
1

Techniques for Real-System Characterization of
Java Virtual Machine Energy and Power Behavior

Gilberto Contreras, Margaret Martonosi
Department of Electrical Engineering

Princeton University
{gcontrer,mrm}@princeton.edu

Abstract— The Java platform has been adopted in a wide
variety of systems ranging from portable embedded devices
to high-end commercial servers. As energy, power dissipation,
and thermal challenges begin to affect all design spaces, Java
virtual machines will need to evolve in order to respond to
these and other emerging issues. Developing a power-conscious
Java runtime system begins with a detailed per-component
understanding of the energy, performance and power behavior
of the system, as well as each component’s impact on overall
application execution.

This paper presents techniques for characterizing Java power
and performance, as well as results from applying these tech-
niques to the Jikes RVM, for some of the most salient Java
virtual machine components. Components studied include the
garbage collector, the class loader, and the runtime compilation
subsystem. Real-system measurements with our efficient, low-
perturbation infrastructure offer valuable insights that can aid
virtual machine designers in improving energy-efficiency. For
example, our results show that JVM energy consumption can
comprise as much as 60% of the total energy consumed. In
addition, we find that generational garbage collectors offer the
best energy-performance for small heap sizes and that this
efficiency is challenged by non-generational collectors for large
heaps. Overall, given the rising importance of Java systems and
of power/thermal challenges, this paper’s detailed real-systems
examination can lend useful insights for many real-world systems.

I. INTRODUCTION

Java runtime environments are used in many systems with
wide-ranging requirements. Java’s popularity has created a
wave of research heavily focused on improving the perfor-
mance not only of the Java applications themselves, but also of
the underlying virtual machine (software). Many components
of the Java virtual machine, especially the garbage collector,
have been the focus of performance optimization and system-
resource usage [1][2][3]. Garbage collection in particular has
attracted a considerable amount of research since the memory
subsystem is in the critical path of most user applications.

While performance is clearly important, it is not the only
metric to consider. Energy, power, and thermal issues are now
seen in essentially all computer design spaces. Battery energy,
for example, is a valuable resource in portable embedded
systems; it must be conserved while still achieving the neces-
sary performance. Maximum power consumption on the other
hand is becoming the limiting factor for creating denser high-
performance computer servers and clusters due to costly cool-
ing equipment and unreliable power supplies [4]. Tightly asso-
ciated with power consumption are temperature and thermal-
related issues. Today’s data center servers, for example, must
be available 24 hours a day with an availability exceeding
99.99%, independent of the server load [5]. Achieving such
reliability is many times thwarted by high operating tempera-
tures of devices. If the cooling system (the heat sink and/or the
packaging in case of modern microprocessors) cannot remove

heat fast enough, excessive temperatures automatically trigger
the processor’s emergency thermal responses, such as throt-
tling [6], and consequently, a decrease in performance. As an
example, Figure 1 shows two scenarios on a real-word system.
The first scenario represents normal operation conditions (Fan
enabled). The second scenario shows processor temperature in
the event of fan failure (Fan disabled). Under normal operation
the processor’s temperature remains fairly constant around
60◦C. When the processor’s fan is disabled however, executing
the workload increases the temperature up to 99◦C after 240
seconds. High temperatures trigger the processor’s thermal
emergency response, which reduces the clock duty cycle to
50%, proportionally decreasing performance.

There has been little prior work in studying power and
energy requirements of JVMs, and what exists has mostly used
simulation for gathering its results [7][8][9]. While simulation
can in fact offer significant insight and important observa-
tions, the problem is that fast simulation techniques lack the
comprehensiveness and accuracy provided by real-hardware
measurements. More comprehensive simulation techniques are
often quite slow, which prevents them from gaining wide
use. For example, many existing simulators abstract operating
system effects and I/O—critical factors that may affect the
power/performance of the JVM. This abstraction is usually
done to reduce the complexity of the simulator and increase
its performance. However, it does so at the expense of a less
accurate model. Full-system simulators that do capture OS
and I/O effects such as SimOS [10] do so at the expense of
simulation time, making them unpopular for detailed analysis
of complex applications.

To accurately characterize energy and power consumption
of Java virtual machines at real-hardware speeds, we develop a
flexible infrastructure based on physical real-hardware power
and performance measurements. Our methodology accounts
for processor and main memory power consumption in order
to provide a system-wide characterization of Java virtual
machines and their corresponding running applications. We
have applied this methodology to two popular Java virtual
machines: IBM Jikes RVM [11] and Kaffe [12].

Our work not only is concerned with overall JVM power
and energy behavior, but also with the behavior of important
software sub-components of the virtual machine, such as the
garbage collector, the dynamic class loader, and the runtime
compiler subsystem. For the Jikes RVM, we compare power
and energy requirements of the virtual machine while varying
the heap size and the type of garbage collection being used.
For Kaffe, we perform JVM power and performance analysis
on two very different systems: a Pentium M based system,
where it is compared with the Jikes RVM, and an Intel XScale-
based development board, where we examine power and per-
formance behavior differences seen on embedded platforms.



2

0

20

40

60

80

100

120

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

10
01

11
01

12
01

13
01

14
01

15
01

16
01

17
01

18
01

19
01

20
01

21
01

22
01

23
01

24
01

25
01

26
01

Time (seconds x10)

T
em

p
er

at
u

re
 (

D
eg

re
es

 C
)

Thermal
Emergency

zone

Fan disabled

Fan enabled

99oC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig. 1. Temperature behavior for a 1.6Ghz Pentium M processor running repetitive runs of 222 mpegaudio on the Jikes RVM using a generational
copying collector. When the processor reaches 99◦C it enters emergency throttling as a way to reduce chip temperature.

Here we list some of the major contributions of our work:
• We present a methodology that accounts for processor

and main memory power consumption through the use
of physical power measurements.

• We provide a per-component energy and power decom-
position for two important Java virtual machines using
two different platforms.

