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Abstract
In general-purpose microprocessors, recent trends have

pushed towards 64-bit word widths, primarily to accommodate
the large addressing needs of some programs.  Many integer
problems, however, rarely need the full 64-bit dynamic range
these CPUs provide.  In fact, another recent instruction set trend
has been increased support for sub-word operations (that is,
manipulating data in quantities less than the full word size).  In
particular, most major processor families have introduced
"multimedia" instruction set extensions that operate in parallel
on several sub-word quantities in the same ALU.

This paper notes that across the SPECint95 benchmarks,
over half of the integer operation executions require 16 bits or
less.  With this as motivation, our work proposes hardware
mechanisms that dynamically recognize and capitalize on these
“narrow-bitwidth” instances. Both optimizations require little
additional hardware, and neither requires compiler support.

The first, power-oriented, optimization reduces processor
power consumption by using aggressive clock gating to turn off
portions of integer arithmetic units that will be unnecessary for
narrow bitwidth operations.  This optimization results in an over
50% reduction in the integer unit's power consumption for the
SPECint95 and MediaBench benchmark suites.   The second
optimization improves performance by merging together narrow
integer operations and allowing them to share a single functional
unit.  Conceptually akin to a dynamic form of MMX, this
optimization offers speedups of 4.3%-6.2% for SPECint95 and
8.0%-10.4% for MediaBench.

1. Introduction

As high-end processor word widths have made the shift
from 32 to 64 bits, there has been an accompanying trend
towards efficiently supporting subword operations.
Subword parallelism, in which multiple 8- or 16-bit
operations are performed in parallel by a 64-bit ALU, is
supported in current processors via instruction set and
organizational extensions.  These include the Intel MMX
[1], HP MAX-2 [2], and Sun VIS [3] multimedia
instruction sets, as well as vector microprocessor
proposals such as the T0 project [4].

All of these ideas provide a form of SIMD (single
instruction-multiple data) parallel processing at the word
level.   These instruction set extensions are focused
primarily on enhancing performance for multimedia
applications.  Such applications perform large amounts of
arithmetic processing on audio, speech, or image samples
which typically only require 16-bits or less per datum.

The caveat to this type of processing is that thus far these
new instructions are mainly used only when programmers
hand-code kernels of their applications in assembler.
Little compiler support exists to generate them
automatically, and the compiler analysis is limited to cases
where programmers have explicitly defined operands of
smaller (i.e., char or short) sizes.

This paper proposes hardware mechanisms for
dynamically exploiting narrow width operations and sub-
word parallelism without programmer intervention or
compiler support.  By detecting “narrow bitwidth”
operations dynamically, we can exploit them more often
than with a purely-static approach.  Thus, our approach
will remain useful even as compiler support improves.

In this paper we provide two optimizations that take
advantage of the core “narrow width operand” detection
that we propose. The first idea watches for small operand
values and exploits them to reduce the amount of power
consumed by the integer unit.  This is accomplished by an
aggressive form of clock gating.  Clock gating has
previously been shown to significantly reduce power
consumption by disabling certain functional units if
instruction decode indicates that they will not be used [5].
The key difference of our work is to apply clock gating
based on operand values.  When the full width of a
functional unit is not required, we can save power by
disabling the upper bits.  With this method we show that
the amount of power consumed by the integer execution
unit can be reduced by 54.1% for the SPECint95 suite with
little additional hardware.

The second proposed optimization improves
performance by dynamically recognizing, at issue time,
opportunities for packing multiple narrow operations into
a single ALU.  With this method the SPECint95
benchmark suite shows an average speedup of 4.3%-6.2%
depending on the processor configuration.  The
MediaBench suite showed an average speedup of 8.0%-
10.4%.

The primary contributions of this work are three-fold: a
detailed study of the bitwidth requirements for a wide-
range of benchmarks, and two proposals for methods to
exploit narrow width data to improve processor power
consumption and performance.  In Section 2 we further
discuss the motivations for our work and place it in the
context of prior work in multimedia instruction sets, power
savings, and other methods of using dynamic data.



