
Characterizing and Improving the Use of
Demand-Fetched Caches in GPUs

Wenhao Jia
Princeton University
wjia@princeton.edu

Kelly A. Shaw
University of Richmond
kshaw@richmond.edu

Margaret Martonosi
Princeton University
mrm@princeton.edu

ABSTRACT
Initially introduced as special-purpose accelerators for games
and graphics code, graphics processing units (GPUs) have
emerged as widely-used high-performance parallel comput-
ing platforms. GPUs traditionally provided only software-
managed local memories (or scratchpads) instead of demand-
fetched caches. Increasingly, however, GPUs are being used
in broader application domains where memory access pat-
terns are both harder to analyze and harder to manage in
software-controlled caches. In response, GPU vendors have
included sizable demand-fetched caches in recent chip de-
signs. Nonetheless, several problems remain. First, since
these hardware caches are quite new and highly-configurable,
it can be difficult to know when and how to use them;
they sometimes degrade performance instead of improving
it. Second, since GPU programming is quite distinct from
general-purpose programming, application programmers do
not yet have solid intuition about which memory reference
patterns are amenable to demand-fetched caches.

In response, this paper characterizes application perfor-
mance on GPUs with caches and provides a taxonomy for
reasoning about different types of access patterns and local-
ity. Based on this taxonomy, we present an algorithm which
can be automated and applied at compile-time to identify
an application’s memory access patterns and to use that in-
formation to intelligently configure cache usage to improve
application performance. Experiments on real GPU systems
show that our algorithm reliably predicts when GPU caches
will help or hurt performance. Compared to always passively
turning caches on, our method can increase the average ben-
efit of caches from 5.8% to 18.0% for applications that have
significant performance sensitivity to caching.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

General Terms
Performance, Measurement, Algorithms

Keywords
GPU cache, CUDA, GPGPU, compiler optimization

1. INTRODUCTION
Graphics processing units (GPUs) were introduced to ef-

ficiently handle computer graphics workloads in specialized
applications such as image rendering and games. In most
early GPUs, software-managed local memories (or scratch-
pads) instead of traditional demand-fetched caches were pro-
vided for two reasons. First, traditional GPU workloads in-
volved large amounts of streaming and were deemed difficult
to cache [7]. Second, graphics/game programmers were will-
ing to meticulously orchestrate memory access behavior and
hand-tune use of software-managed caches [6].

More recently, GPU software has broadened and often in-
cludes memory access patterns that are both hard to analyze
and hard to manage in software-controlled caches. In re-
sponse, GPU vendors have included demand-fetched caches
in their recent chip designs. For instance, the NVIDIA Fermi
models introduced a relatively large (up to 48 KB per core)
and configurable L1 cache not previously seen on GPUs [12].
Likewise, AMD’s Fusion GPUs also offer a 16 KB L1 cache
per core [5]. Both vendors’ recent GPUs have sizable, glob-
ally coherent L2 caches.

Although the introduction of these seemingly intuitive
demand-fetched caches is appealing, several problems re-
main. First, since these hardware caches are quite new
and highly configurable, reasoning about when they will im-
prove or harm application performance is still difficult. Sec-
ond, since GPU programming is quite distinct from general-
purpose programming, application programmers do not yet
have widespread intuition about which memory reference
patterns in their code are most amenable to demand-fetched
caches and which should be optimized in other ways.

Defying conventional wisdom about caches built up over
years of their use on general-purpose CPUs, our experi-
ments show that caches are not always helpful to GPU ap-
plications, and in many cases they may even hurt perfor-
mance. For a suite of 12 general-purpose GPU (GPGPU)
programs on an NVIDIA Tesla C2070 GPU with L1 caches
turned on and off, we find that only 3 of them see sub-
stantial performance improvements from caching. Mean-
while, another 3 of them actually see non-trivial perfor-
mance degradations. This lack of performance predictability



is so well-known that it is reflected in GPU vendor direc-
tions to application programmers—NVIDIA’s programming
manual specifically suggests that software developers experi-
ment with cached and uncached versions of their code to see
which one works better [14]. Such ad hoc approaches are
clearly unappealing because they are time-consuming and
error-prone, and they do not work well for software that
must run well across many data set sizes and GPUs.

This paper provides methods for efficiently utilizing the
newly provided demand-fetched GPU caches despite their
seemingly difficult-to-predict payoff. In particular, we start
by characterizing GPU application performance on a real
GPU system with L1 caches turned on and off. Our results
show the degree to which L1 caches may either improve or
hurt program performance. Then, based on observations
about GPU program access patterns, we provide a taxon-
omy of GPU memory access locality that can help program-
mers reason about when caches are likely to be helpful. We
also note that since GPUs typically have extensive latency-
tolerance mechanisms using multi-threading, it is memory
bandwidth rather than latency that often determines cache
utility. From our measurements and taxonomy, we develop
methods that enable automated compile-time optimizations
to determine when to use (or not to use) L1 caches in GPUs.
Overall, this paper makes the following contributions.

First, we present a systematic taxonomy of GPU mem-
ory access patterns. Inspired by the “three C’s” of general-
purpose CPU caches, the taxonomy helps GPU compiler
writers and application developers build intuition about the
best ways to improve their application’s memory access per-
formance on cache-enabled GPUs.

Noting that memory bandwidth, more so than latency, is
an important determinant of cache utility, our work demon-
strates compile-time methods to analyze GPU programs and
calculate “estimated memory traffic”. Our estimates serve as
indicators of when caches are likely to be beneficial.

Third, we propose a compile-time algorithm which auto-
matically uses the traffic estimates to predict how caches
will affect applications’ performance and controls caching
accordingly. Our method increases the benefit of using L1
caches from 5.8% to 18.0% for applications that experience
significant changes in performance when caches are used.

The remainder of the paper is structured as follows. Sec-
tion 2 gives background information on GPU hardware and
software. Section 3 details our measurement methodology.
In Section 4, we present real-system GPU cache characteri-
zations and use those results to develop a GPU memory ac-
cess locality taxonomy. Based on this taxonomy, Section 5
develops an automatable compile-time algorithm for deter-
mining whether/when to employ L1 caching on each global
memory load of a GPU program. Section 6 gives experimen-
tal results of applying this algorithm. Section 7 discusses
related work, and Section 8 concludes the paper.

