors that could be
as large and have the same substantial leakage as first-level
caches. Futhermore, Skadron et al. [15] found that the branch
predictor is a thermal hot spot, as it is typically accessed ev-
ery cycle. This indicates that branch predictors expend much
more leakage energy than their sizes would suggest, because
leakage power increases exponentially with temperature.

Applying decay techniques to caches has proven effective,
so applying decay techniques to branch predictors is an obvi-

ous next step. Unfortunately, several factors complicate this
task, for it is much less obvious when a branch predictor entry
may be considered “dead” and can therefore be turned off with
little performance impact. First, many branches may map to
the same predictor entry. Since this sharing is sometimes ben-
eficial, notions of cache conflicts and eviction do not translate
directly into the branch prediction world. Second, a branch
predictor entry is not simply valid or invalid, as in a cache.
A branch predictor entry may have reached the “strongly not
taken” state due to the effects of several different branches and
may be useful to the next branch that accesses it, even if this
branch has never been executed before. Third, branch predic-
tor entries are too small to deactivate individually, so one must
consider some larger collection, such as a row of predictor en-
tries in the square array in which the predictor is likely imple-
mented. The challenge here is that unlike the grouping of data
into a cache line, the grouping of branch predictor entries in a
row is not something for which application programmers and
systems builders have a sense of spatial locality. This paper
evaluates design options related to these questions.

Further interesting questions arise when moving from sim-
ple bimodal branch predictors [16], which keep one two-bit
counter per predictor entry, to multi-table predictors like hy-
brid predictors [13], which operate several prediction struc-
tures in parallel. For example, hybrid predictors may en-
counter instances when one of the predictor components has
decayed but the other has not. The chooser might be designed
to pick the non-decayed component in such situations. For
other branches, the chooser may exhibit a strong bias for one
predictor component over the other. In this case, predictor
entries that are not being selected might be deactivated.
Contributions. Because branch predictors have behavior
more nuanced than caches, cache decay methods cannot be
directly applied. This paper shows that effective decay tech-
niques can nevertheless be devised for branch predictors. The
paper then goes on to explore the interaction of decay policies
with some of the wealth of branch predictor design parame-
ters. We show that:
� Decay can reduce net leakage energy in the conditional

branch predictor by 40–60% and the branch target buffer
(BTB) by 90%.

� In hybrid predictors, decay policies can achieve 50%
higher reductions in leakage energy if the decay policy
takes advantage of the hybrid predictor organization to
boost decay opportunities.

� Decay is most effective for intervals of 64K cycles or
larger. If decay is applied too aggressively, extra mispre-
dictions result with significant costs in both performance
and dynamic power.

The next section describes the simulation infrastructure
and benchmarks used in this study. Section 3 briefly reviews
the organization of typical branch predictors. Then in Section
4 and Section 5 decay strategies are evaluated for basic and
hybrid predictors respectively. Section 6 concludes the paper
and includes some suggestions for future work.

2 Experimental Setup
Simulations in this paper are based on the SimpleScalar

3.0 toolkit [3]. Our model processor has microarchitectural



Processor Core
Instruction Window 16-RUU, 8-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts

Memory Hierarchy
L1 D-cache Size 16KB, 4-way, 32B blocks
L1 I-cache Size 16KB, 1-way, 32B blocks
L2 Unified, 256KB, 4-way LRU,

64B blocks,6-cycle latency, WB
Memory 18 cycles
TLB Size 128-entry, 30-cycle miss penalty
Branch target buffer 2048-entry, 4-way

Table 1: Configuration of simulated processor
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Figure 1: Gshare predictor in the Sun UltraSPARC-III (Left) and
21264-style hybrid predictor (Right).

parameters that most closely resemble the Intel PIII proces-
sor [5]. The main processor and memory hierarchy param-
eters are shown in Table 1. For performance estimates and
behavioral statistics, we use SimpleScalar’s sim-outorder sim-
ulator. For energy estimates, we use the Wattch simulator [2].

Our results are evaluated using benchmarks from the
SPEC2000 suite [18]. The benchmarks are compiled and stat-
ically linked for the Alpha ISA using the Compaq Alpha com-
piler with SPEC peak settings and include all linked libraries.
We skip the first billion instructions of each program to avoid
unrepresentative behavior at the beginning of the program’s
execution. We then simulate 500M (committed) instructions
using the reference input set. To ensure reproducible results
for each benchmark across multiple simulations, simulations
are conducted with SimpleScalar’s EIO traces.

