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Abstract

Computer architecture has experienced a major paradigm
shift from focusing only on raw performance to considering
power-performance efficiency as the defining factor of the
emerging systems. Along with this shift has come increased
interest in workload characterization. This interest fuels two
closely related areas of research. First, various studies explore
the properties of workload variations and develop methods to
identify and track different execution behavior, commonly re-
ferred to as “phase analysis”. Second, a large complemen-
tary set of research studies dynamic, on-the-fly system man-
agement techniques that can adaptively respond to these dif-
ferences in application behavior. Both of these lines of work
have produced very interesting and widely useful results. Thus
far, however, there exists only a weak link between these con-
ceptually related areas, especially for real-system studies.

Our work aims to strengthen this link by demonstrating a
real-system implementation of a runtime phase predictor that
works cooperatively with on-the-fly dynamic management. We
describe a fully-functional deployed system that performs ac-
curate phase predictions on running applications. The key in-
sight of our approach is to draw from prior branch predictor
designs to create a phase history table that guides predictions.
To demonstrate the value of our approach, we implement a
prototype system that uses it to guide dynamic voltage and fre-
quency scaling. Our runtime phase prediction methodology
achieves above 90% prediction accuracies for many of the
experimented benchmarks. For highly variable applications,
our approach can reduce mispredictions by more than 6X over
commonly-used statistical approaches. Dynamic frequency
and voltage scaling, when guided by our runtime phase pre-
dictor, achieves energy-delay product improvements as high
as 34% for benchmarks with non-negligible variability, on av-
erage 7% better than previous methods and 18% better than a
baseline unmanaged system.

1 Introduction

The increasing complexity and power demand of proces-
sors mandate aggressive dynamic power management tech-
niques that can adaptively tune processor execution to the
needs of running applications. These techniques extensively
benefit from application “phase” information that can pinpoint
execution regions with different characteristics. Recognizing
these phases on-the-fly enables various dynamic optimizations
such as hardware reconfigurations, dynamic voltage and fre-
quency scaling (DVFS), thermal management and dynamic
hotcode optimizations [1, 4, 5, 7, 11, 15, 25, 28].

In recent years, studies have demonstrated different ap-

proaches to track application phase behavior, relying on ex-
ecution properties such as control flow [7, 10, 15, 20, 22, 23]
or power/performance characteristics [3, 5, 6, 12, 13, 26, 27].
While such studies provide useful insights to application be-
havior, most of these mainly focus on characterizations of
application behavior, summarizing application execution or
detecting repetitive execution phases. Few of these studies
[8, 14, 21, 24, 30] also seek to predict future application be-
havior. However, to be able to utilize different phase charac-
terizations effectively on a running system, there is need for
a general dynamic phase prediction framework that can be
seamlessly employed on-the-fly during workload execution.
Moreover, it is essential to provide a useful, readily-available
binding between application phase monitoring and prediction,
and dynamic, adaptive management opportunities, especially
on real system implementations.

In this work, we describe a fully-automated, dynamic phase
prediction infrastructure deployed on a running Pentium-M
based system. We show that a Global Phase History Table
(GPHT) predictor, leveraged from a common branch predictor
technique, achieves superior prediction accuracies compared
to other approaches. Our GPHT predictor performs accurate
on-the-fly phase predictions for running applications without
any offline profiling information or any static or dynamic mod-
ifications to application execution flow, and with no visible
overheads.

We demonstrate how our runtime phase predictors can ef-
fectively guide dynamic, on-the-fly processor power manage-
ment using DVFS as the underlying example dynamic power
management technique [9]. Our dynamic phase predictor ef-
ficiently cooperates with a DVFS interface to adjust proces-
sor execution on-the-fly for improved power/performance ef-
ficiency. This GPHT-based dynamic power management can
improve the energy-delay product (EDP) in our deployed ex-
perimental system by more than 15%. We also demonstrate
that our methodology can be used under different phase def-
initions that can be aimed at serving different purposes such
as bounding execution with performance degradation limits.
We evaluate our methods on the SPEC2000 benchmark suite,
with runtime monitoring using performance monitoring coun-
ters (PMCs), and real power measurements with a data acqui-
sition (DAQ) unit.

There are three primary contributions of this work. First,
we present and evaluate a live, runtime phase prediction
methodology that can seamlessly operate on a real system with
no observable overheads. Second, we demonstrate a complete
real-system implementation on a deployed system. Our imple-
mentation can autonomously function during native operation
of the processor, without any profiling or static instrumenta-
tion of applications. Nor does it require any underlying virtual
machine or dynamic compilation support. Third, we demon-



strate the application of our phase prediction infrastructure to
dynamic power management using DVFS as an example tech-
nique. Although we present our work with specific phase defi-
nitions and power management techniques, our runtime phase
prediction is a general framework. It can be applied to any
feasible definition of application phases and to other dynamic
management techniques, such as dynamic thermal manage-
ment or bounding power consumption.

The rest of the paper is organized as follows. Section 2 de-
scribes our phase definitions. Section 3 presents our runtime
phase prediction methodology and prediction results. Section
4 discusses the dependence of phase characterizations to dy-
namic management actions. Section 5 describes our prototype
real-system implementation. Section 6 provides our dynamic
management results. Section 7 summarizes related work and
Section 8 offers our conclusions.

2 Defining Phases
The key motivation for our work is to develop a phase pre-

diction technique that can be accurately applied at runtime ap-
plication execution to guide dynamic power management. We
describe and evaluate our proposed prediction technique in de-
tail in Section 3. However, first, in this section, we explain our
phase classification methodology, which we also use in the
evaluations of Section 3.

