
Statistical Assertions for Validating Patterns and
Finding Bugs inQuantum Programs

Yipeng Huang
yipeng@cs.princeton.edu
Princeton University

Margaret Martonosi
mrm@princeton.edu
Princeton University

ABSTRACT
In support of the growing interest in quantum computing exper-
imentation, programmers need new tools to write quantum algo-
rithms as program code. Compared to debugging classical programs,
debugging quantum programs is difficult because programmers
have limited ability to probe the internal states of quantum pro-
grams; those states are difficult to interpret even when observations
exist; and programmers do not yet have guidelines for what to check
for when building quantum programs. In this work, we present
quantum program assertions based on statistical tests on classical
observations. These allow programmers to decide if a quantum
program state matches its expected value in one of classical, su-
perposition, or entangled types of states. We extend an existing
quantum programming language with the ability to specify quan-
tum assertions, which our tool then checks in a quantum program
simulator. We use these assertions to debug three benchmark quan-
tum programs in factoring, search, and chemistry. We share what
types of bugs are possible, and lay out a strategy for using quantum
programming patterns to place assertions and prevent bugs.

CCS CONCEPTS
• Computer systems organization→ Quantum computing; •
Software and its engineering→ Software testing and debug-
ging; Patterns; • Hardware → Quantum computation; • Theory
of computation → Assertions.

KEYWORDS
quantum computing, correctness, program patterns, assertions, de-
bugging, validation, chi-square test
ACM Reference Format:
Yipeng Huang and Margaret Martonosi. 2019. Statistical Assertions for
Validating Patterns and Finding Bugs in Quantum Programs. In The 46th
Annual International Symposium on Computer Architecture (ISCA ’19), June
22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3307650.3322213

1 INTRODUCTION
Quantum computing is reaching an inflection point [34, 41]. After
years of work on low-level quantum computing (QC) devices, small

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322213

Figure 1: A Bell state creation quantum program. The se-
quence of operations in time flows left to right. A classical
state consisting of twoqubits (A) ismanipulated into a super-
position state by a quantumoperation (B). A controlled-NOT
gate (C) then induces entanglement between the two qubits
to create an entangled state Q , which notably can no longer
be factored into two separate pieces of information (D). Mea-
surement of both of the qubits collapses the quantum state
(E). Because the the qubits were entangled when they were
measured, themeasurement resultsm0 andm1 are correlated
(F). Statistical tests on thesemeasurements aid programmers
in implementing and debugging quantum programs.

but viable QC prototypes are now available to run programs. These
QC prototypes are increasing in size, with much research attention
being placed on improving their reliability and increasing the counts
of qubits (quantum bits), the fundamental building block for QC [20,
24, 33, 50]. These advancements in QC hardware may soon lead to
a demonstration of a quantum algorithm running on QC hardware
that exceeds the performance of a classical computer system [3, 14].
Such a demonstration would move the world closer to a new era
of computing where QC systems solve problems in chemistry [26,
36], optimization [7, 8, 37], and even cryptography [46] that are
currently intractable with classical computers.

With small-scale machines available to run real code, a natural
challenge lies in bridging the QC architectural gap between algo-
rithms and hardware. One aspect of that gap is in creating correct
programs to run on quantum computers [4, 13]. Until recently, QC
algorithms existed only in the form of abstract specifications and
equations, and were rarely programmed for actual execution or
simulation, and therefore relatively little QC debugging has ever
occurred. Furthermore, QC debugging faces challenges beyond that
of classical computing. In particular, typical debugging approaches
based on printing out variable values during program execution
do not easily apply to QC programs, because program states in
QC collapse to classical values when observed. Second, while pro-
grammers have more freedom to observe full program states in
QC simulations on classical computers, the massive state spaces

https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/3307650.3322213

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yipeng Huang and Margaret Martonosi

of QC executions limits this approach to small programs. Finally,
even when limited simulations are tractable, it can be difficult to
interpret the simulation results.

While the problem of debugging and validating quantum pro-
grams has been extensively identified as a major barrier to useful
quantum computation [4, 9, 13, 34, 39, 44, 49], little has been said
about what actually constitutes a quantum program bug. Similarly
limited detail has been shared about the inside story of translat-
ing QC algorithms in to working QC programs, even though the
field is now making rapid progress in writing open source QC
program benchmarks across several quantum programming lan-
guages [9, 17, 23, 27, 47, 48].

This work shares the detailed process of debugging quantum
programs, with the help of a proposed set of quantum program
assertions and breakpoints based on statistical tests. Using ensem-
bles of classical observations taken from the intermediate state of
quantum programs, these statistical tests are able to decide if the
program state belongs to one of three important classes of quantum
states: classical, superposition, and entangled. With this informa-
tion, programmers can determine if the execution of the quantum
program is valid up to each breakpoint. If the program state is
invalid, the assertions guide the programmer in finding the bug
inside subroutines and in program code up to that point.

For three quantum program benchmarks in factoring integers,
database search, and quantum chemistry, we describe what kinds of
bugs occurred in the process of bringing up the programs from unit
tests to integration testing. We categorize the bugs according to
where in the structure of quantum programs they may arise, and we
lay out a strategy for placing statistical assertions that effectively
catches them.

The rest of this paper is organized as follows: Section 2 provides
relevant background for quantum programs and debugging. Sec-
tion 3 details our statistical assertions and simulation framework for
debugging quantum programs, which is then used in Section 4 for
building and debugging an integer factorization quantum program.
Section 5 evaluates the use of the assertions in two additional case
studies. Section 6 discusses related approaches to writing correct
quantum programs.

2 BACKGROUND ON QUANTUM STATES
AND QUANTUM PROGRAMS

First, we review the principles of quantum computing [18, 28, 29,
35], in order to understand how debugging quantum programs is
different from and more challenging than classical debugging.

2.1 Qubits, superpositions, and entanglement
The basic unit of information in QC is the qubit, which can take
on values of |0⟩ and |1⟩ like bits in classical computing, but unlike
classical bits, qubits can also be in a probabilistic superposition
between the two values. Quantum computers can also measure
the value of a qubit, forcing it to collapse out of superposition
into a classical value such as ‘0’ or ‘1’. Measurement disturbs the
values of variables in a quantum computer. So unlike the case in
classical computing, programmers cannot easily pause execution
and observe the values of qubits as a quantum program runs. As
a result of this limited visibility into program state, programmers

must carefully choose what to measure and test when they debug
quantum programs.

Aside from qubits being in superposition states, the other feature
of data in QC is entanglement. For example, when the states of two
qubits are entangled, the combined state of the two-qubit system
must be viewed as a superposition of a larger set of elementary
states |00⟩, |01⟩, |10⟩, and |11⟩. An entangled state cannot be fac-
tored into independent pieces of information, and can no longer be
viewed as a simple concatenation of two qubits. Likewise, a three-
qubit system has potential superpositions of eight states, and so on.
For this reason, as more qubits come into play in a quantum com-
puter, the number of states that data can be in grows exponentially.
This exponential growth of possible values due to superpositions
and entanglement underlies the power of QC.

On the flip side, the huge state spaces involved in QC limits pro-
grammers’ ability to use classical computers to simulate and debug
QC programs. Naïve simulation of a 50-qubit quantum computer,
for example, needs 250 or roughly one quadrillion floating point
numbers just to store the program state at any instant [11]. While
more advanced techniques can decrease the memory requirement
for simulating circuits [25, 30, 52, 55, 58], interactive programming
and simulating quantum programs on a workstation is still lim-
ited to 20 to 30 qubits. For this reason, testing and debugging QC
programs in simulation is only possible for toy-sized programs.

2.2 Quantum computer operations,
programs, and a taxonomy for bugs

The process of quantum computing involves applying operations on
qubits. Quantum computer scientists use diagrams such as Figure 1
to represent sequences of quantum operations. Looking at Figure 1
one sees that quantum programs consist of three conceptual parts:

(1) Inputs to quantum algorithms include quantum initial val-
ues for qubits and classical input parameters such as coeffi-
cients for rotations. Getting these inputs to be correct is the
focus of Section 4.1.

(2) Operations include the specification of how to create an
entangled state shown in Figure 1. Getting these basic oper-
ations to be correct is the focus of Section 4.2. Additionally,
operations can be further composed according to patterns
such as iteration, recursion, and mirroring. The correctness
of these code patterns is the focus of Sections 4.3, 4.4, and 4.5.

(3) Outputs of quantum algorithms are the final classical mea-
surement values of qubits such asm0 andm1. Furthermore,
any temporary variables used in the course of a program
have to be safely disentangled from the rest of the quantum
state and discarded. Getting these final results to be correct
is the focus of Section 4.6.

