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Abstract—Recent research has uncovered a broad class of se-
curity vulnerabilities in which confidential data is leaked through
programmer-observable microarchitectural state. In this paper,
we present CheckMate, a rigorous approach and automated tool
for determining if a microarchitecture is susceptible to specified
classes of security exploits, and for synthesizing proof-of-concept
exploit code when it is. Our approach adopts “microarchitec-
turally happens-before” (µhb) graphs which prior work designed
to capture the subtle orderings and interleavings of hardware
execution events when programs run on a microarchitecture.
CheckMate extends µhb graphs to facilitate modeling of security
exploit scenarios and hardware execution patterns indicative of
classes of exploits. Furthermore, it leverages relational model
finding techniques to enable automated exploit program synthesis
from microarchitecture and exploit pattern specifications.

As a case study, we use CheckMate to evaluate the suscepti-
bility of a speculative out-of-order processor to FLUSH+RELOAD
cache side-channel attacks. The automatically synthesized results
are programs representative of Meltdown and Spectre attacks.
We then evaluate the same processor on its susceptibility to a dif-
ferent timing side-channel attack: PRIME+PROBE. Here, Check-
Mate synthesized new exploits that are similar to Meltdown and
Spectre in that they leverage speculative execution, but unique
in that they exploit distinct microarchitectural behaviors—
speculative cache line invalidations rather than speculative cache
pollution—to form a side-channel. Most importantly, our results
validate the CheckMate approach to formal hardware security
verification and the ability of the CheckMate tool to detect real-
world vulnerabilities.

Index Terms—hardware security, automated verification, rela-
tional model finding, exploit synthesis, side-channel attacks

I. INTRODUCTION

Starting with the January announcement of Meltdown [1]
and Spectre [2], 2018 has been the year of the hardware
security exploit. Meltdown and Spectre effectively enable an
adversarial process running on a susceptible microarchitecture
to leak privileged data (e.g., private kernel memory) with
high accuracy. Both attacks hinge on the fact that specu-
latively executed instructions are capable of polluting CPU
caches. By inducing speculative execution and subsequently
performing the well-known cache timing side-channel attack,
FLUSH+RELOAD, Meltdown and Spectre can leak data that
was accessed while a processor was speculating.

A steady stream of speculation-based attacks have been
reported since the announcement of Meltdown and Spectre [3–
12]. All of these attacks are structured similarly in that
they leverage the effects of speculative execution on non-
architectural state to make sensitive information available to

software for extraction via some well-known side-channel
attack (e.g., FLUSH+RELOAD). What is novel and surprising
about these attacks is not the side-channel attack component,
but rather their clever ability to create practical working
exploits out of a variety of widely-implemented microarchi-
tectural features.

This observation highlights the importance of automated
verification techniques for identifying hardware behaviors that
can be exploited to leak sensitive data into a side-channel.
Because the state space is so large and designs are too
complicated to reason about manually, hardware and system
designers need the ability to reason rigorously about, and
ideally even automatically generate, all possible ways in which
microarchitectural features could be used to induce a side-
channel on a given microarchitecture.

Auto-generating exploit scenarios requires techniques for
modeling and analyzing them. Given that all of these
speculation-based attacks rely on leaking information via non-
architectural state (e.g., CPU caches), any techniques to ana-
lyze them must be able to account for implementation-specific
optimizations that may not affect architecturally-visible state
but that nevertheless result in variability across underlying
microarchitectural executions. This variability is what can
be detected with a simple side-channel attack. Thus, our
approach, named CheckMate1, adopts “microarchitecturally
happens-before” (µhb) graphs from prior memory consistency
model (MCM) work [13–17]. Originally, µhb graphs were
designed to model microarchitecture-specific program execu-
tions as directed graphs. Nodes represent microarchitectural
events of interest, such as a micro-op reaching some particular
point in the microarchitecture (e.g., a store entering or exiting
a store buffer); directed edges represent temporal “happens-
before” relationships between nodes (e.g., a store enters the
store buffer before it writes to the L1 cache).

CheckMate extends and adapts µhb graph analysis for
security in new ways. To facilitate modeling of security exploit
scenarios, we introduce the concept of an exploit pattern,
which we formulate as a µhb sub-graph indicative of some
class of exploits. Additionally, we leverage relational model
finding (RMF) techniques to facilitate automated exploit pro-
gram synthesis from CheckMate’s inputs, which are shown in

1CheckMate is open source and publicly available at
github.com/ctrippel/checkmate.
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(a) Pedagogical 2-core, 3-stage, in-order µarch

1. fact InOrder_Fetch {
2. all disj e0,e1 : Event |
3. ProgramOrder[e0,e1] =>
4. EdgeExists[e0,Fetch,e1,Fetch,uhb_inter]
5. }

6. fact InOrder_Execute {
7. all disj e0,e1 : Event |
8. EdgeExists[e0,Fetch,e1,Fetch,uhb_inter] =>
9. EdgeExists[e0,Execute,e1,Execute,uhb_inter]
10.}

(b) µspec model excerpt corresponding to (a)

ViCL Create

ViCL Expire

µarch structure where 
Reads get value

flush

reload

(c) FLUSH+RELOAD µhb pattern
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(d) Exploit patterns are design-agnostic. For exam-
ple, the exploit pattern in (c) specifies a malicious
event sequence that can be attached to (i.e., be
superimposed on) a µhb graph as here in (d). The
corresponding full µhb graph is shown in (e).
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(e) CheckMate-synthesized µhb graph exploiting
(c)’s FLUSH+RELOAD pattern that only requires
the presence of caches or similar structures (e.g.,
TLBs) that can by modeled with ViCLs (§III-A2).
The µarch structure where reads bind their value
in (a) is the Execute stage.

VA to PA Address Mapping: VA0 (PA1:V)
VA to Cache Index Mapping: VA0:IDX0
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(f) CheckMate-synthesized FLUSH+RELOAD secu-
rity litmus test corresponding to the µhb graph in
(e). The litmus test is extracted from the top of (e)
and contains two threads from different (attacker and
victim) processes that are time-multiplexed on the
same physical core.

Fig. 1: CheckMate requires two inputs: (i) a microarchitecture specification, as in (b), which is an axiomatic description of
a hardware design, as in (a), and its related OS support, and (ii) an axiomatic exploit pattern specification which can be
thought of as a µhb sub-graph, as in (c). CheckMate evaluates the microarchitecture’s susceptibility to the class of exploits and
outputs µhb graphs representative of implementation-aware exploit program executions. Given (b) and (c) as inputs, CheckMate
synthesized (e) and (f). CheckMate’s inputs and outputs are explained in more detail in §III.

Fig. 1. CheckMate requires two inputs: a formal specification
of a microarchitecture and its related OS support (Fig. 1b),
and a formal description of an exploit pattern (Fig. 1c). Both
are provided in an embedding of the µspec [15] domain-
specific language (DSL) in the Alloy DSL [18]. From these
inputs, CheckMate uses Alloy’s RMF backend to synthesize
programs that can induce the exploit pattern on the microar-
chitecture (Fig. 1f). CheckMate synthesizes small hardware-
specific programs which represent attacker programs in their
most abstracted form—i.e., security litmus tests, to borrow a
term from the MCM literature. In §VII-C, we demonstrate the
ease with which compact security litmus tests can be analyzed,
and how they can be extended to full exploits when necessary.
We summarize our contributions in the following paragraphs.

