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Abstract
GPUs are seeing increasingly widespread use for general

purpose computation due to their excellent performance for
highly-parallel, throughput-oriented applications. For many
workloads, however, the performance benefits of offloading
are hindered by the large and unpredictable overheads of
launching GPU kernels and of transferring data between CPU
and GPU.

This paper proposes and evaluates hardware and software
support for reducing overheads and improving data latency
predictability when offloading computation to GPUs. We first
characterize program execution using real-system measure-
ments to highlight the degree to which kernel launch and data
transfer are major sources of overhead. We then propose a
scheme of full-empty bits to track when regions of data have
been transferred. This dependency tracking is fast, efficient,
and fine-grained, mitigating much of the latency uncertainty
and cost of offloading in current systems. On top of these full-
empty bits, we build APIs that allow for early kernel launch
and proactive data returns. These techniques enable faster
kernel completion, while correctness remains guaranteed by
the full/empty bits.

Taken together, these techniques can both greatly improve
GPU application performance and broaden the space of appli-
cations for which GPUs are beneficial. In particular, across a
set of seven diverse benchmarks that make use of our support,
the mean improvement in runtime is 26%.

1. Introduction
General-purpose computation on graphics processing units
is a heterogeneous computing paradigm seeing increasingly
wide use. In it, general-purpose (non-graphics) computational
kernels are offloaded from a host CPU to a nearby GPU in
order to improve the runtime, throughput, or performance-
per-watt of the computation as compared to the original CPU
implementation. As a testament to GPU performance potential,
three of the top ten supercomputers in the TOP500 [38] and
four of the top five in the Green 500 [15] use GPUs or GPU-
like Intel MICs [22] in their clusters.

However, GPU-based acceleration is no silver bullet, and of-
floading to the GPU is not free. In both discrete and integrated
GPUs, there are relatively large overheads associated with data
transfer, kernel launch, and synchronization. While the most
conspicuous of these is the data transfer to and from a discrete
GPU, many other operations are also high in overhead, even
when CPUs and GPUs share the same chip or memory hierar-
chy. Driver delays, uncertainty about data arrival times, and
coarse-grained synchronization each add latency overheads
regardless of the placement of the GPU relative to the CPU.
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Figure 1: Runtime of breadth-first search [8] for varying input
set sizes and hardware. The GPU is a discrete NVIDIA GTX 580
running CUDA and the CPU is an Intel Xeon X7560 running se-
quential code or a multithreaded OpenMP version. As input
size changes, the type of hardware providing the fastest run-
time changes: a single-threaded CPU is fastest for smallest
inputs, and the discrete NVIDIA GPU is fastest at large sizes.

Consequently, it is beneficial to offload only when the trans-
fer+launch overhead is outweighed by the performance gain
achieved by executing the kernel on the GPU. GPUs are known
to give excellent performance for large workloads which are
highly parallel and throughput oriented: large kernels amor-
tize the overhead of offloading, and throughput-oriented code
can more easily hide the latency and variability of each individ-
ual operation. GPUs thus far have focused on improving the
performance of such coarse-grained kernels and are heavily
optimized for bandwidth. Workloads which are less parallel
or which are more latency sensitive have been viewed as out
of scope for GPU implementations. The goal of this work is to
reduce the duration, unpredictability, and performance impact
of GPU onload/offload overhead in order to broaden the scope
of applications that see performance benefits from GPUs.

1.1. Motivating Example

To motivate our work, Figure 1 shows performance results for
BFS, a breadth-first-search kernel. (Both axes are log scale.)
For small input sets, the sequential CPU implementation has
the smallest runtime, while for larger input sets, the GPU
becomes fastest. The crossover point at which offload becomes
beneficial occurs for graphs with roughly 4,000 nodes.

A primary reason GPUs are not always faster than CPUs
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Figure 2: Memory copy latency between CPU and GPU for
NVIDIA GTX580 (discrete) and AMD A8-3870K (integrated)
GPUs. For small transfer sizes, the discrete GPU actually has
lower latency than the integrated case.

is that kernel launch and data transfer introduce delays and
variabilities that are added no matter the size of the kernel. For
smaller workloads, this delay is significant or even prohibitive.
Both the GPU and OpenMP implementations of the kernel
have fixed minimum costs, depicted by the lines flattening out
to the left of Figure 1, while the single-threaded CPU imple-
mentation has no such overhead and scales proportionally.

While the results shown here are for a discrete (off-chip)
GPU, subsequent studies later in the paper show that the unpre-
dictability of data arrival times can cause similar scenarios in
integrated GPUs with smaller underlying data latencies. Our
paper therefore aims to reduce these fixed costs for GPUs as
well as the bottlenecks they cause, in order to broaden the set
of applications that benefit from GPU acceleration.

1.2. Discrete vs. Integrated GPUs

An emerging trend is for smaller, lower-throughput GPUs to
be integrated onto the same die as the CPU. AMD Fusion [3]
and Intel Ivy Bridge [21] both provide OpenCL-programmable
GPUs integrated onto the same die as the CPU. In currently
available models, the memory space may be logically shared
or partitioned between the CPU and the GPU; many modern
systems continue to use partitioned memory spaces and pay
the overhead of copying between the spaces every time data is
transferred. Optimizations such as CPU pinned memory [30]
were therefore developed to hide some of the latency and to
improve bandwidth.

While on-chip integration is promising, it may not neces-
sarily be a full solution. For example, in current systems,
integrated CPU-GPU pairs do not always have smaller packet
transfer latencies than discrete GPUs. To demonstrate this,
Figure 2 shows real-system measurements of memory copy
latency between CPU and GPU for different implementations
and for different transfer sizes (note the log scales on the axes).
Our measurements show that the AMD Fusion—an integrated
GPU—actually has larger latencies than the discrete GPU
for small packet sizes. Similar results have been obtained by
previous work as well [10].