The fundamental purpose of phase characterization is to
classify application execution into similar regions of opera-
tion. This classification can be done via various features, de-
pending on the ease of monitoring and the goal of the applied
phase analysis. Similarly, how the observed features are clas-
sified into different phases depends on the target application.

In our work, to track application behavior, we rely on hard-
ware performance monitoring counters (PMCs), which can
be configured to monitor execution without disrupting exe-
cution flow. For system-level dynamic management, we de-
fine relatively coarse grained phases, on the order of millions
of instructions. This guarantees that monitoring of applica-
tion behavior—and dynamic management responses—do not
lead to any observable overheads. Our phase classifications are
constrained by two factors. First, our experimental platform,
described in greater detail in Section 5 supports simultaneous
monitoring of 2 PMCs. Therefore, our classifications of appli-
cation behavior can be based on only two configured counters.
Second, we monitor PMCs from within a performance mon-
itoring interrupt (PMI) routine. Therefore, we need a simple
classification method to avoid violating interrupt timing con-
straints as well as to have negligible performance overheads.
In addition, one of the counters has to be dedicated to mon-
itor micro-ops (Uops) retired, to trigger the PMI at specified
instruction granularities.

We refer to prior work for our choice of monitored PMC
events. Wu et al. [28] make use of event counter informa-
tion to assign application routines to different DVFS settings
under a dynamic instrumentation framework [19]. They de-
fine the ratio of memory bus transactions to Uops retired as
the measure of the “memory-boundedness” of an execution
region, and use the ratio of Uops retired to instructions retired
as a proxy to represent available “concurrent execution” in the
same region. These two metrics then determine the available
“CPU slack” in the application, which guides different DVFS
settings. For our experiments, we configure the remaining in-

dependent counter to track memory bus transactions. Thus,
the ratio of the memory bus transactions to our Uop granu-
larity represents the memory-boundedness of each observed
phase. We refer to this measure as “Mem/Uop” in the rest of
the paper.

In addition to Mem/Uop, the two configured counters, to-
gether with the time stamp counter (TSC), also enable simulta-
neous monitoring of Uops per cycle (UPC), which can provide
additional information on application behavior. These two
metrics have already been used cooperatively in other previ-
ous studies to guide dynamic power management [27]. How-
ever, for phase prediction to perform robustly under dynamic
management, our phase classifications have to be resilient to
the effects of dynamic management actions. As we demon-
strate in Section 4, while Mem/Uop behavior is virtually in-
variant to the responses of our dynamic management tech-
nique, UPC can fluctuate strongly. Therefore, for a simple,
yet robust phase classification that is largely invariant under
dynamic power management, we use Mem/Uop to define ap-
plication phases.

We classify Mem/Uop into different phases by observing
how different Mem/Uop rates are assigned to different DVFS
settings in Wu et al.’s description [28]. That work exam-
ines memory access rates and concurrency of different appli-
cations on a similar experimental platform. Then, it calcu-
lates the DVFS settings for different application regions based
on a performance loss formulation. For our phase defini-
tions, we convert these statistics to Mem/Uop rates and avail-
able concurrency ranges for each DVFS setting. As we do
not have the concurrency measure available for our runtime
monitoring and prediction, we base our phase classifications
to the derived Mem/Uop ranges for the common lowest ob-
served concurrency—i.e. Uops retired/instructions retired ≈
1. Based on this classification, we define 6 phase categories
as shown in Table 1. Conceptually, category 1 corresponds
to a highly CPU-bound execution pattern that should be run
as fast as possible, and category 6 corresponds to a highly
memory-bound phase, where the application can be signifi-
cantly slowed down to exploit available slack.

Mem/Uop Phase # 

< 0.005 1 (highly cpu-bound) 

[0.005,0.010) 2 

[0.010,0.015) 3 

[0.015,0.020) 4 

[0.020,0.030) 5 

> 0.030 6 (highly memory-bound) 

Table 1. Definition of phases based on Mem/Uop
rates.

3 Predicting Phases with a Global Phase His-
tory Table Predictor

In this section, we first discuss different prediction options
and describe our chosen technique. Afterwards, we present
our phase prediction evaluations. For a phase prediction tech-
nique that can perform well on all corners of benchmark be-
havior, we propose a Global Phase History Table (GPHT) pre-
dictor. There exist other prior history based predictors that



also target at estimating application performance characteris-
tics [8, 14]. However, predictors that simply rely on the statis-
tics of past behavior cannot perform well for highly variable
benchmarks. To demonstrate this comparatively, we also con-
sider some of the simple statistical predictors in our evalua-
tions.

The simplest statistical predictor is the last value predic-
tor. In this predictor, the next sample behavior of an appli-
cation is assumed to be identical to its last seen behavior.
In this case, predicted phase in the next interval can be ex-
pressed as Phase[t + 1] = Phase[t]. This can be extended to
encompass longer past histories by considering a fixed history
window predictor, where the predictions are based on the last
window size observations. In this case, the next phase pre-
diction can be phrased as Phase[t +1] = f (Phase[t],Phase[t−
1], ...,Phase[t−(winsize−1)]). The function f () can be a sim-
ple averaging function, an exponential moving average or a se-
lector, based on population counts. Another approach, similar
to fixed history window is a variable history window predictor.
In this case, the history can be shrunk in case of a phase transi-
tion, where previous history becomes obsolete for the follow-
ing phase predictions.