3 Branch Predictors Studied
Although a wealth of dynamic branch predictors have been

proposed, we focus on the effects of decay for the gshare and
hybrid predictors, because they present the most interesting
tradeoffs.

The gshare predictor, shown in the left-hand portion of
Figure 1, tries to detect and predict sequences of correlated
branches by tracking a global history (the global branch his-
tory register or GBHR) of the outcomes of theN most recent
branches. In gshare, the global branch history and the branch
address are XOR’d to reduce aliasing. This paper models a
16 K-entry gshare predictor in which 12 bits of history are
XOR’d with 14 bits of branch address. This is the configura-
tion that appears in the Sun UltraSPARC-III [17].

Instead of using global history, a two-level predictor can
track local branch history on a per-branch basis. Local his-
tory is effective at exposing patterns in the behavior of indi-
vidual branches. Because most programs have some branches
that perform better with global history and others that perform
better with local history, a hybrid predictor [4, 13] combines
the two. It operates two independent branch predictor com-
ponents in parallel and uses a third predictor—the selector or
chooser—to learn for each branch which of the components is
more accurate and chooses its prediction. This paper models
a hybrid predictor with a 4K-entry selector that only uses 12
bits of global history to index its PHT; a global-history com-
ponent predictor of the same configuration; and a local history

predictor with a 1 K-entry, 10-bit wide BHT and a 1 K-entry
PHT. This configuration appears in the Alpha 21264 [6] and
is depicted in the right-hand portion of Figure 1.

Logically, branch predictors are arrays of counters that are
typically just two bits wide. Physically, however, branch pre-
dictors are, like caches, implemented as square or nearly-
square array structures. This helps to minimize the complex-
ity of the row and column decoders and balance wordline and
bitline length and delay. The predictor array is thus similar to
a cache array, except that it needs no tags. For example, the
16K-entry gshare predictor discussed above can be laid out as
a 128 � 128 array of 2-bit counters. Alternatively, it can be
divided into 4 banks, each a 64�64 counter array. We refer to
these two organizations as “unbanked” and “banked” respec-
tively and will discuss their decay behavior in Section 4.2.

4 Decay with Basic Branch Predictors
Since branch counters are only 2 bits in size, a cost-

effective choice for turning off these counters is at the gran-
ularity of rows in the array structure rather than individual
entries. Our techniques have the following general structure.
At regular intervals, all rows of predictor entries not been used
during the interval are assumed to have decayed and are there-
fore deactivated. The interval, called the decay interval, is
measured in processor cycles and is a critical parameter for
these schemes. The shorter the interval, the more opportu-
nities for rows to be deactivated but the more likely it is to
deactivate rows prematurely and induce extra mispredictions.
Intervals long enough to mimimize extra mispredictions, on
the other hand, result in the deactivation of fewer entries.

If a predictor lookup tries to access a decayed row, the pre-
dictor signals that a prediction cannot be made; the row is
re-activated and possibly initialized to some desired starting
state; in the meantime, a default prediction is made. Upon
activation, our experiments use a default of not taken and ini-
tialize all the counters to 01. Thus, subsequent branches using
the re-activated line start in the weakly-not-taken state.

The active ratio in a particular experiment is the average
percentage of predictor rows found to be active (not decayed);
it is a proxy for the actual leakage energy consumed by the
predictor. Of course shorter decay intervals yield smaller ac-
tive ratios (and larger leakage energy savings), but perfor-
mance may suffer, since useful predictor entries are some-
times deactivated. Exploring this power-performance tradeoff
is a key objective of this paper.

To evalulate the net effectiveness of decay for reducing
leakage energy, we combine the reduced value of leakage en-
ergy that was observed with decay, and the overhead energy
associated with the decay technique. We then compare this
to the original value for leakage energy. For each of the pre-
dictor types we study, we present plots of normalized leakage
energy for different decay intervals, where the basis for nor-
malization is the original value for leakage energy. This ap-
proach for measuring the net reduction in leakage energy is
similar to the techniques used by Kaxiras et al. in their work
on cache decay [10].

4.1 Spatial/Temporal Locality in Branch Predictors
The first question in exploring decay for branch predictors

is to determine how often an entire row of branch predictor en-
tries is likely to lie idle long enough for decay techniques to
be effective. In today’s machines, branch predictor rows typ-
ically include 32-256 counter entries. Fortunately, program
branches are clustered rather than random, and across all the
predictor organizations we examine, our experiments consis-
tently show that some rows have heavy activity while others
are idle and can be deactivated.