CheckMate: We develop CheckMate, an approach and
automated tool for determining whether a microarchitecture
is susceptible to a given class of security vulnerabilities.

µhb graphs for hardware security analysis: We make the
important and non-obvious observation that the event ordering
issues present in hardware MCM analysis are similar to those
relevant for hardware security analysis. This enables us to

re-purpose and augment µhb graphs (originally proposed for
verification of MCM implementations) for modeling hardware-
specific security exploit scenarios.

Security litmus tests: We propose security litmus tests as
a means of representing exploit programs in a form that is
abstracted for efficiency, but useful for security analysis. Their
compact nature enables efficient and interactive analysis with
formal techniques, yet they are easily transformed into full
executable programs when necessary.

Efficient hardware-aware exploit program synthesis:
Given only microarchitecture and exploit pattern specifica-
tions, CheckMate efficiently and automatically synthesizes
relevant µhb graphs and then in turn actual exploit programs.
To showcase the applicability of CheckMate to real-world
hardware security vulnerability detection, we conduct a case
study by first supplying CheckMate with a speculative out-of-
order (OoO) processor and a FLUSH+RELOAD cache side-
channel attack exploit pattern. From these inputs, Check-
Mate synthesizes programs representative of Meltdown and
Spectre attacks. Next, holding the microarchitecture constant,
we replace the FLUSH+RELOAD exploit pattern in our case
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study with a PRIME+PROBE exploit pattern. Here, CheckMate
generated new attacks—MeltdownPrime and SpectrePrime—
which leverage invalidation messages sent to sharer cores on a
write request (even if the write is speculative) in many cache
coherence protocols. As a proof of concept, we implemented
SpectrePrime as a C program and ran it on an Intel Core
i7 processor; it achieved 99.95% accuracy in leaking private
information over 100 runs. This result validates the CheckMate
approach to automated synthesis of real-world exploits.

II. BACKGROUND

Since attacks like Meltdown and Spectre exploit non-
architectural state updates and observable data-dependent vari-
ability across different executions of the same program, it is
important for hardware security verification techniques to take
into account the subtle orderings and interleavings of micro-
architectural events when a program executes. This requires
modeling features including (but not limited to) caches, branch
predictors, and speculative memory accesses. This section
gives an overview of how some hardware features (specifically,
those most relevant to our case study in §VI) can be leveraged
to induce information leakage.

A. Cache Timing Side-Channel Attacks

Side-channel attacks threaten confidentiality by exploiting
implementation-specific behaviors with measurable dynamic
state: for example, execution time [19], updates to storage
elements [20], power consumption [21], resource sharing [22],
acoustics [23], and radiation [24]. Cache-based side-channel
attacks specifically target cache occupancy and rely on the
attacker being able to differentiate between cache hits and
misses.

Most cache side-channel attacks leverage timing as the
key mechanism for distinguishing cache hits from cache
misses [25]. Attackers monitor access times of their own or
the victim’s memory accesses in order to infer information
about victim memory. “Access-driven” and “timing-driven”
attacks both traditionally measure differences in access time.
Access-driven attacks measure timing of a single memory
operation [26], whereas timing-driven attacks measure timing
of an entire security-critical operation. While the CheckMate
approach can handle any security exploit scenarios result-
ing from hardware-specific event orderings and interleavings
during a program’s execution, our case study focuses on
two categories of access-driven cache side-channel attacks:
PRIME+PROBE and FLUSH+RELOAD [25]. FLUSH+RELOAD
is the exploit pattern leveraged by the original Meltdown and
Spectre attacks, and PRIME+PROBE is used by our case study
in §VI.

In traditional PRIME+PROBE attacks, the attacker first
primes the cache by populating one or more sets with its own
lines, and then it allows the victim to execute. After the victim
has executed, the attacker probes the cache by re-accessing its
previously-primed lines, timing the accesses for classification
as a cache hit or a cache miss. Longer access times (i.e., cache
misses) indicate that the victim must have touched an address

mapping to the same cache set as a primed location, thereby
evicting the attacker’s line.

Traditional FLUSH+RELOAD attacks have a similar goal to
PRIME+PROBE, but rely on shared virtual memory between
the attacker and victim (e.g., shared read-only libraries or
page deduplication), and the ability to flush by virtual address
(e.g., with the x86 clflush instruction). The advantage of
FLUSH+RELOAD attacks is that the attacker can identify a
specific line accessed by a victim rather than just a cache
set. The attacker initiates FLUSH+RELOAD by flushing one
or more shared lines of interest, and subsequently allows the
victim to execute. After the victim has executed, the attacker
reloads the previously flushed lines, timing the accesses to
determine if said lines were pre-loaded by the victim. A similar
attack, EVICT+RELOAD, does not rely on a special flush
instruction, but instead on evictions caused by cache collisions;
consequently the attacker must be able to reverse-engineer the
cache-replacement policy.

One fundamental insight of Meltdown and Spectre is that
microarchitectural speculation can be used to construct a
FLUSH+RELOAD attack that does not require shared virtual
memory between the attacker and victim. We describe this
next.

B. Vulnerabilities Caused by Speculation

Many processors employ hardware optimizations such as
speculation to improve performance. Speculative execution
permits instructions to initiate execution before it is known that
they will commit. As such, incorrectly speculated instructions
will be squashed after they have begun executing. Until
recently, it was assumed that “erasing” all architecturally-
visible effects of squashed instructions was sufficient to ensure
that speculation would not lead to any harmful side effects.

Unfortunately, 2018’s series of speculation-based attacks
leverage the effects of speculative execution on non-
architectural state. As a specific example, Meltdown and
Spectre leverage the effects of speculative execution on cache
state. Since a CPU cache can be polluted by instructions
that are eventually squashed, even if all architecturally-visible
effects are erased, microarchitectural effects remain that can
be observed. This can result in the leakage of privileged data
via the following steps:

1) The attacker sets up its Meltdown/Spectre exploit by
performing the Flush step of a FLUSH+RELOAD attack.

2) The attacker induces speculative execution of a read
instruction that accesses sensitive2 data. Meltdown and
Spectre perform this step in different ways; see below.

3) While in the window of speculative execution, the at-
tacker accesses non-sensitive data whose address is de-

2In some cases (e.g., Meltdown), the data being leaked lives in a different
architectural privilege level. In other cases (e.g., Spectre v2), both attacker
and victim data live in the same architectural privilege level, but each may be
accessible only by certain parts of the program (e.g., from within vs. outside
a sandbox). To make the distinction clear, we define sensitive data as that
which should only be accessible by the victim, and non-sensitive data as that
which is accessible by the attacker.
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pendent (via address calculation) on the sensitive data
returned by Step 2’s read access.

4) The attacker performs the Reload step of a
FLUSH+RELOAD attack to determine the address
of the non-sensitive memory access from Step 3.