2. BACKGROUND
This section gives background details on GPU architec-

tures. For consistency, we primarily use NVIDIA and CUDA
terminology in this paper. Our techniques are, however, ap-
plicable to a broader range of GPUs from different vendors.

2.1 GPU Hardware Characteristics
A modern GPU is a many-core processor optimized for

throughput computing. Each core, or Streaming Multipro-

Figure 1: A typical GPU memory hierarchy. Arrows
indicate data-flow paths.

cessor (SM) in NVIDIA terminology, is capable of executing
a large number of threads in parallel. SMs have internal
memory units, including registers private to each thread and
software-managed local memories (shared memory) accessed
by all threads running on the same SM. Figure 1 shows a
typical GPU memory hierarchy as well as possible data flow
paths among these components. A GPU program consists
of many thread blocks. A thread block is always scheduled
to run on a single SM so that threads in that block can
cooperate through the use of shared memory in that SM.
When threads access data in the large off-chip DRAM called
global memory, their accesses go through a two-level cache
hierarchy. Each L1 cache is private to its SM. L1 caches
in different SMs are not coherent with each other. The L2
cache is shared by and coherent across all SMs on the chip.

Current NVIDIAGPUs have configurable L1 caches whose
size can be either 16 KB or 48 KB. The L1 cache in each SM
shares the same total 64 KB of memory cells with shared
memory, giving users dynamically configurable choices re-
garding how much storage to devote to the cache versus
the shared memory. AMD GPU L1 caches have a fixed
size of 16 KB. The NVIDIA Tesla GPU we use has a non-
configurable 768 KB L2 cache, while L2 caches on AMD
GPUs have a size of 64 KB per core. Finally, a GPU has con-
stant and texture caches; these are separate from the two-
level demand-fetched caches and are only accessed through
special constant and texture instructions.

Because L1 caches are not coherent across SMs, current
NVIDIA GPUs treat every global memory store as a write-
through transaction (write through L1 caches to the L2
cache) followed by an invalidate transaction (invalidate the
copy in the L1 cache). In other words, global memory stores
ignore L1 caches and this behavior is not configurable at the
hardware level. For that reason, in this paper we only study
global memory loads—not stores—in GPU programs.

2.2 GPU Software Characteristics
Each GPU program has one or more kernel functions that

are launched and executed on the GPU. Each kernel divides
its work into identically sized thread blocks. The size of
a thread block is the number of software threads in that
block. From a programmer’s perspective, each instruction
in the kernel is executed by all threads in the same thread
block concurrently. However, on the real hardware, because
of the limited number of SIMD units, software threads are
actually executed in groups of threads called warps. A warp
has 32 threads on current NVIDIA GPUs, and the SIMD
units execute one warp at a time, switching to other warps



when long-latency instructions are encountered. Because
threads within the same warp execute instructions concur-
rently on the hardware, their global memory accesses are
“coalesced” into the smallest number of unique memory re-
quests. Memory accesses from different warps do not get
coalesced, so they may result in redundant memory traffic if
the memory fetches are not cached. Finally, each thread ex-
ecutes exactly the same binary instructions as other threads
in the program, so it has to use thread ID and thread block
ID variables to find out its own identity and operate on its
individual data accordingly. Thread ID and block ID vari-
ables can be one- or multi-dimensional, but they must take
consecutive values in their respective ranges.

GPU programmers are usually encouraged to declare and
use shared memory variables as much as possible, because
the on-chip shared memories have much shorter latency and
much higher bandwidth than the off-chip global memory.
Small, repeatedly-used data are good candidates to be de-
clared as shared memory objects. However, because shared
memories have limited capacity and an SM cannot access
another SM’s shared memory, many programs cannot use
shared memories due to the algorithmic characteristics of
these programs. In these situations, the global memory is
always a bigger, slower fallback choice.

2.3 An Example GPU Program: BFS
As an example, Figure 2 shows the CUDA version of the

breadth-first search (BFS) application taken from the Ro-
dinia benchmark suite [3]. We revisit BFS later in the paper
to explain our work. This program does breadth-first graph
traversal to search for a specified item. More details about
this program can be found in [9], but here we give a brief
summary of its execution flow.

When the program runs, two kernels are called repeatedly
in a cyclic fashion. Both kernels have a thread block size of
512 threads. The first kernel expands the search frontier
to the next node level of the graph, and the second kernel
does the actual visit (visit()) and then sets up conditions
for the next run of the first kernel. The program terminates
when a certain number of calls are performed, corresponding
to the total number of node levels in the graph. The arrays
now[], visited[], and next[] are used for tracking node
visit status, and they are stored in global memory. The
other global memory array children[] stores the child node
IDs of each node consecutively. In this example, each node
of the graph has a fixed number of 8 children.

2.4 Why Study GPU Caches?
Since GPU caches have considerable configurability, mul-

tiple decisions must be made to determine how to use them.
For example, NVIDIA programmers can select whether or
not to turn on caching depending on overall data access pat-
terns. Additionally, they can select the size of the L1 cache
when it is used. This configurability gives programmers flex-
ibility but also introduces performance uncertainties.

GPU programs usually have hundreds of threads running
concurrently on the same processor core. The cache capacity
per thread is very small, despite the relatively large overall
cache size. This makes it difficult to fit the entire working
set into caches. Such capacity constraints challenge the con-
ventional wisdom gained from CPU caches. To get the most
benefit from limited per-thread cache capacity, programmers

#define TRUE 1
#define FALSE 0
kernel( int now[], int visited[], int next[],

int children[] ) {
int nodeID = blockIdx.x * 512 + threadIdx.x;
if ( now[nodeID] == TRUE ) {
now[nodeID] = FALSE;
for ( int i = 0; i < 8; i++ ) {

int childID = children[nodeID * 8 + i];
if ( visited[childID] == FALSE )
next[childID] = TRUE;

}
}

}
kernel2( int next[], int now[] ) {

int nodeID = blockIdx.x * 512 + threadIdx.x;
if ( next[nodeID] == TRUE ) {
next[nodeID] = FALSE;
now[nodeID] = TRUE;
visit(nodeID);
visited[nodeID] = TRUE;

}
}

Figure 2: An example breadth-first search GPU pro-
gram. The global load instructions are underlined.