In contrast, our Global Phase History Table (GPHT) pre-
dictor observes the patterns from previous samples to deduce
the next phase behavior. In such an approach, it relies on the
widely acknowledged repetitive execution behavior of appli-
cations. Structurally, the GPHT predictor, depicted in Figure
1, is similar to a global branch history predictor [29]. Unlike
hardware branch predictors, however, the GPHT is a software
technique, implemented in the operating system for high-level,
dynamic phase prediction.
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Figure 1. GPHT predictor structure.

Similar to a global branch predictor, a GPHT predictor con-
sists of a global shift register, called the Global Phase History
Register (GPHR), that tracks the last few observed phases. The
length of the history is specified by GPHR depth. At each sam-
pling period, the GPHR is updated with the last seen phase, as
observed from PMCs. This updated GPHR content is used to
index a Pattern History Table (PHT). The PHT holds several
previously observed phase patterns, with their corresponding
“next phase” predictions based on previous experience. These
phase predictions are shown as the PHT Pred-n vector in the
PHT. The GPHR index is associatively compared to the stored
valid PHT tags, and if a match is found, the corresponding
PHT prediction is used as the final prediction. An Age / In-
valid entry is kept for each tag to track the ages of different
PHT tags for a least recently used (LRU) replacement policy
when the PHT is full. A −1 entry denotes the corresponding
tag contents and prediction are not valid. The number of en-
tries in the PHT is specified by PHT entries. In the case of

a mismatch between GPHR and PHT tags, the last observed
phase, stored in GPHR[0], is predicted as the next phase. Af-
ter a mismatch, the current GPHR contents are added to the
PHT by either replacing the oldest entry or by occupying an
available invalid entry. In the case of a match, a PHT predic-
tion entry is updated in the next sampling period based on the
actual observed phase for the corresponding tag.

By observing the phase patterns in application execution,
the GPHT predictor can perform reliable predictions even for
highly variable benchmarks. Inevitably, for a hypothetical ap-
plication with no evident recurrent behavior, no predictor can
perform good predictions. In such cases there is no match-
ing pattern in PHT and we revert to a last value predictor,
thus guaranteeing to meet the accuracy of previous methods
under worst case scenarios. Most applications exhibit some
amount of repetitive patterns, however, due to the common
loop-oriented and procedural execution style.

We demonstrate an example to how GPHT accurately cap-
tures varying application behavior with the applu benchmark.
Applu shows a highly varying behavior, with distinctive repet-
itive phases throughout its execution. In Figure 2, we show the
variation in Mem/Uop for applu and its corresponding phases
(shown as �) from a sample execution region. We show the
performed phase predictions with both GPHT (shown as ◦)
and last value (shown as �) predictors. For GPHT, we choose a
GPHR depth of 8 and 1024 PHT entries. This example shows,
even for this highly variable application, GPHT predictions
almost perfectly match the actual observed phases. On the
other hand, last value mispredicts more than one third of the
phases due to applu’s rapidly varying phases. In Figure 2,
we highlight two regions, showing the repetitive phase behav-
ior and how GPHT can easily capture this behavior. In addi-
tion we show two distinct cases, where GPHT first mispredicts
next phase at point labeled “A”, and later can correctly predict
similar behavior at point “B” by learning from previous pat-
tern history. This example shows the clear strength of pattern
based phase prediction with GPHT over statistical approaches.

3.1 Predictability and Power Saving Potentials of Differ-
ent Applications

To assess the quality of a phase prediction scheme for an
application, it is imperative to understand the predictability
characteristics of the application. For example, for a very
stable application, with very few changes in its phase behav-
ior, a simple predictor that assumes the last observed behav-
ior will continue, will be highly accurate. However, bench-
marks with high variability, where the observed phases rapidly
change, will experience many mispredictions with such an
approach. Therefore, before evaluating our phase prediction
method, here we first discuss the predictability of different
benchmarks based on their stability characteristics.

In Figure 3, we show the characteristics of different bench-
marks in two dimensions. In the y dimension we show the
variability of benchmarks, based on the observed variation
in Mem/Uop. We represent this as the percentage of time
Mem/Uop changes more than 0.005 between two samples for
a 100 million instruction sampling granularity. Thus, this di-
mension shows how “unstable” the benchmark is. Bench-
marks higher along the y axis represent cases with temporally
varying behavior, which cannot be predicted in a straightfor-
ward manner, simply by assuming the benchmark will pre-
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serve its last observed behavior. On the other hand, bench-
marks close to the x axis show almost completely “flat” exe-
cution behavior, where the application rarely changes its exe-
cution properties. In these cases, simply assuming the previ-
ous observed characteristics will prevail performs as well as
any other method. In addition to these variability characteris-
tics, in the x dimension of the figure, we also show the average
Mem/Uop rate for our applications. This shows how much
potential exists to slow down the CPU frequency for each ap-
plication. Thus, benchmarks further to the right exhibit higher
power savings potentials. Note that many of the SPEC appli-
cations lie very close to the origin, showing small variations
and power saving opportunities. We do not label these in the
figure to avoid cluttering the image.

Based on these observed properties we categorize the ex-
perimented benchmarks into four quadrants. Q1 benchmarks,
which include many of the SPEC applications, are very sta-
ble and show little power saving opportunities. Q2 bench-
marks show higher power saving potentials and little vari-
ability. These two categories are easily predictable with sim-
ple phase predictors. Q3 benchmarks—that also include our
applu example—are the most interesting applications for our
research. These have both highly varying phase behavior and
high power saving potentials. Q4 benchmarks also show high
variability, but show relatively smaller power saving opportu-

nities. Both Q3 and Q4 applications are not expected to per-
form well under a simple phase prediction strategy that as-
sumes the next phase behavior will match the previously ob-
served one.