Bugs in quantum programs can crop up in any of these three
parts of a QC program due to mistakes in converting algorithm
specifications to program code. We will give examples of bugs in
each of these places using detailed case studies of real quantum
programs. To our knowledge, our work is the first study of such
QC program patterns and anti-patterns [15].

Statistical Assertions for Validating Patterns and Finding Bugs inQuantum Programs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Controlled adder (Section 4.3; Listing 2, 3)

Controlled modular multiplier (Listing 4)

Controlled modular exponentiation

Lower target register
Classical initial state

(Section 4.1)

Deallocated ancillary qubits
Classical final state

(Section 4.6)

Increasing entanglement “memory allocation” (Section 4.4) Decreasing entanglement “garbage collection” (Section 4.5)

Quantum
Fourier

transform
(Section 4.2;

Listing 1)

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

(Section 4.1)
Measurement

Classical
result

Figure 2: Roadmap for implementing and debugging Shor’s algorithm.

3 OUR APPROACH TO STATISTICAL
QUANTUM PROGRAM ASSERTIONS

Even though it is hard to have as much visibility into quantum
program state as is the case in classical computing, limited but useful
assertions checking is possible, particularly for the purposes of
writing correct quantum programs. In this paper, we propose using
statistical tests on measured outputs as a way to gain visibility into
a quantum program (Section 3.1). We implement several quantum
programs in a quantum programming language (Section 3.2). Using
our “quantum breakpoints,” programmers are able to check for
expected values at various points in simulated quantum program
runs, allowing them to debug the programs with the aid of our
statistical assertions (Section 3.3).

3.1 Quantum assertions using statistical tests
In this subsection, we preview three basic types of assertions useful
in quantum debugging, and we discuss the mechanics of using
statistical tests as quantum assertions.

Following our overview of quantum states, superpositions, and
entanglement in Section 2, one already sees that there are three
kinds of possible assertions in a quantum program:

(1) Classical assertions: a quantum variable should take on a
deterministic (classical) integer value upon measurement;

(2) Superposition assertions: a quantum variable in superpo-
sition should take on a probabilistic distribution of multiple
values upon measurement;

(3) Entanglement assertions: two or more quantum variables
in an entangled state should take on associated (correlated)1
values once they are measured.

Statistical tests use ensembles of multiple measurements to de-
cide to reject hypotheses. These serve as quantum programming
assertions. With enough measurements, a statistical test is able to
tell that an assertion does not hold, indicating a bug in the program.

1Correlation is dependence between variables whose magnitude does matter. That
compares with association which is dependence between nominal variables that are
merely categories, and whose magnitude don’t matter.

Otherwise, if the assertion holds, programmers can proceed cau-
tiously knowing the quantum state so far is consistent with “no bug,”
given the number of measurements provided to the statistical test.
While this approach is not powerful enough to decisively conclude
that a quantum program state is correct, the debugging experience
we share in this paper shows that detecting incorrect states is still
useful enough to catch program bugs.

Specifically, our tool uses the chi-square test to check for clas-
sical and superposition quantum states, and it uses contingency
table analysis coupled with the chi-square test to check for entan-
gled states [42]. The assertions on classical and superposition quan-
tum states are useful for quantum algorithm precondition checks
and for unit testing, discussed in Sections 4.1, 4.2, 4.3, and 4.6. Sim-
ilarly, the assertions on entangled states are useful for checking
interaction between qubits, discussed in Sections 4.4 and 4.5.

3.2 Benchmark QC algorithms for debugging
To demonstrate using our assertions framework to debug quantum
programs, we focus this paper on debugging three programs in
factoring integers, database search, and quantum chemistry, each
representing a different class of quantum algorithms.

Using the Shor’s integer factoring quantum algorithm for factor-
ing integers as a centerpiece example throughout Section 4, we
show how the structure of quantum programs guides programmers
where to put useful quantum assertions. We propose a complete
taxonomy of where bugs can take place, and show assertions can
catch all of the categories of bugs.

Then, using the Grover’s database search and a quantum chem-
istry problem as additional case studies in Section 5, we discuss
how different classes of quantum algorithms present different op-
portunities and challenges for debugging.

3.3 Simulation and assertions checking
methodology

We implement the programs in the Scaffold quantum programming
language developed by our research group [17],2 now augmented

2https://github.com/epiqc/ScaffCC

https://github.com/epiqc/ScaffCC

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yipeng Huang and Margaret Martonosi

Table 1: Correct and incorrect code for rotation decomposition. Using the Scaffold language [17] as an example, we code out
Figure 3’s controlled operation U, where U is a rotation in just one axis. Because only one axis is needed, we can drop either
operation A or C, paying attention to the sign on the angles. Reordering the lines of code or signs results in a rotation in the
wrong direction.

Correct, operation A unneeded Correct, operation C unneeded Incorrect, angles flipped

Rz(q1,+angle/2); // C CNOT(q0,q1); Rz(q1,-angle/2);
CNOT(q0,q1); Rz(q1,-angle/2); // B CNOT(q0,q1);
Rz(q1,-angle/2); // B CNOT(q0,q1); Rz(q1,+angle/2);
CNOT(q0,q1); Rz(q1,+angle/2); // A CNOT(q0,q1);
Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D

with the ability to specify and check for assertions. The assertions
instruct the compiler where to stop execution and measure qubit
states. Since premature measurement destroys the quantum state,
the assertions effectively terminate the quantum program, splitting
the quantum program into multiple breakpoints.

Our tool uses the ScaffCC compiler to compile Scaffold code with
assertions into multiple versions of OpenQASM, a QC assembly
language [6]. Each version of the compiled program has the pro-
gram execution up to the quantum breakpoint, followed by an early
measurement and assertions on expected values for the quantum
variables.

Then, our tool simulates an ensemble of executions for each of
the programs ending at each breakpoint, using the QX quantum
simulator [19] running on a cluster compute infrastructure.

Finally, the tool gathers the results from the simulations to check
for the assertions at each breakpoint. The measurement results feed
into statistical tests, which check if the quantum variables have val-
ues that are consistent with being in one of classical, superposition,
or entangled states. If the statistical tests reject the null hypotheses,
that indicates the assertions were violated, which means there is a
bug in the quantum program or that the assertion was an incorrect
constraint.

Given the rapid growth of QC infrastructure, programmers now
have the chance to test a variety of quantum algorithms written in
many languages [23]. To validate our overall approach, we cross-
validated our quantum programs and simulation results against
equivalent programs written in other quantum programming lan-
guages, such as LIQUi|> [44], ProjectQ [12, 47], and Q# [48].

From this detailed debugging experience spanning multiple al-
gorithms, languages, and simulators, we are able to concretely
describe for the first time what types of bugs may crop up in quan-
tum programs, and how assertions can aid in the debugging of
quantum programs. As an added contribution, Section 5 discusses
how language features of different QC programming languages can
aid with the placement of quantum assertions, or otherwise prevent
bugs in the first place.

4 QC DEBUGGING AND ASSERTIONS:
SHOR’S ALGORITHM CASE STUDY

Using the Shor’s quantum algorithm for factoring integers as a
concrete case study, we show how the structure of the quantum
program shown in Figure 2 aids programmers in using assertions
to debug quantum programs. To defend against bugs in quantum

U

q0

q1 C

q0

q1 B A

D
=

Figure 3: Decomposition of a simple QC program. Time
flows left to right, showing sequences of operations applied
to qubits q0 and q1. The left symbol is a controlled arbitrary
operation U . Whether the operation U applies to the target
qubit q1 is dependent on the value of the control qubit q0.
The diagram on the right shows the decomposition into the
equivalent sequence of more basic operations. The basic op-
erations include single-qubit rotations A through D that al-
ter the probability distribution of qubit values. The opera-
tions also include two two-qubit controlled-NOT operations
that flip the target qubit (denoted ⊕) contingent on the value
of the control qubit (denoted •) [35].

program input, operations, and outputs, programmers can write
assertions that check for preconditions, invariants, and postcon-
ditions. These constraints aid in the process of bringing up the
program from unit tests to overall integration tests.

Shor’s factorization algorithm uses a quantum computer to factor
a composite number in polynomial time complexity, providing expo-
nential speedup relative to the best known classical algorithms [46].
The algorithm works by estimating eigenvalues of a matrix, where
the matrix is generated from the exponentiation of an integer repre-
senting a trial factor. The arithmetic is done in modular space with
the modulus N set to be the integer one wants to factor. Here, we
replicate results for factoring N = 15, the simplest example [21] [35,
p. 235], by following an example for an implementation that mini-
mizes the qubit cost [2]. Once the quantum part of Shor’s algorithm
is done finding the eigenvalues, those values are useful in a classical
post-processing algorithm to find 3 and 5, the factors of 15.