Parameters Values

CPU model Intel Core 2 Duo E8500
System DRAM capacity 4 GB
GPU model NVIDIA Tesla C2070
SM count 14
SM SIMD width 32
SM clock rate 1.15 GHz
L1 cache size 16 KB or 48 KB
Shared memory size 48 KB or 16 KB
L2 cache size 768 KB
GPU DRAM capacity 6 GB
GPU DRAM clock rate 1.5 GHz
GPU DRAM bandwidth 144 GB/sec
Single-/Double-precision
floating point performance

1030/515 GFLOPS

CUDA version 4.0

Table 1: Our CPU/GPU measurement platform.

must determine which portions of the working set will bene-
fit from caching and only cache these portions (Section 3.1).

Because experimentally choosing the desired cache con-
figuration and deciding which instructions should load data
into the cache has many drawbacks, our work seeks to build
better programmer intuition as well as to help automate
cache configuration and data caching decisions.

3. METHODOLOGY

3.1 Real-SystemMeasurement Infrastructure
All of our experiments are performed using a real running

system, with an NVIDIA Tesla C2070 GPU and an Intel
Core 2 Duo E8500 CPU. Table 1 lists the details.

The L1 cache in this GPU is controllable in several ways.
First, it shares storage cells with shared memory, and we
can configure the partitioning to select the size of each unit.
Specifically, one can have a 16 KB L1 cache with a 48 KB
shared memory, or one can have a 48 KB shared memory
with a 16 KB L1 cache. The second way to control the L1
cache is to turn it on or off for an entire program. We refer to
this as “cache all” or “cache none” respectively. This is done



Kernels Thread block sizes
Shared memory
use per block

backprop-1 16× 16 0
backprop-2 16× 16 1088 B

bfs-1 512 0
bfs-2 512 0
cfd-1 192 0
cfd-2 192 0
cfd-3 192 0
cfd-4 192 0

heartwall 512 11872 B
hotspot 16× 16 3072 B
kmeans-1 256 0
kmeans-2 256 0

leukocyte-1 320 14568 B
leukocyte-2 175 0
leukocyte-3 176 0

lud-1 32 3072 B
lud-2 16 1024 B
lud-3 16× 16 2048 B
nw-1 16 2180 B
nw-2 16 2180 B

particlefilter 128 0
srad-1 512 4096 B
srad-2 512 0
srad-3 512 0
srad-4 512 0
srad-5 16× 16 6144 B
srad-6 16× 16 6144 B

streamcluster 512 1024 B

Table 2: Rodinia programs and kernel attributes.

by passing the compiler flags -dlcm=ca or -dlcm=cg to the
Parallel Thread Execution (PTX) assembler. (PTX is the
CUDA ISA [13].) Finally, one can also select whether each
individual global load instruction’s memory access should go
through the L1 cache or not, by using the global memory
access modifiers available in PTX 2.x.

3.2 Applications
Our experiments use the CUDA version of the applica-

tions in the Rodinia 1.0 benchmark suite [3]. Rodinia con-
tains a diverse set of real-world GPU programs. Each pro-
gram in the suite has one or more GPU kernels, and our
methods analyze each kernel independently. (Cross-kernel
optimizations are rare in GPUs and could be a topic for fu-
ture work.) Table 2 lists the programs and some per-kernel
characteristics; different kernels in an application are distin-
guished by numbering. All measured numbers are hardware
performance counter values collected with NVIDIA Visual
Profiler. All reported kernel runtimes are the time between
kernel launch and finish, excluding CPU work and CPU-
GPU communication time, which are not the focus of this
study. Because programs have nearly identical execution
times from one run to another (less than 1% variance), we
present results from a single program run. Within a single
run, a particular kernel may be invoked several times; when
this occurs, we present the runtime as total time accumu-
lated over all launches of this kernel in the entire run.

4. CHARACTERIZING GPU CACHE USE
This section experimentally characterizes when L1 caches

help and hurt performance of a suite of GPGPU kernels.
From this, we determine cache prediction metrics, and we
construct a model that helps programmers understand how
different types of memory accesses interact with GPU caches.

4.1 L1 Cache Performance Impact
To measure the impact of L1 caches on GPU applica-

tion performance, we run the entire Rodinia benchmark
suite on our platform with the L1 caches turned on and
off. The suite’s applications use the GPU memory system
in widely varying ways. Some of the kernels load data only
into the texture and constant caches; on the NVIDIA hard-
ware, these data never enter the L1 demand-fetched cache.
Other kernels use explicit software management to pull data
from global memory into the software-managed shared mem-
ory. While such data pass through the L1 cache en route to
shared memory, they are only accessed from shared mem-
ory from that point on. For a third group of kernels, ac-
cesses are made directly to global memory without making
use of shared memory. In such cases, data are implicitly
demand-fetched into the L1 cache through the global mem-
ory accesses; caching of these data is similar to how data
are managed by CPU caches. It is the L1 hits to these data
that offer the largest potential payoff in performance.

Figure 3 presents the speedup obtained when 16KB L1
caches are used relative to when they are not used. The bars
in the graph are grouped to indicate how each kernel uses the
memory system based on the three usage categories from the
preceding paragraph. Values smaller than 1 indicate that an
L1 cache offers speedup over the no-cache case.

Among the three groups of kernels, the performance of the
first group of kernels is expected to be unaffected by whether
L1 caches are present or not, because their memory accesses
do not go through L1 caches. This expectation is confirmed
by our results: almost no performance variation is seen.

The second group of kernels shows very small responses to
the use of L1 caches. This is because the initialization phases
of these kernels, during which accesses go through L1 caches,
are usually much shorter than the computation phases of
these kernels, during which accesses focus on the shared-
memory and no longer go through L1 caches. Notably, the
srad kernels show up to 10% performance variations caused
by the use of L1 caches. This is because these kernels have
fairly short computation phases, and even the initialization
phases affect the total runtime.