For future models, the HSA Foundation has published a

roadmap [4] describing the expected features of future inte-
grated GPUs: shared page tables and fully coherent memory,
improved scheduling and command queuing, and more. Three
upcoming features stand out in particular. First, a coherent
shared memory space eliminates the need for memory copy
operations. The two other features, user-level hardware-based
GPU command queues and GPU virtual addressing with full
paging support, have the potential to eliminate the need for a
kernel driver completely.

Nevertheless, some need for fine-grained data-oriented syn-
chronization will still remain. First of all, discrete GPUs
remain larger and more powerful than integrated GPUs, and
memory copies will still be needed in domains such as HPC
which require more raw throughput. Even when the mem-
ory system is shared, data may still be copied into or out of
specialized (e.g., noncoherent) regions of memory during ex-
ecution. Second, and most importantly, a large part of the
overhead comes about from the coarse granularity of synchro-
nization, rather than the transfer latency itself, and this fact
is not addressed by integration roadmaps. Our exploration of
fine-grained synchronization applies to both integrated and dis-
crete GPUs (as well as to any producer-consumer relationship)
and delivers performance benefits for both.

1.3. Contributions

This paper proposes hardware and software support to improve
data staging and synchronization in CPU to GPU communi-
cation. First, we propose full-empty bits (F/E bits) in GPU
DRAM as an efficient, fine-grained data dependency tracking
mechanism. On top of this hardware, we add program-level
API enhancements to enable GPU execution overlap with data
transfer, even within a single kernel. In particular, we evaluate
an “overlap-start” technique that supports early sending of
GPU kernel code from the CPU, with computation starting as
soon as the F/E bits indicate data is ready. Likewise, API sup-
port for an “overlap-finish” technique allows subsets of GPU
data results to get transferred back to the CPU proactively,
rather than waiting for the entire kernel to finish. Together,
these techniques deliver performance improvements of 26%
on average across a range of benchmarks.

The performance improvements we demonstrate help to
broaden the space of kernels that can benefit from CPU to
GPU offloading. For example, as described in Section 7.2,
we find that for vectorAdd, the original GPU delivers faster
performance than a CPU for all vector sizes greater than 128K
elements. With our techniques, the GPU performance im-
proves for all vector sizes, and in fact even surpasses the CPU
performance for vectors as small as 32K elements. In this way,
even input sizes for which the GPU was originally slower now
get performance benefits by offloading to our enhanced GPU.

To demonstrate our ideas, we built an enhanced and accurate
simulation infrastructure. We created a CPU-GPU communi-
cation simulator that works with a version of GPGPU-Sim [6]
modified to model F/E bits. We validate our CPU-GPU trans-
fer times against real-system measurements and on average
find agreement within 5% of total runtime. The simulator is
released for open use.
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Figure 3: Timelines depicting how fine-grained synchroniza-
tion removes many of the latencies involved in offloading ker-
nels to the GPU. Operations such as kernel launch are taken
off of the critical path, and communication and computation
can be overlapped.

2. Faster GPU Offloading
Many throughput-oriented applications currently hide latency
by pipelining GPU computation with communication to and
from the GPU. More specifically, the GPU can be work-
ing on one of several independent kernels while others are
being staged for transit to or from the GPU. For a bal-
anced computation-to-communication ratio and with sufficient
kernel-level parallelism, this pipeline can stay full. Similarly,
with sufficient thread-level parallelism, the latency of memory
requests can be hidden by efficient context switching, keeping
each core active with other work until the response is received.
These techniques require very detailed and device-specific tun-
ing, however, and are limited to applications with particularly
amenable characteristics. Our goal is to provide support to
broaden the sphere of applications that can use GPUs easily
and successfully.

2.1. Offloading to GPU: Baseline

Figure 3a shows a timeline diagram for the stages of a GPU
computation including the code and data transfers from CPU
to GPU. (This diagram is primarily aimed at discrete GPUs.)
First, on the CPU side, a memcpyHtoD (Memory Copy from
Host to Device) command is called to transfer data from host
(CPU) to device (GPU). A second command to launch the

code kernel to be executed on the GPU side is invoked as well.
Data is made available to the GPU in one of two ways: either
it is copied into the GPU memory space (labeled as 1 in the
diagram), or the GPU directly accesses CPU memory (not pic-
tured). Although no GPU execution has started yet, the CPU
also launches the memcpyDtoH command by which data will
be copied back from device (GPU) to host (CPU). The run-
time system will ensure that this memcpyDtoH command does
not actually execute until the computation has completed, so
that data is not copied back prematurely. As the memcpyHtoD
executes, the input data is written into the GPU memory space.
Even after the data is present, due to the weak memory con-
sistency models in use, it is not safe for GPU programs to
use this data until a coarse-grained memory synchronization
operation has completed (2). This means that all computation
is held up until the last piece of data arrives at the GPU. Only
then can threads start to execute. Then, any memory requests
to read this data must travel from the GPU core to DRAM and
back, costing hundreds of extra cycles. Finally, when the GPU
kernel completes execution, it writes to the output array. When
all the writes have completed and synchronized, the array is
copied over the interconnect back to the host CPU (3).

2.2. Causes of Latency

As the timeline illustrates, many factors combine to cause
the latency of offloading to GPUs to be so large. First of
all, the kernel launch command itself takes time to execute,
regardless of the size of the computation being done. Second,
there is a delay between when data physically arrives at its
destination versus when it is ready to use. This is because
a synchronization operation must occur in between in order
to guarantee that the computation will read the correct data.
Besides these factors, API and driver overheads introduce
delays with each call made. Several of these factors remain
important in integrated GPUs as well.

Also, discrete GPUs communicate via commodity expan-
sion ports. Such communication links focus mainly on band-
width, and many optimizations for high bandwidth, such as
write-combining buffers, can significantly increase latency for
certain individual pieces of data. Nevertheless, PCIe is still the
standard for discrete graphics cards. Packet-based protocols
such as PCIe add packetization overhead—up to 90% of PCIe
latency comes from higher layers in the stack [29], similar
to the analogous cost in other packet-switched protocols [26].
Furthermore, while the bandwidth of PCIe is consistently im-
proving with each generation, the latency often stays the same
or even gets worse [29].