We focus on debugging the Shor’s factoring algorithm because it
features in a single overall algorithm several important primitives
(kernels) and program patterns common to many quantum algo-
rithms. The primitives invoked in Shor’s algorithm include order
finding, eigenvalue estimation, state preparation, phase estimation,

Statistical Assertions for Validating Patterns and Finding Bugs inQuantum Programs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

and quantum Fourier transform. Our assertions and debugging tech-
niques apply to several other QC applications that invoke similar
primitives and patterns.

4.1 Classical and superposition precondition
assertions on quantum initial values

Correct implementation and execution of QC programs begins with
the right input states. Given their importance, it is worthwhile
to check these preconditions by running or simulating programs
up to the entry point of subroutines, and performing a premature
measurement to check for these anticipated states.

Bug type 1: Incorrect quantum initial values. The type of
quantum initial state that an algorithm needs depends on the type
of algorithm. For eigenvalue estimation algorithms such as Shor’s
algorithm, the two major pieces of quantum data are an upper reg-
ister and a lower register (far left of Figure 2): the upper register
participates in a phase estimation subroutine; while the lower reg-
ister is scratch space to implement a mathematical function such
as modular exponentiation.

Here, the lower target register needs to be initialized to a strictly
classical integer value, such as ‘1’. That means that if a quantum
computer measured the qubit encoding the least significant bit of
the quantum variable, it should return ‘1’, while the measurements
on the other qubits of the variable should return ‘0’.

On the other hand, the upper control register needs to be initial-
ized to a uniform superposition of values. More concretely, if the
upper register consists of, for example, 3 qubits, the measurement of
the upper register at the beginning of the algorithm should return
the eight values ‘000’, ‘001’, ... ‘111’ with equal probability. That
uniform superposition of values is created by the quantum Fourier
transform (QFT). The QFT operation has the effect of taking integer
inputs, and re-encoding them as quantum values that are distinct
from each other by a quantum property known as phase.

The classical value in the upper register and uniform superposi-
tion in the lower register are the preconditions for Shor’s algorithm.
Other types of preconditions are possible for other types of algo-
rithms. For example, quantum communications protocols often
need entangled states as initial conditions.

Defense type 1: Assertion checks for classical and super-
position preconditions. Our tool checks for both classical and
superposition states using chi-square statistical tests on measured
values.

To test for classical integer values, our tool gives the chi-square
test the hypothesis that the distribution is unimodal with a peak at
the expected value. If the test returns a small p-value (≤ 0.05), then
the null hypothesis is rejected, meaning the initial state cannot be
the expected value, indicating a violation of the precondition. If, on
the other hand, the test returns a large p-value, typically close to
1.0, then the input state is consistent with being the expected value,
though programmers cannot completely rule out a precondition
violation. If there actually was a bug, programmers would only be
able to detect the precondition violation using more measurements.

To test for superposition quantum states of n-qubits, the chi-
square test uses as its hypothesis that the measurements should be

1 #include "QFT.scaffold"
2 #define width 4 // number of qubits
3 int main () {
4
5 // initialize quantum variable to 5
6 qbit reg[width];
7 for (int i=0; i<width; i++) {
8 PrepZ (reg[i], (i+1)%2); // 0b0101
9 }
10
11 // precondition for QFT:
12 assert_classical (reg , width , 5);
13
14 QFT (width , reg);
15
16 // postcondition for QFT &
17 // precondition for iQFT:
18 assert_superposition (reg , width);
19
20 iQFT (width , reg);
21
22 // postcondition for iQFT:
23 assert_classical (reg , width , 5);
24 }

Listing 1: Test harness for quantum Fourier transform.

a uniform distribution across all 2n integer values. If the superposi-
tion precondition is violated, and there are sufficient measurements,
the values would be concentrated enough for the chi-square test to
reject the null hypothesis and raise an exception.

In prior work, the Q# quantum programming language has sup-
port for assertion checks for integer values, and is able to check for
such assertions in simulations of quantum programs [48]. To our
knowledge, this paper is the first proposal for quantum assertions
on superposition and (later in this paper) entangled quantum states.
Furthermore, this is the first work to discuss using statistical tests
to check for these hypotheses.

4.2 Unit tests for a library of subroutines
Now that we havemade sure the quantum initial states are valid, the
next step in programming the Shor’s algorithm is to build up the al-
gorithm operations. We do so starting from elementary operations,
which we exhaustively validate against their closed form solutions,
and against implementations in other languages. Then we compose
the elementary operations following code patterns—iterations, re-
cursion, and mirroring—and test the composite subroutines using
assertions (Sections 4.3, 4.4, 4.5).

Bug type 2: Incorrect operations and transformations. In
order to correctly implement Shor’s algorithm, programmers first
have to build up the quantum subroutines such as the controlled
rotation subroutine depicted in Figure 3. This subroutine is the
building block for QFT and adder routines in Shor’s algorithm
(modules in Figure 2). Typically this task consists of translating
quantum circuit diagrams, such as Figure 3, into quantum program

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yipeng Huang and Margaret Martonosi

1 // outputs b <= a+b, where a is a `width ' bit constant integer
2 // b is an integer encoded on `width ' qubits in Fourier space
3 module cADD (
4 const unsigned int c_width , // number of control qubits
5 qbit ctrl0 , qbit ctrl1 , // control qubits
6 const unsigned int width , const unsigned int a, qbit b[]
7) {
8 for (int b_indx=width -1; b_indx >=0; b_indx --) {
9 for (int a_indx=b_indx; a_indx >=0; a_indx --) {
10 if ((a>>a_indx) & 1) { // shift out bits in constant a
11 double angle = M_PI / pow (2, b_indx -a_indx); // rotation angle
12 switch (c_width) {
13 case 0: Rz (b[b_indx], angle); break;
14 case 1: cRz (ctrl0 , b[b_indx], angle); break;
15 case 2: ccRz (ctrl0 , ctrl1 , b[b_indx], angle); break;
16 }}}}}

Listing 2: Controlled adder subroutine using QFT.

1 #include "cADD.scaffold" // see Listing 2
2 #define width 5 // number of qubits
3 int main () {
4 // control qubits unimportant here
5 qbit ctrl [2];
6 PrepZ (ctrl[0], 0);
7 PrepZ (ctrl[1], 0);
8
9 // initialize quantum variable to 12
10 const unsigned int b_val = 12;
11 qbit b[width];
12 for (int i=0; i<width; i++) {
13 PrepZ (b[i], (b_val >>i)&1);
14 }
15 assert_classical(b, width , 12);
16
17 // perform the addition
18 QFT (width , b);
19 const unsigned int a = 13;
20 cADD (0,ctrl[0],ctrl[1],width ,a,b);
21 iQFT (width , b);
22
23 // assert a+b = 12+13 = 25
24 assert_classical (b, width , 25);
25 }

Listing 3: Test harness for controlled adder subroutine.

code. Sometimes, programmers do not even have quantum circuit
diagrams and must instead start with equation descriptions for the
operations they need. This process of converting specifications to
program code is unintuitive and tricky. For example, Table 1 lists
multiple ways to code the decomposition of the controlled rotation,
including a buggy one where a small mistake leads to the wrong
operation.

Defense type 2: Assertion checks for unit testing. An obvi-
ous defense against coding mistakes in basic subroutines (such as
controlled rotation, QFT, and addition subroutines) is to use a li-
brary of shared code. Doing so helps ensure program correctness by
allowing programmers to exhaustively validate small subroutines,
in order to bootstrap larger subroutines. Unit testing is especially
important in QC as running or simulating large quantum programs
is costly, making larger scale integration tests impossible.

As a concrete example, we use precondition and postcondition
assertion checks inside a test harness to validate the QFT subroutine,
another important building block. As shown in Listing 1, first the
program prepares a classical integer state (Lines 5-9). Then, the
program checks as a precondition of the QFT subroutine that the
input is a classical integer value, in this case ‘5’ (Line 12). The
corresponding postcondition of the QFT subroutine is that the
output should be a uniform superposition if the program collapses
the quantum state and measure the values at that point (Line 18).

While these simple constraints are not enough on their own to
validate that the QFT implementation and its sub-components are
correct, they are valuable lightweight sanity checks. For the QFT
subroutine, additional validation comes from cross checking its
outputs against closed form mathematical solutions, and against
implementations in other languages.

