
Data Compression Algorithms for Energy-Constrained Devic es in
Delay Tolerant Networks

Christopher M. Sadler and Margaret Martonosi

Department of Electrical Engineering
Princeton University

{csadler, mrm}@princeton.edu

Abstract
Sensor networks are fundamentally constrained by the

difficulty and energy expense of delivering information
from sensors to sink. Our work has focused on garner-
ing additional significant energy improvements by devising
computationally-efficient lossless compression algorithms
on the source node. These reduce the amount of data that
must be passed through the network and to the sink, and thus
have energy benefits that are multiplicative with the number
of hops the data travels through the network.

Currently, if sensor system designers want to compress
acquired data, they must either develop application-specific
compression algorithms or use off-the-shelf algorithms not
designed for resource-constrained sensor nodes. This pa-
per discusses the design issues involved with implementing,
adapting, and customizing compression algorithms specif-
ically geared for sensor nodes. While developing Sensor
LZW (S-LZW) and some simple, but effective, variations
to this algorithm, we show how different amounts of com-
pression can lead to energy savings on both the compressing
node and throughout the network and that the savings de-
pends heavily on the radio hardware. To validate and eval-
uate our work, we apply it to datasets from several different
real-world deployments and show that our approaches can
reduce energy consumption by up to a factor of 4.5X across
the network.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; E.4 [Coding and Information Theory]: Data
compaction and compression

General Terms
Algorithms, Performance, Reliability

Keywords
Data Compression, Energy Efficient Communications, Mo-
bile Ad Hoc Networks, Wireless Sensor Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’06,November 1–3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00

1 Introduction
In both mobile and stationary sensor networks, collect-

ing and interpreting useful data is the fundamental goal, and
this goal is typically achieved by percolating data back to a
base station where larger-scale calculations or coordination
are most feasible. The typical sensor node design includes
sensors as needed for the application, a small processor, and
a radio whose range and power characteristics match the con-
nectivity needs and energy constraints of the particular de-
sign space targeted.

Energy is a primary constraint in the design of sensor net-
works. This fundamental energy constraint further limits ev-
erything from data sensing rates and link bandwidth, to node
size and weight. In most cases, the radio is the main energy
consumer of the system. For example, in a ZebraNet sens-
ing node which includes a power-hungry GPS sensor, radio
transmit and receive energy still represents around 60% of
the total energy budget [42]. That percentage can be even
higher in a Mica2 node [12], which features lower-energy
sensors and a shorter-range CC1000 radio.

Given the high proportion of energy spent on communica-
tions, it is natural to try to reduce radio energy. For this rea-
son, this paper examines data compression techniques geared
to improving sensor network energy. Tailoring data compres-
sion approaches to sensor nodes requires a few key shifts in
mindset, as we describe below.

First, standard compression algorithms are aimed at sav-
ing storage, not energy. As a result, compression ratio is
their fundamental metric. In this paper, we focus on en-
ergy savings as the primary metric instead. We consider
both the local energy tradeoffs for a single data-producing
node performing the compression, as well as the downstream
energy impacts for intermediate routing nodes who benefit
from handling less data.

Second, the potential for both local as well as downstream
energy savings suggests that more aggressive compute-in-
tensive compression strategies are worth exploring. Figure
1 highlights this with an energy-oriented comparison. For
three commonly-used sensor radios, we illustrate how many
compute cycles can be performed for the same energy us-
age as transmitting a single byte over the radio. (This graph
is based on real measurements of the three radios, summa-
rized in Table 2 later in the paper, and the TI MSP430 [35]
processor, which has emerged as a popular sensor proces-
sor choice.) The takeaway message from this graph is that
if a compression computation can result in even just one

byte of data reduction, then it is worth spending between
roughly four thousand (Chipcon CC2420) to two million
(MaxStream XTend) cycles of computation to accomplish
that compression. Clearly, compression algorithms with
some degree of intricacy are worth exploring! Note further
that these calculations only consider local energy consump-
tion at the compressing node; downstream energy savings
can further amortize the time/energy expense of compres-
sion.

Third, the memory size constraints of current and near-
future sensor processors require a re-examination of mem-
ory usage in compression calculations. While sensor pro-
cessors are showing increasing capabilities in each technol-
ogy generation, they still typically offer less than 50 kB of
code memory and even less data RAM. Thus, compression
algorithms originally geared for desktops or servers must be
restructured to reduce the code size footprint and dynamic
memory usage.

This paper evaluates lossless data compression options
and proposes novel approaches tailored to the unique trade-
offs and constraints of sensors. We explore lossless compres-
sion in this work because it is applicable to a wider variety
of applications, datasets, and users than lossy compression,
and we leave lossy compression for future work. The contri-
butions of this paper include:

• We propose and evaluate a family of basic lossless com-
pression algorithms tailored to static and mobile sensor
networks and applicable to a wide range of applications.
Evaluated by real-system measurements on a range of
sensor data sets, we find these algorithms can cut energy
consumption by 2X or more.

• We discuss additional steps for transforming or precon-
ditioning the data that can further reduce energy. For
“structured” sensor data, these transforms can further re-
duce energy consumption by roughly 3X compared to the
initial baseline requirements.

• We evaluate the downstream energy benefits of com-
pression on all subsequent intermediary nodes that re-
ceive and forward data, both for links with 100% trans-
mission reliability as well as for cases where some
packet loss and retransmission occurs. Overall, we find
that for realistic reliability scenarios, even sensor net-
works with very-low-energy communication can benefit
from time spent on data compression by amortizing the
time/energy/compute costs over the network.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 then presents our
measurement methodology in preparation for the results pre-
sented in Section 4 on the baseline compression algorithm,
methods for tailoring it to sensing, and a variant designed
for sensor data. Section 5 discusses methods for performing
preconditioning or data transformation steps to further im-
prove compression for certain structured data streams. Sec-
tion 6 quantifies compression benefits under different relia-
bility and replication scenarios, Section 7 offers a summary
and discussion, and Section 8 concludes the paper.

2 Related Work
Compression is a well-established research field, but sen-

sor networks present a new design space with new design

1

10

100

1000

10000

100000

1000000

10000000

CC2420 CC1000 XTend

Radio

In
st

ru
ct

io
n

C
yc

le
s

fo
r

S
am

e
E

ne
rg

y
as

O
ne

 B
yt

e
T

ra
ns

m
itt

ed

Figure 1. Number of TI MSP430F1611 compute cycles that can
be performed for the same amount of energy as transmitting
one byte over three radios.

tradeoffs and metrics. In particular, the small code and
data memories, and the primary focus on energy, call for
new approaches. In more traditional arenas, a large vari-
ety of compression algorithms have been proposed including
string-based techniques [19][32][43], entropy-based tech-
niques [11][15][40], and others.

Within the sensor networks community, some more tai-
lored data compression studies do already exist. One group
of prior work focuses on exploiting high spatial correlation
in data from fixed sensors in dense networks [10][14][26].
Our work, in contrast, is more general in its ability to handle
data from a range of systems, particularly those that are ei-
ther sparse or mobile, for which spatial data correlation is
uncommon. Another group of prior sensor-oriented com-
pression work has focused on data-centric routing and aggre-
gation [1][4][16][24][25][29][34]. Again, this researchoften
exploits high spatio-temporal correlation in the data streams
from dense, fixed sensor networks. While our proposals in-
clude some transforms for preconditioning structured data,
they do not assume any correlation based on spatial relation-
ships of sensor nodes or on temporality between packets of
data. As such, they are more general and are better equipped
to handle the sorts of low-correlation situations common to
mobile sensor networks. They can also be applied in concert
with some of these other techniques.

This paper focuses on LZW [39], which has received sig-
nificant research attention including so-called “embedded”
versions [17][18][23]. While these approaches do typically
use less memory than their counterpart algorithms aimed at
high-end machines, they are still not well-suited for sensor
applications. In some cases, their memory usage still ex-
ceeds the tens of kilobytes typical for sensor nodes. In other
cases, their assumptions about static dictionary entries are
not appropriate for sensor nodes where data is expected to
vary significantly over the duration of a deployment.

In one of the papers most closely related to our own, Barr
and Asanović specifically aim to trade computation energy
for compression savings [5]. There are, however, several
key differences between their work and ours. First, the goal
of their work is to re-evaluate existing, off-the-shelf com-
pression algorithms for mobile devices using energy as the
key metric as opposed to compression ratio. Our work, on
the other hand, proposes unique compression approaches
(and combinations of approaches) that are distinct variants
of prior techniques and are specifically tailored to the energy
and memory constraints of sensor nodes. Second, our work

1

10

100

1000

10000

S
-LZ

W
(U

s)

LZ
O

Z
Lib

ncom
press

bzip2

P
P

M
d

Algorithm

R
A

M
 (

kB
)

0

200

400

600

800

1000

S
-LZ

W
(U

s)

LZ
O

Z
Lib

ncom
press

bzip2

P
P

M
d

Algorithm

In
st

ru
ct

io
n

C
ou

nt
(x

10
00

)

Figure 2. Brief comparison of the compression algorithms pro-
filed in [5] and S-LZW (our algorithm). Left: The compiler
default memory requirement of the algorithm’s core table. The
line represents the amount of RAM on our MSP430 microcon-
troller. Right: The average number of instructions (given by the
SimIt StrongArm simulator [27]) required to compress 528B of
data from the four benchmarks we profile in this paper.

ties energy directly to specific radios from different points
across the sensor design space; this allows us to make con-
crete energy tradeoffs for a range of current and future sensor
nodes.