2.3. Offloading to GPU: Our Approach

Ideally, our goal is: as soon as the input data becomes avail-
able (e.g., as some previous computation creates it), we wish
to complete this entire kernel computation with the lowest pos-
sible latency. In Figure 3, this corresponds to the difference

runtime = t f inish − tdata_ready.



Note that the time at which the first command is launched is
not counted in this ideal equation. In existing systems, it is
only safe to launch the kernel after the data is ready at time
tdata_ready, as in Figure 3a. However, our proposal removes
this dependency from software by allowing F/E bits to more
efficiently handle it in hardware. In other words, kernel launch
is no longer on the critical path of the computation, and it can
safely happen in advance of the arrival of data at the GPU.

Figure 3b shows a potential timeline if this paper’s hard-
ware and API proposals are applied. In particular, we can
proactively begin kernel execution even if not all of the data
has arrived (1). Synchronizing data using F/E bits means that
we can overlap computation on the already-present data with
arrival of the remaining data (2). As the data is copied into
its destination, the target F/E bits are set to full. At this point,
any dependent GPU instructions can continue. Likewise, as
results are computed and written into the output array, the
associated F/E bits are marked full. As this occurs, results can
begin being copied back from device to host early (3). Individ-
ual portions of the copy will stall if the F/E bits indicate that
certain data items have not yet been produced.

2.4. Our Proposal

Thus far, we have motivated the fact that CPU-GPU transfers
of code and data can often impose too much overhead on
GPU kernel executions. Waiting for all of a data block to be
ready is the only currently safe method for code to execute,
but this often results in a performance slowdown. If a kernel
thread could block only on the specific addresses it uses, better
performance and execution overlap can be achieved in both
discrete and integrated GPUs.

With the goal in mind of increasing overlap and optimizing
for producer-consumer data, this paper explores the implemen-
tation issues of F/E bits applied to GPU memory. These bits
act as guards on memory operations. Accessing a location that
is not yet marked as “full” causes the thread to stall. When
a write occurs that causes the location to be considered full,
any memory requests and threads waiting on that data are
unblocked. While F/E bits have been previously proposed in
other architectures (see Section 8), they have not been explored
for GPU applications, and our results show considerable lever-
age. Our work explores the performance potential they offer,
as well as their implementation issues.

3. GPU Overview

3.1. GPU Hardware

GPUs execute a large number of threads in parallel, with
computations performed by a set of SIMD and/or VLIW mul-
tiprocessors. A memory system provides spaces private to
each thread (“per-thread local memory” or “private memory”),
spaces private to each thread block (“per-block shared mem-
ory” or “local memory”), and a global memory space shared
by all CPU and GPU threads. GPUs are generally optimized
for throughput, making use of aggressive context switching to
cover the latency of memory requests.
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Figure 4: Typical CPU and GPU architecture. The CPU-GPU
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Figure 4 shows a typical GPU architecture. Each execu-
tion unit (EU) consists of a set of SIMD execution pipelines
connected to an L1 demand-fetched cache, shared memory
scratchpad, a constant/texture cache, and an interface to the
GPU interconnect. Across the GPU interconnect are a set of
memory partitions containing a coherent L2 cache, a memory
controller, and a connection to off-die global memory DRAM.
In integrated GPUs, the CPU and GPU communicate via an
on-chip bus, and in discrete GPUs, via an expansion card slot.
While the details vary by manufacturer (e.g., Intel GPUs have
no scratchpad, some AMD GPUs are VLIW in addition to
SIMD), the general approach is similar.

3.2. GPU Programming Model

Programmers write GPU programs in terms of thread blocks
to be offloaded to the GPU. Each thread block consists of a
set of software threads organized in a one-, two-, or three-
dimensional grid. As hardware compute units become avail-
able, a hardware scheduler on the GPU dispatches each thread
block to available cores. Since the order of execution and the
interleaving of threads is impossible to know in advance, it is
generally difficult or impossible for threads in different blocks
to directly communicate with each other during execution.

Before each kernel or data transfer operation can begin, all
of the necessary data must be ready to use. This synchroniza-
tion takes place at various levels. The coarsest granularity
of synchronization occurs between commands in a queue or
stream: each command in a stream must complete entirely
before the next can execute. Although this does provide syn-
chronization across the entire kernel, it is very slow, as it often
even involves a round trip to the CPU for API call completion.
Finer-grained barriers can also be used to synchronize control
(not data) within a thread block.

Previous work has studied the use of atomic operations
to implement a custom synchronization primitive [13, 41].
However, these techniques are not guaranteed to be correct,
due to the weak consistency model (see below). The F/E bits
we propose can guarantee correct ordering of the producer and
consumer requests to each location.



4. Full/Empty Bits for GPUs

4.1. Overview

F/E bits have been proposed in several settings as hardware
support for efficient producer-consumer data accesses (as dis-
cussed in Section 8). With this technique, every region of
memory of some specified granularity has an associated F/E
bit that is checked and updated in parallel with the data. This
bit can have one of two states: “full” or “empty”, denoting
whether the location contains valid data.

Associated with each incoming memory request are two
new components: the trigger condition and the update action.
The trigger condition defines how to handle each request based
on the status of the targeted F/E bit. It can either be wait for
full, wait for empty, or non-triggered. The non-triggered case
causes the system to ignore F/E bits and default to normal
operation. When the request is processed, the update action
directs whether the F/E bit should be filled, emptied, or left
unchanged as a result.

In choosing triggers and actions for each request, we cat-
egorize memory requests into three classes. First, for CPU
requests, the triggers and actions are explicitly specified by
the user via the proposed API extensions of Section 4.4. For
GPU requests, reads have a fixed trigger of waiting for data
to be marked as full, and they perform no action, while GPU
writes have no trigger and have an implicit action of marking
their target location as full. These choices reflect the most
common status of the GPU as providing hardware support for
operations being coordinated by the CPU. Other choices are
possible and are discussed in Section 4.5.