4.3 Numeric assertion checks for
composing gates with iterations

From the basic subroutines, programmers typically compose the
subroutines into quantum programs using patterns including it-
erations, recursion, and mirroring. Here we focus on iterations,
a pattern commonly invoked in code related to the QFT for the
purpose of manipulating qubits that represent numbers. Our tool
can catch bugs in iteration code using assertions on integer inputs
to and outputs from subroutines.

Bug type 3: Incorrect composition of operations using it-
eration. Now that we have validated code for the controlled ro-
tation and QFT subroutines, the next more complex subroutine is

Statistical Assertions for Validating Patterns and Finding Bugs inQuantum Programs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

the controlled adder, which is itself a subroutine for the modular
exponentiation part of Shor’s algorithm (bottom module in Fig-
ure 2). Listing 2 shows the iteration code for the constant-value
adder, showing tricky places in Lines 8 through 11 where bugs
can crop up. These possible bugs include indexing errors in the
two-dimensional loop, bit shifting errors, endian confusion, and
mistakes in rotation angles.3

Defense type 3: Assertion checks for classical intermedi-
ate states. Our tool’s assertions on classical integer values allows
for unit testing of code that involve iterations. As an example in
Listing 3, programmers can write assertions on the inputs (Line 15)
and outputs (Line 24) of the controlled adder subroutine. With these
assertions programmers can catch coding mistakes made in its con-
stituent subroutines. For example the bug involving the incorrect
version of the rotation operation in Table 1 is caught here when
the output assertion returns p−value = 0.0, indicating the addition
did not work as expected, due to a bug inside the controlled adder.

4.4 Entanglement assertion checks for
composing gates with recursion

The next two types of bugs in quantum programs have to do with
two more ways to compose basic operations, both of which have to
do with the interaction between quantum variables; i.e., between
two or more sets of qubits. That is in contrast to the previous two
types of bugs in basic operations and iterating operations, which
generally act on single variables (where the variables may comprise
multiple qubits).

In quantum computing, the interaction between variables takes
place through entanglement. For example, in Figure 2, the upper
and lower registers interact when they are entangled through the
controlled modular exponentiation operation. If two variables are
entangled when a quantum computer measures them, the classical
values that they collapse to will be correlated. Using statistical tests
on the measurement results, programmers can write assertions to
check whether variables are entangled as expected.

Bug type 4: Incorrect composition of operations using re-
cursion. Entanglement is achieved using controlled operations,
which is a common pattern in quantum programs that involves
performing operations (e.g., modular multiply), contingent on a set
of qubits known as control qubits. These controlled operations cor-
respond to using recursion to compose basic operations. A multiply-
controlled rotation, for example, is just a controlled rotation that is
itself controlled by other qubits (Figure 4).

The process of coding recursive operation patterns may intro-
duce bugs. That is because quantum algorithms often need varying
numbers of control qubits in different parts of the algorithm, leading
to replicated code from multiple versions of the same subroutine
differing only by the number of control qubits. An example appears
in Listing 2, where the addition operation is contingent on control

3One of the trickiest aspects of quantum programming is properly keeping track of
how quantum variables map to qubit assignments. One way to prevent bugs altogether
in this kind of code is to introduce QC data types for numbers, providing greater
abstraction than working with raw qubits. For example, ProjectQ has quantum integer
data types [47], while Q# [48] and Quipper [9, 51] offer both big endian and little
endian versions of subroutines involving iterations. These QC data types permit useful
operators (e.g., checking for equality) that help with debugging and writing assertions.

1 #include "cMODMUL.scaffold"
2 #define width 5 // number of qubits
3 #define N 15 // number to factor
4
5 // CALCULATE: b <= a*x+b mod N
6 int main () {
7
8 // control qubit in superposition
9 qbit ctrl [1];
10 PrepZ (ctrl[0], 1);
11 H (ctrl [0]);
12
13 // initialize x variable to 6
14 const unsigned int x_val = 6;
15 qbit x[width];
16 for (int i=0; i<width; i++) {
17 PrepZ (x[i], (x_val >>i)&1);
18 }
19 assert_classical (x, width , 6);
20
21 // initialize b variable to 7
22 const unsigned int b_val = 7;
23 qbit b[width];
24 for (int i=0; i<width; i++) {
25 PrepZ (b[i], (b_val >>i)&1);
26 }
27 assert_classical (b, width , 7);
28
29 // ancillary qubits unimportant here
30 qbit ancilla [1];
31 PrepZ (ancilla [0], 0);
32
33 // perform modular multiplication
34 const unsigned int a = 7;
35 cMODMUL (ctrl[0], width , a, x, b, N,

ancilla [0]);
36
37 assert_entangled(ctrl ,1, b,width);
38
39 // inverse modular multiplication
40 const unsigned int a_inv = 13;
41 cMODMUL (ctrl[0], width , a_inv , x, b, N,

ancilla [0]);
42
43 assert_product(ctrl ,1, b,width);
44 }

Listing 4: Test harness for the controlledmodularmultiplier
subroutine.

qubits taken as parameters in Lines 4 and 5. Depending on how
many control qubits are needed, the switch statement in Lines 12
through 15 applies the correct operation. The specific bug we are
going to demonstrate catching next is if a programmer made a mis-
take in Line 15, where they accidentally use ctrl1 twice instead of
ctrl0, causing a mistake in how the control qubits are routed.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yipeng Huang and Margaret Martonosi

UU

=

Figure 4: Controlled operationswithmultiple control qubits
result in recursive code patterns.

Defense type 4: Assertion checks for entangled interme-
diate states. Programmers can check for these types of bugs in
recursive code patterns for controlled operations using entangle-
ment assertions, a new kind of quantum assertion that we introduce
to test for dependence between measured values.

As a very simple example, we show how the entanglement as-
sertion check works on the simplest example of entangled states.
In the Bell state creation circuit we showed in Figure 1, the state
of the two qubits Q in location (D) of that diagram are in a Bell
state, a minimal example of an entangled state between qubits. The
measurement resultsm0 andm1 are maximally correlated—either
both return ‘0’ or both return ‘1’. Using such observations one can
build a contingency table:

Probability m0 measurement
0 1

m1 0 1/2 0
measurement 1 0 1/2

Next we again use a chi-square statistical test on the table to
determine a contingency coefficient. If the p-value is small (≤ 0.05),
as is the case for this table, then the test rejects the null hypothesis
and concludes the observations must be correlated, and therefore
the quantum variables were entangled when they were measured.
On the other hand, if the p-value fails to be significant, then the
observations are consistent with the variables being independent
and unentangled.

These entanglement assertions are powerful tools for catching
bugs such as our example bug of mistaken control qubits in the
controlled adder subroutine. Our tool catches the bug using en-
tanglement assertions in the controlled modular multiplier test
harness, shown in Listing 4. To prepare the contingency table, the
programmer only needs to identify pairs of quantum variables that
should be entangled with each other using the assert_entangled
statement (Line 37), which takes four parameters specifying the
control and target quantum variables and their bitwidths. Then, our
debugging tool keeps track of which qubits those specified variables
correspond to. The simulator then does an early measurement of
the qubits for both variables. The debugging tool then maps the
measurement results into columns and rows of a contingency table
automatically, and a chi-square test checks to make sure the control
qubits have an effect on whether the multiplier acts on the target
qubits.

If the controlled add operation is bug-free, with the control qubits
correctly routed, the first assertion returns p−value = 0.0005 for
an ensemble size of 16, indicating the control and target register
values are entangled at the point of the assertion. That means that
whichever way the control qubit collapses out of its superposition

Table 2: Correct classical input a and a−1 to Shor’s algorithm
for factoring 15, using 7 as a guess.

k , the algorithm iteration 0 1 2 3 . . .

a = 72
k

mod 15 7 4 1 1 . . .
a−1; a × a−1 ≡ 1 mod 15 13 4 1 1 . . .

state, it correctly controls whether the multiplication works on
the target register. On the other hand, if the control qubits are
routed incorrectly, the first assertion returns p−value = 0.121 for
an ensemble size of 16. This indicates the control register value is
not correctly toggling the operation of the multiplier, hinting the
bug must be somewhere inside the multiplier implementation.

4.5 Product state postcondition assertions for
composing gates with mirroring

Contingency table analysis is also useful for checking for the third
and final kind of pattern in quantum programs, the correct mir-
roring of operations. The reason this pattern appears in quantum
programs is to allocate and deallocate qubits within a quantum
subroutine, analogous to the allocation and garbage collection of
memory in classical programs. For example, the Shor’s algorithm
in Figure 2 can be seen as allocating the bottom register of qubits
(known as ancillary qubits) in the left half of the algorithm, perform-
ing the modular exponentiation, and then deallocating the bottom
register of qubits in the right half of the algorithm. Product state
assertions validate that the deallocation of these ancillary qubits is
done correctly.