• We study the effect of the garbage collector algorithm
and heap size on two JVMs. We demonstrate that the
energy usage of the Java virtual machine can be as high
as 60% of the total energy consumed.

• The work presented in this paper sets the stage for future
in-depth physical characterization of Java virtual ma-
chines and their corresponding workloads in the context
of emerging device design issues such as energy, power,
and thermal characteristics.

Java virtual machines have the potential to dynamically
manage not only application performance through aggressive
online optimizations, but also to dynamically adapt to wider
system changes such as energy availability, power consump-
tion and even temperature variations. While fully addressing
these optimizations is outside the scope of this study, we
present a physical characterization of energy and power for
modern virtual machines as a starting point.

The rest of the paper is structured as follows: Section II
describes previous research in power and performance analysis
of Java virtual machines, covering methodologies based on
simulation and physical measurements. Subject background
and terminology is given in Section III. Section IV describes
our physical measurements methodology in detail. Section
V describes the benchmarks used for this study. Section VI
discusses our results, starting with Jikes RVM and Kaffe on
a Pentium-based system and later with Kaffe running on an
embedded processor. Future work is described in Section VII.
We offer our summary and conclusions in Section VIII.

II. PREVIOUS RESEARCH

Research in the area of power, energy, and thermal require-
ments has gained considerable momentum due to the growing
importance of these factors. Moreover, Java virtual machines
and the behavior of applications running on them have received
much attention since Java was first introduced.

For previous research, simulation has been the primary
evaluation tool [13][14][15], and while simulation studies do

Fig. 2. This figure shows our P6 platform, which consists of a Pentium M
1.6GHz development board computer. We use this board to acquire physical
measurements consisting of energy, power, and performance in the study of
Java virtual machines.

provide important insights, they tend to omit or abstract real-
system effects involving the OS and/or I/O, causing them to
lack much of the detail of real systems.

In the past, simulation-based power and energy studies in
the context of Java have been presented by Chen et al. [7]
and Vijaykrishnan et al. [9]. Chen et al. presents an adaptive-
garbage collector that disables certain memory banks when
they are not being used by any allocated object. Vijaykrishnan
et al. performs an in-depth study of memory energy require-
ments of Java applications. Here, the JVM is divided into three
basic components: class loading, dynamic method compilation
and garbage collection. For these three components, energy
consumption of the memory-hierarchy is studied at various
instruction and data cache configurations. Our study draws
inspiration from this work in the sense that we also partition
the JVM into its basic software components. However, our
work utilizes physical measurements as the driving force of
our study rather than a simulation approach.

On the hardware-side, we find several works with per-
formance as their main goal, ranging from studies utilizing
hardware performance counters to identify sources of program
performance loss [16][17][18] to studies concerned with the
algorithmic performance of garbage collectors [16]. Hardware-
based studies of power and energy requirements have been
mostly used in non-Java applications, such as in the case of
PowerScope [19]. PowerScope is hardware/software tool ca-
pable of examining real-system software components through
software-initiated statistical sampling of power. While flexible,
PowerScope requires software components to have relatively



3

long execution times, potentially missing important fine-grain
components.

Farkas et al. [20] performed pioneering work in the study of
actual power consumption of a Java virtual machine running
on a pocket computer. In this study, the authors investigate the
energy implications of using multiple JVMs, the use of com-
pressed and uncompressed JAR files, class loader strategies
and the use of an interpreter versus a just-in-time mode JVM.
Diwan et al. [21] analyze the energy consumption of different
memory managing strategies with a platform similar to [20].
While Java-based, these two previous works do not address
the energy requirements of high-performance virtual machines.
Our study provides detailed power measurement results and a
side-by-side comparison for both a high-performance platform
and an embedded device platform.

III. OVERVIEW AND BACKGROUND

A. Metrics: Energy and Power

Energy, measured in Joules (J), is defined as the capacity
to do useful work. In electrical devices, energy refers to
charge movement and electrical current. The amount of battery
capacity for an embedded device, for example, refers to the
amount of energy it can store and then discharge. Power,
measured in Watts (W) is defined as the time rate at which
energy is consumed. Thus, the integral of power over time
is total energy. Power is an important metric for thermal and
reliability issues, since dissipating energy quickly (high power)
can cause dangerously high temperatures.

When comparing the overall quality of two devices or
software algorithms running on the same device, the metrics
energy consumption and power consumption alone are not
sufficient since they do not account for performance need.
For example, a processor can consume very little power by
running at very low frequencies but its performance will
suffer. Similarly, an aggressive power-hungry processor might
have good performance at the expense of very high power
consumption. The metric energy-delay product (EDP) [22]
is used to convey the combined attributes of energy and
performance. EDP is the product of the total energy consumed
by the running application and the time it takes to execute
(Joules×seconds). This favors low energy and low execution
times. This way the slow-running processor will be penalized
by its slow execution time and the aggressive processor will
be penalized by its high energy consumption.

For devices with very stringent thermal requirements, peak
power consumption becomes an important metric, as it indi-
cates the maximum amount of power demanded by the device.
Exceeding the maximum rated power consumption can cause
device failure. Modern processors are designed under a safety
power envelope. Knowledge of maximum power demanded by
an expected workload, however, can yield devices with more
relaxed power constraints, which in turn leads to less expensive
packaging [23].

B. Java Terminology and Background

We can classify the garbage collection algorithms used in
this study into two spaces as shown in Figure 3. In the non-
generational space, we have the SemiSpace and MarkSweep
garbage collectors [24]. The SemiSpace garbage collector
works by dividing the heap into two sections. When the
applications request memory from the virtual machine, the
memory allocator uses the first half of the heap to allocate
the new object. When the space in that half runs low and a

SemiSpace

GenCopy

MarkSweep

GenMS
Generational

Space

Non-generational
Space

Fig. 3. We study four types of garbage collection algorithms in our study of
the IBM Jikes RVM. This figure shows how garbage collectors vary according
to the algorithm employed.

new object cannot be allocated, garbage collection is initiated
on that half of the heap and surviving objects are copied
to the other half. After garbage collection, the roles of the
semi-spaces are inverted. MarkSweep implements a Mark-
and-Sweep collector, which uses a list of available fixed-size
memory chunks to allocate new objects. Unlike a copying
collector (such as SemiSpace), MarkSweep does not move
objects around. Garbage collection is initiated when the al-
locator cannot find a memory chunk big enough to allocate a
new object.