Additionally, the striking differences between their target
platform (233 MHz StrongArm with 32 MB RAM, a 16 kB
cache, and an external file system) and ours (4 MHz fixed-
point microcontroller with 10 kB RAM and 48 kB ROM)
require us to take a different approach to compression in
general. Our work studies data streams generated by actual
sensor deployments that we break up into independent 528B
blocks to ease transmission requirements, while their work
focuses on more generic data streams from text files or the
web which they compress in 1 MB blocks.

Figure 2 shows the instruction counts and the default core
memory usage of the algorithms evaluated in [5] versus our
LZW implementation for sensor nodes, S-LZW. None of the
algorithms they evaluated are directly transferable to oursen-
sor node becausethey were not designed for sensor nodes.
Four of the five algorithms have memory and/or processing
requirements that far exceed what our microcontroller can
provide. The exception is LZO, which they show consumes
the least of amount of energy to compress and send 1 MB of
data of all the algorithms they evaluated. The developers of
LZO implemented a version specifically for embedded sys-
tems such as ours called miniLZO. We will briefly evaluate
miniLZO in Section 4.4 and show that for sensor nodes, our
algorithm has a superior energy profile.

3 Methodology
This section describes the datasets we use for our tests,

the hardware on which the tests are performed, and the way
in which we evaluate energy consumption.

3.1 Datasets
To examine how compression algorithms perform in a

real-world deployment, we test them against datasets from
the SensorScope (SS) [30], Great Duck Island (GDI) [33],
and ZebraNet (ZNet) [42] deployments, plus a popular
benchmark, the geophysical dataset from the Calgary Corpus
(Calgeo) [6]. These datasets represent a large portion of the
sensor network design space: indoor, stationary networks;
outdoor, stationary networks; and outdoor, mobile networks

Comp.
Ratio

Comp.
Dataset

(first
Ratio Compressibility

528B)
(all)

SensorScope [30] 3.69 4.58 High
Great Duck
Island [33]

1.59 1.94 Medium

ZebraNet [42] 1.38 1.96 Medium-Low
Calgary Corpus
Geo [6]

1.11 1.49 Low

Table 1. Compression profile for experimental datasets based
on gzip.

respectively. Calgeo, which is comprised of seismic data, is
a commonly-used compression benchmark. We use the data
from the beginning of the real-world datasets; for example,
when we use 2 Flash pages (528 bytes) of data, that is the
first 528 bytes in the set. For Calgeo, the first 200 bytes have
a different profile from the rest of the dataset so we remove
those and use the next 528 bytes. We have also experimented
with data from elsewhere in the datasets and found that it did
not qualitatively change our conclusions.

These three real-world networks are Delay Tolerant Net-
works [13], which we define to be networks that may inten-
tionally buffer data before transmitting it. In practice, buffer-
ing may be done out of necessity, as in networks with long or
frequent disconnections, or as part of an energy conservation
mechanism, such as the work described in this paper. We es-
timate that it would have taken these networks between one
and four hours to collect 528B.

The ZNet dataset contains a combination of GPS data
and debugging data, which consists of mostly voltage data
and information on the performance of the network. The
GPS data has already been pre-compressed once with an
application specific algorithm based on offsets of past po-
sitions. As a result, the data actually fed into the compressor
is more variant over short time intervals than that of the other
datasets.

To give a snapshot of the variability in each dataset, we
compress them with the popular LZ77-based compression
algorithm gzip on our PC, and the results are displayed in
Table 1. These numbers provide initial insight into how well
our compression algorithms will perform on these datasets.

Our datasets exhibit temporal locality, but they do not
display the spatial correlation that other researchers in the
sensor network community are currently exploring; the data
from each node is important so we focus on lossless com-
pression in this work.

3.2 Experimental Platform
Although the actual sensor hardware used in the actual

deployments varies, we run all of our experiments on a TI
MSP430x1611 microcontroller (10 kB RAM, 48 kB on-chip
flash memory) running at 4 MHz, to allow for a fair compar-
ison [35]. It consumes just 5.2 mW, and is used in both the
Tmote Sky [21] and ZebraNet [42] sensor nodes. This mi-
crocontroller consumes about one-third as much energy per
cycle as the 8-bit Atmel ATmega128L microcontroller [3] at
the same frequency and voltage, and it has 2.5 times more

RAM. Moore’s Law improvements of this type mean that in-
creasingly capable processors will become commonplace.

Nodes in the original SS and GDI deployments transmit-
ted data as soon as it was generated; however, since these
networks are delay tolerant, we assume here that sensor read-
ings are stored in Flash until there is enough data to com-
press. Only sensor readings are stored and compressed; ad-
ditional information such as node ID and sample rate can be
added to the beginning of the transmission and would not be
transmitted with every set of readings.

Our board features a 0.5 MB Atmel Flash module [2]
that communicates with the microcontroller at a rate of 1
Mbps. The memory is broken into independent pages of 264
bytes, and this module consumes 512µJ to write a page to
nonvolatile memory, 66µJ to read a page, and a negligible
amount of energy when powered down. Data must be writ-
ten in multiples of the page size (we cannot save energy by
writing back data in smaller quantities), so we prefer to work
with data in multiples of this size.

For our tests, data to be compressed is stored in Flash
ahead of time and is read out a page at a time during the test.
It is then compressed and written back to Flash in pieces as
the output buffer fills and upon completion of the compres-
sion. Also, we assume that the pages have been pre-erased
and we do not perform flash erasures here.

Since we are using Flash memory, the compression times
are longer than if we only worked with RAM. This method
makes sense, however, because we can compress data blocks
of varying sizes without having to store the entire input and
output streams in the limited memory available. Each algo-
rithm therefore requires at least 528 bytes of RAM for one
page input and output buffers.

To measure the compression time, we connected a
LeCroy Waverunner 6030 oscilloscope to an unused pin on
the microcontroller. We drive a pin immediately before call-
ing the compression algorithm, and release the pin immedi-
ately upon returning from the algorithm.

3.3 Quantifying Energy
We quantify the energy savings compression achieves

both at the compressing node and throughout the network.
We evaluate our work with three different radios of different
ranges and power levels.

To exemplify short, medium, and long range radios, we
use the Chipcon CC2420 [9], the Chipcon CC1000 [8], and
the MaxStream XTend (at 500 mW transmit power) [20] ra-
dios respectively. They were chosen because they are built
into the Tmote Sky, Mica2 [12], and ZebraNet nodes so they
cover a large portion of the design space. The CC2420 is
more likely to be used in stationary systems, while the XTend
is more appropriate for mobile systems since the mobility
creates a need for increased range.

Table 2 shows the listed range and measured power data
for each radio. To measure power, we connected a low
ohmage, current sense resistor in series with the load to
be measured and used a DAQ to measure the voltage drop
over that resistor. Simple calculations yield the current flow-
ing through the load and from that, the power consumption.
We measured the power consumed by the XTend radio, the
microcontroller, and the Flash directly by cutting electrical
traces on a ZebraNet node that was running a basic com-

TX RX BaudRadio Range
Power Power Rate

Chipcon 46.7 mW 50.9 mW
CC2420

125 m
at 3V at 3V

70,677

Chipcon 64.5 mW 21 mW 12,364
CC1000

300 m
at 3V [31] at 3V [31] [36]

MaxStream 2.43 W 444.5 mW
XTend

15 km
at 5V at 5V

7,394

Table 2. Radio profiles obtained via measurements.

munication program on top of ZebraNet firmware. For the
CC2420 radio, we measured the system power of a Tmote
Sky node running a simple TinyOS-based communication
program and subtracted that from the system power mea-
sured when the radio was off (since we were unable to attach
a resistor in series with the radio directly). We obtained the
power values for the CC1000 from [31] and the throughput
from comments in the TinyOS source code [36].

The bandwidth listed for the XTend radio is for every
packet after the first in a string of packets (streaming mode).
However, every time the packet switches from receive mode
to transmit mode, the time required to transmit the first
packet increases by over 40% as the radios synchronize. Our
models account for this parameter.

We assume that data is transmitted in packets of 64 bytes,
with 10 bytes of header. These numbers are from the Ze-
braNet deployment, and they fit in reasonably with the state
of the art. The last packet in the chain only sends the header
plus the data remaining to be sent; for example, if we have
sent 270 bytes of data out of 300 total, the last packet will be
40 bytes.