The most common usage scenario is a strict producer-
consumer relationship, such as the one between the CPU
and the GPU. For example, suppose the GPU (the consumer)
wishes to read data provided by the CPU (the producer). The
GPU issues a read request with a wait for full trigger condition.
Until the producer sends the data, the F/E bit for the memory
location is set to empty, and the GPU requests blocks. When
the producer actually writes the data, the F/E bit gets set, al-
lowing the GPU read requests to proceed safely. For coalesced
requests, responses are returned when all the relevant F/E bits
indicate readiness. Other scenarios work similarly.

4.2. Placement

We chose to place F/E bits with GPU DRAM (global memory),
as this is along the offloading critical path between the CPU
and the GPU. As data is sent from the CPU to the GPU, it
must first be written into the GPU DRAM. Only then can it
be sent to the GPU cores and placed into the cache and/or
scratchpad. Furthermore, many GPU kernels operate on a
lot of “touch-once” data, and as a result the cache or shared
memory are often not even used for such data [23].

Every four bytes of memory get a single associated F/E bit.
If even the modest 3% DRAM overhead of such an approach
is too high, one could choose to implement F/E bits only on a
smaller subset of “synchronized global memory” rather than
on the full DRAM. Since CUDA already supports various
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Figure 5: Full/Empty bits, GPU DRAM, and the GPU memory
controller. Changes made to support fine-grained synchro-
nization are shown in orange.

memory spaces, such an approach would be quite feasible
[30], and could allow for a much smaller F/E bit structure
to be embedded into the memory controller itself. Section 9
discusses these issues further.

4.3. Memory Controller Architecture

Figure 5 illustrates the proposed GPU memory controller.
Memory requests arrive on the interconnect, pass through
the L2 cache, and then enter one of three queues (explained
below). Requests stall at the head of their assigned queue until
their trigger condition (if specified) is satisfied. By default,
requests have no trigger, and these proceed through the mem-
ory controller in the normal manner. On the other hand, if a
specified trigger condition is not yet satisfied (e.g., the GPU
tries to read an empty location), the request stalls at the head
of its queue. Once the condition is satisfied by a request (e.g.,
a CPU write to the same location) passing through a different
queue, the original request is allowed to proceed. The requests
then merge back into a single channel in the DRAM scheduler.
At that point, if an update action was specified, the F/E bit is
updated accordingly. Except for the full/empty bits and the
two new queues in the middle, this process is entirely the same
as for existing GPUs.

Each of the DRAM scheduler queues is strictly ordered
for the sake of hardware simplicity. The DRAM scheduler
checks the trigger conditions (if specified) of the requests
at the head of each queue; only the head of each queue is
ever observed. If the trigger of a request is not satisfied, the
DRAM scheduler will stall that request (and therefore all other
requests queued behind it in the same queue), and it will then
snoop the requests passing through the other queues for an
action which causes the trigger to become satisfied. When this
occurs, the previously blocked request is then released. Other
queued requests, if there are any, can then proceed as well.

Multiple queues are used to avoid head-of-line blocking



while ensuring that the memory controller can correctly en-
force dependencies on the F/E bits. In contrast, consider if
there were only a single queue, and a GPU read request was
made to a currently empty memory location, in anticipation
of the CPU later filling that location. If the CPU request sat
behind the GPU request in the same queue, then it would never
be able to bypass the GPU request to fill the location. The use
of multiple queues allows the CPU write to proceed past the
blocked GPU read.

Our implementation uses three queues. The first handles all
non-triggered requests, ensuring at least one non-blocking path
from the CPU or GPU to DRAM. The other two categories,
triggered requests from the CPU and triggered requests from
the GPU, must also be split into their own queues so that GPU
requests can bypass blocked CPU requests. For example, in
the overlap-finish strategy that will be described in Section 5.2,
the memcpyDtoH requests may be sent before some threads
of the kernel make read requests. Splitting triggered CPU
requests and triggered GPU requests into different queues
ensures that of the three parallel commands (memcpyHtoD,
kernel launch, memcpyDtoH), no one will block any others.

The scenario in which a large number of requests go out
to and then stall in the memory system due to unsatisfied
triggers is handled similarly to existing scenarios in which
many threads experience cache misses that take a long time
to return. MSHRs and the rest of the memory system store
the outstanding requests and track the arrival of the data. No
extra buffering is used for this purpose. Should the MSHRs
fill up, the cores would simply stall on the structural hazard
of the memory system and the lack of available MSHRs and
hence not issue any new requests until space again becomes
available.

As with CUDA and OpenCL, our design is geared towards
producer-consumer CPU-GPU accesses, as these are the most
common relationship type. Arbitrary interleavings of CPU and
GPU requests to the same address are rare and discouraged in
GPGPU, due to the unpredictable execution order of threads,
the weak consistency model, and the fact that all threads may
not even launch simultaneously. Our implementation targets
and correctly handles the common case in which the producer
is the CPU and the consumer is the GPU, or vice versa. How-
ever, if needed, our approach scales linearly with the number
of independent streams that need to execute simultaneously.

4.4. API Extensions for Full/Empty Bits

Our API extensions allow programmers to specify the up-
date action and trigger explicitly for CPU requests. For
update actions, the default flag cudaMemcpyActionNone1

specifies that the F/E bit should not be changed when mem-
ory in this region is written or read. The other two flags,
cudaMemcpyActionFill and cudaMemcpyActionEmpty,
specify that the bit should be set or cleared, respectively.

1Our notation draws from CUDA terminology here, but OpenCL has anal-
ogous calls. For instance, OpenCL contains flags like CL_MEM_READ_ONLY
and CL_MEM_WRITE_ONLY flags earmarking areas for particular uses. Our
work extends such flags to apply to F/E bits as well.

For trigger conditions, the first specification,
cudaMemcpyTriggerNone, specifies that a request
should simply ignore the status of the F/E bit.
The other two, cudaMemcpyTriggerFilled and
cudaMemcpyTriggerEmptied, specify what state the
F/E bits for the requested location must be in before the
request completes. As with any software synchronization
operation, a correct program must pair these with an update
action request to set or empty the F/E at some point.