Section 3 describes the experimental methodology used to
investigate our optimizations.  Section 4 details the power
optimization technique based on clock gating for operand
size and presents results on its promise.  In Section 5, we
describe the method for dynamically packing narrow
instructions at issue-time.  Finally, Section 6 concludes
and discusses other opportunities to utilize dynamic
operand size data in processors.

2. Motivations and Past Work

2.1 Application Bitwidths

In this study we show that a wide range of applications
have small operand sizes.  Figure 1 illustrates this by
showing the cumulative percentage of integer instructions
in SPECint95 in which both operands are less than or
equal to the specified bitwidth.  (Section 3 will discuss the
Alpha compiler and SimpleScalar simulator used to collect
these results.)  Roughly 50% of the instructions had both
operands less than or equal to 16-bits.  We will refer to
these operands as narrow-width; an instruction execution
in which both operands are narrow width is said to be a
“narrow-width operation”.  Since this chart includes
address calculations, there is a large jump at 33 bits.  This
corresponds to heap and stack references.  (Larger
programs than SPEC might have this peak at a larger
bitwidth.)  The data demonstrate the potential for a wide
range of applications, not just multimedia applications, to
be optimized based on narrow-width operands.  While
other such work, e.g. protein-matching codes [6], required
algorithm or compiler changes, we focus here on
hardware-only approaches.

2.2 Observing Narrow Bitwidth Operands

The basic tenet behind both of the optimizations
proposed here is that when operations are performed with
narrow-width operands, the upper bits of the operation are
unneeded.  For example, when adding 17, a 5-bit number,
to 2, a 2-bit number, the result is 19, a 5-bit number.
Only the lower five bits are needed to perform the
computation.  To decrease power dissipation, clock gating
can disable the latch for the unneeded upper bits.
Alternatively, to improve performance, we propose

“operation packing”, in which we issue and execute
several of these narrow operations in parallel within the
same ALU.  In either case, the crux in exploiting narrow-
width operands, however, lies in recognizing them and
modifying execution.  Sections 4 and 5 will discuss
hardware approaches for tagging result operands as
“narrow-width” as they are produced, and for storing these
tags along with source operands as we stage subsequent
instructions waiting for issue.

2.3 Disadvantages of Static Compiler Analysis

Part of the motivation for this work was the fact that
static analysis of input operand sizes has several
disadvantages.  Most importantly there are many cases
where it is impossible to know what the true operand
bitwidths (as opposed to the declared operand sizes) will
be until run-time.  Actual operand sizes depend very much
on the input data presented.  Operand sizes for particular
instructions can also vary over the program run even with
the same input data, which makes the task of the compiler
even more difficult.

Figure 2 shows the percentage of PC values where
operand width changes as the instruction is executed
repeatedly within a single run.  In particular, the figure
shows how often an instruction fluctuates from having less
than 16-bit operands to greater than 16-bit operands as it
executes repeatedly within a single program run.

With perfect branch prediction, the instruction operand
sizes are far more predictable than with realistic branch
prediction.  This is because with perfect branch prediction
only the true execution path is seen.  With imperfect
branch prediction, uncommon paths, like error conditions,
may be executed (but not committed) if the branch
predictor points that way.  Along these paths, operand
statistics may be markedly different.  Compile time
analysis must conservatively analyze all potential paths to
ensure that operations can truly be packed.  This may
include uncommon error conditions and other extreme
cases.  As a result, the compiler runs into much of the
same diverse operand values as seen by imperfect branch
prediction.

Overall, compiler dataflow analysis for operand sizes
must be conservative about possible operand values.

Figure 2 – Percentage of instructions whose operand
precision changes from less than 16-bit to greater than
16-bit over a single program run.
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Figure 1 – Bitwidths for SPECint95 on 64-bit Alpha.
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Programmer hints about operand sizes can aid the
compiler.  It is unrealistic, however, to assume that
programmers will provide these hints on codes other than
small multimedia kernels.