4 Tailoring Compression Techniques for
Sensor Nodes

4.1 Overview and LZW Basics
LZW is a lossless, dictionary-based algorithm that builds

its dictionary as data is read in from the input stream
[39][41]. It is a good fit for sensor networks because the dic-
tionary structure allows it to adapt to fit any input and take
advantage of repetition in the data.

At the start, the dictionary is initialized to 256 entries,
one for each eight-bit character. It then executes the process
illustrated in Figure 3. An example is shown in Figure 4.

This algorithm has no transmission overhead and is com-
putationally simple. Since both the sender and the receiver
have the initial dictionary and all new dictionary entries are
created based on existing dictionary entries, the recipient can
recreate the dictionary on the fly as data is received.

To decode a dictionary entry, however, the decoder must
have received all previous entries in the block. Unfortu-
nately, sensor nodes never deliver 100% of their data to the
source. For this reason, our algorithm separates the data
stream into small, independent blocks so that if a packet is
lost it only affects the data that follows it in its own block
(Figure 5). Later in this subsection, we will experimentally
determine the appropriate size of these data blocks with a
bias towards smaller blocks that minimize the amount of data
that can be lost due to a packet drop. For now, our experi-

No

No

Take the first

Character
from the input

stream

Append the

next Character
to the String

Is the String in

the

Dictionary?

Yes
Is there more

data in the

input stream?

Yes

Add this string

to the
dictionary

Encode all of
the string

except the last

letter

Is there more

data in the
input stream?

No

Start a new

string with the
last letter from

this one

Yes

Encode the
string

Encode the

last letter of

the string

Figure 3. Flow chart of LZW compression.

Input Stream: AAAABAAABCC

Encoded String Output Stream New Dictionary Entry

A 65 256 - AA

 AA 65 256 257 - AAA

 A 65 256 65 258 - AB

 B 65 256 65 66 259 - BA

 AAA 65 256 65 66 257 260 - AAAB

 B 65 256 65 66 257 66 261 - BC

 C 65 256 65 66 257 66 67 262 - CC

 C 65 256 65 66 257 66 67 67

Figure 4. Example of LZW compression.

ments assume perfect transmissions. We explore imperfect
transmissions in Section 6.1.

To adapt the algorithm to sensor nodes, the dictionary can
be stored as a hash table with the base entries being the initial
dictionary. Strings can then be represented as branches from
that table so they are easy to locate. Further, we can make the
memory requirement manageable by keeping the dictionary
small. An implementation with a 512 entry dictionary re-
quires 2618 bytes (plus four bytes for each additional entry)
of RAM and 1262 bytes of ROM. This means that the algo-
rithm requires at least a quarter of the RAM available on this
chip; however, this is still feasible for current systems and
over time the amount of RAM available is likely to steadily
increase.

4.2 LZW for Sensor Nodes (S-LZW)
To adapt LZW to a sensor node, we must balance three

major inter-related points: the dictionary size, the size of the
data to be compressed, and the protocol to follow when the
dictionary fills. First, our memory constraints require that we
keep our dictionary size as small as possible. Additionally, as
mentioned, we want to compress and decompress relatively
small, independent blocks of data.

Both of these issues factor into our third decision regard-
ing what to do when the dictionary fills. The two options are
to freeze the dictionary and use it as-is to compress the re-
mainder of the data in the block, or to reset it and start from
scratch. Sensor data is changing over time so after the dic-
tionary is full, the entries in the dictionary may not be a good
representation of the data being compressed at the end of the
block. However, that is typically not a problem if the data
block is small since the dictionary will not fill until the block
has almost been completely compressed.

SENSOR DATA – N BYTES GENERATED OVER TIME

…528 B Block
(2 Flash Pages)

COMPRESSION
ALGORITHM

COMPRESSION
ALGORITHM

COMPRESSION
ALGORITHM

Compressed
Data

Compressed
Data

Compressed
Data

Independent groups of 10 or fewer dependent packets

… … …

…
…
…

528 B Block
(2 Flash Pages)

528 B Block
(2 Flash Pages)

Figure 5. Data is separated into individual blocks before being
compressed and divided into packets. Each packet in a shaded
block cannot be decompressed without the packets that proceed
it, but packets in different shaded blocks are independent of one
another.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

512

768

1024

U
nlim

ited

Dictionary Size

A
vg

. C
om

pr
es

si
on

 R
at

io

0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e
(s

)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

512

768

1024

U
nlim

ited

Dictionary Size

A
vg

. C
om

pr
es

si
on

 R
at

io

0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e
(s

)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

512

768

1024

U
nlim

ited

Dictionary Size

A
vg

. C
om

pr
es

si
on

 R
at

io

0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e
(s

)
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

512

768

1024

U
nlim

ited

Dictionary Size

A
vg

. C
om

pr
es

si
on

 R
at

io
0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e
(s

)

1 Page 2 Pages

4 Pages 10 Pages

Comp. Ratio Time

Figure 6. Average compression ratios and execution times for
our four datasets using LZW to compress a given number of
Flash pages of data.

We first determine the appropriate dictionary size for a
sensor node and the amount of data to collect before com-
pressing it. While we determine these values, we will freeze
the dictionary once it fills.
Dictionary Size: Our experiments focus on dictionaries of
512, 768, 1024, and for comparison, an unlimited number of
entries. Strings are encoded in 9 bits while the dictionary has
less than 512 entries, 10 bits while it has less than 1024 en-
tries, etc. Figure 6 shows how the average compression ratio
and execution time of our algorithm changes with dictionary
size when compressing data in blocks of 1, 2, 4, and 10 Flash
pages. With small data blocks, there is almost no difference
between the dictionary sizes.

With large amounts of data, however, the compression
ratio increases with dictionary size. For example, in com-
pressing 4 pages of ZNet data, there is over 12% penalty for
using a 512 entry dictionary instead of a 1024 entry dictio-

nary. In compressing 10 pages of SS, ZNet, and Calgeo data,
the size penalties are 56.7%, 14.3%, and 5.7% respectively.
The penalty occurs because with data blocks this large, the
dictionary fills and is fixed long before the entire block has
been compressed. Meanwhile, the sensor data is changing
over time, so by the time the algorithm reaches the end of
the block, the entries in the dictionary are no longer a good
representation of the data being compressed. Given these
results and our memory constraints, S-LZW will use a 512
entry dictionary from this point forward. As a direct result,
we will focus our experiments on data sizes of 4 pages or
less.
Data size: Next, we must decide how much data to compress
at once. We evaluate this algorithm for data block sizes of
one, two, and four Flash pages of data by compressing two
Flash pages in either one block or two individual one-page
blocks and four Flash pages in either one block or two indi-
vidual two-page blocks.

The compression ratio benefits significantly from com-
pressing data in a block of two pages rather than in two sep-
arate one page blocks. For the SS, GDI, ZNet, and Calgeo
datasets, there are improvements of 25.5%, 12.9%, 4.6%,
and 3.3% respectively. The large improvements for SS and
GDI are because they are more predictable over short periods
than ZNet and Calgeo. Therefore, dictionary entries created
for the first page are more applicable to the second.

When compressing data in a block of four pages rather
than in two blocks of two pages, though, the benefits de-
crease significantly. For the SS, GDI, ZNet, and Calgeo
datasets, there are improvements of 12.1%, 3.9%, -8.2%, and
2.0% respectively. It is better to compress the ZNet data in
two blocks of two pages because the dictionary fills before
the compression is complete and older entries are not appli-
cable to the data at the end of the block.

The compute times for compression have a similar pat-
tern. The time required to compress two pages of data with
the SS dataset is 24.5% less than the time required to com-
press two single pages of data. The GDI, ZNet, and Calgeo
datasets have more modest reductions of 1.7%, 5.3%, and
1.1% respectively. Savings come mostly from avoiding the
initialization time required to create and start building the
dictionary. When compressing four pages versus two sets of
two pages, though, the benefits level out. There is a 1.1%-
3.3% decrease when compressing four pages in a block de-
pending on the dataset.

Overall, the time required to accumulate the data to com-
press must be balanced with the compression ratio and ex-
ecution time. Since only the SS dataset sees a significant
increase in compression ratio when compressing data in four
page blocks instead of two individual two page blocks, S-
LZW will compress data in blocks of 528 bytes (2 Flash
pages).
Dealing with a Full Dictionary: Finally, we must revisit
the protocol to follow when the dictionary fills. Since we are
using a data block size of 528 bytes, the dictionary does not
fill until the block has almost been completely compressed.
Compared to the reset protocol, the fixed protocol completes
an average of 2.4% faster and the compression ratio is an av-
erage of 2.4% better. The fixed protocol is slightly faster be-
cause it does not have to reset the dictionary. Its compression

No

No

Take the first
Character
from the

input stream

Append the
next

Character to
the String

Is the String
in the

Dictionary?

Yes Is there more
data in the

input stream?

Yes

Add this
string to the
dictionary

and the MC

Is there more
data in the

input stream?