3.2 Phase Prediction Results

In Figure 4, we show the achieved prediction accuracies for
all discussed prediction methods and all experimented SPEC
applications. Specifically, we show the results with last value
prediction, fixed window prediction with window sizes of 8
and 128, variable window with 128 entry window and phase
transition thresholds of 0.005 and 0.030, and GPHT with
GPHR depth of 8 and 1024 PHT entries. The benchmarks
sorted in the order of decreasing prediction accuracy with last
value prediction. For most of the Q1 and Q2 benchmarks, al-
most all approaches perform very well, achieving above 80%
prediction accuracies. For these mostly stable applications,
last value and GPHT perform almost equivalently. However,
the benefits of GPHT are immediately observed with the last
6 benchmarks, which constitute the Q3 and Q4 applications.
In these more variable benchmarks, the statistical approaches
experience significant drops in prediction accuracies, while
GPHT can still sustain higher prediction accuracies by ob-
serving repetitive phase patterns. For our applu example, the
last value predictor—the best among statistical predictors for
this application—results in more than 53% mispredictions. In
comparison, GPHT achieves less than 8% mispredictions, im-
proving phase mispredictions by more than 6X . On average,
for the Q3 and Q4 benchmarks, our GPHT predictor leads to
2.4X less mispredictions than the experimented statistical pre-
dictors.

This evaluation clearly demonstrates that our proposed
GPHT predictor performs effectively in all corners of our
benchmark categories. In the remainder of our work, we build
our dynamic power management framework upon this phase
prediction methodology. However, for a real-system imple-
mentation, holding and and associatively searching through a
1024 entry PHT may be undesirable. Therefore, in Figure 5,
we show how GPHT prediction accuracy changes with dif-
ferent number of PHT entries. As the figure shows, down to
128 entries, GPHT predictor performs almost identically to
the 1024 entry predictor. However, observable degradations
in accuracy are seen with a 64 entry PHT. As PHT entries are
reduced down to 1, the accuracy of the GPHT predictor con-
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Figure 4. Phase prediction accuracies for experimented prediction techniques.

verges to last value, as we realize almost 100% tag mismatches
and so the next phase is continuously predicted as the last seen
phase from GPHR[0]. Therefore, we conclude that a 128 en-
try PHT is sufficient for our GPHT implementation. In our
deployed real system, described in the following sections, we
use this configuration for our final GPHT predictor implemen-
tation.
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4 Dependence of Phases to Dynamic Manage-
ment Actions

For our phase prediction methodology to be useful in a dy-
namic management framework, phase patterns must not be
altered by the dynamic management actions that respond to
them. Such action-dependent phases both conceal actual phase
patterns, impairing predictability of application behavior and
also lead to incorrect management decisions. Previously, we
have mentioned that our phase definition based on memory bus
transactions per micro-op (Mem/Uop) is resilient to changes
in processor voltage and frequency settings. In this section we
justify this claim with detailed measurements.

For our verifications, we consider the two metrics obtain-
able with our choice of monitored PMC events, Mem/Uop
and Uops per cycle (UPC). To guarantee our conclusions are
valid on all possible corners of execution, we profile all our
experimented applications with performance counters (PMCs)
and record different observed (UPC,Mem/Uop) pairs for our
two dimensional execution behavior space. In Figure 6, we
show the corresponding exploration space for all acquired
(UPC,Mem/Uop) sample pairs for all set of applications with
the lighter data points. These show the wide range of oper-

ating points that are covered by these applications. In addi-
tion, a boundary is observed as the maximum achievable UPC
for each Mem/Uop level, depicted with the “SPEC Boundary”
curve. This is an expected effect, as high memory latencies
slow down dependent execution. Consequently, more mem-
ory bound applications can retire less instructions per cycle.
To evaluate how the UPC and Mem/Uop metrics change under
different DVFS settings, we develop a suite of configurable ap-
plications that can pinpoint specific (UPC,Mem/Uop) coordi-
nates in our two dimensional exploration space. We call these
applications the “IPCxMEM suite”. The grid points, denoted
as “IPCxMEM Grid” in Figure 6, show how we configure
IPCxMEM suite to cover the whole exploration space. With
these applications, we evaluate the behavior of our tracked
metrics at all possible corners of execution and evaluate how
these are affected by DVFS actions.
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Figure 6. Observed (UPC,Mem/Uop) pairs for all
experimented applications and grid of points
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For our evaluations, we run the IPCxMEM suite in ap-
proximately 50 (UPC,Mem/Uop) configurations, covering
the exploration space grid. We run all these configurations in
all the available frequency settings of our experimental plat-
form. These are 1500MHz, 1400MHz, 1200MHz, 1000MHz,
800MHz and 600MHz. We monitor UPC and Mem/Uop via



PMCs in these frequency settings and demonstrate their fre-
quency dependence for few chosen configurations in Figure 7.
In Figure 7, each curve corresponds to a specific IPCxMEM
suite application—run at all frequency settings—configured to
target a specific UPC and Mem/Uop at the highest frequency.
These target values, referenced in the legend, correspond to
the specific points of the IPCxMEM grid in Figure 6.
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Figure 7 shows the strong dependence of UPC to DVFS
settings. UPC mostly has an increasing trend with decreas-
ing frequency. This is because memory latencies are not
scaled with DVFS and therefore memory accesses complete
in fewer CPU cycles at lower frequencies. The frequency de-
pendence of UPC also varies with memory intensity. UPC
values for completely CPU-bound configurations (legend en-
tries with Mem/Uop = 0) show no dependence to frequency.
On the other hand, for highly memory-bound configurations,
UPC can change up to 80% across frequencies. These demon-
strate the dangerous pitfall we avoid in our phase definitions.
Directly using UPC in phase classification is not reliable for
dynamic management, as the resulting phases vary with dif-
ferent power management settings.