From Figure 1 it is clear that many opportunities exist
to exploit narrow width data for subword parallelism and
aggressive clock gating.  Searching for subword
parallelism in applications is somewhat analogous to the
search for instruction-level parallelism (ILP) in
applications.  In the late 80s and early 90s, most general
purpose superscalar microprocessors were statically
scheduled, and the compiler was responsible for
uncovering ILP in programs.  Current microprocessors
implement aggressive dynamic scheduling techniques to
uncover more ILP.  This evolution was necessary to feed
the wider-issue capabilities of these processors.  In a
similar manner, more subword parallelism can be
uncovered with the dynamic approaches we propose than
if one relies solely on compiler techniques.

There has been other work in specializing for particular
operand values at runtime.  The PowerPC 603 includes
hardware to count the number of leading zeros of input
operands to provide an “early out” for multicycle integer
multiply operations.  This can reduce the number of cycles
required for a multiply from five for 32-bit multiplication
to two for an 8-bit multiplication [7].  At a higher level,
value prediction seeks to predict result values for certain

operations and speculatively execute additional
instructions based on these predicted operand values [8].

Finally, there has also been other work in exploiting
narrow bitwidth operations.  Razdan and Smith propose a
hardware-programmable functional unit which augments
the base processor’s instruction set with additional
instructions that are synthesized in configurable hardware
at compile time [9].  Since all synthesized instructions
must complete in a single cycle, bitwidth analysis is
performed at compile time to highlight sequences of
narrow-width operations that are the best candidates for
implementation.

3.  Methodology

3.1 Simulator

We used a modified version of SimpleScalar’s [10]
sim-outorder to collect our results.  SimpleScalar provides
a simulation environment for modern out-of-order
processors with speculative execution.  The simulated
processor contains a unified active instruction list, issue
queue, and rename register file in one unit called the
reservation update unit (RUU).  The RUU is similar to the
Metaflow DRIS (deferred-scheduling, register-renaming
instruction shelf) [11] and the HP PA-8000 IRB
(instruction reorder buffer) [12].  Separate banks of 32
integer and floating point registers make up the architected
register file and are only written on commit.  Table 1
summarizes the important features of the simulated
processor.  The baseline configuration parameters are
roughly those of a modern out-of-order processor.

The changes made to the simulator for this study are
localized to the issue and decode stages.  In decode,
bitwidths are calculated for dynamic data and stored in the
reservation station entry to be used during the issue stage.
In the issue stage, this data is used to decide if instructions
can be issued and executed in parallel based on the data
from the decode stage.   These changes reflect the
simulator implementation; Section 4 discusses how they
would be implemented in an actual processor.

3.2 Benchmarks

A goal of this study is to demonstrate and exploit the
prevalence of narrow-width operations even in
applications outside the multimedia domain.  For this
reason we evaluate the SPECint95 suite of benchmarks as
well as several benchmarks from the MediaBench suite
[13].  We have compiled the benchmarks using the DEC
cc compiler with the following SPEC optimization
options: -migrate -std1 -O5 –ifo –
non_shared. In particular, the -O5 setting, along with
numerous other optimizations, provides vectorization of
some loops on 8-bit and 16-bit data (char and short).

Table 1 – Baseline configuration of simulated processor.

Parameter Value
Processor Core

RUU size 80 instructions
LSQ (ld/store queue) size 40
Fetch Queue Size 8 instructions
Fetch width 4 instructions/cycle
Decode width 4 instructions/cycle
Issue width 4 instructions/cycle (out-of-order)
Commit width 4 instructions/cycle (in-order)
Functional units 4 Integer ALUs (performing

arithmetic, logical, shift, memory,
branch ops), 1 integer multiply/divide

Branch Prediction
Branch Predictor Combining: 4K 2-bit selector, 12-bit

history; 1K 3-bit local predictor, 10-
bit history; 4K 2-bit global predictor,
12-bit history