5) From the address result of Step 4, the attacker determines
the sensitive data that was used to calculate it in Step 3.

Meltdown and Spectre achieve speculative cache pollution
in different ways. If a user process accesses kernel memory,
the permission check will eventually fail and cause the CPU
to trigger a fault. Meltdown exploits the fact that speculative
execution in some processors continues to execute subsequent
program instructions, and consequently modify cache state,
in the short window of time between the illegal memory
access and the corresponding CPU fault. Spectre induces a
victim (e.g., the operating system), via a mis-speculation past
a branch, to speculatively execute instructions that would not
have been executed during correct program execution.

Meltdown and Spectre provide a couple additional insights,
along with exposing vulnerabilities related to speculative
execution. First, unlike traditional FLUSH+RELOAD attacks,
Meltdown and Spectre demonstrate that the victim is not
necessarily required to execute between the flush and reload
phases. Second, Meltdown and Spectre demonstrate that an
attacker can leak data from any memory location (rather than
only shared memory [25]).

The above insights are a prime example of why automated
security verification with CheckMate can be so powerful.
Consider the first insight above. CheckMate enables the user to
define a single FLUSH+RELOAD attack pattern that is simul-
taneously capable of synthesizing exploits involving multiple
processes (e.g., attacker and victim processes interleaved as
in traditional FLUSH+RELOAD attacks) and a single process
(e.g., a single attacker process as in some speculation-based
attacks). This generality is not limited to processes; with
the same exploit pattern, CheckMate considers a wide range
of system and execution scenarios. For instance, synthesized
exploit programs may vary in their instruction composition,
number of physical hardware cores, and number of threads
of execution. The CheckMate-generated MeltdownPrime and
SpectrePrime attacks are examples of two-core exploits.

Regarding the second insight, the recent wave of
speculation-based attacks highlight that a variety of subtle
execution orderings in a program execution (e.g., address
dependencies between instructions) can lead to variability
across microarchitectural executions and thus induce a side-
channel; these are precisely the types of ordering relationships
that the CheckMate approach seeks to model using µhb
graphs. Furthermore, CheckMate evaluates a range of memory
partitioning and data sharing configurations that can indicate
the conditions under which certain attack scenarios involving
memory dependencies are possible.

III. CHECKMATE: µHB ANALYSIS FOR SECURITY

This paper leverages the observation that hardware security
analysis is actually in many ways similar to analysis of MCM

implementations. Specifically, both share two requirements: (i)
a way to determine if a specific program execution scenario is
possible on a given microarchitecture, and (ii) a mechanism for
analyzing microarchitectural event orderings and interleavings
corresponding to a program’s execution. The first requirement
is met by a core principle of µhb graph analysis that cyclic µhb
graphs represent impossible executions (i.e., executions that
are unobservable on the target microarchitecture). Intuitively, a
cycle in a µhb graph represents a scenario in which a physical
event happens before itself; i.e., a proof by contradiction that
the proposed execution is impossible. Similarly, acyclic µhb
graphs represent observable executions.

For the second requirement, we adopt µhb graphs from
prior MCM verification work, but extend and adapt them
in interesting ways for security verification. Specifically, we
first introduce the concept of exploit patterns to represent
hardware execution patterns indicative of security exploits as
µhb sub-graphs. Second, we leverage RMF techniques to fa-
cilitate implementation-aware exploit program synthesis. The
remainder of this section details how CheckMate transforms
the inputs of Figs. 1b and 1c into the outputs of Figs. 1e and 1f.

A. CheckMate Inputs

CheckMate requires two inputs: a microarchitecture specifi-
cation and specification of a class of exploits. Fig. 1 contains
examples that are referenced throughout this section.

1) Microarchitecture Specification: As prior work has
demonstrated, a microarchitecture and its related OS support
can be modeled axiomatically [13, 15]. An axiomatic microar-
chitecture specification defines hardware-supported micro-ops,
microarchitectural structures that micro-ops pass through at
various points of execution, and any hardware-specific execu-
tion event orderings (e.g., in-order Fetch or OoO Execute). To
encode microarchitecture specifications (i.e., µspec models),
CheckMate uses a µspec-like DSL [15], that is augmented for
security modeling and embedded within the Alloy DSL [18].
The µspec models used by CheckMate support descriptions
of complex microarchitectural features, such as branch pre-
diction, speculation, virtual memory, and user-level processes.

Fig. 1b provides an excerpt of a µspec model corre-
sponding to Fig. 1a’s pedagogical two-core, three-stage, in-
order hardware design. µspec models are essentially first-order
logic formulations of hardware designs, built on top of µhb
graph-related predicates. Examples of such predicates include
statements like ProgramOrder which evaluates to True if
the two micro-ops passed to it are in order in the instruction
stream, or EdgeExists which evaluates to True if there
exists a happens-before edge between the two nodes passed to
it (where a node is an 〈Event, Location〉 pair).

2) Exploit Pattern Specification: Exploit patterns are for-
malizations of hardware execution patterns indicative of secu-
rity exploit classes. Most basically, they are µhb sub-graphs.
For input into CheckMate, they are expressed using the same
DSL that is used for the microarchitecture specification input.
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Fig. 1c illustrates the exploit pattern we constructed for
FLUSH+RELOAD attacks3. The Value in Cache Lifetime
(ViCL) abstraction referenced in the figure is detailed in
§VI-A1. For the moment, “ViCL Create” and “ViCL Expire”
can be intuitively understood as “cache line create” and “cache
line expire,” respectively. The first pair of ViCL Create and
Expire nodes in Fig. 1c represent the attacker possibly having
the exploit’s line of interest residing in its cache at the
beginning of the attack. To officially start the attack, the
attacker uses an explicit flush instruction (or causes a cache
collision), to evict a virtual address of interest. This flush/evict
event is represented by the rectangle shaded with horizontal
red lines. If the first pair of ViCL Create and Expire nodes
correspond to the same virtual address that the flush/eviction
is targeting, we can draw a happens-before edge from the first
ViCL Expire node to the flush/evict event.

In the absence of any instructions between the flush and
reload events, FLUSH+RELOAD attacks expect to observe a
cache miss on the reload access, resulting in new ViCL Create
and Expire nodes. If, in the rectangle shaded with diagonal
gray lines, the evicted location was brought into the cache
by either (i) the victim accessing the same address (e.g., a
via a shared library) or (ii) a speculative operation that is
dependent on victim memory, the attacker will observe a cache
hit on its reload access and have the potential to infer victim
information it does not have permissions to access. The cache
hit is illustrated by the absence of ViCL Create and Expire
nodes for the reload access.

Another key insight of our approach is that we can re-
purpose the axiomatic modeling technique used to encode
µspec models in order to abstract away some implementation-
specific features and create more portable exploit specifica-
tions. The FLUSH+RELOAD exploit pattern is general to the
degree that it only relies on the presence of caches or similar
structures (e.g., TLBs) that can be modeled with ViCLs and a
particular microarchitectural structure (e.g., the Execute stage
of the pipeline in Fig. 1a), where reads from said structure
bind their value. This pattern is portable and can be applied
to a wide variety of microarchitectures or systems. When
combined with a microarchitecture specification, this pattern
will generate all program scenarios realizable on the microar-
chitecture (up to a user-specified program size) that can induce
a hit on the reload access. Fig. 1d and corresponding Fig. 1e
show the FLUSH+RELOAD exploit pattern superimposed on
the execution of a program (specifically the program in Fig. 1f)
on Fig. 1a’s microarchitecture. In §VI, the same pattern is
used to produce Meltdown and Spectre attacks on a different
hardware design.