The bottom space of Figure 3 shows the generational collec-
tor space. These collectors work by allocating new objects into
a specific region in the heap called the nursery. When the space
in the nursery is exhausted, the nursery is garbage-collected
and the surviving objects are moved to a mature space region
in the heap. Generational collectors are based on the principle
that older objects, or older generations, have higher probability
of surviving, thus the mature space is garbage-collected less
often since objects that die quickly release memory space
in the nursery. Generational collectors differ in the way the
mature space is collected. For GenCopy, a semi-space copying
algorithm is used. For GenMS, a mark-and-sweep algorithm
is employed.

The garbage collector plays an important role in the overall
performance of Java applications as short garbage collection
times reduce the overall application execution time. Conse-
quently, the type of garbage collector being used also has a
deep impact on the energy requirements of the overall system.
In Section VI we characterize this energy requirement based
on the type of garbage collector being employed and the
amount of heap memory available.

IV. METHODOLOGY

This section describes the methodology used for obtain-
ing physical power and performance measurements on a
component-basis for two selected Java machines.

A. The IBM Jikes RVM and Kaffe Virtual Machines

For our physical power measurements, we use two distinct
Java virtual machines: The IBM Jikes RVM version 2.4.1
[11], and Kaffe version 1.1.4 [12]. The IBM Jikes RVM
is a high-performance virtual machine targeted for high-
performance processors. It uses an adaptive runtime system
that dynamically selects methods as candidates for higher
compiler optimizations. When a method is loaded for the first
time, a fast but simple baseline compiler is used to translate
the Java bytecodes. Later, when a method is labeled “hot”
by the adaptive system, the virtual machine determines if
recompiling the method with higher (and costly) optimizations



4

I/O mapped
register

JVM scheduler

Processor

Software layer

Hardware layer

GC CL JIT APP

DAQ User PC

System under measurement Digital Acquisition System
(DAQ)

Offline energy/power
analysis

Analog signals Digital data

Fig. 4. Block diagram showing the three major components of our measurement infrastructure. The running JVM identifies the current running component by
writing to an I/O mapped register (left). This ID, along with power measurements, are sampled by a high-speed data acquisition system (middle). Per-component
energy and power behavior is analyzed offline, where it is matched with performance traces (right).

levels improves performance [25]. The Jikes RVM supports
a multitude of garbage collectors including generational and
non-generational collectors. We perform power and perfor-
mance measurements on the four types of collectors previously
discussed using fixed heap sizes of 32, 48, 64, 80, 96, 112 and
128MB.

The Kaffe JVM is a clean-room, open-source Java virtual
machine with support for a wide variety of architectures.
Because of its modularity and flexibility, Kaffe has been ported
to many systems, including ARM-based processors found in
many embedded portable devices. Kaffe can be configured as
an interpreter machine, or with Just-In-Time (JIT) compiler
support. It uses an incremental conservative mark-and-sweep,
three-color garbage collector in conjunction with dynamic lazy
class-loading for user and system classes. For this work we
use the JIT version of Kaffe with Unix threads.

We compiled Kaffe for two different architectures: x86 and
ARM. We did so because we want to investigate major power
and performance differences of JVM components between two
different platforms. We could not do the same for Jikes RVM
as it currently does not have support for the ARM instruction
set architecture.

B. Hardware Platforms

We use two different platforms for our experiments:
Pentium M development board (P6): The board consists

of a 1.6GHz Pentium M processor and 512MB of RAM.
This system was selected for two reasons: (i) the Pentium
M processors is a performance processor designed under a
stringent power (and thermal) environment while still offering
high-performance, and (ii) physical power measurements are
possible due to exposed components. The Pentium M proces-
sor contains an on-chip primary 32KB instruction cache and
a 32KB write-back data cache. The on-die Level 2 (L2) cache
is 1MB. The operating system is a custom-compiled 2.6.11
Linux kernel. Figure 2 shows a picture of this setup.

DBPXA255 development board (DBPXA255): For com-
paring JVM power and performance behavior differences
between a high-performance platform and an embedded pro-
cessor, we use the Intel DBPXA255 development board [26],
which consists of Intel’s PXA255 microcontroller running at
400MHz. The PXA255 microcontroller contains a single-issue
in-order processor with a 32-way 32KB instruction cache, a
32-way 32KB data cache, and no L2 cache. The DBPXA255
development board contains many of the features commonly

found in modern portable devices such as a high-resolution
LCD display, a MultiMediaCard (MMC) slot, FLASH memory
(64MB) and 64MB of SDRAM. For this board, the operating
system is the Linux 2.4.19 kernel, which at the time was the
only supported kernel of our development board.

C. Monitoring of JVM components

An important feature of our physical measurement method-
ology is the ability to monitor when a particular virtual
machine component is running. Although we are not the first
to divide the virtual machine into various unique components,
we are the first to make such distinction within a physical
power measurement infrastructure.

In simulation environment, tracking the execution of JVM
components can easily be done by keeping track of the current
instruction pointer (if the code layout of the JVM is known)
or by allowing each component to set a global flag upon
taking control of the processor. We employ the latter, except
that rather than saving the component ID to a variable in
main memory, we save it to a memory-mapped I/O register.
The I/O implementations of the two platforms call for slight
differences in our measurement setup. For the DBPXA255,
we use general-purpose processor pins that are accessible
to the user. The P6 platform, however, does not have these
pins available, so instead we use the parallel port due to its
simplicity of use and availability.