BTB 2048-entry, 2-way
Return-address stack 32-entry
Mispredict penalty 2 cycles

Memory hierarchy
L1 data-cache 64K, 2-way (LRU), 32B blocks, 1

cycle latency
L1 instruction-cache 64K, 2-way (LRU), 32B blocks, 1

cycle latency
L2 Unified, 8M, 4-way (LRU), 32B

blocks, 12-cycle latency
Memory 100 cycles
TLBs 128 entry, fully associative, 30-cycle

miss latency



For this study we wanted to use the reference inputs for
the SPECint95 suite.  The test or training inputs are
unsuitable because our data-specific optimizations might
be unfairly helped by smaller data sets.  Using reference
inputs, the SPECint95 benchmarks run for billions of
instructions, which, if simulated fully, would lead to
excessively long execution times.  Thus we use a
methodology similar to that described by Skadron et al.
[14].  We warm up architectural state using a fast-mode
cycle-level simulation that updates only the caches and
branch predictors during each cycle.  The warmup period

also avoids the effects of smaller operand sizes that are
prevalent within program initialization.  Using Skadron et
al.’s results identifying representative program sections
based on cache and branch prediction statistics, we then
simulate a 100 million instruction window using the
detailed simulator. Table 2 lists the reference input that we
have chosen for the SPECint95 benchmarks, and the
number of instructions for which we warm up the caches
and branch predictor.  Table 3 describes the applications
chosen from the MediaBench suite.  For the MediaBench
suite, gsm, g721, and mpeg2-decode were run to
completion while mpeg2-encode was simulated for 100
million instructions after a 500M instruction warmup
period.

4.  Power Optimizations

4.1 Clock Gating

Dynamic power dissipation is the primary source of
power consumption in CMOS circuits.  In CMOS circuits,
dynamic power dissipation occurs when changing input
values cause their corresponding output values to change.
Only small leakage currents exist as long as inputs are
held constant.  Clock gating has been used to reduce
power by disabling the clock and thereby disabling value
changes on unneeded functional units.  In static CMOS
circuits, disabling the clock on the latch that feeds the
input operands to functional units essentially eliminates
dynamic power dissipation.  Power consumption on the
critical clock lines is also saved because the latch itself is
disabled.  In dynamic or domino CMOS circuits, the same
effect can be obtained by disabling the clocks that control
the pre-charge and evaluate phases of the circuit.

Currently most work on clock gating has used the
decoded opcode to decide which units can be disabled for
a particular instruction.  For example, nop’s allow most of
the units to be disabled since no result is being computed.
As another example of opcode-based clock gating,
consider an “add byte” instruction.  Since the opcode
guarantees that only the lower part of the adder is needed,
the top part of the functional unit is disabled.

4.2 Proposed Architecture

We propose and quantify a more aggressive clock
gating approach.  At run-time, the hardware determines
instances when, based on the input operands, the upper
bits of an operation are not needed; in those cases, it
disables the upper portion of the functional unit. Key
differences from prior approaches are that (1) our
approach is operand-based, not opcode-based, and (2) our
approach is dynamic, not static.  (One could, of course,
use our method in addition to prior opcode-based
approaches.)  Different program runs, or even different

Table 2 – SPECint95 Benchmarks
Benchmark Inputs Warm Up Instructions

ijpeg vigo.ppm 824M
m88ksim dhrystone 26M
go 9stone21 926M
xlisp All xlisp inputs 271M
compress bigtest.in 2576M
gcc cccp.i 221M
vortex persons.1k 2451M
perl scrabble game 601M

Table 3 – MediaBench Benchmarks
Benchmark Description
gsm-encode Audio and speech encoding with the GSM standard
gsm-decode Audio and speech decoding with the GSM standard
mpeg2encode MPEG digital compressed format encoding
mpeg2decode MPEG digital compressed format decoding
g721encode Voice compression using the G.721 standard
g721decode Voice decompression using the G.721 standard

Figure 3 – Clock gating architecture.
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executions of the same instruction, dissipate different
amounts of power depending on the operands seen.

Figure 3 is a diagram of our proposed implementation.
This unit recognizes that the upper bits of both input
operands are zeros.  For example, in an addition operation,
if both input operands have all zeros in their top 48 bits,
these bits do not have to be latched and sent to the
functional units.  We already know that the result of this
part of the addition will be zero, and thus zeros can be
multiplexed onto the top 48 bits of the result bus, rather
than computed via the adder.  In this architecture the low
16 bits are always latched normally.  The high 48 bits are
selectively latched based on a signal that accompanies the
input operand from the reservation station.  This signal,
called zero48 in Figure 3, denotes that the upper 48-bits
are all zeros and is created by zero detection logic when
the result was computed.  Since some operands come
directly from the cache, there must also be a zero-check
during load instructions.  We believe such zero-detects are
already performed in some processors; for example, to
recognize divide-by-zero exceptions early.  However, in
some processors it may not be possible to perform zero-
detects on incoming loads, and in these cases the hardware
will not recognize an opportunity to gate the clock.  For
the SPECint95 suite, 13.1% of power saving instructions
have one or more operands that come directly from a load
instruction; these are the instructions that would be missed
if zero-detect were omitted on loads.  The percentages for
the media benchmarks are much lower at 1.5%.