B. CheckMate Outputs

1) µhb Graphs: The CheckMate approach ultimately trans-
forms the microarchitecture and exploit pattern specification
inputs into µhb graphs representative of hardware-specific

3Our FLUSH+RELOAD exploit pattern is general enough to additionally
capture EVICT+RELOAD attacks.

exploit program executions when the input microarchitecture
is susceptible to the input vulnerability. As in Fig. 1e, we
depict µhb graph nodes in a grid format; a node’s event
(i.e., micro-op) is denoted by the column label and a node’s
location is denoted by the row label. We have highlighted the
FLUSH+RELOAD exploit pattern from Fig. 1c in red nodes
and edges, a rectangle shaded with diagonal gray lines, and a
rectangle shaded with horizontal red lines.

Fig. 1e shows how exploit execution scenarios are repre-
sented as µhb graphs. Here, the Attacker (A) and Victim (V)
are two distinct processes that are time-multiplexed on the
same physical core and thus share an L1 cache. Yellow edges
connecting Complete events to Fetch events (and one red edge
from 〈A.I2, Complete〉 to 〈V.I0, Fetch〉) represent time-
multiplexing; a micro-op from one process must complete be-
fore a micro-op from another process is fetched. Dashed edges
show the order of the instruction stream through the pipeline;
given the pipe-stages are fully in-order, A.I1 is in the Fetch
stage before A.I2 is in the Fetch stage, and so on for Execute
and Commit. Black solid edges represent a single micro-op’s
path through the pipeline; each micro-op is in the Fetch stage
before it is in the Execute stage, etc. Blue edges and two red
edges from (〈V.I0, L1 V iCL Create〉 to 〈A.I3, Execute〉
and from 〈A.I3, Execute〉 to 〈V.I0, L1 V iCL Expire〉) are
specific to L1 cache ViCL Create and ViCL Expire events;
looking at A.I1, a cache line must be brought into the L1
cache (L1 ViCL Create) before it is read in the Execute stage,
and the read of memory must complete in the Execute stage
before the cache line is evicted from the L1 or invalidated (L1
ViCL Expire).

2) Security Litmus Tests: CheckMate conducts bounded
verification, meaning the user must specify a maximum pro-
gram size for synthesis (in terms of parameters such as the
number of physical cores, threads, instructions, and processes).
Ultimately, CheckMate outputs µhb graphs (Fig. 1e) that rep-
resent executions of security litmus tests (in Fig. 1f). Security
litmus tests are the most compact representation of an exploit
program, meaning they contain the minimal number of micro-
ops necessary to produce the exploit pattern of interest. They
are similar in concept to MCM litmus tests for concurrent
programs [27–30]. Security litmus tests are useful to output
because: (i) they are much more practical to analyze with
formal techniques than a full program due to their compact
nature, and (ii) they are nevertheless easily transformed into
full executable programs when necessary [27, 31, 32].

Consider the security litmus test in Fig. 1f which corre-
sponds to the µhb graph in Fig. 1e and which represents
a traditional FLUSH+RELOAD attack. The attacker performs
two reads and an intervening CLFLUSH operation all with
the same effective address and experiences a cache hit on the
second read due to a victim access that brought the memory
location back into the physically shared L1 cache. This litmus
test performs the attack on a single address, whereas a full
FLUSH+RELOAD attack would require scanning the entire
cache for the flush and reload accesses. Furthermore, the
litmus test assumes that cache is direct mapped. We choose
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to handle set-associativity with litmus test post-processing
that accounts for the cache replacement policy of the target
microarchitecture.

CheckMate can automatically generate a large volume of
tests so that the user can identify all of the vulnerable hard-
ware features. Given a FLUSH+RELOAD pattern, CheckMate
effectively generates all possible ways in which an input
microarchitecture could render the reload access a hit. Each
generated litmus test differs in some way, such as how the
attack is performed. For example, in our case study, synthe-
sized Meltdown and Spectre attacks exploit speculative cache
pollution whereas synthesized traditional FLUSH+RELOAD at-
tacks exploit the combination of shared read-only memory and
physical resource sharing between Attacker and Victim. Our
FLUSH+RELOAD pattern is also sufficiently general such that
in our experiments CheckMate generates alternative attacks
where the CLFLUSH instruction is another memory access
mapping to the same L1 cache line as the exploit’s target
address thereby evicting it (i.e., EVICT+RELOAD).

While the security community has historically placed em-
phasis on ad hoc discovery of concrete working examples of
exploits, we see benefits in automatically generating litmus test
abstractions of exploits that aid microarchitects in designing
secure hardware. §VII-C shows how security litmus tests make
the path to a full exploit clear.

IV. RELATIONAL MODEL FINDING FOR
IMPLEMENTATION-AWARE PROGRAM SYNTHESIS

CheckMate automatically synthesizes microarchitecture-
aware programs that feature user-specified exploit patterns of
interest. To implement this, we leverage RMF techniques. This
section introduces terminology and presents an unoptimized
version of CheckMate that we implement using the Alloy
RMF language [18]. §V contains the optimizations that make
CheckMate efficient.

A. Why Relational Model Finding?

Most basically, a relational model is a set of constraints
on an abstract system of atoms (basic objects) and relations,
where an N-dimensional relation defines some set of N-tuples
of atoms [33]. For example, a µhb graph is a relational model:
the nodes of the µhb graph are atoms, and the edges in the
µhb graph form a two-dimensional relation over the set of
nodes (with one source node and one destination node for
each edge). A constraint for a µhb graph might state that the
set of edges in any satisfying instance (i.e., any satisfying µhb
graph) is acyclic. Another constraint might state that the set of
nodes and edges in any instance must contain a specific µhb
sub-graph or pattern.

Finding instances of an exploit on a microarchitecture is
clearly model finding, and the use of µhb graphs is a good
fit for relational models; together that makes RMF a good fit.
Fortunately, optimized tools for efficient RMF already exist.
We use Alloy [18] as the language in which we implement
CheckMate, due to its easy-to-use DSL and efficient mapping
into SAT via its Kodkod backend [33]. Any solutions found by

the SAT solver are then translated back into the corresponding
relations in the original Alloy model so that they can be
analyzed by the user. The generality of this approach stands
in contrast to previous work on µhb graphs [15], which used a
custom solver incapable of capturing all of the features needed
for CheckMate.

B. Unoptimized Formulation of µspec Primitives in Alloy

Fig. 2 gives an overview of the CheckMate toolflow. Check-
Mate conducts microarchitecture-aware program synthesis in
effectively two stages. First, given a set of all available micro-
ops (as part of the µspec model) and a synthesis bound,
CheckMate deduces the set of all possible program executions
on the input microarchitecture. We refer to this set of program
executions as candidate executions [34]. Second, CheckMate
prunes the set of candidate executions to only those which
feature the desired exploit execution pattern. The result is a
set of all possible security litmus test programs (within the
synthesis bound) and all possible executions of those programs
(i.e., all interleavings of hardware execution events) that can
expose the exploit pattern on the input microarchitecture.