No

Start a new
string with

the last letter
from this one

Yes

Encode the
string

Encode the
last letter of
the string

Is the string,
minus the last
letter, in the

MC?

No

Yes

Encode with
complete

dictionary and
add a 0 bit on

the end

Encode with
MC and add

a 1 bit on
the end

Add this
entry to the

MC

Figure 7. Flow chart of S-LZW-MC.

ratio is slightly better because the dictionary is still relevant
for a short period of time after it fills up. Thus, S-LZW will
use a fixed protocol.

4.3 S-LZW with Mini–Cache (S-LZW-MC)
S-LZW is a good general compression algorithm, but it

does not take specific advantage of sensor data characteris-
tics. Sensor data tends to be repetitive over short intervals.
Even data that changes drastically over time tends to adhere
to this pattern because of short sample intervals designed to
catch those drastic changes in the data. To optimize for these
patterns, we propose a new idea for compression: adding a
so-called mini-cache to the dictionary.

The mini-cache is a hash-indexed dictionary of sizeN,
whereN is a power of 2, that stores recently used and created
dictionary entries. For our hash index, we use the last four
bits of the dictionary entry. This index is both simple and ef-
fective; recently created entries are given dictionary numbers
in sequential order, so they will wrap around the mini-cache
before overwriting each other. S-LZW with a 32-entry mini-
cache (S-LZW-MC32) requires 2687B of RAM and 1566B of
code (69B of RAM and 304B of ROM more than S-LZW).

As shown in the flow chart in Figure 7, this algorithm
follows the S-LZW algorithm until the encoding stage. Once
it has identified the dictionary entry, it searches the mini-
cache for the entry.

If the entry is in the mini-cache, the algorithm encodes it
with the mini-cache entry number and appends a ‘1’ bit onto
the end yielding an entry(log2N) + 1 bits long. If not, it
encodes the entry with the standard dictionary entry number,
appends a ‘0’ bit onto the end, and then adds this entry to
the mini-cache. A high mini-cache hit rate will allow the
algorithm to make up for the one-bit penalty on items not in
the mini-cache.

Once the entry is encoded, a new dictionary entry is cre-
ated just like in the S-LZW scheme and that entry is also
added directly to the mini-cache. This leaves the most re-
cently used and created entries in the mini-cache. An exam-
ple of this process is shown in Figure 8.

Input Stream: AAAABAAABCC

Encoded String
New

Output

New Dict.

Entry

Mini-Cache

Changes

Total Bits:

LZW

Total Bits:

Mini-Cache

A 65, 0 256 - AA 0-256, 1-65 9 10

 AA 0, 1 257 - AAA 1-257 18 15

 A 65, 0 258 - AB 1-65, 2-258 27 25

 B 66, 0 259 - BA 2-66, 3-259 36 35

 AAA 257, 0 260 - AAAB 1-257, 4-260 45 45

 B 2, 1 261 - BC 5, 261 54 50

 C 67, 0 262 - CC 3-67, 6-262 63 60

 C 3, 1 72 65

Figure 8. Example of S-LZW-MC.

0
0.5

1
1.5

2
2.5

3
3.5

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Ti
m

e
(s

)
0

0.5
1

1.5
2

2.5
3

3.5

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

T
im

e
(s

)

0
0.5

1
1.5

2
2.5

3
3.5

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Ti
m

e
(s

)

0
0.5

1
1.5

2
2.5

3
3.5

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Ti
m

e
(s

)

SS GDI

ZNet Calgeo

Comp. Ratio Time

Figure 9. Compression ratio and execution time for our base-
line algorithm (S-LZW) and its mini-cache variations (S-LZW-
MC8, MC16, MC32, MC64).

The most important design decision to make is the size
of the mini-cache. Intuitively, entries in smaller caches are
encoded in fewer bits but have a lower hit rate. We evaluate
our algorithm for powers of two between 8 and 64 entries
and our results are shown in Figure 9.

There is less than a 4.5% computation overhead for this
algorithm in all cases. The 32 and 64 entry dictionaries work
best here, and we see substantial gains in compression ra-
tio with the SS data compared to S-LZW (12.9% and 14.7%
for the 32 and 64 entry dictionaries respectively). The other
three datasets experience minimal improvements, but we will
explore ways to improve these results in the next section.

In addition to this simple hashing approach, we have also
experimented with other indexing algorithms such as LRU.
We omit them from this paper partly due to space constraints
and partly because they offered little benefit in compression,
but took much longer to compute.

4.4 Results: Local Energy Evaluation
Most prior compression work has used compression ratio

as the primary metric. In sensor networks, however, energy
is what matters. The next two subsections quantify the de-
gree to which even small size savings can lead to substantial
energy savings.

Local energy savings refers to the energy saved immedi-
ately on the compressing (originating) node versus just trans-
mitting the data without any compression at all. Section 4.5
will evaluate the downstream effects on other nodes.

For the base case without compression, local energy con-
sumption is just the energy required to transmit the whole
block of data. For a node with compression, it is the sum of
the energy required to transmit the compressed data, the en-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
S

G
D

I

Z
N

et

C
algeo

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
S

G
D

I

Z
N

et

C
algeo

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
S

G
D

I

Z
N

et

C
algeo

CPU Flash Radio

CC2420 CC1000 XTend

Figure 10. S-LZW-MC32 energy consumption with our short,
medium, and long range radios normalized to transmitting
without compression (values< 1 represent local energy sav-
ings).

ergy required by the microcontroller to compress that data,
and the energy consumed by the Flash module.

Our local energy evaluations in this paper account for the
following effects:

• Microcontroller compression energy: This consists of the
measured microcontroller power multiplied by the mea-
sured compression time.

• Flash read and write energy.

• Radio transmission energy: This consists of the radio
transmit power plus the microcontroller power multiplied
by the transmission time.

• Radio start-up and shut-down energy: The start up en-
ergy is derived from our power measurements and the
datasheet recommendations for the delay (1ms, 1.5ms,
and 100ms for the CC2420, CC1000, and XTend radios
respectively). When the radio is turned off, the power is
cut so shut-down is close to instantaneous.

Figure 10 shows the energy requirements of compressing
data with S-LZW-MC32 and transmitting it, normalized to
that of just sending the data in an uncompressed form. En-
ergy is broken up into microcontroller energy, flash energy,
and transmission energy.

In almost all cases, S-LZW offers energy savings. Our
medium and long range radios reduce energy by an average
factor of 1.7X across all four datasets over transmitting with-
out compression, including an energy reduction of a factor of
over 2.6X on the SS dataset.

With our short range radio, the CC2420, however, there
is a slight average increase in net energy consumption. This
is due to the cost of writing the final result back to our Flash
module; Flash energy accounts for an average of over 30% of
the total energy consumed. Using this radio but not the Flash,
we would reduce energy by 2.4X with the SS dataset and an
average of 1.6X over all four datasets. Even with the Flash,
though, compression offers further downstream benefits that
we will explore in the next subsection.
miniLZO: miniLZO [19] is an LZ77 derivative designed
with the processing, memory, and code size requirements
of embedded systems in mind. It compresses files by tak-
ing strings of three or more characters and replacing strings
that are repeated with pointers further back in the file. It is
derived directly from the LZO algorithm evaluated by [5],

which we discussed in Section 2. We evaluate it here for
completeness.

We found that miniLZO requires just 56% of the time to
run to completion as S-LZW. However, the compressed files
are 23.5% larger than those compressed by S-LZW. In fact,
it could not compress data from Calgeo at all because it is
hard to find repeating runs of three or more characters in that
dataset.

In terms of energy, we found that on average, S-LZW is
between 9.6% (CC2420) and 17.5% (XTend) more energy-
efficient than miniLZO and that miniLZO’s advantage in
compression time does not outweigh its poor compression
ratio. Based on these results, we do not consider miniLZO
further in this work.

4.5 Results: Downstream Energy
Compression conserves a large amount of energy in

downstream nodes. Downstream energy savings refers to the
energy saved by relay nodes when sending data in its com-
pressed form rather than its original form. Since these nodes
do not have to do any compression work, they willalways
save energy assuming the compressed data size is less than
the uncompressed data size.

Our downstream energy calculations in this paper account
for the following effects:

• Radio transmission energy.

• Radio start-up and shut-down energy.

• Radio receive energy: This consists of the time required
to receive all the data multiplied by the power required
to receive it.

From the local and downstream energies, we calculate to-
tal network energy, which is our metric for measuring the
overall network benefits of compression. A packet that trav-
els a single hop is considered to have traveled directly from
the compressing node to the basestation, so it does not con-
sume downstream energy. (We do not consider basestation
energy in this paper.)

To evaluate the effects of network scaling, we use the S-
LZW-MC32 compression algorithm since it performs well
for all of the datasets and all of the radios. Figure 11 shows
that as the network size and average hop count increases,
overall network energy savings increase linearly. Addition-
ally, this figure shows that the system saves more energy per
hop as radio range increases.