In order for any power saving technique to be useful, it
must save more power than it consumes.  In our technique
the new power dissipated is mainly in the zero-detection
logic and in widening the mux onto the result bus.  The
primary power savings stems from selectively clock-
gating the functional units based on the results of the zero-
detection logic.  In the following subsections we evaluate
these costs and benefits in more detail.

4.3 Bitwidth Analysis of Benchmarks

The success of our approach relies on the frequent
occurrence of narrow bitwidth operands. Figure 4 shows,
for each benchmark, the percentage and type of operations
whose input operands are both less than or equal to 16-
bits. (Both operands must be small in order for the clock
gating to be allowed.) The breakdown by operation type is
another important metric.  Intuitively, disabling the upper
bits on an adder or multiplier will save more power than
turning off the upper bits on the less power-hungry logical
functions.  Figure 4 shows that for most benchmarks
arithmetic and logical operations dominate the number of
narrow-width operations.  In most of the benchmarks
multiplies are rather infrequent although they do account
for 6% of the narrow-width operations in gsm.

Recall that Figure 1 illustrated how address
calculations result in many operations with bitwidths of
33.  Figure 5 emphasizes this point.  From this data it
makes sense to include a second control signal for clock
gating of operands that are 33-bits or less.  The zero detect
logic can be shared so that the extra hardware
requirements are minimal.  This modification is also useful
for optimizing the multiplication of two 16-bit numbers.
In these cases a 32-bit result can occur, so the 33-bit mux
onto the result bus would be used.

In the Alpha architecture that we considered in this
study, the fundamental datum is the 64-bit quadword.
Quadword integers are represented with a sign bit
occupying the most significant bit [15].  Numbers are
expressed in two’s complement form, which simplifies
arithmetic operations.  The techniques presented in this
paper rely on determining when data requires less than the
full word width of the machine.  For positive numbers, this
can be accomplished by performing a zero detect on the
high order bits.  For negative numbers in the two’s
complement representation, leading 1’s signify the same
thing that leading 0’s do for positive number – essentially
unneeded data.  Thus a ones detect must be performed in
parallel with the zero detect computation to detect narrow
bitwidth negative numbers.

Figure 5 – Operations with both operands 33-bits or less.Figure 4 – Operations with both operands 16-bits or less.
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4.4 Power Results

The amount of power that is saved by our approach
depends on both the type and frequency of narrow width
operations.  In order to quantify the amount of power
saved, we use previously-reported research to estimate the
amount of power that various functional units use [16, 17,
18].  From these sources we obtain power estimates
assuming dynamic logic and relatively fast carry look-
ahead adders.  We assume that the multiplier is pipelined
with its power usage scaling linearly with the operand
size.  Table 4 summarizes the values that we have assumed
for different size devices.  The functional units in current
high-end microprocessors are likely to use even more
power, but detailed numbers are not yet available in the
literature. For this analysis though, the important factor is
the ratio of the respective functional units to each other.

Figure 6 summarizes the amount of power saved and
expended per cycle.  We arrived at these numbers by
determining the amount of power saved and expended per
instruction executed and multiplying by the average issue
rate.  These results include all loads, stores, branches, and
other integer execution unit instructions that are not part of
the set of instructions that our optimization applies to.
Among the SPECint95 benchmarks, our technique saves
the most power for ijpeg and go.  Ijpeg has a large number
of narrow-width arithmetic operations. Go includes a large
number of address calculations and is helped the most by
adding the extra signal to detect 33-bit operations.   The

media benchmarks tend to save even more power than the
SPECint95 benchmarks.  This is primarily because of the
larger number of arithmetic operations.  GSM, in
particular, has a relatively large number of narrow
bitwidth multiply operations.  The amount of power used
by the zero detection circuitry is small and nearly constant
for all benchmarks.  In no case does the amount of power
used for zero detection exceed the amount of power saved.