Conversely, Figure 7 shows that the Mem/Uop parameter
has virtually no dependence to DVFS settings. It is almost
constant across all frequencies. Therefore, our phase classifi-
cations based on Mem/Uop are completely “DVFS invariant”
and can be reliably used for runtime phase prediction under
dynamic power management actions.

While not in the scope of this project, there are previous
studies, which explore predicting performance behavior across
different power management settings [16, 17]. These strate-
gies can potentially be integrated to our runtime phase mon-
itoring and prediction framework to employ more elaborate
phase definitions in future dynamic management studies.

5 Real-System Implementation: Experimental
Measurement and Evaluation Platform

We implemented our on-the-fly phase monitoring and pre-
diction framework on a Pentium-M based, off-the-shelf laptop
computer, running Linux kernel 2.6-11. Our prototype im-
plementation monitors application execution via performance
counters (PMCs) and performs phase predictions at fixed in-
struction intervals of execution in a performance monitoring

interrupt (PMI) handler. We use our runtime phase predictions
to guide dynamic voltage and frequency scaling (DVFS), read-
ily available on our Pentium-M platform, as the example man-
agement application. At each interrupt invocation, after per-
forming the next phase prediction with the GPHT predictor,
the interrupt routine translates the predicted phase into a pre-
defined DVFS setting. This setting is then applied to the pro-
cessor for the next execution interval. Figure 8 shows a simpli-
fied overview of how this overall implementation operates on
our system. After the initial configuration (performed once at
system startup) all phase prediction and dynamic management
actions operate autonomously, with no observable overheads
to user applications. All applications can run natively, without
any modifications or additional system or dynamic compiler
support.
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Figure 8. The flow of operation for our runtime
phase prediction and dynamic power manage-
ment framework.

In Figure 9, we show the overall prototype implementation
and measurement setup for our experiments. This diagram de-
picts different aspects of our implementation that correspond
to on-the-fly phase monitoring and prediction, dynamic power
management via DVFS and additional mechanisms for eval-
uating runtime phase prediction and performing real power
measurements that can match each phase. In the following
subsections, we discuss the details of each of these aspects for
our prototype platform.

5.1 Runtime Phase Monitoring and Prediction

One of the fundamental challenges of phase detection and
prediction on a real system is the impact of system induced
variability. Previous research has shown that application
phases are prone to several variations at runtime [13], which
can alter the timing and values of observed metrics. To elimi-
nate the effect of timing variations, we monitor phases at fixed
instruction granularities with the PMI. We have implemented
our PMI handler and supporting system calls as a loadable ker-
nel module (LKM), which can be loaded and unloaded during
system operation. The implemented LKM also holds the state
for our predictors and a log of PMC values, predicted and ac-
tual observed phases for our evaluations.

For our experiments, we configured the two avail-
able PMCs in the Pentium-M processor to monitor the
retired micro-ops and memory bus accesses, with the
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Figure 9. Developed measurement and evaluation platform. Regions identified as 1, 2 and 3 via dashed
lines correspond to different parts of implementation relevant to on-the-fly phase monitoring and pre-
diction(1), dynamic management with DVFS(2) and measurement and evaluation support(3).

UOPS_RETIRED and BUS_TRAN_MEM event configura-
tions. We have experimented with various instruction granu-
larities and used 100 million instructions as a safe granularity
to invoke our interrupt handler. Therefore, after each invoca-
tion, the first PMC is reinitialized to overflow after 100 million
retired Uops.

After each 100 million instructions, the interrupt handler
stops and reads the PMCs, updates the GPHT predictor states
and performs the next phase prediction. It also logs the ob-
served PMC values, actual observed phase for the past period
and the predicted phase for the next period for our evaluations.
At its exit, the handler clears the PMC overflow bit, reinitial-
izes the PMCs and time stamp counter (TSC) and restarts the
counters.

5.2 Dynamic Power Management via DVFS

Our on-the-fly phase prediction methodology can be uti-
lized to guide a range of dynamic management techniques.
In this work we consider DVFS as an example implementa-
tion, which is supported on our platform via Intel SpeedStep
technology [9]. In our prototype implementation, we use a
look-up table, defined at LKM initialization, to quickly trans-
late the predicted phase to one of the 6 DVFS settings within
the handler. For our prototype machine and our original phase
definitions, these are shown in Table 2. For alternative phase
definitions or management schemes, we can simply reconfig-
ure this table. At each sampling interval, the handler translates
the predicted phase to the corresponding DVFS setting. Then
it compares this to the current setting and updates the DVFS
mode set registers if necessary. Our 100 million instruction
granularity (on the order of 100 ms) guarantees that the over-
heads induced by interrupt handling and DVFS application (on
the order of 10-100 µs) are essentially invisible to native ap-
plication execution.