While CheckMate moves beyond MCM verification, some
MCM relations are relevant when generating candidate ex-
ecutions. Specifically, MCMs define communication-based
happens-before relationships that order micro-ops operating on
the same effective address; we refer to µhb edges reflecting
such relationships as com (or “communication”) edges. MCMs
also define dependency happens-before relationships (addr,
data, and ctrl) that affect ordering of dependent micro-ops
and a program order (or po) happens-before relationship that
orders micro-ops with other micro-ops that occur later in the
instruction stream.

As discussed in §III-A, the microarchitecture and exploit
pattern specifications supplied to CheckMate are expressed
in the (augmented) µspec-like DSL embedded in Alloy. In
order to interpret µspec models and leverage Alloy’s RMF
backend, CheckMate requires an Alloy formulation of the
following µspec primitives: addressable memory locations,
micro-ops (i.e., “events”), micro-ops that access memory (i.e.,
“memory events”), hardware locations, MCM relations (com
and po), µhb nodes, and µhb edges. These µspec primitives
are then used to construct µspec predicates such as the
ProgramOrder and EdgeExists predicates in Fig. 1b.

Fig. 3a presents an unoptimized formulation of µspec prim-
itives in Alloy. The figure shows four high level atoms or
“signatures” (sig) in Alloy syntax, along with other sigs
that extend from them. Each sig is essentially a set in Alloy.
Fig. 3b summarizes the set contents of the sigs we define.
Unfortunately, this naive approach suffers from inefficiencies
and poor scalability for our application scenarios, so Check-
Mate addresses these issues (see §V).

V. CHECKMATE TOOL: KEEPING IMPLEMENTATION-
AWARE PROGRAM SYNTHESIS TRACTABLE

The key to making CheckMate useful is keeping it efficient;
RMF is challenged by huge search spaces that are infeasible
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Fig. 2: Overview of the CheckMate toolflow. Inputs are listed across the top with arrows depicting when given inputs are used.
Outputs are listed across the bottom with arrows originating from the steps that produce them.

to analyze in terms of time or memory. Thus, when building
CheckMate, we paid close attention to constraining the solu-
tion space so as to minimize time wasted exploring redundant
solutions. Our techniques are not specific to Alloy and could
be used to improve the scalability of other RMF- and SAT-
based techniques for µhb analysis.

Although µhb analysis covers large search spaces, huge
portions of the space can be pruned quickly. Microarchi-
tecture specifications define concrete hardware locations and
hardware-enforced orderings, enabling us to frame the problem
intelligently to keep runtimes tractable. For example, the µspec
model specifies the set of locations that a specific type of
micro-op must pass through (e.g., during its path through the
pipeline). The µspec model can therefore statically determine
which nodes should be present. The key is to ensure that the
underlying tools (Alloy in this case) have the information they
need to perform this pruning.

With a naive node implementation like that in Fig. 3a,
Alloy will analyze many instances of the model that are
repetitive or symmetric. For example some instances/solutions
might be isomorphic to others except for arbitrary node
relabeling. Consider the security litmus test in Fig. 1f and
its corresponding µhb graph in Fig. 1e that contains 20
nodes. With no symmetry-breaking, a naive Alloy encoding
would cause Kodkod to generate 20! variants of this single
µhb graph corresponding to each of the different ways that
nodes could be assigned to the event location pairs. This
does not even include the number of ways in which edges
can be assigned to node pairs. While Alloy does have some
symmetry-breaking built in, its heuristics are not sufficient to
prune enough of search space to make microarchitecture-aware
program synthesis feasible. Fig. 3c shows the unoptimized
runtime explodes for practical microarchitectures.

A. Avoiding Re-Analysis of Isomorphic Graph Nodes

Problem sizes quickly become intractable without a way
to constrain nodes. Fig. 3a shows a naive way to represent
nodes would be as a new sig. In that case, we also need two

new relations describing the micro-op and location assigned
to each node. The exact µhb graph layout is known a priori
(i.e., a regular grid), but unfortunately, Alloy can only express
relations as SAT expressions to be concretized later by the
SAT solver. Thus, such an approach introduces two new large
degrees of freedom that do not even carry any semantic
content, resulting in a tremendous waste of computational
resources.

A more efficient mapping is to simply encode nodes as
a relation NodeRel, of type Event→Location. In this
way, the necessary mapping information is encoded directly,
reducing wasteful compute. Consequently, we can instantiate
a constrained and relevant set of µhb nodes. NodeRel maps
Event atoms to each of the specific Location atoms
that they must pass through in a valid execution. That is,
the instructions flow through the pipestages in a familiar
way. For Fig. 1e’s µhb graph: NodeRel = {〈V.I0, F etch〉,
〈V.I0, Execute〉, 〈V.I0, Commit〉, ...}.

B. Avoiding Re-Analysis of Isomorphic Graph Edges

Since µhb nodes are represented by the NodeRel rela-
tion of type Event→Location, µhb edges have the type
(Event→Location)→(Event→Location). An edge
of this type implies a happens-before edge from an instruction
at one location to a possibly different instruction at a possibly
different location.

Once all required edges have been added to a µhb graph,
cycle checking is performed by taking the transitive closure
of all edges and checking for reflexive edges (i.e., edges that
start and end at the same node). To constrain the model
finding problem to focus only on edges of interest, we cre-
ated various categories of edge relations that are ultimately
composed into a single relation, sub_uhb. For example, two
subsets of sub_uhb include: uhb_intra, which describes
intra-instruction edges, and uhb_inter, for inter-instruction
edges. By dividing sub_uhb into sub-relations, we drastically
reduce the exploration of graphs that result from adding edges
that would already be included in the transitive closure of
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1. sig Address { }

2. abstract sig Event { po: lone Event }
3. abstract sig MemoryEvent extends Event { address: one Address }
4. sig Write extends MemoryEvent { rf : set Read, co : set Write } 
5. sig Read extends MemoryEvent { fr : set Write }
6. fun com : MemoryEvent->MemoryEvent { rf + fr + co }
6. abstract sig Location { }
7. sig Node {
8. event: one Event,
9. loc: one Location,
10. uhb: set Node
11. }

(a) Unoptimized Alloy formulation of µspec primitives.

Alloy Signature Set Contains All...
sig Address addressable memory locations
abstract sig Event micro-ops
abstract sig MemoryEvent extends Event micro-ops that access memory
sig Write extends MemoryEvent micro-ops that write memory
sig Read extends MemoryEvent micro-ops that read memory
abstract sig Location microarchitectural structures
sig Node nodes in a µhb graph

(b) Contents of Alloy sigs (i.e., Alloy sets) from (a).
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(c) Performance: This chart illustrates the benefits of optimized (opt.) Check-
Mate (§V) over unoptimized (unopt.) CheckMate (§IV-B). Runtimes reflect
the time to generate all satisfying µhb graphs for a synthesis problem that has
only one solution. Unoptimized CheckMate generates 10s-100s of thousands
of duplicate or isomorphic µhb graphs without terminating (we did not
observe termination within a 24 hour limit), so we cap synthesis for those
cases at 50,000 graphs. The number of synthesized examples is noted inside
the bars; numbers greater than one indicate duplicate or isomorphic examples
that we filter (§V-C). CheckMate’s optimizations enable more targeted and
efficient program synthesis that terminates.