We maintain the CUDA notion of a stream of depen-
dent operations such that each command cannot execute
until its predecessor has completed. However, data depen-
dencies that are now handled in hardware by F/E bits no
longer need to be in the same API-level stream, as current
systems would require. In fact, moving such operations
into separate streams is exactly what enables the hardware
to overlap kernel launch, data transfer, and execution effi-
ciently. In OpenCL, which uses event wait lists rather than
streams, similar semantics could be created using the flag
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE and choos-
ing wait lists in a similar manner, i.e., intentionally not listing
overlapping events in wait lists.

4.5. Discussion and Future Extensions

As mentioned, we focus on the very common case of producer-
consumer writes between CPU and GPU. Although additional
support for other features could be added, their less frequent
use makes it harder to justify supporting them in hardware.
For completeness, we describe some issues here.

For programs where data is read or written more than once
before being discarded, the simplest F/E mechanism would be
insufficient. To handle such multiple-empty scenarios, mark-
ing a bit “empty” could be caused either by explicit program-
mer request at the GPU instruction level or by an event such as
the end of a kernel, instead of by a single read. Furthermore, a
F/E bit could be replaced with multiple counter bits, at the cost
of higher storage overhead. Another possibility would be the
introduction of override commands, which could either toggle
F/E bits without affecting the data, or could simply release
all pending requests regardless of the status of their trigger
conditions. Finally, for code where using F/E bits seems par-
ticularly awkward, user can simply avoid F/E bits and default
to existing software-based synchronization mechanisms.

Another issue is the case that an incorrect or highly-unusual
GPU program might try to read empty GPU memory that is
never written by either the CPU or the GPU. (We know of
no benchmark that does this intentionally or unintentionally.)
Without F/E bits, the read result would be undefined data,
but with F/E bits, it can lead to queueing interlock problems
if a write to fill the location cannot bypass the read in the
GPU request queue. Our solution again prioritizes hardware
simplicity: our GPU startup routine (one-time, not per kernel)
includes an option to zero out memory and mark it as full.

Other memory controller design variations are also possi-
ble. For example, looking past the head of DRAM scheduler
queues could help performance at the cost of power and com-
plexity. Other options would include the use of timeouts or
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Figure 6: Usage scenarios in which fine-grained synchroniza-
tion allows execution and communication to overlap for a sin-
gle command queue. By shortening the critical path, the la-
tency of offloading is reduced significantly. These strategies
combine to form the full-overlap case shown in Figure 3b.

NACKs to alert the core of a deadlock situation, at which time
the request could be retried or an exception handler could be
triggered. Future work may explore such possible additions.

Finally, we note that the most sophisticated potential varia-
tions of F/E bits (e.g., in which GPU requests also have trig-
gers and update conditions explicitly specified) may require
changes to the GPU ISA. However, GPUs already frequently
change both ISAs and microarchitectures, as both are hidden
under more portable software interfaces (such as PTX for
CUDA); such a requirement is not problematic.

5. Usage Scenarios
In our experiments, certain patterns of API calls are particu-
larly common, and so we describe them in more detail. Figure
6 illustrates two strategies for making use of fine-grained syn-
chronization. (Recall that Figure 3a presents the no F/E bit
baseline as implemented in current GPUs.)

5.1. Overlap-Start Scenario

In Figure 6a, the kernel launch itself no longer has to be on
the critical path, and so we start it in advance (1). At some
later time, once the input data is prepared and ready on the
CPU side, the CPU sends it to the GPU. Each data item fills
its associated F/E bits as it arrives. Consequently, the threads
waiting for that data can resume execution as soon as the F/E

// In advance - nothing can be done!

// When input data is ready

memcpyAsync(d_indata, h_indata, HtoD, stream[0]);

kernel<<<grid, tds, smem, stream[0]>>>();

memcpyAsync(h_outdata, d_outdata, DtoH, stream[0]);

streamSynchronize(stream[0]);

(a) Baseline (no F/E bits) approach on default GPU.

// In advance, pre-load kernel

kernel<<<grid, tds, smem, stream[0]>>>();

// When input data is ready

memcpyAsync(d_indata, h_indata, HtoD, stream[1],

TriggerNone, ActionFill);

memcpyAsync(h_outdata, d_outdata, DtoH, stream[0]);

streamSynchronize(stream[0]);

(b) Overlap-start semantics on GPU with F/E bits.

// In advance, send the command to copy

// back the output data

memcpyAsync(d_indata, h_indata, DtoH, stream[1],

TriggerFull);

// When input data is ready

memcpyAsync(h_outdata, d_outdata, HtoD, stream[0],

TriggerNone, ActionFill);

kernel<<<grid, tds, smem, stream[0]>>>();

streamSynchronize(stream[1]);

(c) Overlap-finish semantics on GPU with F/E bits.

// In advance, send two commands

kernel<<<grid, tds, smem, stream[0]>>>();

memcpyAsync(d_indata, h_indata, DtoH, stream[2],

TriggerFull);

// When input data is ready

memcpyAsync(h_outdata, d_outdata, HtoD, stream[1],

TriggerNone, ActionFill);

streamSynchronize(stream[2]);

(d) Full-overlap semantics on GPU with F/E bits.

Figure 7: Pseudocode snippets with proposed API extensions.
Names shortened for legibility. The overlap-start scenario
moves the host-to-device memcpy into a separate stream so
that it overlaps with kernel execution.

bits are marked full (2). We call this strategy overlap-start.
Figures 7a and 7b show code for the baseline (Figure 3a)

and overlap-start (Figure 6a) cases. In the baseline case with-
out F/E bits, each operation in the sequence depends on the
previous completing. Consequently, all operations occur in-
order and in the same stream. The overlap-start case has three
changes. First, kernel launch is moved to the beginning of
the sequence, before the input data is all ready. The F/E bits
enforce that kernel computations will not proceed past a point
where they depend on data that is not ready, but other aspects
of kernel launch and computation can begin as soon as pos-
sible. Second, the host-to-device memcpyHtoD command is
placed into stream 1 so that it can overlap with the kernel
launch in stream 0. Third, the memcpyHtoD command sets its
action to “fill” so that it will fill the target F/E bits.