Overall, we can conclude this amount of compression is
almost always beneficial to the networkeven if there is a
small penalty on the compressing node. This is especially
important for relay nodes close to the basestation that are re-
quired to pass on a great number of packets; compressing
with S-LZW-MC32 reduces energy consumption with the
short and medium range radios at each intermediate hop by
up to 2.9X with the SS dataset and an average of 1.8X over-
all. These numbers are actually higher than those achieved
locally with the long-range radio, and this is due to the dif-
ference in start-up energy between the radios and the energy
required to receive the data on downstream nodes.
Decompression: Although the datasets we analyze do not
display enough data correlation to aggregate at intermediary
nodes, our methods can provide energy savings in systems
that can benefit from aggregation as long as intermediary

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

1 2 3 4 5 6 7 8 9 10

Hop Count

E
ne

rg
y

S
av

in
gs

 (J
)

(C
C

X
X

X
X

)

0
1
2
3
4
5
6
7
8
9

E
ne

rg
y

S
av

in
gs

 (J
)

(X
T

en
d)

CC2420 CC1000 XTend

Figure 11. Energy savings vs. hop count using GDI data and
S-LZW-MC32 for all three radios. CC2420 and CC1000 are
against the left axis, XTend is against the right.

nodes can decompress the data. We implemented S-LZW
decompression on our system and measured that the decom-
pression times were on average about 60% of the compres-
sion times, which is less than the amount of energy required
to send 34B with the short-range radio. Additionally, the
process was completed in about 57.1% of the time required
to send the data over that radio at the measured baud rate, so
the designer may be able to reduce the energy burden by de-
compressing the data while it is being received and the CPU
is already active. Since our datasets cannot benefit from this,
however, we do not explore the issue further in this work.
Flash Effects: Downstream energy savings are maximized
when intermediary nodes do not have to store relayed data in
non-volatile memory. However, in delay tolerant networks,
long disconnections can occur which would necessitate stor-
ing data in Flash. On systems with longer range radios, us-
ing non-volatile storage increases the energy requirementto
about the same as the local energy requirement plus the cost
of receiving the compressed data from the prior hop (we do
not incur computational energy costs here, but those are very
low in comparison). Alternatively, systems with short range
radios see a slightly larger net benefit because the compres-
sion energy is non-negligible.

Storing data on intermediary nodes is better than the alter-
natives, which are to drop packets once the buffer fills (what
most systems currently do), or to receive and store the un-
compressed data. Compared to receiving and storing the
data uncompressed, using S-LZW-MC32 saves an average
of 1.7X across the three radios. The SS dataset garners an
additional benefit because data is compressed to the point
where it fits into one flash page; other variants of this algo-
rithm presented later in this work can achieve this benefit as
well.

5 Data Transforms for Small Memory
Compression

The S-LZW-MC algorithm conserved energy by taking
advantage of characteristic locality patterns in the sensor
data. One way that we can possibly create additional pat-
terns in blocks of data is to transform them in a reversible
manner. In this section, we will evaluate transforms designed
to reorder the data in a way to make it easier to compress.

5.1 Burrows–Wheeler Transform
The Burrows–Wheeler Transform [7] (BWT) is a re-

versible transform central to the bzip2 compression algo-
rithm. By itself, the BWT does not shrink the size of the data;
its purpose is to make the data easier to compress. Here, we
explore its use as a precondition step before S-LZW.

The data transformation is accomplished by taking the
last column of a sorted matrix of shifted copies of our input
stream. Using the last column allows the decoder to recon-
struct the original data stream, but leaves the data organized
in a way that contains runs of characters.

In more capable computers, this transform is often used
as the first of a three part process. Typically, after the
BWT is performed, the data is run through a Move-to-Front
(MTF) encoder and then through an entropy encoder. How-
ever, MTF obscures higher order repetition that can be ex-
ploited by S-LZW. Our preliminary tests show that for all
four datasets we can achieve better compression ratios with-
out it, so we do not consider it in this paper.

Our implementation is a variant of one presented in [22],
modified to work with our 16-bit processor and Flash module
rather than a PC. It has a seven byte (1.33% of 528 bytes)
overhead to enable the decompression algorithm to reverse
the transform.

One disadvantage is that the BWT requires that we allo-
cate RAM for the entire input and output streams and for
a large buffer to perform the required sorts. However, we
can significantly reduce the memory requirement by sharing
RAM with the S-LZW back end. Implementing the BWT
in this fashion requires only 281 extra bytes of memory over
S-LZW, most of which is to store the entire stream to be
compressed with S-LZW, and this adjustment makes imple-
mentation reasonable for sensor nodes.
5.1.1 Compression Time and Size Results

Figure 12 plots the compression ratio and execution time
for the four datasets using BWT-based algorithms. BWT is a
helpful precondition that dovetails well with our mini-cache
approach. This transform creates runs in the data, which,
in turn, improve the mini-cache hit rate. The best compres-
sion ratio improvements are found with a 16 entry dictionary,
where the SS, GDI, and ZNet datasets see size improvements
of 39.7%, 11.0%, and 9.8% respectively over S-LZW with-
out the BWT.

These size improvements come with a computational
cost, however, due to the large number of string compares
required to perform the necessary sorts. We use an itera-
tive quicksort algorithm, with the required stack stored inthe
shared memory block, but our measurements show that the
S-LZW-MC-BWTalgorithms still require 0.32 to 0.35 sec-
onds to compress 528 bytes of data.
5.1.2 Local Energy Savings

Since BWT offers promising size improvements at con-
siderable computational cost, the local and downstream
(5.1.3) energy effects are the final arbiter of its utility.

The local energy costs for each of the three radios, nor-
malized to the energy required to send data without compres-
sion, are shown in Figure 13. For each bar, the bottom por-
tion represents the energy consumed by the microcontroller,
the middle portion represents flash energy, and the top por-
tion represents transmission energy.

GDI

0

0.5

1

1.5

2

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

0

0.5

1

1.5

2

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

0

1

2

3

4

5

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0

0.1

0.2

0.3

0.4

T
im

e
(s

)

0

0.5

1

1.5

2

S-LZW MC8 MC16 MC32 MC64

Algorithm

C
om

p.
 R

at
io

0

0.1

0.2

0.3

0.4

T
im

e
(s

)

SS

ZNet Calgeo

Comp. Ratio Time

Figure 12. Compression ratio and execution time for BWT-
based compression algorithms (Note that the y-scale on the
upper-left hand graph differs from the others.)

With the long-range radio, we achieve significant local
energy savings with the S-LZW-MC-BWT algorithms. Even
with the long computation time, the computation energy is
so small compared to the transmission energy that it can-
not even be seen on the graph. With this radio, the S-LZW-
MC16-BWT algorithm reduces energy consumption by an
average factor of 1.96X.

Moving to the mid-range radio, we still see some en-
ergy benefits. The SS dataset has close to a 3.0X improve-
ment and the energy costs when compressing the other three
datasets are within 4.1% of those incurred by the S-LZW-
MC32 algorithm.

With our short-range radio, the computational costs of
the BWT implementations are nearly half of the cost of just
transmitting the data without compressing it at all. When
combined with the costs of Flash storage, from alocal en-
ergy standpoint it does not seem worthwhile to use BWT-
based algorithms to compress the data for the CC2420.
5.1.3 Downstream Energy Savings

Downstream savings can make aggressive compression
worthwhile even when it does not save energy for the local
(compressing) node. On the short range radio, compressing
with S-LZW-MC16-BWT rather than with S-LZW-MC32
saves an average of about 10.7% more energy at each hop
(2.1X overall). By the third hop, however, we save energy
compressing data from all four datasets. This means that
in large networks, nodes with short range radios far from the
basestation begin to take on the same characteristics as nodes
with long range radios; it is worth spending a great amount
of energy processing data to avoid having to transmit it.

For the mid and long-range radios, both of which saved
energy locally, compressing with the S-LZW-MC16-BWT
algorithm saves an average of 9.9% more energy at each hop
than S-LZW-MC32 and an average factor of 2.04X overall.
5.2 Replacing BWT in Structured Datasets

To this point, we have assumed that we know very little
about the data we are trying to compress. However, if we
can identify a simple, reversible way to reorder the data, we
could surpass the gains obtained with BWT at a reduced en-
ergy cost.

For the SS, GDI, and Calgeo datasets, we know the exact
number and size of the data readings the nodes will gener-
ate every time they activate. Based on this, we will refer to

 S−LZW MC32 BWT MC16−BWT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

or
m

al
iz

ed
 E

ne
rg

y

 S−LZW MC32 BWT MC16−BWT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
ne

rg
y

SS GDI ZNet Calgeo

 S−LZW MC32 BWT MC16−BWT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
ne

rg
y

CC2420 CC1000 XTend

Figure 13. Local energy normalized against no compression for S-LZW and three variants (S-LZW-MC32, S-LZW-BWT, and S-
LZW-MC16-BWT). Values < 1 represent local energy savings. The bottom portion is computation energy, the middle portion is
Flash energy, and the top portion is transmission energy.

them as “structured” datasets. We also know that some of the
readings are identical over the short intervals and for the 16-
bit readings, even if two readings from the same sensor vary
moderately, they are likely to have the same most significant
byte.