Bug type 5: Incorrect composition of operations usingmir-
roring. In order to garbage collect ancillary qubits in quantum
programs, programmers need to reverse all the operations they
applied to the qubits.

The reason programmers have to do so is because garbage collec-
tion is different in quantum computing compared to that in classical
computing. In classical computing, programmers can simply mark
anymemory as unneeded in order to free it, and that memory would
be rewritten some time later in program execution. But in quantum
computing, qubits can be entangled and therefore cannot be treated
as independent pieces of information. Suppose a program is done
with using the lower register in Figure 2, but they remain entangled
with the upper register qubits. Then anything that happens to the
ancillary qubits, such as measurement, re-initialization, or lapsing
into incoherence, can have unintended effects on the output qubits
in the upper register that the program user does care about.

To prevent these unintended side effects, programmers have to
carefully undo any entanglement they have built up between qubits.
To do this, programmers perform inverse operations in backward
order from the order they originally performed them. This process
is called uncomputation [13, 18, 35]. After uncomputation, ancillary
qubits should be properly untangled from the rest of the program
state, and are truly ready for reuse.

This process of uncomputation can be tricky if done manually.
Take for example the controlled adder subroutine shown in Listing 2.
Uncomputing the addition operation would need an inverse adder

Statistical Assertions for Validating Patterns and Finding Bugs inQuantum Programs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 3: Probability of measuring values of outputs and ancillary qubits of Shor’s algorithm, with incorrect inputs (a−1 = 12
instead of 13 on first iteration). If the ancillary qubits collapse to zero onmeasurement, the algorithm still succeeds, returning
correct outputs of 0, 2, 4, 6 [35, p. 235]. However, the possibility of measuring non-zero for the ancillary qubits indicates a bug.

Probability Output measurement
0 1 2 3 4 5 6 7

Ancillary
0 1/8 0 1/8 0 1/8 0 1/8 0

qubits
2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

measurement
7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

counterpart to the controlled adder. The code for the inverse adder
would have each of the iterations in Lines 8 and 9 iterated in reverse
order, and would have the rotation angles used in Lines 13 through
15 negated. Bugs in these inverse operations would impact the qubit
deallocation process.

Defense type 5: Assertion checks for product state post-
conditions. As a counterpart to entanglement assertions, our tool
offers product state assertions to make sure that ancillary qubits
and output qubits are in a product state, meaning they have no
entanglement. This kind of assertion would make sure that code
for the pattern of mirroring operations is correct.

We demonstrate the use of product state assertions also in List-
ing 4. Following the controlled modular multiplier in Line 35, the
program reverses that operation in Line 41. The way the program
invokes the inverse operation in Line 41 is by multiplying by the
modular inverse. In the example here, 7×13 ≡ 1 mod 15, somultiply-
ing by a−1 = 13 inverts the operation of multiplying by a = 7. With
the correct inverse computation, the assert_product statement
in Line 43 returns p−value = 1.0, consistent with no entanglement
between the upper control register and the bottom target register,
indicating the bottom register is properly deallocated.

If on the other hand the program mistakenly multiplies by any
number that is not the modular inverse, for example a−1 = 12, then
the assertion returns p−value = 0.0005 (for an ensemble size of 16)
indicating the two registers are still incorrectly entangled, meaning
the bottom register was not correctly deallocated, which hints to a
bug in the mirrored code.

4.6 Classical postcondition assertions on
deallocated ancillary qubits

Finally, we are ready to run the Shor’s algorithm in an overall
integration test. To run Shor’s algorithm, the programmer has to
feed the algorithm pairs of modular inverse numbers as its input.
For example, Table 2 shows the input pairs for factoring 15, using
7 as a trial divisor. Then, the algorithm should return 0, 2, 4, or 6,
each with equal probability, from measuring the upper register [35,
p. 235]. These numbers would go into a classical post-processing
algorithm to find the factors of 3 × 5 = 15.

Typically, programmers would only measure the upper register
of qubits (Figure 2) that carry program output, and ignore the bot-
tom register of qubits as they are merely ancillary qubits and should
carry no information. However, when a programmer is debugging

a quantum program, these ancillary qubits often carry useful side
channel information that informs the programmer whether the
main outputs are valid. Our tool checks for this information using
classical assertions on the expected values for these deallocated
ancillary qubits.

Bug type 6: Incorrect classical input parameters. The final
bug we study for Shor’s algorithm stems from giving wrong input
parameters to an otherwise correctly written quantum program.
These mistakes can be difficult to debug, even though the bug is
entirely in the classical inputs to the algorithm.

The specific mistake is the programmer supplies wrong pairs of
numbers as modular inverses for the algorithm. Instead of using
(a,a−1) = (7, 13) for the first iteration in Table 2, the programmers
gives a wrong pair of numbers (7, 12). We show our tool can debug
this problem using assertions.

Defense type 6: Assertion checks for classical postcondi-
tions. The outputs of Shor’s algorithm for this incorrect pair of in-
puts is recorded in Table 3. The table is a contingency table showing
the joint probability for the output measurement and the ancillary
qubit measurement. The table shows the ancillary qubits collapse
to a non-zero value with probability 1/2, which is incorrect because
they should always return to their initial value of 0 after appro-
priate uncomputation. This symptom is to be expected because
the incorrect pair of modular inverses fed to the algorithm has
caused incorrect inversion of the multiplication operation inside
the algorithm.

The programmer can use a classical assertion as a postcondition
check on the deallocated ancillary qubits. The program should
assert that the ancillary qubits should return their initial value
of 0. If the postcondition assertion fails, the programmer knows
there was a bug in the deallocation of qubits and therefore the
outputs may be wrong. If the postcondition succeeds, then the
Shor’s factoring algorithm returns valid outputs.

5 QC PROGRAM DEBUGGING ACROSS
ALGORITHM PRIMITIVES

This section shifts focus away from the Shor’s algorithm case study
and presents two additional debugging case studies. The goal is to
understand whether the debugging techniques for Shor’s algorithm
generally apply to other classes of algorithms.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yipeng Huang and Margaret Martonosi

Table 4: Grover’s amplitude amplification subroutine in two languages, showcasing QC-specific language syntax for reversible
computation (rows 2 & 6) and controlled operations (rows 3 & 5), exposing structure that can guide placing assertions.

Scaffold (C syntax) [17] ProjectQ (Python syntax) [47]

1
int j;
qbit ancilla[n-1]; // scratch register
for(j=0; j<n-1; j++) PrepZ(ancilla[j],0);

reflection across
uniform superposition

2

// Hadamard on q
for(j=0; j<n; j++) H(q[j]);
// Phase flip on q = 0...0 so invert q
for(j=0; j<n; j++) X(q[j]);

with Compute(eng):
All(H) | q
All(X) | q

3

// Compute x[n-2] = q[0] and ... and q[n-1]
CCNOT(q[1], q[0], ancilla[0]);
for(j=1; j<n-1; j++)
CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

with Control(eng, q[0:-1]):

4 // Phase flip Z if q=00...0
cZ(ancilla[n-2], q[n-1]);

Z | q[-1]

5

// Undo the local registers
for(j=n-2; j>0; j--)
CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

CCNOT(q[1], q[0], ancilla[0]);

ProjectQ automatically
uncomputes control

6
// Restore q
for(j=0; j<n; j++) X(q[j]);
for(j=0; j<n; j++) H(q[j]);

Uncompute(eng)

In the Shor’s case study, we argued how the structure of the
algorithm code guides the placement of assertions. Our methodol-
ogy for debugging the algorithm was to bring up the subroutines
from unit tests to full integration tests. We used assertions to check
for preconditions, intermediate states, and postconditions of sub-
routines. Furthermore the code patterns of how subroutines are
composed further guided what assertions to use. A natural ques-
tion is whether that rigorous methodology is helpful for debugging
other algorithms.

Many different quantum algorithms rely on a handful of QC
algorithm primitives to get speedups relative to classical algo-
rithms [5, 31, 32]. These algorithm primitives are akin to algorithm
kernels in the context of classical algorithms. Each algorithm type
has distinct pitfalls and features that lead to distinct bugs and pos-
sible defenses.

This section covers two more algorithms that use completely
different algorithm primitives. The first is Grover’s database search
algorithm based on the amplitude amplification primitive. The sec-
ond is a quantum chemistry problem that uses quantum operations
to simulate a physical system. This represents a broad selection of
different quantum algorithm primitives.