Hardware identification of software components requires
modifications to our JVMs. For Kaffe, placing entry and exit
system calls for each component serves this purpose. However,
we have to be careful in covering cases of recurrent or
overlapping component calls. Jikes RVM requires a different
approach, as some of its services run on different threads,
such as the optimizing compiler. For Jikes RVM, we place
identification calls within the thread scheduler so that when the
scheduler schedules the garbage collector thread, for example,
its unique identification code is visible at the terminals of the
parallel port.

D. Power Measurements

The power consumption of a device can be calculated using
the equation P = V I , where V is the voltage of the device
and I is the current drawn by the device. Thus, for our power
measurements, we need to keep track of both voltage and
current. The voltage at the Vcc pins of the processor and



5

Suite Benchmark Description
SpecJVM98 201 compress A modified Lempel-Ziv compression algorithm

202 jess A Java Expert Shell System
209 db Database application working on a memory-resident database
213 javac A Java compiler based on SDK 1.02
222 mpegaudio Audio decoder based on the ISO MPEG Layer-3 standard
227 mtrt Raytracing application
228 jack A Java Parser generator

DaCapo antlr A grammar parser generator
fop Application that generates a PDF file from an XSL-FO file
jython Python program interpreter
pmd An analyzer for Java classes
ps A Postscript file reader and interpreter

Java Grande Forum euler Benchmark on computational fluid dynamics
moldyn A molecular dynamic simulator
raytracer A 3D raytracer
search An Alpha-Beta prune search

Fig. 5. Our study uses a wide selection of applications taken from SpecJVM98, DaCapo and Java Grande Forum benchmark suites to study power and
energy behavior of JVM software components.

memory is fairly straightforward to measure. Current, however,
needs to be measured indirectly.

Current consumption of our P6 platform is measurable via
two precision resistors placed in series between the voltage
supply of the processor and its voltage pins (corresponding
to the power lines that feed only the logic structures of the
processor, not its I/O pins). These precision resistors allow
us to measure the voltage drop across the resistors and thus
indirectly measure the current being drawn by the processor.
Once voltage and current consumption are known and sampled
every 40µs (the fastest sampling rate of our digital acquisition
system based on the number of sampling channels used),
we multiply these values to obtain instantaneous power con-
sumption. At each sampling point we examine the memory-
mapped register and assign the measured power consumption
to the corresponding component. This approach places a 40µs
measurement window on all power measurements: transient
changes inside the 40µs window are not captured by our
system, nor do we keep track of when exactly a component
switch happens. Since typical component duration is hundreds
of micro-seconds on our P6 system and milliseconds on our
PXA255 system, our sampling fidelity accurately captures all
important behavior.

RAM Power consumption is measured using a similar
sampling approach: we place precision resistors in series with
the main voltage supply line, from which we measure a voltage
drop to calculate the amount of current flowing through them.
The idle processor and memory power consumption of our P6
platform is about 4.5W and 250mW respectively.

The DBPXA255 development board is specifically designed
for testing and probing purposes. System voltages, including
the processor’s power lines, are exposed. Processor voltage can
be taken by direct measurement. The measured idle processor
power consumption of the Intel PXA255 is close to 70mW.
Memory power consumption is near 5mW.

E. Performance Measurements

Our system performance measurements are obtained using
the processor’s hardware performance monitors (HPM). Our
HPM application programming interface (API) is custom-
made to identify Java virtual machine component execution.

In our setup, the operating system’s main timer is responsible
for taking periodic samples (every 1ms in our P6 platform
and 10ms in the DBPXA255) of anything that is running on
the processor. We keep track of JVM component execution by
placing a system call at the start of the JVM component that
informs the OS what JVM component is currently executing.

Figure 4 shows a block diagram of our measurement in-
frastructure. To the left of the figure we find the system under
test, which is running one of our Java virtual machines.

V. APPLICATIONS

We perform our experiments on three different benchmark
suites.

SpecJVM98: We perform measurements on seven
SpecJVM98 [27] applications: 201 compress,
202 jess, 209 db, 213 javac, 222 mpegaudio,
227 mtrt and 228 jack. Benchmarks are executed using

the full dataset (--s100).
DaCapo: The DaCapo benchmark suite [28] is a collection

of memory-intensive applications typically used in the study
of Java garbage collectors. We utilize version beta051009
and employ five applications from this suite: antlr, fop,
jython, pmd, and ps. We use the default data set for all.

Java Grande Forum: Our third set of applications
comes from the Java Grande Forum (JGF) Benchmark Suite
[29], which is comprised of a series of benchmarks ranging
from small kernels to full-blown applications. We utilize
four sequential benchmarks from the suite, euler, moldyn,
raytracer, and search, and utilize dataset A for all our
tests.

All applications are run until completion. Power and per-
formance measurements are performed in different runs. For
both cases, a warm-up run of the benchmark is performed
before taking power or performance measurements. Figure 5
summarizes our benchmark selection.

VI. PHYSICAL MEASUREMENTS RESULTS

As mentioned in Section IV, our methodology can distin-
guish basic JVM services (components), allowing us to ac-
curately quantify the execution time and energy consumption
of each monitored component. The following section presents



6

0%

20%

40%

60%

80%

100%

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

32 12
8

48 12
8

48 12
8

48 12
8

48 12
8

48 12
8

Heap Size (MB)

P
er

ce
n

t 
E

n
er

g
y 

U
se

d

app gc cl base opt_comp

20
1

co
mpr

es
s

20
2

jes
s

20
9

db

21
3

jav
ac

22
2

mpe
ga

ud
io

22
7

mtrt

22
8

jac
k

eu
ler

mol
dy

n

ray
tra

ce
r

se
arc

h

an
tlr

fo
p

jy
th

on

pm
d

ps

Fig. 6. Energy decomposition for SpecJVM98, DaCapo and JGF benchmarks under Jikes RVM using a SemiSpace collector. Overall, the garbage collector
is one of the highest energy consumers.

results for four of the Jikes RVM components: garbage collec-
tion (GC), class loader (CL), Base Compiler (Base), and the
optimizing compiler (Opt). The collective energy consumed
by these components is classified as the energy consumed by
the virtual machine (JVM energy). The rest of the energy
consumed by the benchmark is classified as application en-
ergy. Clearly, the JVM energy is an underestimate of the real
energy consumed by the JVM as there are other components
within the JVM that we do not monitor, such as thread
creation, scheduling, and the controller thread in the case of
the Jikes RVM. For this last component, we monitored its
execution time and energy requirements and determined that
it was not a critical component in terms of these requirements.
Its execution time accounted for less than 1% of the total
benchmark execution time. For Kaffe we present results for
three components: the garbage collector (GC), the class loader
(CL) and the JIT compiler (JIT).