The third group of kernels (solid bars in Figure 3) are
of the most interest to us, because they should have the
greatest potential benefit from caching—they all use global
memory (rather than shared memory) to hold their working
sets, and so they continue to have global memory accesses
even during the main computation phases. Because these
global memory accesses can use the L1 cache, these are the
cases where a demand-fetched L1 cache can be most helpful.
However, instead of seeing uniform benefits from caching, we
see much more variable performance. In particular, when
the cache is turned on, backprop-1 and particlefilter

show significant speedup while bfs-1, cfd-1, and kmeans

show noticeable slowdown.
To investigate such varying cache effects, Figure 4 plots

the L1 cache hit rates of these kernels. There is no clear
relationship between performance changes and L1 hit rates.
Two kernels with large performance variations (kmeans-2 at
0.59× and particlefilter at 1.9×) do show the smallest
(0.2%) and the largest (99%) L1 hit rates respectively. For
the other programs, however, the hit rate cannot be directly
related to performance. For example, backprop-1 and bfs-1

show opposing performance trends, though they have simi-
lar cache hit rates. In fact, while it might be appealing to



 0

 0.5

 1

 1.5

 2

cfd-2
cfd-3

cfd-4
km

eans-1

leukocyte-2

leukocyte-3

hotspot

leukocyte-1

lud-1
lud-2

lud-3
nw-1

nw-2
srad-1

srad-5

srad-6

backprop-1

backprop-2

bfs-1
bfs-2

cfd-1
heartwall

km
eans-2

particlefilter

srad-2

srad-3

srad-4

stream
cluster

N
or

m
al

iz
ed

 r
un

tim
e

(c
ac

he
-o

n 
ru

nt
im

e 
/ c

ac
he

-o
ff 

ru
nt

im
e) constant/texture only shared memory only others

Figure 3: 16 KB L1 caches have little or unpredictable performance impact on the Rodinia benchmark suite.
Lower bars indicate better performance (i.e. shorter runtime) when the L1 caches are turned on.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

backprop-1

backprop-2

bfs-1
bfs-2

cfd-1
heartwall

km
eans-2

particlefilter

srad-2

srad-3

srad-4

stream
cluster

L1
 h

it 
ra

te
 (

%
)

Figure 4: The L1 hit rate is not a good predictor of
program performance variations.

devise a caching policy based on a hit rate threshold—turn
on caching if profiling shows a hit rate above the thresh-
old and turn off caching otherwise—there is no reasonable
threshold to choose for these results.

To find a better indicator of caching’s performance influ-
ence, we look more closely at bfs-1. In fact, the performance
slowdown stems from the 128 B L1 cache line size, which is
quite long relative to the amount of spatial access locality in
the kernel. The default input graph supplied with the bench-
mark causes threads in bfs-1 to issue random, scattered 4 B
accesses to main memory. When the L1 cache is off, each
4 B access is turned into a 32 B memory request and sent
to the L2 cache and DRAM. However, when the L1 cache is
on, each thread has to fetch an entire 128 B cache line for
the same 4 B access. This quadruples the required L2-to-L1
traffic, and results in much higher DRAM-to-L2 traffic as
well. However, much of this increased memory traffic goes
unused because the graph’s access locality is low. Since bfs-
1 is a memory bandwidth bound application, extra wasted
memory traffic leads to a 18% performance slowdown in Fig-
ure 3. The observation made using bfs-1 inspires the use of
memory traffic as an estimator of caching’s benefit.

Figure 5 shows the relative reduction in memory traffic
from L2 to L1 when the L1 cache is turned on, compared to
when the L1 cache is off, for the third group of kernels. This
is obtained by multiplying the observed number of L2 read
requests and the request size (32 B or 128 B). The graph
shows that the amount of L2 read memory traffic is better
correlated (than hit rate) with the L1 cache’s performance
impact. In kernels where L1 caches harm performance (bfs-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

backprop-1

backprop-2

bfs-1
bfs-2

cfd-1
heartwall

km
eans-2

particlefilter

srad-2

srad-3

srad-4

stream
cluster

N
or

m
al

iz
ed

 L
2 

re
ad

 m
em

or
y 

tr
af

fic
(c

ac
he

-o
n 

/ c
ac

he
-o

ff)

Figure 5: The amount of L2 read memory traffic
better indicates cache impact on program runtime.

1, cfd-1, and kmeans-2), the amount of memory traffic in-
creases. The opposite is true for kernels that benefit from L1
caches (backprop-1 and particlefilter). The rest of the
programs are not memory bandwidth bound, and so their
memory traffic changes are inconsequential.

Across the test suite, it is generally true that increased L2-
to-L1 memory traffic results in equal or worse performance
and reduced traffic results in equal or better performance.
Using memory traffic as a metric for driving our caching
policy algorithm is intuitive in several ways. First, if com-
putation is identical whether caching is turned on or off, the
difference in memory traffic can be expected to determine
runtime changes. Second, at compile-time, aggregate traffic
estimates for GPU programming models are easier to collect
than cache hit rate estimates. Finally, while we are the first
to apply traffic estimation to caching decisions, they have
seen prior use for other GPU optimizations [1].

4.2 A Taxonomy of Memory Access Locality
CPU programmers have long used the three C’s (compul-

sory, conflict, and capacity) taxonomy for cache misses to
help them understand and reduce the cache miss rates of
their programs [10]. Since L1 cache hit rates are not par-
ticularly predictive of a GPU cache’s potential benefit, a
new model is needed to help GPU programmers understand
how global memory accesses interact with the cache and how
they can modify their program to improve performance.

Our characterization experiments show that memory traf-
fic can be indicative of how the L1 cache impacts perfor-
mance. The new model therefore needs to translate how



different memory access patterns result in different amounts
of memory traffic and how those levels of traffic change with
the use of caches. Because of the complex execution model
used to program and execute work on GPUs (e.g. threads,
warps, and blocks), this model must also relate memory traf-
fic to how computation is scheduled.

Instead of using different types of cache misses, our tax-
onomy for GPUs introduces three types of locality.

• Within-warp data locality applies to a single load in-
struction being executed by threads within the same
warp. If these threads access data mapped to the same
cache line, they are said to have within-warp locality.

• Within-block (cross-warp) data locality applies to a sin-
gle load instruction being executed by threads within
the same thread block but in different warps. If these
threads access data mapped to the same cache line,
they are said to have within-block locality.

• Cross-instruction data reuse applies to more than one
instruction (including the same instruction being ex-
ecuted more than once) being executed by the same
or different threads within the same thread block. If
these threads access data mapped to the same cache
line, they are said to have cross-instruction data reuse.