While we have not covered in this paper some algorithm primi-
tives (such as adiabatic algorithms, approximate optimization al-
gorithms, and much less prominent primitives such as quantum
random walks), the three areas we have covered represent the most
important and well-studied algorithm classes.

5.1 Case study: Grover’s database search
This section uses the Grover’s benchmark to discuss how language
syntax support for reversible computation and controlled opera-
tions guides placement of assertions.

5.1.1 Language support for placement of entanglement assertions.
Higher-level quantum programming language features can help
automatically place assert_entangled and assert_product as-
sertions. We concentrate on the placement of these two assertion
types because they are assertions on the relationship between two
or more quantum variables. As such they are powerful debugging
tools, but they also need the most programmer insight to correctly
place them.

As we discussed in Sections 4.4 and 4.5, entanglement assertions
are closely related to the quantum program patterns of recursion
and mirroring. In the Scaffold language, these patterns are not ex-
plicitly captured by the C-style syntax, but in higher-level quantum
programming languages, such as ProjectQ [47] and Q# [48], these
patterns are essential to the language design. With these language
features, the placement of entanglement assertions becomes as
natural as placing precondition and postcondition assertions.

5.1.2 The Grover’s algorithm for database search. The Grover’s
search algorithm finds an entry that matches search criteria, among
an input data set of size N , with a time cost on the order of

√
N .

That represents a polynomial speedup relative to the linear time
cost in a classical computer [10].

Statistical Assertions for Validating Patterns and Finding Bugs inQuantum Programs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

The Grover’s algorithm comprises three parts. First, the input
qubits representing the indices of the matching entries are put in
a state of superposition, akin to querying all entries at once. A
superposition assertion (Section 4.1) helps certify that this algo-
rithm precondition is satisfied. Second, the queries are put through
a subroutine that checks for the search criteria. In our case study,
our criteria is to find the square root of a number in a Galois field
of two elements, a simple abstract algebra setting. Finally in the
critical third step, the amplitude amplification algorithm primitive
amplifies the index that matches the criteria while damping out
those that do not.

5.1.3 Entanglement program patterns in the amplitude amplifica-
tion subroutine. Table 4 shows the reversible computation and con-
trolled operations program patterns coded in two quantum pro-
gramming languages Scaffold [17] and ProjectQ [47]. The ProjectQ
language has syntax support for reversible computation that auto-
matically mirrors and inverts sequences of operations. Likewise,
syntax support for controlled operations automatically allocates
the ancillary qubits needed for controlled operations.

These higher-level language support for these patterns allows au-
tomatic placement of assertions: the controlled operation statement
in rows 3 through 5 indicates that register q should be entangled
in row 4, so it would be the right place to place an entanglement
assertion. Furthermore the compute-uncompute pattern in Rows 2
and 6 hints at a product state assertion at the end of uncomputation.

5.2 Case study: Quantum chemistry
Next, we discuss our experience building up and debugging a sim-
ple quantum chemistry program. Quantum chemistry problems
entail finding properties of molecules from theoretical first princi-
ples [26, 36]. Researchers anticipate these will be the first applica-
tions for QC due to the relatively few number of qubits they need to
surpass classical computer algorithms. Debugging these problems
is distinctively challenging, due to the importance of getting a large
number of classical input parameters all correct, and because of the
dearth of physically meaningful intermediate states we can check
in the course of algorithm execution.

5.2.1 Classical input parameters. A key part of quantum chemistry
programs is in correctly building up a Hamiltonian subroutine that
simulates inter-electron forces. The procedure for doing this was
laid out in detail by Whitfield [54]. We followed this procedure to
create a subroutine for simulating the hydrogen molecule, but we
needed additional cross-validation from several other sources to get
a bug-free subroutine [53]. These resources include raw chemistry
data found in open source repositories for the LIQUi|> framework4.
The final parameters for actual operations on qubits were validated
against a follow-up paper [45] and an implementation in the QISKit
framework5. Because the procedure for preparing these quantum
chemistry models involves many steps and needs domain expertise,
arguably this step in preparing classical input parameters is the
hardest aspect to debug.

Once the Hamiltonian subroutine is built, we can use the model
in a variety of quantum algorithms spanning different primitives.

4https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
5https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

These include phase estimation (an application of quantum Fourier
transforms) [38], variational quantum eigensolvers [40], and adi-
abatic algorithms [1]. In this case study, we use iterative phase
estimation to find the ground state energy of our H2 model, vali-
dating results published by Lanyon [22].

5.2.2 Assertions on quantum intial values and final states. The cor-
rect preparation of qubit initial values stands out as another chal-
lenging aspect of debugging quantum chemistry QC programs. In-
correct initial values would cause the program to find solutions to
different problems altogether. In this quantum chemistry problem,
the initial values control the locations of the two electrons in H2.
As shown in Table 5, precondition assertions check the qubit assign-
ment for finding the ground energy of H2, while other assignments
lead to results for other energy levels.

The symmetry ofH2 allows us to perform a sanity check, to make
sure the Hamiltonian and the iterative phase estimation subroutines
are working correctly. Though there are six ways to assign two
electrons to four locations, there are in fact only four distinct energy
levels, as shown in the experimental data (Table 5). Postcondition
assertions are useful for checking that the two different ways to
obtain E1 (and E2) give the same energy levels. These assertions
validate that the model correctly preserves symmetry.

5.2.3 Assertions on intermediate algorithm progress. Unlike the
other two case studies in this paper, the debugging process for the
quantum chemistry benchmark is coarse-grained. That is because
the Hamiltonian subroutine is a monolithic block of code whose
components do not have obvious expected outputs—its components
represent pair-wise electron interactions, and do not have inherent
physical meaning. So how do we debug this program? The precon-
ditions in the last subsection make sure the inputs to the algorithm
are correct; the other observable state we have for debugging is to
check the behavior of the algorithm as a whole.

In this quantum chemistry program, we can check for two types
of overall algorithm behavior. One is the solution should converge
to a steady value as finer Trotter time steps (a kind of numerical
approximation) are chosen; a lack of this type of convergence in-
dicates a bug in the Hamiltonian subroutine. The other algorithm
behavior is when we vary the precision of the phase estimation
algorithm, the most significant bits of the measurement output se-
quences should be the same—in other words, rounding the output
of a high-precision experiment should yield the same output as a
lower-precision experiment. a lack of this convergence indicates a
bug in the iterative phase estimation subroutine. These checks for
expected algorithm progress also apply to other algorithms.

6 RELATEDWORK
Approaches to writing correct quantum programs range from for-
mal methods to less-formal pragmatic methods, much like in clas-
sical programming. Most of the prior work in quantum program
correctness has been in formal methods–e.g., using theorem provers
and type checking to verify programs correctly match algorithm
specifications [16, 39, 43, 56, 57]. Such verification techniques con-
sider the correctness problem from a top-down perspective. While

https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yipeng Huang and Margaret Martonosi

Table 5: QC calculated energy for H2 (bond length = 73.48 pm) for different electron assignments.

Electron assignments QC calculated energy
(relative)

Bonding Antibonding
↑ ↓ ↑ ↓

3rd excited state (E3) 0 0 1 1 -0.164

2nd excited state (E2) 0 1 1 0 -0.2171 0 0 1

1st excited state (E1) 0 1 0 1 -0.2441 0 1 0

Ground state (G) 1 1 0 0 -0.295

useful, formal methods should not be the only approach to cor-
rect programs; more traditional debugging strategies are also use-
ful. This work considers the possibility of using pragmatic asser-
tion checks to build code bottom-up from exhaustive unit tests up
through integration testing.

Quantum program assertions exist in several quantum program-
ming languages, though not in the same capacity as the statistical
assertions presented in this work. First, the Quipper language [9]
features assertive termination, which allows the programmer to
annotate known program state, in order to drive compiler optimiza-
tions. Their use relies on the programmer to write correct code
and assertions, and cannot be used as postcondition checks. Sec-
ond, the Q# programming language [48] allows programmers to
write assertions on classical, integer states. These assertions are
then checked during the simulation of the quantum programs. This
work extends that set of assertions with assertions on superposition
and entanglement states.

The set of quantum states considered in these assertions, namely
classical, superposition, and entangled states, are a subset of pos-
sible quantum states. In the general case we need quantum phase
estimation, quantum state tomography, and quantum process to-
mography to be able to examine general quantum states [35]. How-
ever, those processes are extremely costly and cannot be used as
efficient assertion checks.