5.2. Overlap-Finish Scenario

Figures 6b and 7c illustrate the overlap-finish strategy, which
exploits that some portions of the results array are ready before
others. Therefore, we preemptively send the command to copy
back the results from GPU to CPU in advance (1), with the
trigger condition that result data must be “full” before it is
copied back. Later, as pieces of the result array are filled
by the GPU, they are indeed copied back to the CPU before
the rest of the kernel may have completed (2). Computation
completes when all of the results array has been sent back.

5.3. Full-Overlap Scenario

Finally, while Figures 6a and 6b show the strategies applied
separately, they can also be used together. When both overlap-
start and overlap-finish are used, we refer to this as the full-
overlap strategy. This was pictured earlier, in Figure 3b, and
the pseudocode is shown in Figure 7d. In the full-overlap
scenario, both the kernel launch command and the command
to copy back the results are sent earlier. As data arrives, it
is processed as in the overlap-start case, and as results are
ready, they are sent back as in the overlap-finish case. This
strategy combines the benefits of the previous two, giving the
best performance.

6. Simulator Infrastructure
Our work builds from existing simulators by adding detailed
and real-system-validated models where needed to track the
full path through our proposed techniques. The baseline GPU
architectural model and the functional (non-timing) implemen-
tation of CPU-GPU communication are provided by GPGPU-
Sim 3.0.2 [6]. To this, we add a detailed timing model for
CPU-GPU communications (Section 6.1) that has been vali-
dated via real-system measurements. We also add a GPU host
interface module tracking memory synchronization (Section
6.2), and the F/E bits themselves, plus the necessary enhance-
ments in the memory controller to support them (Section 6.3).

6.1. CPU and Interconnect Timing Model

An often-critical part of measuring the performance of low-
latency workloads is the timing of CPU-GPU communication.
Simulators such as GPGPU-Sim, however, do not measure the
timing of these operations, focusing instead on modeling the
GPU itself. Other simulators are discussed in Section 8.

The simulator must accurately model several aspects of
CPU-GPU communication. Some of the latency comes from
data transfer itself. At the physical layer, this is simply the size
of the data being sent divided by the bandwidth of the link.
However, this is not the only component of the cost. Each
API call, including memcpy and kernel launch commands,
incurs multi-microsecond overhead in the CUDA/OpenCL
driver. Even asynchronous calls in which control returns to the
program “immediately” take microseconds to enqueue. For
small messages these costs are non-negligible.

Rather than calculating a single fixed latency for each opera-
tion, we instead model operations as progressing through a set
of stages, incurring some latency at each step. We model three

stages: (i) time spent to enqueue a command into the driver,
(ii) time in the driver preparing the command for execution,
and (iii) time executing the command. A command may be
stalled between stages or during execution when necessary.
This breakdown allows us to represent the progression of asyn-
chronous API calls in particular, as there may be a significant
delay between a command being queued and its execution.
As an example, the latency of a 128KB memcpy from host
to device is broken down as follows: (i) 1.2 µs to enqueue
the command, followed by a wait for the driver to become
available; (ii) 7 µs to process the command; (iii) and finally a
delay of (128KB) / (6.8 GB/s) to transmit the data.

With this methodology, the total latency is not a single
number calculated ahead of time, but instead it is a sum of
components that may vary dynamically depending on the state
of the system. As described in Section 6.4, we microbench-
marked a real GPU system to obtain accurate timing for each
of these components.

6.2. GPU Host Interface

The second new simulator component is a host interface mod-
ule on the GPU. This GPU module, known in NVIDIA ter-
minology as the CUDA Work Distributor, is responsible for
processing commands received from and sent to the CPU. We
are particularly interested in the time to synchronize between
dependent operations. As memory requests from the CPU are
processed, the GPU must wait for all of the requests to be
successfully ACKed by the memory system before allowing
subsequent operations from the same stream to begin.

The host interface module is simulated with a queue per
stream of computation, as is done in modern GPUs [32]. As
each command is processed, the module tracks any new pend-
ing ACKs or thread blocks that it must wait for. As the ACKs
return from the memory system, they are removed from the
queue for their associated stream. When the queue for a stream
is empty, the next command can be processed.

6.3. Full/Empty Bits and Memory Controller

The F/E bits are placed with GPU DRAM, as described in
Section 4.2. We also implement the three-queue memory
controller described in Section 4.3. If requests from more than
one of the queues are pending at once, a simple priority scheme
arbitrates: non-triggered requests have the highest priority,
followed by triggered CPU requests, and then triggered GPU
requests.

6.4. Choosing Simulator Parameters

We use microbenchmarking on real systems to select simula-
tion timing parameters that match a real NVIDIA GTX 580
hardware baseline. Accurate measurement methodology on
real GPU systems is non-trivial, but our detailed approach
offers good accuracy with low perturbation. The natural first
step might be to use the built-in hardware profiler counter
capability in the GPU. However, enabling these GPU profiler
counters adds a very large overhead and possible distortion
in program runtime. Furthermore, the profilers force kernels
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Figure 9: Illustration of time components of GPU API call and
driver latency. Only API calls can be measured directly. In
this example, the difference between a single memcpyAsync
of size N and two memcpyAsync calls of size N/2 gives the
overhead of each driver call.

to be serialized, when this is exactly the behavior we wish to
avoid. Figure 8 shows the difference in timing results seen
for FIBLookup when measured via profiling counters (top)
and via lightweight timers placed only at API calls (bottom).
Clearly, for accurate views of low-latency kernels, we cannot
rely on profiling counters.

For better accuracy, we instead use the CPU’s real-time
clock to time API call and driver overhead. We time memcpy
calls of various sizes and flags, kernel launches, and syn-
chronization requests under various circumstances. Using
carefully-chosen sequences of API calls, we extract the timing
of each latency component. Figure 9 illustrates our approach.
We perform two separate but similar sequences of operations.
For the first, we observe a memcpyAsync of size N followed
by a StreamSynchronize operation. In the second, we split
the original memcpyAsync into two halves, otherwise copying
the same host data to the same GPU locations. Taking the
difference of the total latency for the two scenarios gives the
driver latency of processing a single memcpyAsync command.