In these cases, we propose that the system form a matrix
of readings in which each row is a set of readings taken at
a given time. We know the number and size of the readings
that are acquired when the node is activated, so each row will
be the same length. We keep filling the matrix until the to-
tal number of elements is as close to 528 bytes as possible
without breaking up a row. Finally, we transpose that matrix
and compress the data in that form. This Structured Trans-
pose (ST) is easy to execute and to reverse, and it groups data
in a way that is easier to compress than data transformed by
BWT.

This implementation has a similar memory penalty to
BWT, requiring 266 bytes more RAM than S-LZW (assum-
ing a 528 byte block of data) and 16 more bytes of code. In
both cases, the entire input stream must be read into RAM
for the transformation, and again we share memory with the
S-LZW back-end to alleviate the problem. Adding the ST to
the S-LZW-MC schemes yields similar penalties.

In this subsection, we also discuss the Run Length Encod-
ing (RLE) compression algorithm. We did not consider RLE
earlier because it does a uniformly poor job of compressing
the raw sensor data; that data is unlikely to have long runs of
identical characters. However, the ST creates these runs, so
this algorithm is an option worth exploring here.

RLE is a lossless, computationally simple algorithm that
replaces runs of characters with character counts. Any runs
of two or more identical characters are replaced by two in-
stances of the character plus the length of the rest of the run.
Single characters are left alone.RLE-STrequires 772 bytes
of program code and 814 bytes of RAM with the transpose,
mostly for the page-sized input and output buffers.

The ZNet dataset has no defined structure since the size
and order of the entries varies, so we do not consider it in
this subsection.

5.2.1 Compression Size and Time Results
The primary advantage to using the ST as opposed to the

BWT is that there are no string comparisons, so it is ex-
tremely fast, and therefore, much more likely to conserve

0

1

2

3

4

5

B
asic S

-LZ
W

S
-LZ

W
-S

T

M
C

2-S
T

M
C

4-S
T

M
C

8-S
T

M
C

16-S
T

R
LE

- S
T

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

T
im

e
(s

)

0

1

2

3

4

5

B
asic S

-LZ
W

S
-LZ

W
-S

T

M
C

2-S
T

M
C

4-S
T

M
C

8-S
T

M
C

16-S
T

R
LE

- S
T

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

T
im

e
(s

)

0

1

2

3

4

5

B
asic S

-LZ
W

S
-LZ

W
-S

T

M
C

2-S
T

M
C

4-S
T

M
C

8-S
T

M
C

16-S
T

R
LE

- S
T

Algorithm

C
om

p.
 R

at
io

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

T
im

e
(s

)

SS GDI

Calgeo

Comp. Ratio Time

Figure 14. Compression ratio and execution time for compres-
sion algorithms with the Structured Transpose (ST). Basic S-
LZW does not perform the ST.

energy on systems with short range radios. Figure 14 shows
the compression ratios and execution times for the RLE-ST,
S-LZW-ST, and S-LZW-MC-ST algorithms.

Running the S-LZW-ST based algorithms across the three
datasets, the SS, Calgeo, and GDI datasets compress an av-
erage of 2.3%, 12.3%, 22.3% faster than S-LZW, respec-
tively. This algorithm proves very effective with the mini-
cache since smaller mini-caches work well, so every hit
saves more bits. S-LZW-MC8-ST compresses best, with
compression ratios of 4.8, 2.4, and 1.5 for the SS, GDI, and
Calgeo datasets respectively.

RLE-ST proves to be the fastest algorithm we explore in
this subsection by far. Its compression time is 33.4%-39.2%
less than for S-LZW-MC8-ST. Additionally, it does a good
job of compressing the data with ratios of 3.1, 2.7, and 1.7
for the SS, GDI, and Calgeo datasets respectively.
5.2.2 Local Energy Savings

Figure 15 shows that large energy savings can be obtained
by compressing with the ST. All of the schemes yield energy
savings on all of the radios for all three datasets even when
compared to already-good S-LZW compression.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B
asic S

-LZ
W

S
-LZ

W
-S

T

M
C

2-S
T

M
C

4-S
T

M
C

8-S
T

M
C

16-S
T

R
LE

-S
T

Algorithm

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B
asic S

-LZ
W

S
-LZ

W
-S

T

M
C

2-S
T

M
C

4-S
T

M
C

8-S
T

M
C

16-S
T

R
LE

-S
T

Algorithm

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B
asic S

-LZ
W

S
-LZ

W
-S

T

M
C

2-S
T

M
C

4-S
T

M
C

8-S
T

M
C

16-S
T

R
LE

-S
T

Algorithm

N
or

m
al

iz
ed

 E
ne

rg
y

SS GDI Calgeo

CC2420 CC1000

XTend

Figure 15. Local energy normalized against no compression
(values< 1 represent local energy savings). All algorithms ex-
cept Basic S-LZW perform the ST.

On all of the radios, the SS dataset benefits from the S-
LZW-MC8-ST algorithm, due to the 45% improvement in
compression ratio over S-LZW without the ST. On our mid-
range radio, this translates to a 3.9X energy reduction. Over-
all with this radio, we reduce energy by an average factor of
2.8X.

For both the GDI and Calgeo datasets, RLE-ST performs
best because it is the fastest and has the best compression
ratio. With our mid-range radio, this reduces energy con-
sumption by a factor of 2.5X for the GDI data and 1.5X for
the Calgeo data. Additionally, RLE-ST achieveslocal en-
ergy savings with all three datasets on the short range radios;
it is the only algorithm we have explored so far for which
this is true.

The primary advantage of using the ST schemes over
distributed sensor node compression algorithms that require
previous knowledge of the data is that this ST can be done
locally on the original node. That allows it to work in het-
erogeneous networks and in networks with little to no data
correlation. Additionally, local and downstream energy sav-
ings are achieved earlier, since the data does not need to be
passed to a compressing node.

5.2.3 Downstream Energy Savings
With the mid-range radios, compressing the datasets

with S-LZW-MC8-ST is an average of 28.2% more energy-
efficient than using S-LZW-MC32 (no ST). This translates
to an overall energy reduction of 2.8X, including a reduction
of 4.5X for the SS dataset.

The RLE-ST algorithm provides significant energy re-
duction as well, and is preferred for the short range radio
in smaller networks since it achieves local energy savings.
Under these conditions we cut energy consumption on each
downstream node by an average factor of 2.4X compared to
transmitting without compression, an improvement of 21.2%
over S-LZW-MC32 (no ST).

6 Effect of Reliability and Replication on
Compression Benefits

To this point, we have assumed that packet transmissions
are perfect. However, in real networks, transmission are not
perfect and this can have a significant energy impact. Com-
pressing sensor data can have additional benefits as the num-
ber of retransmissions required increases. In this sectionwe
explore the benefits of compression in both networks with
variable reliabilities and in opportunistic, mobile systems
that use packet replication to increase the probability of suc-
cessfully transmitting packets to the sink.

6.1 The Effects of Reliability
To quantify the energy savings of compression in an unre-

liable network, we use our short range radio, GDI data, and
S-LZW-MC32 compression as an example, and trends ob-
served are representative of other datasets and compression
algorithms. We define reliability as the success rate of packet
transmissions.

Since we are only compressing and sending data in small
blocks, we use an out-of-order transmission protocol for this
work. In our model, the sender transmits the whole com-
pressed block, which is at most 10 packets. Packets are
modeled as being dropped independently at the prescribed
rate based on a Monte-Carlo model. The receiver then sends
a 32B acknowledgement that tells the sender which pack-
ets it received correctly and the sender retransmits what is
missing. If the transmission is not complete and the receiver
does not start receiving data immediately, it assumes that the
acknowledgement was lost and retransmits it. This process
iterates until the receiver has successfully received and ac-
knowledged the whole block. For each packet drop rate, we
take the average energy consumption from 1000 iterations of
the model. In the style of delay tolerant networks [13], we
also assume that retransmissions are only required over the
hop in which the packet was dropped rather than having to
restart from the source node. Given the costs of retransmis-
sions, this is a good way to implement reliability in sensor
networks.

Figure 16 shows how the network energy savings increase
as the success rate decreases when using the short-range
CC2420 radio. The increase in savings is due directly to the
increased number of retransmissions necessary in the sce-
nario. In this figure, the energy savings at each individual
point are measured against sending the data without com-
pression at the prescribed hop count and packet success rate.
At a given reliability, energy savings increases linearly with
hop count. At 100% reliability, this algorithm/data/radio
combination did not see local energy savings, but if relia-
bility drops to just 90% we do conserve energy locally. On a
two-hop network, we see an overall network energy savings
immediately.