A. Energy Requirements of JVM components

Figure 6 shows the percent of total processor energy used
for the optimizing compiler (opt comp), the base compiler
(base comp), the class loader (CL), the garbage collector
(GC), and the application (App) for the Jikes RVM using
the SemiSpace garbage collection algorithm. A very high
percentage of energy used (up to 60% for 213 javac using
a 32MB heap) is dedicated to virtual machines components.
The garbage collector in particular stands out from other JVM
components as it can consume up to an average of 37% of
the total energy for SpecJVM98 benchmarks when the heap
size is 32MB. This value is reduced to 10% with a heap size
of 128MB. Similarly, for DaCapo benchmarks, the garbage
collector accounts for an average of 32% and 11% when the
heap size is 48MB and 128MB respectively. For most cases,
increasing the heap size has considerable energy benefits since
the garbage collector is invoked less often. This reduction of
GC overhead improves the overall energy-delay by effectively
reducing both the execution time and the energy consumption
of the system.

For Jikes RVM, the base compiler and the optimizing
compiler consume very little energy in comparison with the
rest of the measured components. For the SemiSpace collector,
the base compiler has an average energy consumption of
less than 1% across all tested applications. The optimizing
compiler has an average energy consumption of 3% with a
maximum of 7% for 222 mpegaudio. For the class loader

the average energy consumption is 3% with a maximum of
24% corresponding to fop.

B. Energy-Efficiency

Figure 7 shows total benchmark energy-delay product as a
function of heap size for all measured benchmark applications.
The figure shows results for different garbage collectors and
heap sizes under the Jikes RVM.

Jikes RVM configurations that use generational collectors
perform better in terms of overall energy efficiency than
configurations with non-generational collectors. For example,
in the case of 213 javac, using a GenMS over a SemiSpace
collector improves the EDP by as much as 70% when the
heap size is fixed at 32MB. Note, however, that for some
benchmarks, the efficiency of the non-generational collectors
approach that of generational collector as the heap size is
increased. An interesting exception is 209 db, where using
a SemiSpace collector actually improves the energy-delay
product by 5% over the best GenCopy collector when using
a 128MB heap. This small decrease in the EDP comes in
part from improved mutator performance. In other words, the
improved data locality achieved by SemiSpace collector affects
the application’s performance in a positive way. GenCopy
being a generational garbage collector also provides improved
mutator locality. This improvement on performance, however,
is undermined by a slight performance overhead of write
barriers [16].

In many applications, the execution time of configurations
that use non-generational collectors is greatly affected when
varying the size of the heap: higher heap sizes produce
shorter total garbage collector pause times. This drastic drop
in execution time has a quadratic effect on EDP since a
decrease in execution time is accompanied by a decrease
in energy consumption as well. For example, when using a
SemiSpace collector, 213 javac, 227 mtrt, and euler
respectively see a 56%, 50% and 27% energy-delay product
reduction when the heap size is increased from 32MB to
48MB. This in contrast to a 20%, 2% and 3% energy-delay
product reduction on the same benchmarks when using a
GenCopy collector. Consequently, we see that the garbage
collector has significant more influence on the EDP metric
than other JVM components.

The energy consumption of main memory follows a similar
trend to the energy consumption of the processor: generational
collectors, which tend to have less overall GC time, exhibit
less memory energy consumption than their non-generational



7

0

500

1000

1500

2000

2500

3000

3500

32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8

Heap Size (MB)

E
n

er
g

y-
D

el
ay

 P
ro

d
u

ct
SemiSpace

MarkSweep

GenMS

GenCopy

201 compress 202 jess 209 db 213 javac 222 mpegaudio 227 mtrt 228 jack

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 32 48 64 80 96 11
2

12
8 48 64 80 96 11
2

12
8 48 64 80 96 11
2

12
8 48 64 80 96 11
2

12
8 48 64 80 96 11
2

12
8 48 64 80 96 11
2

12
8

Heap Size (MB)

E
n

er
g

y-
D

el
ay

 P
ro

d
u

ct

SemiSpace

MarkSweep

GenMS

GenCopy

euler moldyn raytrace search antlr fop jython pmd ps

Fig. 7. Energy-Delay product for all benchmarks running on the Jikes RVM. A lower energy-delay product signifies a more energy-efficient virtual machine
configuration for a particular benchmark. The reduction of the energy-delay product across garbage collectors is primarily attributed to a decrease in application
execution time, t0, rather than a reduction of overall power consumption, P (t).

0

2

4

6

8

10

12

14

16

18

32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 48 12
8 48 12
8 48 12
8 48 12
8 48 12
8

Hepa Size (MB)

A
ve

ra
g

e 
P

o
w

er
 (

W
)

app

gc

cl

20
1

co
m

pr
es

s

20
2

je
ss

20
9

db

21
3

ja
va

c

22
2

m
pe

ga
ud

io

22
7

m
trt

22
8

ja
ck

eu
le

r

m
ol

dy
n

ra
yt

ra
ce

r

se
ar

ch

an
tlr

fo
p

jy
th

on

pm
d

ps

0

2

4

6

8

10

12

14

16

18

32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 48 12
8 48 12
8 48 12
8 48 12
8 48 12
8

Heap Size (MB)

P
ea

k 
P

o
w

er
 (

W
)

app

gc

cl

20
1

co
m

pr
es

s

20
2

je
ss

20
9

db

21
3

ja
va

c

22
2

m
pe

ga
ud

io

22
7

m
trt

22
8

ja
ck

eu
le

r

m
ol

dy
n

ra
yt

ra
ce

r

se
ar

ch

an
tlr

fo
p

jy
th

on

pm
d

ps

Fig. 8. Power consumption (top) and peak power consumption (bottom) for all measured benchmarks running on Jikes RVM with a generational copying
garbage collector. JVM components exhibit little power variation from benchmark to benchmark. For most benchmarks, peak power consumption is dictated
by the application and not by one of the studied JVM components.