Figure 7 shows the total amount of power that is saved
by the integer unit with our optimization.  For the baseline
system, we assume that all operations use the amount of
power that a 64-bit device would use. (We assume basic
clock gating in which, for example, multipliers are turned
off for add instructions and vice versa.)  For the
SPECint95 benchmark suite, the average power
consumption of the integer unit was reduced by 54.1%.
For the media benchmarks, the reduction was 57.9%.

While a 50-60% power reduction seems exceptional, it
is important to note that the integer unit's contribution to
total power varies depending on the CPU.  In some high-
end CPUs much of the power is spent on clock distribution
and control logic, and thus the integer unit represents only
about 10% of the power dissipation [19].  In such a
processor, our optimizations will lead to 5-6% power
reductions on average.  As control is streamlined, either in
DSPs or via explicitly-parallel instruction computing

Device 32-bit 48-bit 64-bit
Adder (CLA) 105 158 210
Booth Multiplier 1050 1580 2100
Bit-Wise Logic 5.8 8.7 11.7
Shifter 4.4 6.6 8.8
Zero-Detect -- 4.2 --
Additional Muxes -- 3.2 --

Table 4 – Estimated power consumption of functional
units at 3.3V and 500Mhz  (mW).
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(EPIC) as in future Intel processors [20], the integer unit is
a larger factor in the processor's total power dissipation, as
much as 20-40%.  In these cases, the total power savings
from our technique will approach 20%.  In all processors,
our approach promises a relatively easy way to prune
power from the integer unit where this is important.  We
also note that our power savings estimates are somewhat
conservative.   The clock gating technique also reduces the
switch capacitance seen by the clock distribution network,
and this can lead to a further power reduction.  Although
this effect can be significant, it cannot be quantified
without a chip floorplan.

5. Operation Packing

In this section, we present a technique to increase
performance by exploiting dynamic data values.  As with
the prior technique, this relies on dynamically recognizing
zeros in the upper bits of the input operands to take
advantage of the unused upper bits in the functional units.
Since the power optimization involves clock gating
functional units and the performance optimization
involves executing instructions in parallel, only one
technique can be used at a time.  However, because the
techniques share a common hardware base, one could
implement both and choose between them.  For example,
one could use thermal sensory data to have the processor
switch between the two techniques, depending on current
thermal or performance concerns. Related but simpler
approaches are already found in commercial processors;
for example, the IBM/Motorola PPC750 is equipped with
an on-chip thermal assist unit and temperature sensor
which responds to thermal emergencies by controlling the
instruction fetch rate through I-cache throttling [21].

5.1 Background

Multimedia instruction sets define new instructions to
perform a common operation on several subwords in
parallel.  For example, the Parallel Add instruction in HP-
MAX performs four parallel additions on the 16-bit
subwords that reside in the two specified 64-bit source
registers.  Few hardware changes are necessary to support
these additional instructions; only the carry chain between
the 16-bit chunks must be handled differently.  Figure 8
demonstrates how two add instructions in the RUU, both
with narrow operand widths, can be packed together at
issue time into one functional unit.  In this example, there
are three instructions in the RUU: an add with source
operand values of 17 and 2, a sub with source operands
that are larger than 16-bits, and another add with source
operands of 21 and 3.  In this case, the two add
instructions both have narrow width operands, so a single
64-bit adder can perform the two additions in parallel.
The hardware built into ALUs for multimedia instruction
sets will automatically stop the carry at 16-bit boundaries.