Fig. 3: Compared with §IV’s unoptimized CheckMate imple-
mentation, §V’s optimizations enable significantly improved
scalability with increasing hardware complexity.

edges. However, despite the distinct names assigned to each
category, all µhb edges are still treated equivalently by the
cycle checking that is ultimately performed to categorize a
potential solution program as observable or unobservable.

C. Constraining Solutions

In addition to node and edge optimizations, a third optimiza-
tion pertains to solution constraints. During the course of each
run, CheckMate generates µhb graphs representing each of
the synthesized program executions. If isomorphic µhb graphs
are reproduced with different labels (V-A), the same security
litmus test can be reproduced multiple times for the same run
of CheckMate. Filtering duplicate solutions produces a more
concise set of results.

Furthermore, there are cases where programs might be
symmetric or differ only in addresses being swapped. We

consider two results with this type of symmetry to be the
same, and filter one. Another issue arises with unbounded
relationships. For example, when modeling caches, there might
be a large or unbounded number of ways in which a system’s
caches could issue and respond to coherence messages. In
this case, the user can constrain the number of µhb edges
corresponding to the cache coherence activity to be a finite
number. This bounds the number of example programs that are
generated. If the user can identify a true upper bound to specify
as the constraint, then the generated set is still complete.
If a bound is set without knowing the true upper bound,
then the generated output programs may be an incomplete
set, but this is a performance vs. coverage tradeoff. Our
experience with litmus test symmetries is not unique, and other
related work employs various work-arounds [28, 29]. We use
a simple heuristic for eliminating duplicate security litmus test
produced by CheckMate, but techniques from prior work are
also applicable.

VI. CASE STUDY: SYNTHESIZING REAL ATTACKS

To showcase the applicability of CheckMate to modern
secure processor and systems design, we conducted a case
study to evaluate the susceptibility of a speculative OoO
processor to both FLUSH+RELOAD and PRIME+PROBE cache
timing side-channel attacks. When supplying CheckMate with
our microarchitecture and FLUSH+RELOAD exploit pattern,
CheckMate automatically generated security litmus test pro-
grams representative of Meltdown [1] and Spectre [2] at-
tacks. Upon switching the FLUSH+RELOAD pattern to a
PRIME+PROBE pattern, CheckMate synthesized new attacks
related to Meltdown and Spectre, yet distinct.

A. Specifying Attack Patterns

§III-A2 explains the exploit pattern we constructed for
FLUSH+RELOAD cache side-channel attacks. This section
describes the ViCL abstraction that was used to construct that
pattern and presents another exploit pattern we formulated,
specifically for PRIME+PROBE attacks.

1) Value in Cache Lifetime (ViCL): Modeling any type
of cache side-channel attack necessitates modeling cache
occupancy. To model cache occupancy, we use the ViCL
abstraction from prior µhb analysis work [14]. As Fig. 4
shows, a ViCL seeks to abstract the lifetime of a cache line
into two main events: a “Create” event and an “Expire” event,
which can then be used to reason about event orderings and
interleavings. A ViCL Create occurs when either (i) a cache
line enters a usable state from a previously unusable state, or
(ii) when a new value is written into a cache line. A ViCL
Expire occurs when (i) its cache line enters an unusable state
from a previously usable state, or (ii) a value in a cache line
is overwritten and no longer accessible. For read accesses,
ViCL Create and Expire nodes are not instantiated if the read
experiences a cache hit. In that case, the read is “sourced” from
a pre-existing ViCL. That is, the read receives its value from
another micro-op that has brought/written the location/value
into the cache.
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(b) PRIME+PROBE µhb exploit pattern; rectangles can contain any combi-
nation of nodes and edges.

Fig. 4: Modeling cache side-channel attacks with ViCLs.

Both of the cache side-channel attacks we consider in this
paper—PRIME+PROBE and FLUSH+RELOAD—fit a similar
format where the attacker conducts two primary accesses to the
same target address. The first access—the prime (resp. flush)
access in a PRIME+PROBE (resp. FLUSH+RELOAD) attack—
sets up the attack. The second (and subsequent) access—
the probe (resp. reload) access in a PRIME+PROBE (resp.
FLUSH+RELOAD) attack—completes the attack and is timed
for classification as a cache hit or miss. Cache hits and misses
for a load can largely be distinguished by the presence or
absence of new ViCL Create and Expire nodes, respectively,
in a µhb graph. This is not strictly true in all cases, since for
example a load may suffer a cache miss but a ViCL hit if
it accesses a line that already has a pending fill outstanding.
However, this situation will be uncommon in the more con-
trolled scenarios of interest in this paper, and hence we simply
consider it to be part of the noise in the signal. Although writes
always inherently produce new ViCLs, we analyze them the
same way we do reads, and we post-process them to generate
analogous cache-based timing attacks with a write rather than
a read as the second access.

2) PRIME+PROBE Exploit Pattern: Fig. 4b depicts the
PRIME+PROBE exploit pattern we constructed in an effort to
synthesize new exploits related to Meltdown and Spectre, but
leveraging a different side-channel attack. This pattern consists
of two consecutive memory accesses to the same address,
and new ViCL Create and ViCL Expire nodes for the second
access. To the extent that clean lines will not otherwise be
evicted (causing noise in the signal), this pattern signifies a
measurable timing difference and the potential for an attacker
to infer victim information it does not have permissions to
access when (i) the victim, evicts the attacker’s line (e.g., by
accessing a memory location that maps to the same spot in
the cache, causing a collision) or (ii) a speculative operation
that is dependent on victim memory evicts the line.

B. Experimental Setup

CheckMate augments µspec modeling with additional capa-
bilities and features including: distinct processes (e.g., attacker
and victim processes), private and shared address spaces,
memory access permissions, cache indices, coherence protocol
invalidation messages, speculation, and branch prediction. The
hardware design in our experiments is a 5-stage pipeline—
Fetch, Execute, Reorder Buffer (ROB), Permission Check
(PC), Commit—where processor cores have FIFO store buffers
and private L1 caches connected to main memory. The µhb
graphs in Fig. 5 reflect this design. The µhb graphs in
Figs. 5c and 5d additionally feature RWReq/RWResp execu-
tion events, which correspond to the points at which coherence
requests/responses are made/received for a given memory ac-
cess. We omit these locations from Figs. 5a and 5b since they
are not relevant for the Meltdown and Spectre security litmus
tests. The supported micro-ops in our µspec model are reads,
writes, CLFLUSH (analogous to x86’s clflush), conditional
branches, and full fences. The pipeline implements the Total
Store Order (TSO) MCM. Other micro-ops and/or MCMs are
easy to add or implement as desired; the CheckMate approach
is easily extensible.