5.3 Power Measurement

To track the power consumed by the Pentium-M proces-
sor, we measure the input voltage and current flow to the pro-
cessor. For this purpose, we use an external data acquisition

Mem/Uop Phase # DVFS Setting 

< 0.005 1  (1500 MHz, 1484 mV) 

[0.005,0.010) 2 (1400 MHz, 1452 mV) 

[0.010,0.015) 3 (1200 MHz, 1356 mV) 

[0.015,0.020) 4 (1000 MHz, 1228 mV) 

[0.020,0.030) 5 (  800 MHz, 1116 mV) 

> 0.030 6  (  600 MHz,   956 mV) 

Table 2. Translation of phases to DVFS settings.

system (DAQ) that is connected to the processor board. Our
laptop board includes two 2 mΩ precision sense resistors that
reside between the voltage regulator module and the Pentium-
M CPU, shown as R1 and R2 in Figure 9. The total current
that flows through these resistors represents the current flow
into the CPU. The voltage after the resistors, denoted as VCPU ,
represents the input voltage of the CPU.

In the actual measurement setup, we measure the three volt-
ages V1, V2 and VCPU , to track processor current and volt-
age. These voltages—and additional parallel port bits for
evaluation support—are first fed into a National Instruments
AI05 Signal Conditioning Unit. This unit filters the noise on
the measured voltage signals and calculates the voltage drop
across the two resistors. These voltage drops, (V1 −VCPU ) and
(V2 −VCPU ) and the CPU voltage VCPU are then fed into a Na-
tional Instruments DAQPad 6070E Data Acquisition System.
This unit then scales the voltage drops with the resistor val-
ues to compute the current flows as I1 = (V1 −VCPU )/0.002
and I2 = (V2 −VCPU )/0.002. The DAQ system monitors a to-
tal of eight signals, and has a sampling period of 40 µs. The
two measured currents and CPU voltage, together with addi-
tional parallel port signals are sent to a separate logging ma-
chine, which logs the observed currents and voltages. The
CPU power consumption for each sample is computed on this
logging machine as PowerCPU = VCPU · (I1 + I2). With this
complete measurement setup, we can accurately track CPU
power consumption. By also utilizing parallel port signal-
ing, described below, our measurement setup can individually



compute the power consumption and performance statistics for
each 100M-instruction phase sample, as well as for the whole
execution of applications.

5.4 Evaluation Support

The overall correct operation of our developed system re-
quires only on-the-fly phase monitoring and prediction, and
dynamic power management with DVFS as highlighted in re-
gions 1 and 2 in Figure 9. However, for experimental evalu-
ation of phase prediction and dynamic management methods,
we develop additional components on our prototype system.
First, we use the above described real power measurement
setup to measure processor power consumption. In addition,
for detailed power/performance and phase prediction evalua-
tions, we employ additional mechanisms in our implementa-
tion; these fall into region 3 in Figure 9.

To evaluate runtime phase prediction accuracy and to ana-
lyze application behavior, we use a separate kernel log in our
LKM. This log keeps track of the actual observed and pre-
dicted phases for each sample as well as memory accesses per
Uop and Uops per cycle for each phase. At each invocation,
the handler logs relevant information in this log. Afterwards, a
user-level tool can access this information via separate system
calls.

The execution of the processor—under our runtime phase
prediction and dynamic management—and the real power
measurements are inherently two completely independent pro-
cesses. To provide a synchronizing link between the two sides
of our framework, we use parallel port bits that signal specific
processor execution information to the DAQ system. We use
three parallel port bits. Bit 2 is set from the user level via sys-
tem calls at the start of an application execution and is cleared
when an application ends. This helps DAQ to measure power
specifically during an application execution. Bit 1 is used to
distinguish between application and interrupt execution. This
bit is set by the handler at the entrance to the handler rou-
tine and is cleared at exit. Finally, bit 0 is used to help the
DAQ track each phase. The handler flips this bit at each sam-
pling interval so that the DAQ and the logging machine can
distinguish each phase and compute power and performance
statistics individually for each phase.

In Figure 10, we show a detailed view of the overall op-
eration of our deployed system with the applu benchmark,
performing on-the-fly phase predictions with the GPHT pre-
dictor and dynamic power management with DVFS. The fig-
ure shows the measured prediction, power and performance
results with respect to a baseline, unmanaged system. In
the top chart, we first show the observed Mem/Uop behav-
ior for the two runs of applu, with and without our described
techniques. The two curves are almost identical between the
two real-system runs, which shows (i) our phases, defined by
Mem/Uop, are DVFS invariant and can be safely used for
phase prediction under dynamic management responses; and
(ii) our fixed instruction granularity phase definitions are re-
silient to real-system variations. In the lower part of the top
chart, we show the actual and predicted phases with the GPHT.
Once again, the GPHT exhibits very good prediction accura-
cies for such a highly varying application. The middle chart
shows the power measured for each phase during applu ex-
ecution for both systems, where the shaded area between the
two curves demonstrates power savings achieved with our ap-
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Figure 10. Overall operation of our framework,
shown with applu benchmark, in comparison
to the baseline system. Top chart shows the
observed Mem/Uop and predicted phases. Mid-
dle and lower charts show achieved power sav-
ings and induced performance degradation in
the shaded regions.

proach. In the lower chart, we show the observed performance
as billions of instructions per second (BIPS) for the two sys-
tems, where the shaded area demonstrates the relatively small
performance degradation induced by our framework. These
latter two charts clearly present the advantages brought by our
framework for improving power/performance efficiency. By
efficiently adapting processor execution to varying applica-
tion behavior, we achieve significant power savings with small
degradations in performance.