Table 2 lists the values we use in our simulator. These
reflect the NVIDIA GTX 580 system from Table 1.

Discrete Integrated

CPU Intel Xeon E3-1245
Sandy Bridge AMD A8-3870K

GPU NVIDIA Llano
GTX 580

GPU Cores 512 400
GPU Freq. 772MHz (core) 600 MHz

GPU DRAM 1.5GB 256MB (local)

CPU-GPU
Interconnect

Fusion Compute
PCIe 2.0 16x Link / Radeon

Memory Bus
GPU Mem. BW 192 GB/s 29.8 GB/s

Table 1: GPU Architectural Specifications.

API Call Call Latency Driver Latency
cudaMemcpy 7µs+ data_size

6.8GB/s

cudaMemcpyAsync 1.2µs 6µs+ data_size
6.8GB/s

cudaLaunch 1.5µs 3µs
cudaStream
Synchronize 1µs, then 1µs after sync’ed

cudaDevice
Synchronize 1µs, then 1µs after sync’ed

Table 2: API call latencies used in simulator. Non-blocking
calls have two latency components: (i) API call itself (after
which control returns to the application), and (ii) driver call
(after which the operation is complete). Blocking calls show a
single combined latency, since control does not return to the
application until the operation is complete.

6.5. Model Validation

Figure 10 shows latency measurements for synchronous and
asynchronous cudaMemcpy calls of various sizes. Our mea-
surements corroborate the interconnect timing model we de-
scribe in Section 6.1. Namely, the latency of these calls can
be considered as the sum of the actual data transfer time (as a
function of bandwidth) plus a fixed overhead cost.

As a final check, we validate application runtimes given by
model against the real NVIDIA GTX 580 system described
in Table 1. To validate, we compare the runtime of our bench-
mark suite on real hardware to the simulated system being
modeled. Across the measured benchmarks and for the full ap-
plication runtime, the simulator and real-system measurements
agree with outstanding accuracy—to within 5% on average,
with a maximum deviation of 15%.

6.6. Benchmark Suite

We test our proposal on a diverse set of benchmarks taken
from various sources, as shown in Table 3. These benchmarks
range from microbenchmarks to full workloads, with consis-
tent performance improvement across the suite. Our goal is to
enable the offloading of workloads previously considered “too
small to offload”; we therefore include some smaller work-
loads intentionally, not to skew our results, but to demonstrate
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ferred. In the synchronous case, the execution time is equal to
a fixed factor of 7µs+ size/BWe f f . In the asynchronous case,
the API call itself takes 1.2µs and the actual transfer and syn-
chronization is 9µs+ size/BWe f f .

Suite Benchmark Dataset
NVIDIA SDK vectorAdd 8K-256K elts./vec.
NVIDIA SDK matrixMul 64 × 64 elts./mat.
NVIDIA SDK histogram64 256KB
NVIDIA SDK BlackScholes 64K options

Rodinia BFS 4K-node graph
Rodinia HotSpot 64×64 grid
Custom FIBLookup 512 threads

Table 3: Benchmarks used in our study

the considerable new opportunity.
Four benchmarks are from the NVIDIA SDK

[31]: vectorAdd, matrixMul, histogram64, and
BlackScholes. These represent standard computa-
tional kernels that see widespread use as components of other
algorithms. In addition, we use BFS [19] and HotSpot [20]
from Rodinia [8] to represent more complex benchmarks. Fi-
nally, we write a FIBLookup (packet forwarding) benchmark,
similar to one analyzed in previous work [18], to explore
the behavior of a very latency-sensitive workload with close
to zero data locality among threads. We use the simulator
infrastructure developed in Section 6 as our execution
environment. We run our benchmarks to completion in order
to account for all execution and all CPU-GPU communication.
To take advantage of F/E bits, we modify the source code
of the benchmarks to implement each of the four use cases
described in Figure 6: baseline (using asynchronous memcpy
calls), overlap-start, overlap-finish, and full-overlap. We then
present results for each benchmark for each of these cases.

7. Results

7.1. Comparing to Baseline GPU

Figure 11 shows the application runtimes using F/E bits and
related API support, normalized to the GPU baseline case.
(Lower is better.) In the GPU baseline, no F/E bits are avail-
able, so standard synchronization fences are used. For these

applications, the GPU baseline already represents a perfor-
mance improvement over a single-threaded CPU, even when
CPU-GPU communication is included.

All scenarios using F/E bits perform as well or better than
the GPU baseline case. Of the different strategies, the full-
overlap scenario provides an average of 26% speedup.

The overlap-start and overlap-end scenarios are each fre-
quently helpful, but show variability in performance gain
across the different benchmarks. In histogram64, for ex-
ample, overlap-start provides a significant speedup, while
overlap-finish provides little. Conceptually, the input data can
be sent to the correct histogram bin at any time, while the total
histogram results are not final until all input data has been
processed. On the other hand, for matrixMul overlap-finish
provides slightly better gains than overlap-start. Similarly,
the benefits of full-overlap over the individual components
varies by benchmark. For histogram, most gains come from
overlap-start, while for vectorAdd the benefit goes beyond
what either of the two components provides independently.

7.2. Dataset Size and CPU-GPU Tradeoffs

In addition to the excellent performance gains F/E bits offer,
we also want to understand how input size influences the GPU
vs. CPU performance tradeoffs. To study this, Figure 12 shows
the performance of vectorAdd for a variety of vector sizes.
All runtimes are compared to a single-threaded CPU baseline2.
First, considering the GPU baseline curve (no F/E bits), the
CPU is the faster choice for all vector sizes smaller than about
128K, and the GPU is the better choice for larger vectors.
However, if our proposals for fine-grained synchronization
are adopted, the crossover point changes dramatically: the
GPU with full-overlap becomes more efficient at 32K element
vectors. Consequently, the breakeven point where GPUs are
beneficial has shifted dramatically towards smaller data sets.
In addition to raw performance improvements, this ability to
be beneficial across a wide range of applications and data is
another important benefit of our proposed approach.