7 CONCLUSION
For the first time, we have access to program benchmarks for several
major areas of quantum algorithms, along with input datasets and
outputs that are detailed enough to permit detailed debugging and
cross-validation. Using our experience in building up and debugging
these programs, we presented in this paper a strategy for deploying
and checking quantum program assertions based on statistical tests.
Drawing on the structure of quantum programs, we point to where
and how program bugs may arise, and point to how the presented
assertions can catch them.

ACKNOWLEDGMENTS
This work is funded in part by EPiQC, an NSF Expedition in Com-
puting, under grant 1730082.

REFERENCES
[1] R. Barends, A. Shabani, L. Lamata, J. Kelly, A.Mezzacapo, U. Las Heras, R. Babbush,

A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E.

Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana,
P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven,
and John M. Martinis. 2016. Digitized adiabatic quantum computing with a
superconducting circuit. Nature 534 (08 06 2016), 222 EP –. http://dx.doi.org/10.
1038/nature17658

[2] Stephane Beauregard. 2003. Circuit for Shor’s Algorithm Using 2N+3 Qubits.
Quantum Info. Comput. 3, 2 (March 2003), 175–185. http://dl.acm.org/citation.
cfm?id=2011517.2011525

[3] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. 2018.
Characterizing quantum supremacy in near-term devices. Nature Physics 14, 6
(2018), 595–600. https://doi.org/10.1038/s41567-018-0124-x

[4] Frederic T. Chong, Diana Franklin, and Margaret Martonosi. 2017. Programming
languages and compiler design for realistic quantum hardware. Nature 549 (13
09 2017), 180 EP –. http://dx.doi.org/10.1038/nature23459

[5] Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John
Ambrosiano, Petr M. Anisimov, William Casper, Gopinath Chennupati, Carleton
Coffrin, Hristo Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng
Lin, Andrey Y. Lokhov, Alexander Malyzhenkov, David Mascarenas, Susan M.
Mniszewski, Balu Nadiga, Dan O’Malley, Diane Oyen, Lakshman Prasad, Randy
Roberts, Philip Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter Swart,
Marc Vuffray, Jim Wendelberger, Boram Yoon, Richard J. Zamora, and Wei Zhu.
2018. Quantum Algorithm Implementations for Beginners. CoRR abs/1804.03719
(2018). arXiv:1804.03719 http://arxiv.org/abs/1804.03719

[6] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. 2017. Open Quantum
Assembly Language. ArXiv e-prints (July 2017). arXiv:quant-ph/1707.03429

[7] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approxi-
mate Optimization Algorithm. arXiv e-prints, Article arXiv:1411.4028 (Nov 2014),
arXiv:1411.4028 pages. arXiv:quant-ph/1411.4028

[8] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 2000.
Quantum Computation by Adiabatic Evolution. arXiv e-prints, Article
quant-ph/0001106 (Jan 2000), quant-ph/0001106 pages. arXiv:quant-ph/quant-
ph/0001106

[9] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming Language.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’13). ACM, 333–342. https://doi.org/10.1145/
2491956.2462177

[10] Lov K Grover. 2001. From Schrödinger’s equation to the quantum search algo-
rithm. Pramana 56, 2-3 (2001), 333–348.

[11] Thomas Häner and Damian S. Steiger. 2017. 0.5 Petabyte Simulation of a 45-
qubit Quantum Circuit. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’17). ACM, Article
33, 10 pages. https://doi.org/10.1145/3126908.3126947

[12] Thomas Häner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer.
2016. High Performance Emulation of Quantum Circuits. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’16). IEEE Press, Piscataway, NJ, USA, Article 74, 9 pages. http:
//dl.acm.org/citation.cfm?id=3014904.3015003

[13] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. 2018. A
software methodology for compiling quantum programs. Quantum Science and
Technology 3, 2 (2018), 020501. http://stacks.iop.org/2058-9565/3/i=2/a=020501

[14] Aram W. Harrow and Ashley Montanaro. 2017. Quantum computational
supremacy. Nature 549 (13 09 2017), 203 EP –. https://doi.org/10.1038/nature23458

[15] Yipeng Huang and Margaret Martonosi. 2019. QDB: From Quantum Algorithms
Towards Correct Quantum Programs. In 9thWorkshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU 2018) (OpenAccess Series in
Informatics (OASIcs)), Titus Barik, Joshua Sunshine, and Sarah Chasins (Eds.),
Vol. 67. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

http://dx.doi.org/10.1038/nature17658
http://dx.doi.org/10.1038/nature17658
http://dl.acm.org/citation.cfm?id=2011517.2011525
http://dl.acm.org/citation.cfm?id=2011517.2011525
https://doi.org/10.1038/s41567-018-0124-x
http://dx.doi.org/10.1038/nature23459
http://arxiv.org/abs/1804.03719
http://arxiv.org/abs/1804.03719
http://arxiv.org/abs/quant-ph/1707.03429
http://arxiv.org/abs/quant-ph/1411.4028
http://arxiv.org/abs/quant-ph/quant-ph/0001106
http://arxiv.org/abs/quant-ph/quant-ph/0001106
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/3126908.3126947
http://dl.acm.org/citation.cfm?id=3014904.3015003
http://dl.acm.org/citation.cfm?id=3014904.3015003
http://stacks.iop.org/2058-9565/3/i=2/a=020501
https://doi.org/10.1038/nature23458

Statistical Assertions for Validating Patterns and Finding Bugs inQuantum Programs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

4:1–4:14. https://doi.org/10.4230/OASIcs.PLATEAU.2018.4
[16] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks,

and Xiaodi Wu. 2019. Quantitative Robustness Analysis of Quantum Programs.
Proc. ACM Program. Lang. 3, POPL, Article 31 (Jan. 2019), 29 pages. https:
//doi.org/10.1145/3290344

[17] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Fred-
eric T. Chong, and Margaret Martonosi. 2014. ScaffCC: A Framework for
Compilation and Analysis of Quantum Computing Programs. In Proceedings
of the 11th ACM Conference on Computing Frontiers (CF ’14). ACM, 1:1–1:10.
https://doi.org/10.1145/2597917.2597939

[18] Phillip Kaye, Raymond Laflamme, and Michele Mosca. 2007. An Introduction to
Quantum Computing. Oxford University Press, Inc.

[19] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels. 2017. QX:
A High-performance Quantum Computer Simulation Platform. In Proceedings
of the Conference on Design, Automation & Test in Europe (DATE ’17). 464–469.
http://dl.acm.org/citation.cfm?id=3130379.3130487

[20] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
2010. Quantum computers. Nature 464 (04 03 2010), 45 EP –. https://doi.org/10.
1038/nature08812

[21] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A.
Gilchrist, and A. G. White. 2007. Experimental Demonstration of a Compiled
Version of Shor’s Algorithm with Quantum Entanglement. Phys. Rev. Lett. 99
(Dec 2007), 250505. Issue 25. https://doi.org/10.1103/PhysRevLett.99.250505

[22] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal,
J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and
A. G. White. 2010. Towards quantum chemistry on a quantum computer. Nature
Chemistry 2 (10 01 2010), 106 EP –. http://dx.doi.org/10.1038/nchem.483

[23] Ryan LaRose. 2019. Overview and Comparison of Gate Level Quantum Soft-
ware Platforms. Quantum 3 (March 2019), 130. https://doi.org/10.22331/
q-2019-03-25-130

[24] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline
Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. 2017.
Experimental comparison of two quantum computing architectures. Proceedings
of the National Academy of Sciences 114, 13 (2017), 3305–3310. https://doi.org/10.
1073/pnas.1618020114 arXiv:http://www.pnas.org/content/114/13/3305.full.pdf

[25] I. Markov and Y. Shi. 2008. Simulating Quantum Computation by Contracting
Tensor Networks. SIAM J. Comput. 38, 3 (2008), 963–981. https://doi.org/10.1137/
050644756 arXiv:https://doi.org/10.1137/050644756

[26] S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan. 2018. Quantum
computational chemistry. ArXiv e-prints (Aug. 2018). arXiv:quant-ph/1808.10402

[27] J. R. McClean, I. D. Kivlichan, K. J. Sung, D. S. Steiger, Y. Cao, C. Dai, E. Schuyler
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlíček, C.
Huang, J. Izaac, Z. Jiang, X. Liu, M. Neeley, T. O’Brien, I. Ozfidan, M. D. Radin, J.
Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, M. Steudtner, Q. Sun, W. Sun,
F. Zhang, and R. Babbush. 2017. OpenFermion: The Electronic Structure Package
for Quantum Computers. ArXiv e-prints (Oct. 2017). arXiv:quant-ph/1710.07629

[28] N.D. Mermin. 2007. Quantum Computer Science: An Introduction. Cambridge
University Press.