Clearly, programs exhibit spatial locality in the instruction
cache. Over a short period of time, only one or a few small



1K cycles 10Kc 100Kc 1Mc Overall
gzip 24 32 45 103 281
vpr 31 45 58 65 742
gcc 2 9 79 193 512
mcf 65 83 92 116 565
crafty 104 305 592 855 1701
parser 53 90 157 294 2265
eon 81 289 357 415 652
perlbmk 90 453 631 1112 1541
gap 62 281 325 576 745
vortex 124 502 1227 1642 1996
bzip2 22 33 45 56 460
twolf 48 210 300 334 351
wupwise 42 52 53 55 193
swim 3 6 11 15 687
mgrid 3 6 9 25 500
applu 1 2 4 7 579
mesa 83 114 139 267 697
galgel 2 6 8 10 508
art 2 2 5 18 109
equake 167 192 193 202 226
facerec 7 24 25 39 144
ammp 11 26 105 230 794
lucas 3 3 3 4 242
fma3d 80 450 452 465 499
sixtrack 39 49 55 99 734
apsi 14 85 117 125 342
geomean 20 46 70 109 529

Table 2: Average number of static branches touched every sample in-
terval for SPEC2000. The rightmost column labeled ‘Overall’ gives
the static branch footprint for the whole simulation period.

contiguous regions of the program are likely to be active, so
branch instructions are likely to be close in terms of their PC.
This also translates into spatial locality in branch-predictor
accesses. For branch predictors, spatial locality means that at
any point in the program, active rows are likely to have many
counters active and idle rows are likely to be entirely idle.
This is most true for the bimodal predictor, which is indexed
only by PC. Indeed, the probability that two successive condi-
tional branches fall into the same row in a 4 K-entry bimodal
predictor is greater than 40% for all our benchmarks.

Yet this is not useful if the active rows change rapidly, so
temporal locality is also necessary. One immediate factor that
creates temporal locality is the fact that many benchmarks
have small static branch footprints (the number of unique
branch instruction sites that are executed), as seen in Table 2.
Decay will therefore clearly help bimodal predictors, because
each static branch touches only one predictor entry and we
know from the data in Table 2 that they are clustered.

Other predictor structures, however, may not do as well.
With gshare, the branch address is XOR’d with the global
branch history, so that one branch can touch many PHT en-
tries. We evaluate decay for gshare predictors in the next sub-
section. Hybrid predictors use global- and local-history pre-
dictors as components, which brings more design choices. We
explore the design space for hybrid predictors in section 5.

4.2 Results
Figure 2 shows the geometric mean of the active ratios

across the benchmarks for both banked and unbanked 16K-
entry gshare predictors and, as a reference, the 4K-entry bi-
modal predictor. As expected, the active ratios are quite small
(i.e., good from a decay point of view) for the bimodal pre-
dictor. For gshare predictors, the active ratios are larger. Yet
significant numbers of rows remain untouched. This indicates
that even for predictor structures designed to smear branch ad-
dresses over many entries, decay-based techniques still show
significant promise for addressing leakage concerns.

We include data in Figure 2 for a banked version of
gshare. Breaking the predictor into banks makes the active ra-
tio smaller (better for decay) by reducing the granularity over
which activity is measured. Indeed, the active ratio for gshare
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Figure 2: Mean active ratio for unbanked and banked gshare pre-
dictors and a bimodal predictor with different decay intervals. The
rightmost label “orig” corresponds to non-decaying predictors.

is 15–35% smaller if it is broken into four banks of 4K entries
each. Overall, these active ratios yield leakage energy sav-
ings of 40% for unbanked gshare and about 50% for banked
gshare. Even greater savings can be achieved for structures di-
rectly indexed by PC: about 65% for bimodal predictors and
90% for the BTB. For more details, refer to [7].