To understand each type of locality, recall how threads
are organized into warps. Threads in the same block have
consecutive IDs. Warps are formed as groups of 32 threads
with consecutive IDs. For example, if tid is the thread ID
variable, the threads in the first warp of a block will have
tid from 0 to 31, the second warp will be 32 to 63, etc.

Within-warp locality is frequently due to threads in a warp
(32 threads per warp) sharing contiguous elements of an ar-
ray (e.g. array[tid]), resulting in coalesced accesses to the
same cache line. Within-block locality results from threads
having IDs with a distance greater than 32 accessing the
same cache line (e.g. array[tid % 32 * 32]. The critical
difference between within-warp locality and within-block lo-
cality is that, without an L1 cache, two identical requests
from the same warp (bearing within-warp locality) gener-
ate only one L2 request while two identical requests from
the same block but different warps (bearing within-block lo-
cality) generate two L2 requests. Turning caches on may
exploit within-block locality by reducing the number of L2
requests from two to one, but it cannot exploit within-warp
locality because the number of L2 requests is already at its
minimum due to coalescing. Hence within-warp locality does
not benefit from caches while within-block locality does.

Cross-instruction reuse always exists between multiple in-
structions executing at different moments in time, similar to
temporal locality in CPUs. However, due to the small per-
thread cache capacity, instructions with cross-instruction
reuse have a much smaller chance of retaining their data
in the cache. Consequently, it is difficult to exploit cross-
instruction reuse through caching on GPUs.

Finally, if an instruction executed by a whole thread block
exhibits none of the locality above, it is said to have non-
locality. Instructions with non-locality should not use the
cache, because turning off the cache for them results in
smaller (32 B) request sizes than turning on the cache would
(128 B). The random accesses in BFS are examples of such
non-locality; this program benefits from the lower overall
bandwidth of non-cached operation.

 0

 2

 4

 6

 8

 10

 12

 14

None Within-
warp

Within-
block

Cross-
instruction

R
un

tim
e 

(m
s)

L1 off, L2 on L1 on, L2 on

Figure 6: For BFS, within-warp locality improves
program performance regardless of whether the L1
cache is turned on. Caches are helpful to within-
block locality. The L1 cache is too small for cross-
instruction reuse.

4.3 Taxonomy Example: BFS
Below we use the BFS example (Section 2.3) to quanti-

tatively demonstrate the caching benefits for each type of
locality. Experimental results confirm our analysis of local-
ity and motivate our caching strategy in Section 5.4.

We use different data layouts in a special BFS input set
to vary the types of memory access locality and test their
amenability to caching. The special input graph is a care-
fully designed directed octree. Its graph structure is manipu-
lated to contain one and only one type of locality at a time.
For example, to produce cross-instruction reuse, a thread
is directed by children[] to access 8 adjacent elements in
visited[] over 8 iterations of a loop. However, different
threads in the same thread block (including those in the
same warp) access random 8-element groups to make sure
no within-warp or within-block locality is present. Likewise,
graphs with only within-warp or only within-block locality
can be constructed, while the degree of locality is kept at
8 to ensure fair comparisons across different types of local-
ity. For within-warp locality, this means every 8 threads in
the same warp access adjacent elements in visited[]; for
within-block locality, this means 8 threads from 8 distinct
blocks access adjacent elements in visited[]. Finally, a
randomly structured tree is used as the non-locality input.

As shown in Figure 6, when BFS runs on an input with
no locality, the use of an L1 cache slightly hurts its per-
formance (8.5% slowdown) due to the long cache line size
resulting in an almost 2× increase in L2 traffic. The same
program running on an input having within-warp locality
sees greatly improved performance—3.9× in the cache-off
case caused by a 3.6× traffic reduction, compared to the
non-locality input. Turning the L1 cache on, however, has a
negligible effect on performance, since within-warp locality
uses coalescing instead of caching to reduce memory traffic.
For the third input (within-block locality), the L1 cache suc-
cessfully exploits the locality (2.2× runtime reduction due
to 3.1× traffic reduction, relative to non-locality case). Even
when the L1 cache is off, the always-on L2 cache can still
exploit the locality to a lesser degree (1.3× runtime reduc-
tion). Lastly, caches cannot exploit the cross-instruction
reuse even if it exists in the input—a thread’s cache lines
are evicted from the cache before they get reused. These
experiments reinforce our analysis of locality and show, in a
real application, the relative performance benefits of caching
for each type of locality.



5. A COMPILE-TIME ALGORITHM FOR
IMPROVING GPU CACHE USE

This section presents an algorithm that performs compile-
time analysis of GPU memory access patterns and accu-
rately predicts whether caching would be useful to each load
instruction in a program. Even though here we apply our
algorithm to the kernels manually, it can be easily carried
out automatically by a compiler. The algorithm is designed
using the following abstract GPU execution model.

First, we assume all threads in a thread block execute an
instruction simultaneously, before they move on to the next
instruction together. Even though in real hardware, threads
execute instructions in units of warps instead of blocks, and
a warp may execute a few instructions consecutively before
it stalls and gets swapped out by another warp, the simpler
model without warps is intuitive and accurate enough for
our cache analysis and optimization.

Second, our model considers each SIMD load instruction
in isolation from other instructions, as if the cache is flushed
before and after each instruction is executed by all threads in
a block. (This assumption has no effect on analyzing within-
warp locality, within-block locality, and scattered accesses,
because they all exist within the scope of a single instruc-
tion.) Thus, our algorithm does not directly aim to exploit
cross-instruction data reuse, but the final step may option-
ally use some heuristics to try to cache for it (Section 5.4).

Finally, minor effects such as cache line mapping conflicts
are ignored; our results show this is generally acceptable.

5.1 Algorithm Overview
For a given GPU program kernel, our algorithm first dis-

covers the memory access patterns of each individual SIMD
load instruction. It achieves this by representing the data
address of each load instruction as a function of the thread
ID variables. Based on that information, the algorithm
then estimates how much memory content will be trans-
ferred when the instruction is executed by an entire thread
block, with the cache on and off. Based on these traffic esti-
mates, the algorithm decides whether the data of each load
instruction should be cached or not.

The algorithm has 3 steps: analyze access patterns, es-
timate memory traffic, and determine which instructions
should use the cache. They can be applied to both high-level
(such as the pseudocode below) and low-level (such as PTX
code in our experiments) GPU program representations.