6 Experimental Results
In the previous sections, we described our phase definitions

and on-the-fly phase prediction methodology, and presented
a full-fledged deployed system. In this section, we evaluate
the final target of our complete framework, dynamic power
management with DVFS, guided by on-the-fly, GPHT-based
phase predictions.

6.1 Dynamic Power Management Guided by Runtime
Phase Prediction

Here, we present overall dynamic power management re-
sults for all experimented benchmarks with three sets of infor-
mation. Figure 11 depicts obtained power and performance re-
sults with our experimental system, using the GPHT predictor,
as normalized to baseline execution. From top to bottom, the
figure shows achieved BIPS, power and energy-delay product
(EDP) for the baseline unmanaged system and our dynamic
management framework. The benchmarks are shown in de-
creasing EDP order with GPHT-based management.

The application categories we have discussed in Section
3 also guide our observations with the dynamic power man-
agement results. Many of the Q1 benchmarks experience lit-
tle power savings and performance degradations. They ex-
hibit highly stable, non-varying, execution behavior with little
power saving potentials and close to baseline performance un-
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Figure 11. Runtime phase prediction guided dynamic power management results. From top to bottom,
the charts show performance, power and energy delay product achieved by our framework with respect
to baseline execution.

der dynamic management. Few of the Q1 applications, such
as apsi and ammp, actually achieve significant power savings
due to their relatively higher variability. However, due to their
lower power saving potentials, these are also accompanied by
observable performance degradations. Thus, overall EDP im-
provement remains less significant. On the other hand, Q2 and
Q3 applications generally demonstrate substantial power sav-
ings as well as EDP improvements. One exception to this is
mgrid. Although it shows high power savings, mgrid also ex-
periences comparable performance degradation. Therefore, its
EDP improvement remains less emphasized compared to the
other Q3 applications. The trivial Q2 applications swim and
mcf exhibit above 60% EDP improvements. Our experimental
system also achieves EDP improvements as high as 34%—in
the case of equake—for the highly variable Q3 benchmarks.
For all Q2, Q3 and Q4 applications, the average EDP improve-
ment is 27%, with an average 5% performance degradation.
Considering all experimented applications, except for the ones
with no variability and power savings potentials, the average
EDP improvement is 18%, with an average 4% performance
degradation.

6.2 Improvements with GPHT over Reactive Dynamic
Management

Many of the previous dynamic management techniques
simply respond to previously observed application behavior.
We refer to these as “reactive” approaches. Although these ap-

proaches perform well for many applications, they are prone
to significant misconfigurations for workloads with variable
behavior. On the other hand, our on-the-fly, GPHT-based dy-
namic management framework can respond to these variations
proactively, providing better system adaptation. Here we com-
pare the achieved power/performance trade-offs of our GPHT-
based dynamic management framework to those of a reac-
tive system. For the reactive method, we choose a simple,
commonly-used approach, where the configuration of the pro-
cessor for an execution interval is chosen based on the last
observed behavior. This method is identical to the last value
prediction we had discussed in Section 3.

In Figure 12 we show the achieved EDP improvement
and performance degradation with both dynamic management
methods. We show the results for the highly variable Q3 and
Q4 benchmarks, as well as the high-power-savings and low-
variation Q2 benchmarks. For many of the Q1 applications,
the trade-offs with the reactive approach is comparable to our
GPHT-based approach. For these stable applications, respond-
ing to previously seen behavior is already the near-optimal ap-
proach.

Figure 12 depicts the advantage of employing our dynamic
management techniques guided by on-the-fly phase predic-
tions. For the variable Q3 and Q4 benchmarks, GPHT-based,
proactive management achieves superior EDP improvements,
compared to last-value-based, reactive dynamic power man-
agement. In general, the performance degradations experi-
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Figure 12. EDP improvement and performance degradation with GPHT and last value prediction for Q2,
Q3 and Q4 benchmarks.

enced by our GPHT framework are less than or comparable
to those of last value based management. The two Q2 bench-
marks behave somewhat differently. For swim, which has vir-
tually no variability (lying on the x axis in Figure 3), both
approaches achieve almost identical results. For mcf, which
shows a small amount of variability, GPHT-based manage-
ment achieves a slightly better EDP and observably less per-
formance degradation. As expected, the improvements with
the less memory-bound Q4 applications are usually less sig-
nificant than the other benchmarks. Nonetheless, while the
reactive approach provides almost no benefits for these ap-
plications, GPHT-based dynamic management improves their
EDP by approximately 5%. On average, GPHT-based dy-
namic management achieves an EDP improvement of 27%,
with a performance degradation of 5%. Last value based re-
active approach achieves 20% EDP improvement and 6% per-
formance degradation for the same set of applications. Thus,
applying dynamic management under the supervision of our
on-the-fly phase predictions provides a 7% EDP improvement
over reactive methods, while inducing comparable or less per-
formance degradations than the reactive approaches. These
results clearly show the significant benefits of runtime phase
prediction and its application to dynamic power management.

6.3 Bounding Performance Degradation with More Con-
servative Phase Definitions

The EDP improvement results presented in the above sub-
sections show that our GPHT-based dynamic power man-
agement framework offers substantial benefits to improving
power/performance efficiency of applications. However, in
some cases, the observed performance degradations for some
of the applications may not be acceptable for a deployed sys-
tem. In such a scenario, it might be preferable to relax the
power savings to achieve bounded worst-case performance
degradations.