8

counterparts. However, the energy consumed by main memory
is small compared to that of the CPU; For SpecJVM98,
the average memory energy is about 7%, 5% for DaCapo
benchmarks, and 8% for Java Grande benchmarks.

C. Power Consumption

We now turn our attention to power, rather than energy.
Figure 8 shows the average and peak power consumption of
three components: The application, the garbage collector (GC),
and the class loader (CL). These measurements correspond
to the Jikes RVM using a generational copying collector
(GenCopy) across multiple heap sizes. Our measurements
indicate that the garbage collector is one of the least power-
hungry components. While this is true for other garbage
collectors measured in this study, different garbage collectors
have different average power consumption. For GenCopy, the
average power consumption is measured to be 12.8W; SemiS-
pace consumes an average of 12.3W. A GenMS collector
under the Jikes RVM consumes an average of 12.7W while its
non-generational counterpart consumes 11.7W. The common
trend is that non-generational collectors consume less power
on average, but have higher execution times (hence, in many
cases, higher energy consumption). Non-generational collec-
tors do not exploit object locality as efficiently as generational
collectors, which increases processor stall time due to off-
chip memory accesses. This power behavior can potentially
have an important contribution in a thermal-aware Java virtual
machine: by triggering garbage collection at points when the
temperature of the processor has exceeded a safety threshold
level, the processor executes a component with less power
requirements, potentially giving it time to cool down to a safe
level.

Power consumption is highly correlated with processor
utilization [30][31][32]. This power-performance relationship
can help us understand the power behavior of different JVM
components. The generational garbage collector shown in
Figure 8, for example, has an average L2 cache miss rate of
54% for SpecJVM and 56% for DaCapo. This in comparison
to an average L2 miss rate of 12% for the class loader on
SpecJVM98 and 21% for DaCapo, respectively. High L2 miss
rates (along with a high number of L2 accesses) increase the
amount of processor stall-time due to the high cycle cost of
main memory access. This causes periods of low processor
activity, which decreases power consumption at the expense
of performance.

The average power consumption of other Jikes RVM com-
ponents such as the class loader, the base compiler and the
optimizing compiler, is generally higher than the average
power consumed by the garbage collector. Moreover, these
components have relative constant power consumption across
heaps, and garbage collectors (performance counter values
vary little across the various dimensions). Higher average
power consumption of these components can be traced to
higher processor resource utilization. For example, the com-
ponent application has an average L2 miss rate of 11% and
an IPC of about 0.8. The garbage collector shown in Figure 8
has an average IPC of 0.55.

The peak power consumed by our tested benchmarks are
shown in Figure 8. An important observation here is that,
for most benchmarks, the peak power comes within the
application and not one of the studied JVM components. Con-
sequently, it might be more cost-effective for future thermal-
emergency avoidance efforts to focus on modulating appli-
cation peak power, rather than optimizing JVM components.

A visible exception is 209 db, where the garbage collector
determines a peak power consumption of 17.5W.

D. The Kaffe Virtual Machine

The energy breakdown for the Kaffe virtual machine run-
ning on the P6 platform is shown in Figure 9. Kaffe’s JVM
component breakdown is very different from that of the
Jikes RVM. The relative energy contribution of the JVM
components (the garbage collector, the class loader and the
JIT compiler) is much less visible than with the Jikes RVM.
Kaffe’s garbage collector has an average energy consumption
of 7% across all measured applications. The class loader
consumes 1% of the total energy while the JIT compiler is less
than 1%. The low power consumption of JVM components
in Kaffe is due to their short duration in comparison to the
total running time of the benchmarks. It is also worth noting
that these results are similar to the SpecJVM98 energy results
shown in [9].

Kaffe’s Mark-and-Sweep collector exhibits an average
power consumption of 12.8W, very similar to the Jikes RVM
Mark-and-Sweep collector. In the same way as the Jikes RVM,
the power consumption of Kaffe’s garbage collector is lower
than the rest of the measured JVM components.

Kaffe JIT translates opcodes to native instructions without
performing extensive code optimizations. This creates longer
execution times for benchmarks causing it to consume larger
amounts of energy. Figure 10 shows the EDP for Kaffe.
Notably EDP changes little when increasing the heap size.
This almost constant energy-delay product is a consequence
of the very little performance improvements gained at higher
heap sizes.

E. Kaffe on an embedded processor

So far we have been focusing on Java virtual machines ex-
ecuting on high-performance processors for consumer devices
with large performance requirements. In addition to studying
these platforms, we also want to consider devices targeted
for hand-held platforms such as the Intel PXA255 processor.
Since we expect different memory and workload requirements
for a hand-held device than for a general-purpose processor,
we reduce the test heap range to 12, 16, 20, 24, 28, and 32
MB. We also reduce the input set size of tested benchmarks
from s100 to s10 for SpecJVM98 benchmarks. We perform
our experiments on 201 compress, 202 jess, 209 db,
213 javac, and 228 jack. We use SpecJVM98 applica-

tions rather than more common embedded Java applications
such as the EEMBC Java suite [33] for two reasons: (1)
we want to close the application bridge between a high-
performance JVM (Jikes) and an embedded JVM, and (2)
SpecJVM98 applications stress the memory subsystem more
effectively than smaller embedded applications (EEMBC ap-
plications are designed for very small heap size requirements,
typically in the kilobyte range).