5.2 Step 1: Analyze Access Patterns
Our access pattern analysis takes advantage of the fact

that GPU threads rely on their thread IDs and block IDs
to identify and load their own data. Consequently, when
a thread executes a load instruction, the data address that
instruction loads is usually a function of its thread ID, its
block ID, and some other values that are the same for all
threads in the entire thread block (such as kernel input ar-
guments). Thus, one can analyze a particular single thread’s
behavior and extrapolate the overall kernel behavior.

Values passed by heap (e.g. input data stored in global
memory) may cause uncertainties. However, these values
have to be explicitly loaded, and hence they are identifiable
and can be marked as unanalyzable. We find that these
values often lead to either scattered accesses (such as looking
up children nodes in bfs) or instances of cross-instruction

reuse (such as iterating over elements of multi-dimensional
input points in k-means), and our algorithm does not cache
them (Section 5.4). cfd-1 is the only exception in which
unanalyzable accesses have caused problems (Section 6).

To simplify the analysis, we assume the block ID variable
is 0, meaning we use the first thread block’s access patterns
to estimate access patterns of all other thread blocks. Future
work can look into using statistical sampling to estimate the
average thread block behavior.

The analysis step is shown in Algorithm 1. For brevity,
it uses a one-dimensional thread block to explain the exe-
cution flow. Multi-dimensional thread blocks can easily be
handled by using multiple thread ID variables. In the pseu-
docode, there are three special notations. τ is the thread ID
variable itself, and f(τ ) is a computable function of τ which
may be a combination of τ , constants and basic arithmetic
operations (+, -, ×, /, % and their combinations in our exper-
iments). The symbol φ represents any unprocessed variable.
The symbol ∞ represents an unknown value. Similar to the
“Not a Number (NaN)” data value, an instruction with at
least one ∞ as its input operand produces a result of ∞.
In this algorithm, an ∞ is an unanalyzable variable which
blocks the compiler from analyzing values produced from
that ∞. These unknown values are usually caused by load-
ing content from the heap.

Algorithm 1 Analyze the memory access patterns of global
load instructions in a kernel

initialize all variables in the kernel to φ
delete all loop back edges and set loop induction variables to 0
set kernel input arguments to user-supplied sample values
set results of all memory load instructions to ∞
set thread ID variables to τ
repeat

for all instructions in the program do
if all source operands of an instruction have known values:
constant, f(τ), or ∞ then

define the result of this instruction by executing the
arithmetic operation represented by this instruction
propagate this definition to all of its uses in instructions
dominated by this instruction

end if
end for

until no new propagation or definition happens
mark all φ variable as ∞
output the data addresses of all load instructions

This algorithm is iterative like common constant fold-
ing and propagation compiler optimizations. It sets “seeds”
(loop induction variables, kernel input arguments, thread
ID variables and memory load results) to known values in
the initialization phase and then uses data-flow analysis to
fold and propagate these known values. The deletion of loop
back edges in Algorithm 1 lets us analyze inside loops at the
cost of using the first iteration to estimate the overall loop
behavior. This is generally not a problem because loops
usually correspond to cross-instruction reuse which we do
not aim to analyze. When the algorithm has converged and
terminated, it outputs data addresses of computable load
instructions and marks the rest as unknown (∞).

5.3 Step 2: Estimate Memory Traffic
Based on Step 1’s analysis output, Step 2 estimates the

amount of memory traffic resulting from these memory ac-
cess patterns for both cache-on and cache-off cases.



Algorithm 2 shows the process of estimating the cache-
on memory traffic. It makes use of the fact that when a
sufficiently large cache is on, no content would be loaded
repeatedly. So the memory traffic is equal to the number of
unique bytes the instruction needs.

Algorithm 2 Estimate the amount of memory traffic gen-
erated by threads in one block when cache is on

set M to 128, the memory request size when cache is on
for all global load instructions in the kernel do

let N = the number of threads in each block
declare tags[N] which stores the upper bits of the memory
addresses threads load when they execute this load
for i = 0; i < N; i++ do

use the data address expression to compute which memory
address thread i is loading and assign that address to addr
tags[i] = addr / M

end for
count the total number of unique values in tags[] and store
it in U, counting each ∞ as one unique value
U is the total number of unique memory requests of this load
output U × M, the total amount of memory traffic generated
by all threads executing this load instruction when the cache
is turned on for it

end for

Algorithm 3 estimates the cache-off memory traffic. It
first calculates the amount of traffic generated by each warp,
and then it simply adds these amounts together because
there is no caching to prevent loading redundant data.

Algorithm 3 Estimate the amount of memory traffic gen-
erated by threads in one block when cache is off

set M to 32, the memory request size when cache is off
set B to the thread block size
for all global load instructions in the kernel do

set W to B / 32, the number of warps in the block
set nreqs, the total number of memory requests sent by all
warps in the block, to 0
for all W warps in this thread block do

declare tags[32] which is used to store the upper bits of
the memory addresses threads of this warp load when they
execute this load instruction
for i = 0; i < 32; i++ do

use the data address expression to compute which mem-
ory address thread i is loading and assign it to addr
tags[i] = addr / M

end for
count the total number of unique values in tags[] and
store it in n, counting each ∞ as one unique value
nreqs = nreqs + n

end for
output nreqs × M, the total amount of memory traffic gen-
erated by all threads executing this load instruction when
the cache is turned off for it

end for

As an example, Table 3 lists the access patterns, locality
types, and estimated cache-on and cache-off traffic for a few
typical instructions found in the Rodinia benchmarks.

5.4 Step 3: Determine Cache Use
The final step of the algorithm uses the following strategy

to decide whether each instruction should use the cache or
not, depending on the estimated memory traffic and access
patterns of this instruction.

1. If the cache-on memory traffic is equal to the cache-off
memory traffic of this instruction: This occurs because this

instruction only has within-warp locality and has no within-
block locality. If the cache-on memory traffic is larger than
cache capacity, we do not let this instruction use caches.
If the cache-on memory traffic is smaller than cache capac-
ity, we have two choices. The conservative strategy does
not turn on caches, reasoning that within-warp locality does
not need caching and caching may accidentally evict useful
cross-instruction reuse of other instructions. The aggressive
strategy turns on caches, hoping to exploit cross-instruction
reuse which may exist between this and some other instruc-
tions. Section 6 evaluates both strategies.