In Section 5 we have explained that, in our real-system
implementation we can simply reconfigure our phase defini-
tions and the corresponding DVFS look-up table for alterna-
tive implementations. Here, we implement such an alternative
dynamic management system that targets at bounding perfor-
mance degradation by 5%. For this implementation, we rede-
fine our phases to meet our performance goal with the help of
previous IPCxMEM experiments described in Section 4. We
look at the achieved BIPS at each DVFS setting for each of
the IPCxMEM grid points, and draw the DVFS domains on

our grid that satisfy our performance target. After this step,
we redefine our phases to match these DVFS settings. Based
on these phase definitions, our new deployed system meets the
target performance with less aggressive power savings.

In Figure 13, we show the resulting performance degra-
dations, power and energy savings, and EDP improvements
for five of our benchmarks that originally had more than 5%
performance degradations. With our new conservative phase
definitions, all of these applications experience performance
degradations significantly lower than 5%. Thus, our new sys-
tem can successfully sustain application performances within
our specified degradation limit. On the other hand, due to
smaller power savings, the EDP improvements are reduced by
more than 2X from previous results to conservatively meet the
desired performance targets.
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Figure 13. Power/Performance results for our
conservative phase definitions that aim to
bound performance degradation by 5%.

These presented results show the versatility of our phase-
based dynamic management framework, which can be sim-
ply configured for different targets under different scenarios.
These reconfigurations can be done even after system de-
ployment, with minimal intrusion to overall system operation.
Thus, our complete real-system implementation, presented in
this paper, serves as an effective, generic power management
framework, which can be employed on a running system to
support a range of dynamic management goals.

7 Related Work
Several previous studies investigate methods to monitor and

utilize application phases for architectural and system adapta-
tions. Dhodapkar and Smith [7] use application working set
information to guide dynamic hardware reconfigurations. Isci
and Martonosi [13] track variations in application power be-
havior to detect repetitive execution. Zhou et al. monitor



memory access patterns for energy-efficient memory alloca-
tion [30]. Annavaram et al. identify sequential and parallel
phases of parallel applications to distribute threads efficiently
on an asymmetric multiprocessor [2]. Weissel and Bellosa also
monitor memory boundedness of applications to adapt proces-
sor execution to different phases on the fly [27]. These works
show interesting applications for different aspects of applica-
tion phase behavior. However, these approaches do not con-
sider predicting future phase behavior of applications and per-
form adaptive responses reactively, based on most recent be-
havior.

Some earlier work also considers prediction of future appli-
cation behavior. Duesterwald et al. utilize performance coun-
ters to predict certain metric behavior such as IPC and cache
misses based on previous history [8]. They also show that ta-
ble based predictors perform significantly better than statisti-
cal approaches to predict variable application behavior. Lau et
al. consider prediction of phase transitions as well as sample
phase durations using different predictors [18]. While these
works provide significant insights to predictability of applica-
tion behavior, they do not evaluate the runtime applicability of
these predictions to dynamic management.

Sherwood et al. describe a microarchitectural phase pre-
dictor based on the traversed basic blocks [24]. They ap-
ply this prediction methodology to dynamic cache reconfig-
urations and scaling of pipeline resources. This work de-
scribes fine-grained, microarchitecture-level phase monitoring
and dynamic management, based on architectural simulations,
while our work describes a deployed real-system framework
for on-the-fly phase prediction of running applications and
system-level management. Shen et al. detect repetitive phases
at runtime by monitoring reuse distance patterns with applica-
tion to cache configurations and memory remapping [21]. This
work employs detailed program profiling and instrumentation
to detect repetitive phases. In contrast, our work identifies re-
current execution and predicts phases seamlessly during native
application execution without prior instrumentations or profil-
ing. Wu et al. also describe a real-system implementation of
a runtime DVFS optimizer that monitors application memory
accesses [28]. This work requires the applications to execute
from within a dynamic instrumentation framework and relies
on periodic dynamic profiling of code regions, inducing addi-
tional operation overheads. In comparison, our deployed sys-
tem operates autonomously on any running application, with-
out necessitating any dynamic instrumentation support or prior
profiling, and with no observable overheads to application ex-
ecution.

8 Conclusion
This work presents a fully-automated, real-system frame-

work for on-the-fly phase prediction of running applications.
These runtime phase predictions are used to guide dynamic
voltage and frequency scaling (DVFS) as the underlying dy-
namic management technique on a deployed system.

We experiment with different prediction methods and pro-
pose a Global Phase History Table (GPHT) predictor, lever-
aged from a common branch predictor architecture. Our
GPHT predictor performs accurate on-the-fly phase predic-
tions for running applications with no visible overheads. For
highly variable applications, our GPHT predictor can reduce
mispredictions by 6X, compared to statistical prediction ap-

proaches. This phase prediction framework efficiently cooper-
ates with DVFS to dynamically adapt processor execution to
varying workload behavior. DVFS, guided by these phase pre-
dictions, improves the energy-delay product of variable work-
loads by as much as 34%, and on average by 18%. Com-
pared to previous reactive approaches, our method improves
the energy-delay product of applications by as much as 20%
and on average by 7%.

Our presented results show the promising benefits of run-
time phase prediction and its application to dynamic manage-
ment. As power management is an increasingly pressing con-
cern, the necessity of such workload-adaptive techniques also
increases. Our real-system solution, with its energy-saving po-
tential and negligible-overhead operation, can serve as a foun-
dation for many dynamic management applications in current
and emerging systems.
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