Figure 11 shows the energy distribution for Kaffe running
on the PXA255 processor. The class loader is now the highest
energy consumer with an average energy consumption of 18%.
The garbage collector and the JIT compiler each have an aver-
age energy consumption of 5%. The high-energy consumption
of the class loader is a consequence of its long execution time:
Kaffe has a long initialization period characterized by a high
number of calls to the class loader. Unlike Jikes, Kaffe does
not merge system classes with the JVM binary, which reduces
the size of the binary but generates more calls to the class



9

0%

20%

40%

60%

80%

100%

32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 48 12
8 48 12
8 48 12
8 48 12
8

Heap Size (MB)

P
er

ce
n

t 
E

n
er

g
y 

U
se

d

app gc cl jit

201 co
mpres

s

202 jes
s

209 db

213 jav
ac

222 mpeg
au

dio

227 mtrt

228 jac
k

eu
ler

moldyn

ray
tra

cer

sea
rch

an
tlr

fop jython
ps

Fig. 9. Energy distribution for the Kaffe Java virtual machine running on a Pentium M 1.6Ghz processor.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 32 12
8 48 12
8 48 12
8

Heap Size (MB)

E
n

er
g

y-
D

el
ay

 P
ro

d
u

ct

20
1

co
m

pr
es

s

20
2

je
ss

20
9

db

21
3

ja
va

c

22
2

m
pe

ga
ud

io

22
7

m
tr

t

22
8

ja
ck

eu
le

r

m
ol

dy
n

ra
yt

ra
ce

r

se
ar

ch

an
tl

r

fo
p

jy
th

on

ps

Fig. 10. Energy-delay product results for Kaffe running on a Pentium M 1.6Ghz processor.

loader. Consequently, for Java virtual machines running on
embedded devices, improvements in class loading mechanism
can lead to significant energy savings.

Another interesting difference is the fact that for Kaffe
running on the Intel PXA255 processor, the garbage collector
is the most power-hungry component with an average power
consumption of 270mW, 7% higher average power consump-
tion than the running application. This high average power
consumption is caused by a high relative IPC when compared
with other JVM components. In contrast, the class loader has
the lower average power consumption, a consequence of lower
CPU utilization. Closer examination of Kaffe’s class loader
performance reveals a large fraction of stall cycles, for which
instruction fetch stalls and data dependencies represents a large
fraction of the stall time.

VII. FUTURE WORK

Much future remains on these topics. Dynamic voltage and
frequency scaling (DVFS) on real systems is a very effective
tool in leveraging energy for performance [34][35][36]. In the
future, we hope to investigate effective approaches that will
reduce system energy consumption while minimally affecting
performance. The present study has focused on client-based
benchmarks; we hope to analyze server-type workloads in
our effort to study thermal behavior of long-running applica-
tions. Power-aware scheduling algorithms through the use of
dynamic processor and memory power estimation techniques
using hardware performance counters [37] are also in future
work.

VIII. SUMMARY AND CONCLUSIONS

We have presented a methodology for studying the energy
consumption of the Java virtual machines and associated
service components (garbage collection, class loading and
dynamic compilation subsystem) on real hardware. Our study
improves on previous art by using a live, running hardware
platform rather than a simulation approach to study present
and future factors that affect high-performance as well as
embedded-class Java virtual machines. To our knowledge, we
are the first to present such a methodology that covers both
ends of the performance and energy consumption spectrum.

We have focused on two widely-used Java virtual machines:
IBM Jikes Java Virtual Machine, a server-class virtual ma-
chine, and Kaffe, a clean-room, portable JVM suitable for
high-end embedded devices. We perform a hardware-based
power and performance analysis of the IBM Jikes RVM by
studying different types of garbage collection algorithms with
different heap sizes. Our results indicate that generational
collectors offer the best energy-delay product. Under certain
cases, a SemiSpace collector can improve this metric by as
much as 12%. Generational collectors are also more power-
hungry than their non-generational counterparts due to higher
processor utilization. The class loading and dynamic compila-
tion system tend to exhibit higher power consumption than
the garbage collector, but lower than the Java application
being run. When seeing the virtual machine as an extra layer
between hardware and the running application, the fact that the
application is responsible for peak power consumption and not
some of the JVM services allows a more transparent power
and thermal analysis of algorithms implemented in Java.



10

0%

20%

40%

60%

80%

100%
12 20 28 16 24 32 12 20 28 16 24 32 12 20 28

Heap Size (MB)

P
er

ce
n

t 
E

n
er

g
y 

U
se

d

jit
cl
gc
app

20
1

co
m

pr
es

s

20
2

je
ss

20
9

db

21
3

ja
va

c

22
8

ja
ck

Fig. 11. Energy decomposition for Kaffe running on the Intel XScale
PXA255 processor. The class loader accounts for an average energy con-
sumption of 18% over five SpecJVM98 benchmarks. The garbage collector
only consumes an average of 5% of the total energy.

REFERENCES

[1] T. Brecht, E. Arjomandi, C. Li, and H. Pham, “Controlling Garbage
Collection and Heap Growth to Reduce the Execution Time of Java Ap-
plications,” in Technical Report CS-2000-04, Department of Computer
Science. York University, Ontario, Canada, 2004.

[2] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng, “The Garbage Collection Advantage: Improving Pro-
gram Locality,” in Proceedings of the Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA’03),
October 2003.

[3] N. Sachindran, J. E. B. Moss, and E. D. Berger, “MC2: High-
Performance Garbage Collection for Memory-Constrained Environ-
ments,” in Proceedings of the Conference on Object Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’04), 2004.

[4] A. Heydari and V. Gektin, “Thermal and Electro-mechanical Challenges
in Design and Operation of High Heat Flux Processors,” in The Ninth
Intersociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems (ITHERM ’04)., vol. 2, June 2004, pp. 694 – 696.