5 Decay with Hybrid Predictors
With two competing components (the global component

and the local component), hybrid predictors exhibit many in-
teresting design choices when implementing decay. In this
section we will explore these design choices as well as their
effect on decay in an Alpha 21264-style hybrid predictor.
Selection Policy The selection policy refers to the policy
for choosing a prediction from one of the two component pre-
dictors. In a non-decaying 21264-style hybrid predictor, the
chooser makes this decision using the global history; see Fig-
ure 1. However, when decay is enabled, it may happen that
only one of the two components is active while the other is
decayed. In this case, since the decayed component has lost
its information, it is intuitively appealing to use the prediction
from the active component, no matter what the chooser sug-
gests. This policy is called “believe the active component”,
and is implemented in all our experiments. It may also hap-
pen that both the two components are decayed, in which case
all components are reactivated and the branch is predicted as
“weakly not taken”, as in bimodal and gshare predictors.
Wakeup Policy The wakeup policy refers to the decision of
whether to reactivate a decayed row when it is accessed by a
branch instruction. A naive policy would always wakeup any
rows that are accessed. In a hybrid predictor, a more elegant
policy is possible: the decayed component will be reactivated
only if the chooser wants to select it. We refer to this policy
as “believe the chooser”.

In the situation when the accessed row in the chooser is
decayed, we know that the global component is also decayed
in the 21264-style predictor. This is because the chooser and
global predictor are indexed, accessed and thus decayed in ex-
actly the same way; see Figure 1. In this case, the chooser has
no useful information. If the local component is active, then
we leave the chooser and the global component inactive and
return the prediction from the local component. Otherwise
(when the local component is also inactive), we reactivate all
components and return a prediction of “weakly not taken”.
Results Figure 3 details the active ratio and branch mispre-
diction rate for naive decay, which always wakeup any rows
that are accessed, with a 21264-style hybrid predictor. We
see that even though the active ratios are higher than for bi-
modal or gshare predictors, decay has a negligible impact on
the misprediction rate for intervals of 64K cycles or larger.
Note that in order to compute active ratio sensibly on a multi-
table structure, we compute it over all prediction and chooser
bits in the structure. Overall, as Figure 4 shows, naive decay
realizes strong reductions in energy savings—40% for a 64
K-cycle interval.
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Figure 3: Active ratio (Left) and misprediction rate (Right) for 21264’s hybrid predictor
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Figure 4: Normalized leakage energy of 21264-style Hybrid predic-
tor with naive and “believe the chooser” wakeup policies

We can obtain even better energy savings by taking advan-
tage of the “believe the chooser” wakeup policy. As shown
in Figure 4, this more sophisticated policy leads to leakage
power reductions about 50% better than for the naive policy.

6 Conclusion and Future Work
In this paper, we have explored the application of decay

techniques to reduce leakage energy in branch predictor struc-
tures. Space constraints require that this paper focus on one
particular decay technique, gated-Vdd, which loses state when
deactivated. But the focus of this paper is on policies, not
implementation techniques. The particular policies that we
have developed (e.g., “believe the chooser”) apply to all non-
state-preserving leakage-control mechanisms. The key con-
tributions of this work are even more general, giving useful
guidance to any work on leakage control. In particular, our
locality analysis shows that all predictor organizations we ex-
amined have significant numbers of rows that are inactive for
long periods of time. This makes leakage control in the branch
predictor and BTB profitable, regardless of mechanism.

Non-state-preserving leakage-control mechanisms are
well-suited for branch predictors, because the nature of the
two-bit counters used in prediction mean that the random val-
ues that are present upon re-activation are sometimes correct.
Our results show that for decay intervals of 64 Kcycles and
larger, decay can be highly effective while barely affecting
performance. The reduction in prediction accuracy is always
less than 1% and less than 0.2% for most benchmarks. For
these same decay intervals, branch predictor leakage energy
can be reduced by 40–60% while the BTB leakage can be re-
duced by about 90%.

Some of our interesting results were specifically due to the
fact that there are two independent component predictors in
a hybrid predictor. We showed that an intelligent policy that
exploit this fact can achieve 50% more leakage energy savings
than a naive policy.

One issue that warrants study further is interference in
branch predictors. In some experiments we observed mild but
interesting improvements in prediction rate with decay. This
shows that decay (by setting the two-bit counters to a weak
state) may have the effect of reducing destructive interference,
something we plan to quantify in our future work.

Leakage energy is expected to become a substantial portion
of total energy expended in the processor in future CMOS

generations. The results in this paper show that decay can
mitigate these effects by dramatically reducing leakage energy
expended in the branch predictor and BTB. Futhermore, since
many other prediction structures such as value predictors [12]
and prefetch address predictors[11] are organized similarly to
branch predictors, an interesting future effort will be to apply
strategies found in this paper to these structures.
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