[29] Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong. 2011. Quantum
Computing for Computer Architects, Second Edition. Synthesis Lectures on Com-
puter Architecture (2011). https://doi.org/10.2200/S00331ED1V01Y201101CAC013
arXiv:https://doi.org/10.2200/S00331ED1V01Y201101CAC013

[30] D. M. Miller, M. A. Thornton, and D. Goodman. 2006. A Decision Diagram Pack-
age for Reversible and Quantum Circuit Simulation. In 2006 IEEE International
Conference on Evolutionary Computation. 2428–2435. https://doi.org/10.1109/
CEC.2006.1688610

[31] Ashley Montanaro. 2016. Quantum algorithms: An overview. NPJ Quantum
Information 2 (2016), 15023.

[32] Michele Mosca. 2009. Quantum algorithms. In Encyclopedia of Complexity and
Systems Science. Springer, 7088–7118.

[33] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19). ACM, 1015–1029. https://doi.org/10.1145/
3297858.3304075

[34] National Academies of Sciences, Engineering, and Medicine. 2019. Quantum
Computing: Progress and Prospects. The National Academies Press, Washington,
DC. https://doi.org/10.17226/25196

[35] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and
Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University
Press.

[36] Jonathan Olson, Yudong Cao, Jonathan Romero, Peter Johnson, Pierre-Luc
Dallaire-Demers, Nicolas Sawaya, Prineha Narang, Ian Kivlichan, Michael
Wasielewski, and Alán Aspuru-Guzik. 2017. Quantum Information and Com-
putation for Chemistry. arXiv e-prints, Article arXiv:1706.05413 (Jun 2017),
arXiv:1706.05413 pages. arXiv:quant-ph/1706.05413

[37] Scott Pakin. 2019. Targeting Classical Code to a Quantum Annealer. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19). ACM, 529–543.
https://doi.org/10.1145/3297858.3304071

[38] S. Patil, A. JavadiAbhari, C. Chiang, J. Heckey, M. Martonosi, and F. T. Chong.
2014. Characterizing the performance effect of trials and rotations in applications
that use Quantum Phase Estimation. In 2014 IEEE International Symposium on
Workload Characterization (IISWC). 181–190. https://doi.org/10.1109/IISWC.2014.
6983057

[39] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core
Language for Quantum Circuits. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL 2017). ACM, 846–858.
https://doi.org/10.1145/3009837.3009894

[40] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications 5
(23 07 2014), 4213 EP –. http://dx.doi.org/10.1038/ncomms5213

[41] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[42] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing (3 ed.).
Cambridge University Press.

[43] Robert Rand. 2018. Formally Verified Quantum Programming. Ph.D. Dissertation.
University of Pennsylvania.

[44] M. Roetteler, K. M. Svore, D. Wecker, and N. Wiebe. 2017. Design automation for
quantum architectures. InDesign, Automation Test in Europe Conference Exhibition
(DATE), 2017. 1312–1317. https://doi.org/10.23919/DATE.2017.7927196

[45] Jacob T. Seeley, Martin J. Richard, and Peter J. Love. 2012. The Bravyi-Kitaev
transformation for quantum computation of electronic structure. The Journal of
Chemical Physics 137, 22 (2012), 224109. https://doi.org/10.1063/1.4768229

[46] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484–1509. https://doi.org/10.1137/S0097539795293172

[47] Damian S. Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: An open
source software framework for quantum computing. Quantum 2 (Jan. 2018), 49.
https://doi.org/10.22331/q-2018-01-31-49

[48] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development
with a High-level DSL. In Proceedings of the Real World Domain Specific Languages
Workshop 2018 (RWDSL2018). ACM, Article 7, 10 pages. https://doi.org/10.1145/
3183895.3183901

[49] K. M. Svore and M. Troyer. 2016. The Quantum Future of Computation. Computer
49, 9 (Sept. 2016), 21–30. https://doi.org/10.1109/MC.2016.293

[50] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’19). ACM,
987–999. https://doi.org/10.1145/3297858.3304007

[51] Benoît Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander, and Jonathan M.
Smith. 2015. Programming the Quantum Future. Commun. ACM 58, 8 (July 2015),
52–61. https://doi.org/10.1145/2699415

[52] George F. Viamontes, Igor L. Markov, and John P. Hayes. 2009. Quantum Circuit
Simulation (1st ed.). Springer Publishing Company, Incorporated.

[53] Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias
Troyer. 2014. Gate-count estimates for performing quantum chemistry on small
quantum computers. Phys. Rev. A 90 (Aug 2014), 022305. Issue 2. https://doi.org/
10.1103/PhysRevA.90.022305

[54] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. 2011. Simulation of electronic
structure Hamiltonians using quantum computers. Molecular Physics 109 (March
2011), 735–750. https://doi.org/10.1080/00268976.2011.552441 arXiv:quant-
ph/1001.3855

[55] Xin-Chuan Wu, Sheng Di, Franck Cappello, Hal Finkel, Yuri Alexeev, and
Frederic T. Chong. 2018. Amplitude-Aware Lossy Compression for Quan-
tum Circuit Simulation. arXiv e-prints, Article arXiv:1811.05140 (Nov 2018),
arXiv:1811.05140 pages. arXiv:quant-ph/1811.05140

[56] Mingsheng Ying. 2012. Floyd–Hoare Logic for Quantum Programs. ACM Trans.
Program. Lang. Syst. 33, 6, Article 19 (Jan. 2012), 49 pages. https://doi.org/10.
1145/2049706.2049708

[57] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of Quantum
Programs: Characterisations and Generation. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
818–832. https://doi.org/10.1145/3009837.3009840

[58] A. Zulehner and R. Wille. 2019. Advanced Simulation of Quantum Computations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
38, 5 (May 2019), 848–859. https://doi.org/10.1109/TCAD.2018.2834427

https://doi.org/10.4230/OASIcs.PLATEAU.2018.4
https://doi.org/10.1145/3290344
https://doi.org/10.1145/3290344
https://doi.org/10.1145/2597917.2597939
http://dl.acm.org/citation.cfm?id=3130379.3130487
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1038/nchem.483
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
http://arxiv.org/abs/http://www.pnas.org/content/114/13/3305.full.pdf
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
http://arxiv.org/abs/https://doi.org/10.1137/050644756
http://arxiv.org/abs/quant-ph/1808.10402
http://arxiv.org/abs/quant-ph/1710.07629
https://doi.org/10.2200/S00331ED1V01Y201101CAC013
http://arxiv.org/abs/https://doi.org/10.2200/S00331ED1V01Y201101CAC013
https://doi.org/10.1109/CEC.2006.1688610
https://doi.org/10.1109/CEC.2006.1688610
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.17226/25196
http://arxiv.org/abs/quant-ph/1706.05413
https://doi.org/10.1145/3297858.3304071
https://doi.org/10.1109/IISWC.2014.6983057
https://doi.org/10.1109/IISWC.2014.6983057
https://doi.org/10.1145/3009837.3009894
http://dx.doi.org/10.1038/ncomms5213
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.23919/DATE.2017.7927196
https://doi.org/10.1063/1.4768229
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1109/MC.2016.293
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/2699415
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1080/00268976.2011.552441
http://arxiv.org/abs/quant-ph/1001.3855
http://arxiv.org/abs/quant-ph/1001.3855
http://arxiv.org/abs/quant-ph/1811.05140
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/3009837.3009840
https://doi.org/10.1109/TCAD.2018.2834427

	Abstract
	1 Introduction
	2 Background on quantum states and quantum programs
	2.1 Qubits, superpositions, and entanglement
	2.2 Quantum computer operations, programs, and a taxonomy for bugs

	3 Our approach to statistical quantum program assertions
	3.1 Quantum assertions using statistical tests
	3.2 Benchmark QC algorithms for debugging
	3.3 Simulation and assertions checking methodology

	4 QC debugging and assertions: Shor's algorithm case study
	4.1 Classical and superposition precondition assertions on quantum initial values
	4.2 Unit tests for a library of subroutines
	4.3 Numeric assertion checks for composing gates with iterations
	4.4 Entanglement assertion checks for composing gates with recursion
	4.5 Product state postcondition assertions for composing gates with mirroring
	4.6 Classical postcondition assertions on deallocated ancillary qubits

	5 QC program debugging across algorithm primitives
	5.1 Case study: Grover's database search
	5.2 Case study: Quantum chemistry

	6 Related work
	7 Conclusion
	Acknowledgments
	References