[5] Y. Hwang, R. Radermacher, S. Spinazzola, and Z. Menachery, “Per-
formance Measurements of a Forced Convection Air-cooled Rack,” in
The Ninth Intersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems (ITHERM ’04)., vol. 1, June 2004,
pp. 194 – 198.

[6] Intel Corp., “Intel Pentium 4 Thermal Management,” 2002,
http://www.intel.com/support/processors/pentium4/thermal.htm.

[7] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko,
“Adaptive Garbage Collection for Battery-Operated Environments,” in
USENIX JVM02 Symposium, August 2002. [Online]. Available:
http://www.gigascale.org/pubs/178.html

[8] G. Chen, R. Shetty, N. Vijaykrishnan, M. M. Irwin, , and M. Wolczko,
“Tuning Garbage Collection in an Embedded Environment,” in Sympo-
sium on High Performance Computer Architecture (HPCA02), 2002.

[9] N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam,
and M. J. Irwin, “Energy Behavior of Java Applications from the
Memory Perspective,” in Proceedings of the Java Virtual Machine
Research and Technology Symposium (JVM’01), 2001.

[10] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using
the SimOS Machine Simulator to Study Complex Computer Systems,”
Modeling and Computer Simulation, vol. 7, no. 1, pp. 78–103, 1997.

[11] B. Alpern, C. R. Attanasio, et al., “The Jalapeno Virtual Machine,” in
IBM Systems Journal, vol. 39, no. 1, 2000.

[12] Kaffe Java Virtual Machine, http://www.kaffe.org.
[13] C. Hsieh, M. Conte, T. Johson, J. Gyllenhall, and W. Hwu, “A Study of

the Cache and Branch Performance Issues with Running Java on Current
Hardware Platforms,” in CompCon ’97. IEEE, February 1997.

[14] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, and A. Sivasubrama-
niam, “Architectural Issues in Java Runtime Systems,” in Symposium on
High Performance Computer Architecture (HPCA), 2000, pp. 387–398.

[15] A. S. Rajan, S. Hu, and J. Robio, “Cache Performance in Java Virtual
Machines: A Study of Constituent Phases,” in The 5th Annual IEEE
International Workshop on Workload Characterization, 2002.

[16] S. Blackburn, P. Cheng, and K. McKinley, “Myths and Realities: The
Performance Impact of Garbage Collection,” in Proceedings of the Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’04), June 2004.

[17] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical
Profiling: Understanding the Behavior of Object-Oriented Applications,”
in 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’04), 2004.

[18] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove,
and M. Hind, “Using Hardware Performance Monitors to Understand
the Behavior of Java Applications,” in USENIX 3rd Virtual Machine
Research and Technology Symposium (VM’04), May 2004.

[19] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications,” in Second IEEE Workshop on
Mobile Computing Systems and Applications, Feb. 1999, pp. 2–10.

[20] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J.-A. M. Anderson,
“Quantifying the Energy Consumption of a Pocket Computer and a Java
Virtual Machine,” in Measurement and Modeling of Computer Systems,
2000, pp. 252–263.

[21] A. Diwan, H. Lee, and D. Grunwald, “Energy Consumption and Garbage
Collection in Low-Powered Computing,” in Technical Report CU-CS-
930-02, University of Colorado, Boulder, 2002.

[22] R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose
Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9,
pp. 1277–84, 1996.

[23] D. Brooks and M. Martonosi, “Dynamic Thermal Management for
High-Performance Microprocessors,” in Proceedings of the Seventh
International Symposium on High-Performance Computer Architecture
(HPCA-7), January 2001.

[24] K. S. M. Stephen M. Blackburn, Perry Cheng, “A Garbage Collection
Design and Bakeoff in JMTk: An Efficient Extensible Java Memory
Management Toolkit,” The Australian National University,” Technical
Report, 2003.

[25] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive
Optimization In The Jalapeño JVM,” ACM SIGPLAN Notices, vol. 35,
no. 10, pp. 47–65, 2000.

[26] Intel DBPXA255 Development Platform for the Intel Personal Internet
Client Architecture, Intel Corporation, February 2003, order Number
278701-001.

[27] Standard Performance Evaluation Corporation, specJVM98 Documenta-
tion. release 1.03 edition, March 1999.

[28] J. E. B. Moss, K. S. McKinley, S. M. Blackburn, E. D. Berger, A.
Diwan, A. Hosking, D. Stefanovic, and C. Weems., “The DaCapo Project
Technical Report,” 2004.

[29] The Java Grande Forum, http://www.epcc.ed.ac.uk/javagrande/.
[30] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-

Sensitive Systems,” in Proceedings of 9th ACM SIGOPS European
Workshop, September 2000.

[31] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data,” in Proceedings of the
36th International Symp. on Microarchitecture, Dec. 2003.

[32] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in International Symposium on Low
Power Electronics and Design, pages 135–140, 2001.

[33] Embedded Microprocessor Benchmark Consortium, “EEMBC Grinder-
Bench for the Java 2 Micro Edition (J2ME) Platform,” 2006,
http://www.eembc.org.

[34] K. Choi, R. Soma, and M. Pedram, “Dynamic voltage and frequency
scaling based on workload decomposition,” in Proceedings of Interna-
tional Symposium on Low Power Electronics and Design (ISLPED),
Aug. 2004.

[35] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation
of a compiler algorithm for cpu energy reduction,” in Proceedings of
the ACM SIGPLAN 2003 conference on Programming language design
and implementation, 2003, pp. 38–48.

[36] A. Weissel and F. Bellosa, “Process Cruise Control: Event-Driven
Clock Scaling for Dynamic Power Management,” in Proceedings of the
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES 2002), Grenoble, France,, Aug. 2002.

[37] G. Contreras and M. Martonosi, “Power Prediction for the Intel XS-
cale Processor Using Hardware Performance Monitor Unit Events,” in
Proceedings of International Symposium on Low Power Electronics and
Design (ISLPED), 2005.