8. Related Work
As GPUs have come into more general use [37] since projects
such as Brook [7] demonstrated their potential, research on
them has included some efforts related to our proposal. For
example, prior work has considered improving GPU synchro-
nization via atomic operations [13, 36, 41]. Others have pro-
posed GPU architectural support for precise exceptions and
speculative execution [28] and for GPU programming models
using persistent threads [17]. The proposed techniques are
not, however, data-oriented like our F/E bits. As a result, they
are not as effective for kernels with varying fetch latencies.
Dymaxion [9] overlapped computation and communication by
breaking data transfers and kernels into overlapping chunks;
however, their technique works only for purely data parallel
kernels which can be easily divided, and it does not address
GPU-to-CPU communication.

2In our experiments, parallelization of the CPU code with OpenMP was
slower due to the overhead of thread creation.
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Figure 12: Normalized runtime of vectorAdd for different in-
put set sizes. (Lower is better.) Exploiting F/E bits changes the
breakeven point between CPU and GPU implementations. Pre-
viously, the GPU began outperforming CPU at 128K, but with
F/E bits, it begins outperforming at 32K element vectors. This
broadens the space where GPUs are beneficial, and provides
a new best option for all input sizes above 32K.

Previous work has noted the importance of CPU-GPU com-
munication time when measuring GPU performance, [16, 27],
but little attention has gone to simulator models and their vali-
dation. FusionSim [43] models a combined CPU-GPU system,
using GPGPU-Sim as its GPU model and PTLSim [42] as its
CPU model, but has a simpler interconnect model and less real-
system validation. MacSim [25] simulates a heterogeneous
CPU-GPU system, but uses trace-based simulation, which
does not capture CPU-GPU communication well. Multi2Sim
[39] simulates both the CPU and the GPU, but CPU-GPU
communication is simulated functionally, while we provide a
detailed timing model.

F/E bits have long been studied in non-GPU scenarios. For
example, the MIT Alewife processor [1] contained a F/E bit
per 32-bit word in memory, while the Multi-ALU Processor
(MAP) [24] placed F/E bits in the register file. The Heteroge-
neous Element Processor (HEP) [35] uses a single full/empty
bit for each register and memory word, while the Message-
Driven Processor (MDP) [11] marks each 32b word in registers
and memory with a 4b tag, which acts as either a full/empty
bit or a type indicator. The Tera/Cray MTA [2] and Eldorado
[14] computers contained a set of four synchronization bits
per 64-bit word in memory. The first two, a F/E bit and a
trap bit used as support, indicated whether data was present

or not. A second trap bit marked unallocated words to help
in debugging. Finally, a forwarding bit indicated that the data
line itself contained an address. On accesses to lines that were
not ready, the architecture would retry the access a number of
times before passing control to a trap handler. More recently,
the Godson-T processor [12] uses full/empty bits along with a
hardware data transfer agent as part of an efficient mechanism
for transferring data between its cores. Finally, we note that
other throughput-oriented approaches like the Cell processor
[33] might benefit from F/E bits in addition to their DMA
support.

Full/empty bits have been incorporated in other ways as
well. One study integrated F/E bits with cache coherence to
support fine-grained synchronization for shared memory mul-
tiprocessors [40]. Others have focused on algorithms research
using F/E bits [5]. Our work takes F/E bits to GPUs, with
the specific goal of improving performance and CPU-GPU
overlap. In the GPU arena, the only prior use of F/E bits was
as part of a framebuffer proposal, in which they were used for
reliability rather than performance enhancements [34].

9. Discussion

Our study of fine-grained synchronization for GPUs estab-
lished the large (26%) payoff for F/E bits and related API
changes. Given the large payoff, there are further tradeoffs to
explore in future work. For example, adjusting the granularity
at which data is tracked and transmitted will allow architects
to find the best balance between hardware overhead and per-
formance. Applications like BFS benefit from fine granularity
to properly handle less-predictable data structures. In fact,
graph and sparse matrix calculations of this type, in addition
to scientific applications, are seeing increasing commercial
usage. On the other hand, for dense numeric code, associating
F/E bits with larger blocks of addresses might be sufficient, as
each individual piece of data would only briefly be delayed
waiting for the rest of its block to finish. Similarly, the total
size of the memory space for which data is tracked with F/E
bits will influence the placement of the bits themselves. If the
total storage required is small enough, it may become benefi-
cial to move the F/E bits into the memory controller itself in
exchange for being able to track a smaller space.

It is also critical to understand the best interface to these
software bits from software. Our work used a simple host API
interface while leaving the F/E bit triggers and actions fixed
for GPU code. Additional benefits might come from giving the



GPU more detailed control of the F/E bits, thereby enabling
an even more customizable CPU-GPU producer-consumer
relationship. In addition, a further application-driven study of
possible override conditions may help more benchmarks make
better use of them.

Finally, our results serve as a reminder that the communica-
tion between CPU and GPU is in fact a critical component of
the runtime of GPU workloads. As the architectures of both
discrete and integrated GPUs continue to evolve rapidly, it is
crucial that both the latency and the throughput behavior of the
chips be taken into account. This will enable GPUs be used to
speed up the performance of a wide range of workloads.

10. Conclusion
Overall, our work makes several important research contribu-
tions. First, we demonstrate that F/E bits and related APIs
can have substantial performance impact on a range of ap-
plications. Across our suite of latency-sensitive kernels, we
measure improvements of 26% on average, and 43% in the best
case. More broadly, by reducing the data transfer and launch
overheads associated with GPU offloading, our work has the
potential to considerably broaden the space of applications
that can benefit from GPU acceleration. For example, in a
vectorAdd kernel, our techniques shifted the GPU breakeven
point from vectors of 128K elements down to vectors of 32K
elements. This increases the applicability of GPU acceleration
and makes GPU adoption less likely to lead to performance
surprises. Finally, our work is underpinned by detailed sim-
ulations and real-system measurements. Our experimental
infrastructure can be valuable to other researchers on similar
topics and is publicly available.
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