In machines with multimedia extensions, programmers
or (less frequently) compilers statically generate code
using multimedia instructions.  As previously discussed,
there are several shortcomings to this method.  For those
reasons, this section introduces an approach that is akin to
dynamically generating multimedia instructions.  In this
study, we focus on merging narrow integer operations into
parallel sub-word operations as currently supported by
multimedia instruction set extensions.  This is a subset of
the operations that we explore in Section 4 and consists of
the arithmetic, logical, and shift operations.  For example,
we do not attempt to pack multiply operations, although in
some implementations this would be possible.
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Figure 8 – Packing two add instructions with narrow
operand widths.
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5.2 Proposed Architecture

Figure 9 is a diagram of the proposed changes to the
datapath.  The most notable changes to the datapath are the
additional muxes which move data from the low 16 bits of
the source RUU stations onto the higher 16-bit paths of the
source operand bus.  In addition, 4 extra lines are needed
on the result bus for the carry-out that could result when
two 16-bit operands are added.  These additional carry-out
lines are needed because most multimedia instruction sets
provide a form of saturating arithmetic which, upon
overflow of two 16-bit values, sets the result to the
maximum 16-bit value, namely 0xFFFF. In addition, the
reservation stations must be modified. The additional
hardware needed here includes muxes which reverse the
effect of the above; data in the higher 16-bit subwords of
the result bus are muxed into the low 16-bit boundaries to
be written back to the result reservation station.  It should
be noted that much of this “additional” muxing hardware
most likely already exists in processors with multimedia
instruction sets.  For example, the HP MAX-2 instruction
set includes instructions to select any field in a source
register and right-align it in the target register.
Instructions also exist to select a right-aligned field from
the source register and place it anywhere in the target
register.

Our core idea is similar to the power optimization
discussed in the last section.  Each entry in the reservation
update unit (RUU) stores an extra bit for each operand
indicating that the size of the operand is 16-bits or less.
These fields are updated when operands are computed and
stored in the RUU buffers.  Using these fields, the issue
logic can recognize opportunities to pack narrow width
operations together to share one integer ALU in the same
way that the multimedia instructions do.  In order for two
operations to be packed, three things must occur.  First
both instructions must have satisfied their data
dependencies and be ready to issue.  Second, both

instructions must have narrow width operands.  Finally,
they must perform the same operation.

The issue logic issues ready instructions from the RUU
using its normal algorithm.  In most processors, this
algorithm issues the oldest instructions in the RUU which
are ready to issue.  However, when operations are issued
in which both operands are 16-bits or less, an opportunity
for packing exists.  The issue logic must keep track of
which issuing instructions are available for packing.  If
other instructions that perform the same operations are
available to issue and have narrow-width operands, these
instructions can be packed.  The issue logic will set the
appropriate muxes to issue the packed instructions in
parallel.

After the instructions issue, they execute in the same
fashion as packed instructions do in the multimedia
instruction sets.  When execution completes, the result
operands share the result bus and are sent back to their
respective RUU station as well as RUU stations awaiting
the results as input operands.  This optimization opens up
machine issue bandwidth and integer ALUs available for
certain integer executions.  Much of the required
multiplexing hardware already exists within processors
designed with multimedia instruction sets.  These
processors also have functional units that are designed to
disable the carry chain at 16-bit intervals.  The primary
hardware cost for this optimization is in the increased
complexity of the logic that decides when packed
instructions can issue. Handling negative numbers adds
additional complexity to the issue logic.

5.3 Replay Packing: Speculating on Operand Size

The architecture in Section 5.2 is designed to pack
operations together to be executed in parallel when both
input operands are less than 16-bits.  The requirement that
both input operands be less than 16-bit excludes a large
number of arithmetic operations used for memory
addressing, loop incrementing, etc.  In these cases, one of
the input operands may be very large, while the other is
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Figure 10 – Speedup due to operation packing.



quite small.  If one operand is large and the other is small,
in most arithmetic operations only the lower bits of the
result will change.  However, in some cases, the carry will
ripple all the way down to the higher bits.  In practice, this
happens relatively infrequently.  Based on this
observation, we propose an extension to the architecture in
Section 5.2 that allows operands to be packed if only one
of the two input operands is less than 16-bits.  In most
cases there will be no overflow from the 16-bit addition,
and the high 48-bits of the larger source operand can be
muxed into the destination RUU station.  However, in the
rare cases that there is overflow from the 16-bit addition,
the instruction can be squashed and subsequently re-issued
as a full-width instruction.  Such a situation could be
handled by “replay traps”, which are already available for
other reasons in the Alpha 21264 and other CPUs.