In our runs of CheckMate, we take explicit steps to reduce
noise in the synthesized outputs. First, we make an attacker
assumption which mandates that the attacker will not cause
noise in our experiments (i.e., the attacker will not void its
own exploit). We assume for convenience that collisions are
the only mechanism by which cache lines can be evicted. In
other words, we categorize any evictions not due to collisions
as noise in the signal. This filtering also helps us avoid false
positives. Finally, we supply CheckMate with an additional
constraint that requires attacker programs end after they have
acquired the desired information from the victim (e.g., after
the probe step of a PRIME+PROBE attack).

Between the one processor input and two exploit pattern
inputs (i.e., FLUSH+RELOAD and PRIME+PROBE), we tested
two total (processor, exploit pattern) input combinations. For
these inputs, we ran CheckMate with increasing bounds until
an attack was found. We ran our experiments using Alloy
Version 4.2 [18] and Kodkod Version 2.1 [33], both of which
run as Java applications.

VII. RESULTS

A. Automatic Synthesis of Meltdown and Spectre

Figs. 5a and 5b depict µhb graphs synthesized by Check-
Mate which correspond to security litmus test programs rep-
resentative of the publically disclosed Meltdown and Spectre
attacks, respectively. The pattern from Fig. 1c that seeded
synthesis is highlighted in red nodes and edges and rectangles
shaded with horizontal red lines and diagonal gray lines in
each graph. The security litmus test itself is listed at the
top of each graph with per-core micro-op sequencing from
left to right. As the figures show, the security litmus test
is the most abstracted form of each attack; it only applies
to a single virtual address (see §III-B2). We also note that
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Fig. 5: Synthesized µhb graphs showing selected security litmus test executions for conducting Meltdown, Spectre, Meltdown-
Prime, and SpectrePrime attacks. Both (a) and (b) exploit the pattern in Fig. 1c, while (c) and (d) exploit the pattern in Fig. 4b.
The Store Buffer and Main Memory stages have been removed for clarity as these particular µhb graphs do not contain write
micro-ops. B PNT, T represents a branch that is mispredicted as “not taken.” CF represents a CLFLUSH micro-op. Table I
shows that (c) and (d) were synthesized with instruction bounds of 4 and 5, respectively. §VII-C explains why we include an
extra initial instruction for each here.

CheckMate outputs detailed meta-data such as (i) the index
that each virtual (or physical, if physically mapped) address
maps to in each cache, (ii) the physical address that each
virtual address maps to, (iii) the physical core that a micro-op
executes on, (iv) process access permissions for each address,
and (v) cacheability attributes of virtual addresses. For clarity,
Fig. 5 includes a simplified subset.

Fig. 5a demonstrates how the lack of synchronization be-
tween the permission check of a memory access and the
fetching of said memory location into the cache can result

in the FLUSH+RELOAD pattern of Fig. 1c; µhb graphs are
instructive and can suggest edges whose addition mitigate an
exploit by rendering the graph cyclic. Fig. 5b demonstrates a
similar scenario, but the lack of synchronization is between
the evaluation of the branch outcome in the Execute stage of
the branch and any subsequent fetching of cache lines. We
note that in our synthesized exploits, an Attacker (A) process
represents the Attacker executing instructions or a Victim (V)
executing Attacker-influenced instructions due to a branch or
jump misprediction.
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Exploit Inst. Output Attack Min. to Min. to Unique
Pattern Synth. 1 Synth. All Litmus Tests

FLUSH+RELOAD
4 FLUSH+RELOAD 3.91 6.32 8
5 Meltdown 19.53 55.48 6
6 Spectre 79.83 215.11 12

PRIME+PROBE
3 PRIME+PROBE 3.27 4.14 6
4 MeltdownPrime 15.73 16.78 4
5 SpectrePrime 64.87 67.27 8

TABLE I: Sample runtimes (averaged over 10 runs) for
generating various exploits. For both exploit patterns, we ran
CheckMate with increasing bounds and recorded the time to
synthesize the first exploit and all exploits within the bound.
For runtimes related to the FLUSH+RELOAD exploit pattern,
we omit RWReq/RWResp modeling as it does not produce
distinct results. The number of unique litmus tests reflects the
post-processing removal of duplicate and isomorphic results
described in §V-C. We do not include the post-processing
mentioned in §VI-A1. Lastly, for FLUSH+RELOAD attacks,
the filtered results only include those with a read preceding
the flush as the access that could have brought the target virtual
address into the cache initially.

Table I shows that CheckMate synthesized the first exploit
variant of both Meltdown and Spectre (and the other out-
put attacks) on the order of minutes. After generating the
first variant, CheckMate continually identifies others within
the user-provided verification bounds; CheckMate synthesized
Meltdown at an instruction bound of 5 and Spectre at an
instruction bound of 6. In addition to the instruction bounds
listed in the table, we also bound the number of virtual and
physical addresses to reduce the number of symmetric results
produced.

Other significant Meltdown and Spectre variants synthesized
by CheckMate include those which have a write instead of
a read for the speculative attacker access which brings the
flushed address back into the cache. This is due to modeling
a write-allocate cache. We have modeled the allocate portion
of a write instruction in two ways: using a read micro-op and
using a write-allocate micro-op. The results in Table I use
the former implementation. CheckMate also generated vari-
ants representative of EVICT+RELOAD attacks—rather than
a flush instruction, they use a colliding memory operation to
evict a line of interest from the cache to initiate the attack.
Our additional synthesized security litmus tests are provided
online [35].

For each output attack listed in Table I, CheckMate gen-
erated tens to hundreds of security litmus tests. CheckMate
synthesized all satisfying µhb graphs within the search space
and terminated after a reasonable duration (unlike unoptimized
CheckMate in Fig. 3c), which is noted in the table. Of the
large number of µhb graphs generated by CheckMate, a
sometimes significant portion, depending on the verification
case, correspond to duplicate or isomorphic results. Duplicates
can result from multiple encodings of the SAT problem by
Kodkod which happen to produce the same result modulo an
internal labeling of solver variables. Isomorphic results might

feature the attack targeting a different address. We post-process
CheckMate output to analyze only unique exploit variants. The
number of unique variants we identified is presented in Table I
for each output attack.

B. Automatic Synthesis of New Exploits: MeltdownPrime and
SpectrePrime

Figs. 5c and 5d depict µhb graphs corresponding to the
programs CheckMate synthesized representative of our new
MeltdownPrime and SpectrePrime attacks, respectively. These
new exploits rely on invalidation-based coherence protocols
in combination with PRIME+PROBE attacks. In particular, by
exploiting speculative cache invalidations, MeltdownPrime and
SpectrePrime can leak victim memory at the same granularity
as Meltdown and Spectre while using a PRIME+PROBE timing
side-channel. The pattern from Fig. 4b that seeded synthesis
is highlighted in red nodes and edges and a rectangle shaded
with diagonal gray lines in each of the generated examples.
The security litmus test is again listed at the top of each graph.