Real deployments have exhibited comparably poor relia-
bilities. For example, Szewczyk et al. report that the GDI
deployment successfully delivered over 70% of its packets
to the sink in its single hop network, but one quarter of the
nodes in this setup delivered less than 35% [33]. The multi-
hop network delivered just 28%, although a number of these
losses were deterministic rather than as a result of node to
node drops. Most nodes were within five hops of the base-
station. Schmid et al. report that the SS deployment fared

0.30.40.50.60.70.80.91

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Average Packet Delivery Success Rate

E
ne

rg
y

S
av

in
gs

 (
J)

10 Hops
9 Hops
8 Hops
7 Hops
6 Hops
5 Hops
4 Hops
3 Hops
2 Hops
1 Hop

Figure 16. Network energy saved when sending a block of data
with compression at different reliabilities versus sending with-
out compression (higher is better). Based on GDI data com-
pressed with S-LZW-MC32 on a CC2420 radio.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

Range (m)

E
ne

rg
y

S
av

in
gs

 (
J)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

(R
el

.)

10 mW
100 mW
500 mW
Rel. at
10 mW
Rel. at
100 mW
Rel. at
500 mW

Figure 17. Local energy savings vs. transmission distance
for ZNet data compressed with S-LZW-MC32 and transmitted
with the XTend radio at different power levels. Dots (against
left axis): Energy saved versus sending without compression.
Dashes (against right axis): Reliabilities at different ranges.

slightly better, but the delivery rate quickly dropped below
50% as the average depth increased past two hops [30]. This
means that compression will be worthwhile across all setups.

The ZebraNet deployment featured mobile nodes, and re-
liability varied with range. Figure 17 depicts the local en-
ergy savings for ZNet data compressed with S-LZW-MC32
versus transmission distance on our long range radio at trans-
mission powers of 10 mW, 100 mW, and 500 mW (distances
measured in an urban environment). Even at short ranges,
the reliability is highly variant. As reliability drops, energy
consumption spikes. An interesting side note is that as the
transmission distance approaches the maximum range for a
given transmission power, increasing the transmission power
can actually save energy because of the improved reliability.
In our experiences with actual deployments, the observed re-
liability was worse and even more variant over range because
of the poor transmission conditions such as the lack of guar-
anteed line of sight, node movement during transmissions,
disruption of the signal by the animal’s body, and damage to
the antenna over time.

Given the high packet loss rates observed in all three of
these deployments, we can conclude that our compression

R*(ETX+ERX)

EMC+EF

…

…

R2*(ETX+ERX)

…

… Rn-1*(ETX+ERX) Rn-1*(ETX)

Base

Figure 18. A diagram of a replication scheme withR= 3.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7

Total Hop Count

E
ne

rg
y

S
av

in
gs

 (J
)

R=1 R=2 R=4 R=8

Figure 19. Energy saved at different replication totals forGDI
data compressed with S-LZW-MC32 protocol versus sending
without compression on a CC1000 radio as hop count increases.

algorithms would significantly increase the system’s life ex-
pectancy.
6.2 The Effects of Replication

Replication is a transmission strategy primarily used in
opportunistic, mobile systems that improves the speed and
probability of successfully delivering packets to the basesta-
tion by sending them to more than one node. It is central to
the epidemic routing scheme [37][38]. If you assume that the
first n− 1 nodes along the path each replicate the packetR
times and that the last hop only transmits back to the bases-
tation, the energy consumed by ann hop network is given
by:

E1 = EMC+EF +ETX

En = EMC+EF +

(

n−1

∑
i=1

Ri

)

∗(ETX+ERX)+Rn−1(ETX)

for n≥ 2

EMC andEF are the microcontroller and flash energies, and
ETX andERX are the transmit and receive energies (factoring
in the radio start-up and shut-down energies). The last set
of Rn−1 transmissions signify passing the data back to the
basestation. This equation is illustrated in Figure 18.

Figure 19 profiles the potential energy savings in systems
with replication. It presents the GDI data on a mid-range ra-
dio, but is representative of our other datasets. Each pointon
the x-axis represents the total hop count,n, son− 1 nodes
are allowed to replicate packets. The curves represent repli-
cation factors,R, of 1, 2, 4, and 8.

WhenR= 1, this system is the same as any normal packet
propagation scheme; each node sends to exactly one neigh-
bor and the last hop is to the basestation. As the number of

Radio Range?

Number of
Hops?

Data Composition?

Number of
Hops?

Structured General

Radio Range?
S-LZW-MC8-ST
2.3X/2.5X/2.2X

Savings

RLE-ST
1.9X Savings

S-LZW-MC8-ST
2.5X/2.3X
Savings

Few Many

Short Medium/
Long

S-LZW-MC16-BWT
1.7X/1.9X/1.8X

Savings

S-LZW-MC32
1.4X Savings

S-LZW-MC16-BWT
1.8X/1.8X
Savings

Few Many

Short Medium/
Long

Figure 20. Summary of the best algorithms in terms of network
energy savings in a network with few hops and with many hops
(energy savings based on networks with 2 and 5 hops, respec-
tively). Note that in networks with many hops, the algorithm
choice is irrespective of radio range and the savings listedare
for Short/Medium/Long-Range radios.

replications per hop increases, however, the energy savings
increases exponentially with hop count. These data are inde-
pendent of Section 6.1 and thus assume 100% reliability.

7 Summary and Discussion
In summary, we achieve local energy savings in almost

every situation we have explored in this paper. Additionally,
we have shown the significant downstream energy savings
achieved through compression. We have also shown that it is
often beneficial to the network overall to compress data even
if there is a local energy loss.

We find that a family of compression algorithms is more
appropriate for sensor networks rather than just using one,
and that the appropriate compression algorithm depends on
the hardware, the size of the network, and a priori knowledge
of the data’s structure. Figure 20 illustrates our findings.The
numbers represent the factor by which we reduce total net-
work energy (both local and downstream energy) in smaller
(2-hop) and larger (5-hop) networks.

In small networks with the short-range radio, the com-
putational requirement of the compression algorithm factors
into our decision and warrants a different algorithm than we
use for longer-range radios in the same scenario. For struc-
tured data, RLE-ST offers the best energy and it saves local
energy for all three datasets. On the other hand, S-LZW-
MC8-ST is more versatile and saves energy if there is at
least one downstream node. For unstructured data, S-LZW-
MC32 (no transform) also saves network energy overall in a
two-hop network, and the compression saves energy at nodes
close to the sink that relay lots of packets, so we recommend
this algorithm even on short-range radios. As the network
grows, though, the compression choice becomes indepen-
dent of the radio as the savings accumulate at each hop.

Although the energy profile of the Flash causes some of
our algorithms lose energy locally when using the short-
range radio, Flash technology is improving and Moore’s Law
dictates that the energy profile will continue to improve. Our
experiments are conducted with an older Flash module that
has been used in a number of sensor nodes and deployments.
As the technology improves, however, Flash energy will be-
come much less significant and store and forward data com-

munications will become even more attractive. This will im-
prove the benefits of compression in delay tolerant networks.

For networks with the XTend radio, compression garners
a huge net energy savings: 843 mJ per hop with S-LZW-
MC16-BWT and 1.1 J per hop with S-LZW-MC8-ST. The
percentage by which the energy is reduced is less than that
of the medium-range radio, however, because there is a large
energy cost incurred to activate this radio and begin a trans-
mission, and this cost is incurred at each hop regardless of
whether or not we compress data.

Navigating through a large group of algorithms can be
daunting to a system designer, so to help analyze our findings
we also compare our results against oracle (ideal) energy
savings. This value is derived by running all of our compres-
sion algorithms across all of the 528B blocks that compose
each dataset and using the most energy efficient algorithm to
compress each block. We found that for each dataset/radio
combination, at least one compression algorithm garnered
energy savings within about 3% of the Oracle. Therefore,
unless the one of the characteristic properties of the system
changes, a single algorithm will likely perform well through-
out the duration of the deployment. Additionally, for mo-
bile networks and networks with highly variant hop counts,
the need for longer range radios simplifies the decision since
with high energy radios the choice is the same for both large
and small networks.
Future Work: We would like to implement lossy compres-
sion algorithms that can be applied to a wide variety of sen-
sor applications with minimal effort. Such algorithms must
minimize computation while maintaining a specified accu-
racy, and this may be achievable with predictor-based algo-
rithms or with simple techniques derived from standard au-
dio and visual compressors.

We would then like to apply both lossless and lossy com-
pression algorithms to data from groups of nodes in dense
networks. If the network can determine the amount of corre-
lation in the data from those nodes at a minimal energy cost,
we may achieve network energy savings by aggregating and
compressing it with lossy techniques at an intermediate hop.
Additionally, we may save energy by compressing data on
the source node with the lossless techniques described in this
paper and then decompressing it at the aggregating node.

8 Conclusion
This paper explores the design issues and energy impli-

cations of implementing generalized, lossless compression
algorithms on delay tolerant sensor networks. We introduce
S-LZW, a novel LZW variant that exploits characteristic pat-
terns of sensor data to reduce energy consumption by more
than 1.5X as well as further data transforms that can take
advantage of the structure of the data to decrease network
energy consumption on average by over a factor of 2.5X.