2. If the cache-on memory traffic is smaller than the
cache-off memory traffic: This occurs because this instruc-
tion has some amount of within-block locality. Note that
it may have an arbitrary amount of within-warp locality at
the same time. If the cache-on traffic is smaller than cache
capacity, we turn on caching for this instruction; otherwise
we turn off caching to prevent cache thrashing.

3. If the cache-on memory traffic is larger than the cache-
off memory traffic: We have successfully identified a scat-
tered access. We turn caching off for this instruction.

4. If an instruction has unknown (∞) memory access data
addresses: We assume that it is likely to issue scattered or
cross-instruction reuse accesses (Section 5.2) and we do not
use caching for this instruction.

Our algorithm does not try to identify cross-instruction
data reuse, though it does have an optional heuristic which
aggressively tries to cache for cross-instruction reuse existing
across instructions having within-warp locality. A complete
analysis of cross-instruction reuse must account for how each
instruction affects other instructions in relation to their rel-
ative positions in the program’s control flow graph and their
respective required cache sizes. This is beyond the scope of
this paper but is certainly of value for future work.

Table 3 lists the cache-on and cache-off traffic for each
instruction. Their caching decisions can be easily computed
based on the rules above.

6. EXPERIMENTAL RESULTS
In Figure 3, 5 kernels show unpredictable performance

influence from caches and need an intelligent cache manage-
ment algorithm. We apply our analysis algorithms to these
kernels and the results are shown in Figure 7. Both 16 KB
and 48 KB L1 cache sizes are tested. Results less than 1
indicate performance improvements from caching.

Compared to not having caches (white bars in Figure 7),
simply keeping caches on for all kernels (cross-hatched bars)
results in only 5.8% performance improvement on average,
due to the harmful effects caches have on some kernels. Our
conservative strategy (gray bars), which keeps within-block
locality cached and scattered accesses uncached, is able to
identify and modify these harmed kernels. Consequently,
the average benefit of caching increases to 16.9%—a 2.9×
boost. Further caching within-warp locality with the aggres-
sive approach (black bars) offers an 18.0% speedup. This is
consistent with our analysis that within-warp locality does
not benefit much from caching, even though backprop-1 and
bfs-1 still show clear improvements (5.5% on average).

As a matter of fact, for most kernels, our method can
reliably achieve performance close to the better result of the
two fixed choices—cache-all and cache-none—without the
need for pre-run profiling. In addition, our method actually
outperforms both choices on bfs-1, because bfs-1 has a mix



Kernels Instructions Access
patterns

Types of locality Warp
count

Cache-on
traffic

Cache-off
traffic

bfs-1

now[nodeID] τ within-warp 16 2 KB 2 KB
children[nodeID * 4] 4τ within-warp 16 8 KB 8 KB
visited[childID] ∞ none 16 64 KB 16 KB

backprop-1
delta[index_x] τ % 16 within-warp, within-block 8 128 B 512 B
ly[index_y] τ/16 within-warp, within-block 8 128 B 256 B

kmeans-2 input[point_id * nfeatures] 34τ none 8 32 KB 8 KB

Table 3: Example instructions and their locality. τ is the thread ID variable. ∞ is an unknown access. The
warp count is the number of warps in a thread block. All array elements are 4-byte types (int or float).

 0

 0.5

 1

 1.5

 2

backprop-1,16KB

backprop-1,48KB

bfs-1,16KB

bfs-1,48KB

cfd-1,16KB

cfd-1,48KB

km
eans-2,16KB

km
eans-2,48KB

particlefilter,16KB

particlefilter,48KB

AVERAGE

N
or

m
al

iz
ed

 r
un

tim
e

(r
el

at
iv

e 
to

 c
ac

hi
ng

 n
on

e)

cache none cache all conservative aggressive

Figure 7: Normalized runtime of different caching approaches. Results less than 1 indicate caching is helpful.
Caching all data improves performance by 5.8%. Our analysis algorithms improve performance much more:
16.9% or 18.0%. Both 16 KB and 48 KB L1 caches are tested.

of load instructions that need caching and load instructions
that do not need caching. A kernel-wide decision for caching
or not always helps one type of instruction but hurts the
other, losing to the instruction-level decisions we use here.

Finally, cfd-1 with a 48 KB L1 cache is the only case in
which our method performs worse than the better result of
the two fixed choices. This is because this kernel has some
scattered accesses, along with some other cross-instruction
reuse which can only be cached by a sufficiently large cache.
With the 16 KB cache, the cache-all choice has worse per-
formance caused by the scattered accesses, while the cross-
instruction reuse cannot be cached by this smaller cache.
With the 48 KB cache, the cache-all choice caches enough
cross-instruction reuse that it actually overcomes the harm
from scattered accesses and the overall performance comes
out ahead. Our method is unable to analyze both access
types and chooses not to use caches for unknown loads, and
so its performance is the same as the cache-none choice with
both cache sizes. Overall, we conclude these results by not-
ing the degree to which our method can offer significant
performance improvements without the need for profiling.

7. RELATED WORK
As GPUs have gained wider use, there has been research

aiming to characterize and improve their memory hierar-
chies. Brook [2] and Merrimac [4] represent two early efforts
at utilizing GPUs for general purpose computing. They both
derive their methods based on GPUs which rely exclusively
on software-managed on-chip storage. Hong and Kim build
an analytical GPU architecture model with memory-level

parallelism awareness, but their model does not consider
demand-fetched caches [11]. Wong et al. use microbench-
marking techniques to discover and describe many undocu-
mented features of NVIDIA GPUs, including memory struc-
tures and cache parameters [19].

A large body of work studies how to transform data layout
to improve GPU memory system efficiency. Various compile-
time and runtime algorithms are proposed to improve GPU
program memory access patterns, aiming at different parts
of the memory system including reducing irregular mem-
ory accesses [21], coalescing loop nest accesses [1], improv-
ing coalescing [20], and increasing memory controller paral-
lelism [16]. However, none of this work targets caches. In
addition, these studies usually change the programs them-
selves, while our work attempts to analyze memory behav-
iors of given programs. One study [17] provides a limited
observation of GPU cache impact on a handful of simple
kernels. In contrast, our work provides a more systematic
characterization of GPU cache effectiveness and uses that to
develop an algorithm for automating the choice of how and
when to use demand-fetched caches.