5.4 Operation Packing Results

In this section we present the results for the speedup
with and without replay packing.  We have considered two
configurations: The first configuration is exactly the same
as the baseline configuration discussed in Section 3.1.  The
second configuration increases the decode bandwidth from
four instructions per cycle to eight instructions per cycle.
The increased decode bandwidth causes the RUU to fill up
faster giving more opportunities for packing.

Figure 10 shows the percent speedup over the baseline
system in the configuration with the decode width of four.
In this chart, we include results for both perfect and the
combining predictor.  In most cases moving from perfect
to realistic branch prediction shows a performance
degradation, because it reduces the number of useful
instructions that are ready to issue each cycle.  We can see
that go, notorious for its poor branch prediction, is affected
the most.  Ijpeg and vortex, on the other hand, see little
difference in the speedup between perfect and the realistic
predictor.  The average speedup across SPECint95 was
7.1% for perfect branch prediction and 4.3% with the

realistic predictor. As one might expect, the multimedia
benchmarks performed better than SPECint95.  Here
better branch prediction led to only a small difference in
speedup between perfect and realistic predictors.  In fact,
g721 had higher speedup with realistic branch prediction,
due to speculative execution.  Speculative instructions that
will eventually be squashed still get executed until the
branch is resolved; packing them with other instructions
can increase effective issue bandwidth.  The average
speedup for the media benchmarks was 7.6% with perfect
branch prediction and 8.0% with the combining predictor.

We also studied the packing optimization with 8-wide
decode.  As expected, the optimization performs better
with increased decode bandwidth, because the RUU is
filled with more useful instructions which have the
potential to be packed, issued, and executed in parallel.
Most of the benchmarks show a 2-3% increase in speedup
with the increased decode bandwidth.  The average
speedup for SPECint95 was 9.9% for perfect branch
prediction and 6.2% with the combining predictor.  The
multimedia benchmarks performed better as well, but not
as significantly as SPECint95.  This is because multimedia
applications have many loop-oriented arithmetic
operations with few data dependencies.  This gives them a
larger pool of usable instructions even with the smaller
decode bandwidth.  The average speedup for the media
benchmarks was 10.3% with perfect branch prediction and
10.4% with the realistic predictor.

As previously mentioned, the proposed optimization
increases the effective issue bandwidth and number of
integer ALUs by packing several instructions and issuing
and executing them in parallel.  Thus, it is useful to
compare our optimization to a machine that simply has
more issue and execution bandwidth.  Figure 11 compares
instructions per cycle (IPC) for three different
configurations, all with combining branch prediction and
decode and commit width of four.  The first is the baseline
machine with issue width of 4 and 4 integer ALUs.  The
second is the baseline machine augmented with our
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operation packing optimizations.  The third machine is the
baseline machine with an issue width of 8 and 8 integer
ALUs. Ijpeg and vortex, as well as many of the media
benchmarks, come very close to achieving the same IPC
as the more costly 8-issue/8-ALU implementation.

6 Conclusions and Future Work

Increased interest in support for sub-word parallelism
motivated this work on value-specific power and
performance optimizations in current microprocessors.
Prior use of multimedia-style operation packing has
required significant programmer intervention. Compile-
time analysis is constrained by the fact that the operand
range may vary over the course of a program run
depending on the input data.  In addition, the compiler
must conservatively analyze all potential paths taken.  Our
work notes that certain uncommon paths may have
different operand size characteristics than the typical path
through programs.

Thus, in order to augment compile-time analysis, we
present two techniques to dynamically exploit low
bitwidth data.  The first reduces power in integer

execution units with aggressive clock gating, after
determining that the upper portion of functional unit is not
needed.  The second increases performance by
dynamically recognizing opportunities to issue multiple
narrow width instructions to the same functional unit to be
executed in parallel. The mechanisms we discuss could be
extended to other optimizations as well, such as reducing
power in the floating point units or in the cache memories.

A key characteristic of our current proposals is that
they require only a small amount of hardware and no
compiler intervention.  More broadly, they represent a step
towards implementing operand-value-based optimization
strategies throughout processors.
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