These algorithms are relevant to a wide variety of sensor
hardware implementations and applications; we demonstrate
this by applying our algorithms to data from three different
real-world deployments and examining their effects on three
radios of different ranges and power levels. As radio energy
increases, so do the benefits of compression, since each byte
saved becomes increasingly significant. Through these eval-
uations, we show how compression accumulates substantial
energy savings at the compressing node and as data is passed

through every intermediary node between the source and the
sink.

Additionally, we show that compression has a greater im-
pact in networks with poor reliability. Published results of
real-world deployments have shown that the packet delivery
rate in multi-hop networks can easily be well below 50%
and that in mobile networks, reliability decreases sharplyas
the transmission distance increases. Under these conditions,
network energy savings more than double due to the need for
retransmissions or packet replication.

Overall, this work offers contributions at two levels. First,
we quantify the high leverage that compression has on en-
ergy issues for sensor networks. Building on that, we have
proposed and evaluated new algorithms and approaches tai-
lored to sensor network scenarios. This work offers a family
of solutions that span the broad design space of sensor net-
works.

Acknowledgements
We would like to thank Robert Szewczyk (UC Berkeley)
and Thomas Schmid (EPFL) for their help with the GDI
and SensorScope datasets respectively; Ken Barr and Kriste
Asanovic (MIT) for helping us re-evaluate their work with
respect to our platform; Pei Zhang (Princeton) for helping to
set up the sensor hardware and measurements; and our shep-
herd for this paper, Sergio Servetto (Cornell). This work was
supported in part by NSF ITR program (CCR 0205214).

9 References
[1] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu. PINCO: a Pipelined In-Network

Compression Scheme for Data Collection in Wireless Sensor Networks. InIEEE
Intl. Conf. on Computer Communications and Networks, 2003.

[2] ATMEL. AT45DB041B, 4M bit, 2.7-Volt Only Serial-Interface Flash with Two
264-Byte SRAM Buffers data sheet.http://www.atmel.com/, June 2003.

[3] ATMEL. 8-bit AVR Microcontroller with 128K Bytes In-System Programmable
Flash Datasheet.http://www.atmel.com/, 2004.

[4] S. J. Baek, G. de Veciana, and X. Su. Minimizing Energy Consumption in Large-
Scale Sensor Networks Through Distributed Data Compression and Hierarchical
Aggregation.IEEE Journal on Selected Areas in Communications, 2004.

[5] K. Barr and K. Asanović. Energy Aware Lossless Data Compression. InProc. of
the ACM Conf. on Mobile Systems, Applications, and Services(MobiSys), May
2003.

[6] T. C. Bell, J. G. Cleary, and I. H. Witten.Text Compression. Prentice Hall, 1990.

[7] M. Burrows and D. J. Wheeler. A Block-sorting Lossless Data Compression
Algorithm. Digital Systems Research Center Research Report, 124, 1994.

[8] Chipcon AS. Chipcon SmartRF CC1000 Datasheet rev. 2.3.http://www.
chipcon.com/, Aug. 2005.

[9] Chipcon AS. Chipcon SmartRF CC2420 Datasheet rev. 1.3.http://www.
chipcon.com/, Oct. 2005.

[10] J. Chou, D. Petrovic, and K. Ramchandran. A Distributedand Adaptive Signal
Processing Approach to Reducing Energy Consumption in Sensor Networks. In
Proc. INFOCOM, 2003.

[11] J. G. Cleary and I. H. Witten. Data Compression using Adaptive Coding and Par-
tial String Matching.IEEE Transactions on Communications, COM-32(4):396–
402, April 1984.

[12] Crossbow Technology, Inc. Mica2 Datasheet.http://www.xbow.com/, 2005.

[13] K. Fall. A Delay Tolerant Network Architecture for Challenged Internets.
In Proc. of the Special Interest Group on Data Communications Conf. (SIG-
COMM), 2003.

[14] D. Ganesan, B. Greenstein, D. Perelyuskiy, D. Estrin, and J. Heidermann. An
Evaluation of Multi-Resolution Storage for Sensor Networks. In First Interna-
tional Conference on Embedded Networked Sensor Systems, 2003.

[15] D. A. Huffman. A Method for the Construction of Minimum-Redundancy Codes.
In Proceedings of the I. R. E., 1952.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. InProceedings of
the Sixth Annual International Conference on Mobile Computing and Network-
ing (MOBICOM), Aug. 2000.

[17] H. Lekatsas, J. Henkel, and V. Jakkula. Design of an One-cycle Decompres-
sion Hardware for Performance Increase in Embedded Systems. In Proc. Design
Automation Conference (DAC), 2002.

[18] C. H. Lin, Y. Xie, and W. Wolf. LZW-Based Code Compression for VLIW
Embedded Systems. InProc. of the Design, Automation and Test in Europe
Conf. (DATE), 2004.

[19] Markus Oberhumer. LZO Real-Time Data Compression Library. http://www.
oberhumer.com/opensource/lzo/, Oct. 2005.

[20] Maxstream, Inc. XTend OEM RF Module: Product Manual v1.2.4. http://
www.maxstream.net/, Oct. 2005.

[21] Moteiv Corp. Tmote Sky: Low power Wireless Sensor Module Datasheet.http:
//www.moteiv.com/, Mar. 2005.

[22] M. Nelson. Data Compression with the Burrows-Wheeler Transform.Dr. Dobbs
Journal, Sept. 1996.

[23] E. Netto, R. Azevedo, P. Centoducatte, and G. Araujo. Mixed Static/Dynamic
Profiling for Dictionary Based Code Compression. InProc. Intl. Symposium on
System-on-Chip, 2003.

[24] S. Pattem, B. Krishnamachari, and R. Govindan. The Impact of Spatial Correla-
tion on Routing with Compression in Wireless Sensor Networks. InProc. of the
Symp. on Information Processing in Sensor Networks (IPSN), 2004.

[25] D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey. Data Funneling: Rout-
ing with Aggregation and Compression for Wireless Sensor Networks. InSNPA
Workshop, ICC 2003 Intl. Conf. on Communications, 2003.

[26] S. S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed Compression in a
Dense Microsensor Network.IEEE Signal Processing Magazine, pages 51–60,
March 2002.

[27] W. Qin. SimIt-ARM. http://simit-arm.sourceforge.net/, Mar. 2003.

[28] B. M. Sadler. Fundamentals of Energy-Constrained Sensor Network Systems.
IEEE Aerospace and Electronics Systems Magazine, TutorialSupplement, 2005.

[29] A. Scaglione and S. D. Servetto. On the Interdependenceof Routing and Data
Compression in Multi-Hop Sensor Networks. InProc. of the Intl. Conf. on Mo-
bile Computing and Networking (MOBICOM), 2002.

[30] T. Schmid, H. Dubois-Ferriere, and M. Vetteri. SensorScope: Experiences with
a Wireless Building Monitoring Sensor Network. InProc. of the Workshop on
Real-World Wireless Sensor Networks (RealWSN), 2005.

[31] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Simu-
lating the Power Consumption of Large-Scale Sensor NetworkApplications. In
Proc. of the ACM Conf. on Embedded Networked Sensor Systems (SenSys), Nov.
2004.

[32] J. A. Storer and T. G. Szymanski. Data Compression via Textual Substitution.
Journal of the ACM, 29:928–951, 1982.

[33] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An Anal-
ysis of a Large Scale Habitat Monitoring Application. InProc. of the ACM Conf.
on Embedded Networked Sensor Systems (SenSys), Nov. 2004.

[34] C. Tang, C. S. Raghavendra, and V. K. Prasanna. Power Aware Coding for
Spatio-Temporally Correlated Wireless Sensor Data. InIEEE Intl. Conf. on Mo-
bile Ad-Hoc and Sensor Systems, 2004.

[35] Texas Instruments. MSP430x161x Mixed Signal Microcontroller Datasheet.
http://www.ti.com/, Mar. 2005.

[36] TinyOS Community Forum. TinyOS.http://www.tinyos.net/.

[37] A. Vahdat and D. Becker. Epidemic routing for partiallyconnected ad hoc net-
works. InTechnical Report CS-200006, Duke University, Apr. 2000.

[38] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-Based Routing for Oppor-
tunistic Networks. InProc. of the Special Interest Group on Data Communica-
tions Conf. (SIGCOMM), Aug. 2005.

[39] T. A. Welch. A Technique for High-Performance Data Compression. IEEE
Computer, 17(6):8–19, June 1984.

[40] I. Witten, R. Neal, and J. Cleary. Arithmetic Coding forData Compression.
Commun. ACM, 30:520–540, June 1987.

[41] WxWiki. Z File Format. http://www.wxwidgets.org/wiki/index.php/
Development: Z File Format.

[42] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi. Hardware Design Expe-
riences in ZebraNet. InProc. of the ACM Conf. on Embedded Networked Sensor
Systems (SenSys), 2004.

[43] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977.