In the input microarchitecture used to synthesize these
attacks, we model the sending and receiving of coherence
request and response messages that enable a core to gain
write and/or read permissions for a memory location. Due to
this level of modeling detail we are able to capture perhaps
surprising coherence protocol behavior. Specifically, the co-
herence protocol may invalidate cache lines in sharer cores as
a result of a speculative write access request even if the write
is eventually squashed. These CheckMate-generated attacks
are split across two cores to make use of coherence protocol
invalidations.

Some other notable CheckMate-synthesized variants of our
Prime attacks featured a CLFLUSH instruction instead of
the write access for the mechanism by which an eviction is
caused on another core. This is under the assumption of cache
inclusivity, that such a flush instruction exists, and that virtual
addresses can be speculatively flushed. We have not observed
this speculative flushing variant on real hardware. Given that,
the microarchitecture used to gather the performance results
in Table I does not implement speculative flushes.

C. From SpectrePrime Security Litmus Test to Real Exploit

To demonstrate our coherence protocol invalidation-based
attack on real hardware, we expanded the SpectrePrime se-
curity litmus test of Fig. 5d to a full attack program. It is
possible to automate the process of expanding security litmus
test to full exploit programs. However, our intention is for
CheckMate to serve as a hardware designer’s assistant for
evaluating the resilience of their designs to attacks, rather than
an attack generator.

The synthesized SpectrePrime litmus test exemplifies the
attack on a single address. We extended the litmus test
according to the L1 cache specifications of the Intel Core i7
Processor on which we ran our experiments; our experimental
setup consisted of a Macbook with a 2.4 GHz Intel Core i7
Processor running macOS Sierra, Version 10.12.6. We then
used the original Spectre proof-of-concept C code [2] as a
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template to create an analogous SpectrePrime attack [12]. In
our experiments, we observed 99.95% accuracy in leaking pri-
vate information when running SpectrePrime on our hardware
setup, where this accuracy percentage refers to the percentage
of correctly leaked characters in the secret message averaged
over the course of 100 runs.

As we have noted, CheckMate synthesizes multiple poten-
tial exploit variants. For example, in the originally synthesized
SpectrePrime variant (with an instruction bound of 5), the
first read instruction on Core 0 in Fig. 5d was eliminated
entirely. This alternate attack mostly still worked, but with
much lower accuracy. Thus, single-writer permission is more
quickly returned to a core when it already holds the location
(VA1 in Fig. 5d) in the shared state.

D. Mitigations

After testing SpectrePrime, we evaluated the exploit with a
barrier between the condition for the branch that is speculated
incorrectly and the body of the conditional. We found that both
Intel’s mfence and lfence instructions were sufficient to
prevent the attack. Since Intel’s mfence is not a serializing
instruction intended to prevent speculation, it is possible that
the fence simply skewed other subtle event timings on which
our attack relies. It is also possible that the mfence was
implemented in a way that enforces more orderings than
required on our tested hardware. We did not investigate further.

Given our observations, and as confirmed by relevant com-
panies, current software techniques that mitigate Meltdown
and Spectre will also mitigate MeltdownPrime and Spec-
trePrime. On the other hand, microarchitectural mitigation of
our Prime variants will require new considerations. Meltdown
and Spectre arise by polluting the cache during speculation;
MeltdownPrime and SpectrePrime are caused by speculative
write requests triggering cache invalidation requests in a
system that uses an invalidation-based coherence protocol. We
expect that speculation-based security attacks will be a major
area of study in the coming years, and only with the rigor
and automation of a tool like CheckMate will we be able to
gain confidence in our ability to one day declare a speculative
microarchitecture provably secure.

VIII. RELATED WORK

Prior axiomatic MCM analyses at the software, ISA, and
implementation levels rely on graph-based happens-before
modeling and cycle checks [29, 34, 36–38]. Some of these
tools leverage RMF for directly comparing ISA MCMs, syn-
thesizing litmus test suites, and synthesizing MCMs. Other
work has looked at improving RMF techniques by modifying
Kodkod (Alloy’s backend) to handle higher-order relational
models [39]. We tested CheckMate with this Alloy variant, but
did not reap performance benefits. Furthermore, the security
litmus tests we advocate for here are related to analysis
techniques common in the MCM world [28, 30, 34, 36].

Many researchers have studied and implemented cache-
based, timing-driven side-channel attacks. Early exploits tar-
geted L1 data caches [40–44] and L1 instruction caches [45–

48], with more recent exploits focusing attack efforts on last-
level caches [19, 49–56] and even TLBs and page tables [57].
Related to how our Prime attacks use PRIME+PROBE to
“re-implement” the FLUSH+RELOAD-based Meltdown and
Spectre attacks, prior work has used PRIME+PROBE to im-
prove the resolution of LLC FLUSH+RELOAD attacks [58].
Recent work also demonstrated cache-based, storage-driven
attacks [20] and attacks on microarchitectural structures other
than caches and TLBs, such as branch predictors [59, 60].
CheckMate is capable modeling and analyzing the effects of
such hardware features on security. While our new attacks
are the first proposed speculation-based attacks which leverage
two cores and cache coherence protocol invalidations as part
of the covert channel, various aspects of coherence protocols
have been exploited for conducting different attacks [52, 61–
63].

Some prior work aims to automate cache attacks, called
cache template attacks [44, 53], but requires profiling applica-
tion’s executions. We aim to conduct early-stage verification.
The primary contribution of CheckMate is a new approach
and tool for evaluating the security of microarchitectures early
in the design process. Other work advocates for using model
checking to search for security vulnerabilities (particularly
time-of-check to time-of-use) in protocols [64]. Similar in
vein to CheckMate, CacheD [65] seeks to analyze programs to
identify memory accesses that are vulnerable to timing side-
channels. Instead, we identify vulnerable microarchitectural
components. Finally, recent work calculates probabilities of
various cache-based attacks on different system configura-
tions [66]. In the future, CheckMate could aid in this type of
analysis by focusing on the number of ways (false positives
included) in which an exploit scenario could occur.

IX. CONCLUSION

CheckMate is a formal methodology and automated tool
for efficiently and automatically synthesizing hardware- and
system-aware exploit programs. Microarchitecture designs are
complex and support their architectural specifications through
a range of hardware-specific orderings and optimizations. In
the absence of formal and automated techniques, this hard-
ware complexity in combination with process- and system-
level implementation detail significantly complicates the task
of achieving full-system security. Drawing from composable
axiomatic specifications of microarchitecture and systems
features, CheckMate can integrate analysis across different
modules to be more comprehensive than manual or prior
approaches. This enables experts in hardware design, systems
design, and security to collectively contribute their expertise
to verifying the security of computing systems.

Our work showcases the power and applicability of Check-
Mate for analyzing and protecting against a wide range of se-
curity vulnerabilities. CheckMate runs on specifications of real
processors and generates many variations of exploits without
false positives. As one example, out-of-the box CheckMate
generated over a dozen unique security litmus test variants
representative of the publicly disclosed Meltdown and Spectre
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attacks. CheckMate also synthesized new exploits related
to Meltdown and Spectre, but distinct—MeltdownPrime and
SpectrePrime. Overall, CheckMate represents an important
application of formal analysis techniques to hardware security
verification.
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