Software-managed on-chip storage such as shared memory
on NVIDIA GPUs has been present on a number of mod-
ern parallel processors [15]. In embedded systems, where
it is called scratchpad memory, this type of storage is even
more commonplace than on GPUs and has been carefully
studied [18]. On GPUs, some work studies high-level pro-
gramming models which partially automate the use of shared
memory [8]. However, none of this work includes caches in
their systems. A systematic study of comparisons and trade-



offs between GPU shared memory and caches can guide fu-
ture GPU designs. Our work on characterizing the use of
GPU caches provides groundwork for achieving this goal.

8. CONCLUSIONS
Though L1 caches are being included in current GPUs,

little work has been done to study their effectiveness. In
this paper, we evaluate the performance impact of using L1
caches on the Rodinia benchmark programs, and we provide
an automatable algorithm for exploiting caches to reliably
improve performance. L1 caches improve the performance
of some programs while hurting or not affecting others. Our
analysis shows that instead of cache hit rate, the metric com-
monly used in CPUs to describe cache effectiveness, memory
traffic is a more indicative predictor of GPU cache benefits.

To help GPU programmers understand cache impacts, we
develop a GPU-oriented locality taxonomy reminiscent of
the three C’s model for CPU caches. The taxonomy’s three
types of memory access locality (within-warp, within-block,
and cross-instruction reuse) help programmers reason about
memory accesses in GPU execution models. Within-block
locality has the greatest potential for benefiting from caching
based on memory traffic reduction. Cross-instruction reuse
has the possibility of benefiting from caching depending on
the working set size relative to cache capacity. Within-warp
locality does not benefit from caching.

We present a compile-time algorithm which analyzes load
instructions in a GPU kernel and determines whether each
load should use the cache. For kernels that previously ex-
perienced unpredictable performance variations from using
L1 caches in an all-or-nothing fashion, our algorithm offers
significant performance improvements. Compared to a 5.8%
caching benefit gained by turning caches on all the time, our
algorithm improves performance by 16.8% (conservative) or
18% (aggressive) by more carefully analyzing data trans-
fers and using the per-load caching control provided in real
GPUs. Furthermore, our approach can be implemented at
compile-time and requires no dynamic execution profiling.

9. ACKNOWLEDGMENTS
We thank Carole-Jean Wu and the anonymous reviewers

for their comments on this work. This work was supported
in part by the National Science Foundation under Grant No.
CCF-0916971. The authors also acknowledge the support of
the Gigascale Systems Research Center, one of six centers
funded under the Focus Center Research Program (FCRP),
a Semiconductor Research Corporation entity. Finally, we
acknowledge equipment donations from NVIDIA.

10. REFERENCES
[1] M. M. Baskaran et al. A compiler framework for

optimization of affine loop nests for GPGPUs. In Proc.
22nd ACM Intl. Conf. on Supercomputing, 2008.

[2] I. Buck et al. Brook for GPUs: Stream computing on
graphics hardware. In 31st Intl. Conf. on Computer
Graphics and Interactive Techniques, 2004.

[3] S. Che et al. Rodinia: A benchmark suite for
heterogeneous computing. In Proc. IEEE Int. Symp.
Workload Characterization, 2009.

[4] W. J. Dally et al. Merrimac: Supercomputing with
streams. In Proc. 2003 ACM/IEEE Conf.
Supercomputing, 2003.

[5] E. Demers. Evolution of AMD graphics, 2011.
Presented at AMD Fusion Developer Summit.

[6] K. Fatahalian and M. Houston. A closer look at
GPUs. Communications of the ACM, 51(10):50–57,
October 2008.

[7] M. Gebhart et al. Energy-efficient mechanisms for
managing thread context in throughput processors. In
Proc. 38th Ann. Int. Symp. Computer Architecture,
2011.

[8] T. D. Han and T. S. Abdelrahman. hiCUDA:
High-level GPGPU programming. IEEE Trans. on
Parallel and Distributed Systems, 2011.

[9] P. Harish and P. J. Narayanan. Accelerating large
graph algorithms on the GPU using CUDA. In Proc.
14th Intl. Conf. High Performance Computing, 2007.

[10] M. D. Hill and A. J. Smith. Evaluating associativity in
CPU caches. IEEE Transactions on Computers,
38(12):1612–1630, December 1989.

[11] S. Hong and H. Kim. An analytical model for a GPU
architecture with memory-level and thread-level
parallelism awareness. In Proc. 36th Ann. Int. Symp.
Computer Architecture, 2009.

[12] NVIDIA Corp. NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi, 2009.

[13] NVIDIA Corp. PTX: Parallel Thread Execution ISA
Version 2.3, March 2011.

[14] NVIDIA Corp. Tuning CUDA Applications for Fermi,
May 2011. Page 3.

[15] S. Seo et al. Design and implementation of
software-managed caches for multicores with local
memory. In IEEE 15th Intl. Symp. on High
Performance Computer Architecture, 2009.

[16] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu. Data
layout transformation exploiting memory-level
parallelism in structured grid many-core applications.
In Proc. 19th Int. Conf. on Parallel Architectural and
Compilation Techniques, 2010.

[17] Y. Torres and A. Gonzales-Escribano. Understanding
the impact of CUDA tuning techniques for Fermi. In
2011 Intl. Conf. on High Performance Computing and
Simulation, 2011.

[18] S. Udayakumaran, A. Dominguez, and R. Barua.
Dynamic allocation for scratch-pad memory using
compile-time decisions. ACM Trans. on Embedded
Computing Systems, 2006.

[19] H. Wong et al. Demystifying GPU microarchitecture
through microbenchmarking. In IEEE Intl. Symp. on
Performance Analysis of Systems Software, 2010.

[20] Y. Yang et al. A GPGPU compiler for memory
optimization and parallelism management. In Proc.
2010 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 2010.

[21] E. Z. Zhang et al. Streamlining GPU applications on
the fly—thread divergence elimination through
runtime thread-data remapping. In Proc. 24th ACM
Intl. Conf. on Supercomputing, 2010.


