
An Analysis of Efficient Multi-Core Global Power Management Policies:
Maximizing Performance for a Given Power Budget

Canturk Isci†, Alper Buyuktosunoglu†, Chen-Yong Cher†, Pradip Bose† and Margaret Martonosi∗

†IBM T.J. Watson Research Center ∗Department of Electrical Engineering
Yorktown Heights Princeton University

Abstract

Chip-level power and thermal implications will continue to
rule as one of the primary design constraints and performance
limiters. The gap between average and peak power actually
widens with increased levels of core integration. As such, if
per-core control of power levels (modes) is possible, a global
power manager should be able to dynamically set the modes
suitably. This would be done in tune with the workload char-
acteristics, in order to always maintain a chip-level power that
is below the specified budget. Furthermore, this should be pos-
sible without significant degradation of chip-level throughput
performance. We analyze and validate this concept in detail in
this paper. We assume a per-core DVFS (dynamic voltage and
frequency scaling) knob to be available to such a conceptual
global power manager. We evaluate several different policies
for global multi-core power management. In this analysis, we
consider various different objectives such as prioritization and
optimized throughput. Overall, our results show that in the
context of a workload comprised of SPEC benchmark threads,
our best architected policies can come within 1% of the per-
formance of an ideal oracle, while meeting a given chip-level
power budget. Furthermore, we show that these global dy-
namic management policies perform significantly better than
static management, even if static scheduling is given oracular
knowledge.

1 Introduction

Recent microprocessor generations have seen a tremendous
increase in transistor density, fueled by advances in semi-
conductor technology. At the same time, limits in instruc-
tion level parallelism (ILP) coupled with power dissipation
constraints have caused the high performance microproces-
sor roadmap to enter the "multi-core" era. Initially, this era
of chip multiprocessing (CMP) [35, 40] began with a step-
back in core-level frequency (shallower processor pipelines)
to allow multi-core (multi-thread) throughput increase at af-
fordable power [15, 16, 18, 29, 41]. If per-thread frequency
and performance growth were forever stymied, perhaps future
scaling could yield more and more cores (threads) on a die,
to get the throughput performance going for a few generations
of a core’s lifetime. However, the demand for single-thread
performance growth is still alive for many crucial application
domains; and even without that, growth in the number of cores

†Canturk Isci is a PhD student at Princeton University. This work was
done while he was an intern at IBM Research.

causes super-linear growth in non-core area and power in order
to meet scalable performance targets.

As such, the power dissipation problem did not disappear
in the new multi-core regime. In fact, power and peak tem-
perature continue to be the key performance limiters, even as
other constraints like chip I/O bandwidth and intra/inter chip
data bandwidth and available area for on-chip cache begin to
emerge as new (secondary) limiters. Consequently, power and
thermal management of multi-core (often organized as CMP)
chips has been one of the primary design constraints and an
active research area.

Prior research in this area has been primarily limited to
studying the efficacy of providing dynamic management of
power and thermal hot spots through localized responses pro-
vided at the core-level [2, 11] or through global schedul-
ing heuristics [7, 22, 37]. However, the problem of enforc-
ing a chip-level power budget (at minimal performance cost)
through a global power manager has not been studied at great
depth so far in the literature. The other, related problem of
minimizing the power for a given multi-core performance tar-
get has similarly not been analyzed in detail. In this paper, we
present such an analysis in the context of a generic CMP chip,
assuming POWER4/5 [15] class cores.

There are three primary contributions in this work. First,
we introduce the concept of a global power manager, that
provides a hierarchical feedback-control based mechanism to
sense the per-core power and performance "state" of the chip
at periodic intervals; it then sets the operating power level
or mode of each core to enforce adherence to known chip-
level power budgets. Second, we develop a fast static power
management analysis tool to evaluate the benefits and perfor-
mance costs of various multi-core mode-management policies.
Third, we evaluate several different policies for global multi-
core (CMP) power management for different objectives, such
as prioritization, fairness and optimized chip-level through-
put. These simulation-based experiments are performed af-
ter factoring in all mode transition overhead costs. Our most
important result shows that the best performance-optimizing
management policy, MaxBIPS, comes within 1% of the perfor-
mance of an ideal oracular controller, while still meeting the
desired power budget. Overall, the range of policies and atten-
dant benefit analyses presented, build key understanding about
the fundamental trade-offs in power and performance that the
architectural definition of such a global power manager would
entail.

The rest of the paper is organized as follows. Section 2
gives a brief overview of our envisioned global management
structure. Section 3 describes our experimental methodology
and toolset. Section 4 explains our core power-mode defini-

tions. Section 5 describes several different global management
policies, along with an evaluation of their power-performance
benefits. Section 6 provides a generalized summary and inter-
pretation of the results. Section 7 provides a sketch of related
(prior) work and Section 8 offers our concluding remarks.

2 Global CMP Power Management: Overview

The main motivation in architecting a global power man-
ager is to exploit the widely known variability in demand and
characteristics of the input workloads: both within a given
thread, as well as across threads. The variations in appli-
cation behavior are often repetitive because of loop-oriented
execution semantics. The different regions of execution are
commonly referred to as phases of application behavior [39].
Adaptive responses to such phases for power-efficient comput-
ing in a uniprocessor setting have been well studied in the past
(e.g. [1]). In a multi-core setting, the global power manager
must observe phase states and transitions across all the cores
and take appropriate mode-setting actions with the objective
of enforcing a chip-level power budget.

Figure 1 shows the conceptual structure of a hierarchical,
global power manager. In this vision, we consider each core
to have multiple operating modes that we call power modes.
These modes can be set independently by the hierarchical con-
troller, depending on workload behavior, overall budget con-
straints and mode-shift constraints. Within each core, we as-
sume a built-in local open-loop management function that pro-
vides core-level power management actions, without interfer-
ence from the global controller. For example, baseline dy-
namic power management techniques like clock-gating, fetch-
gating, etc. may be used to provide a baseline power-efficient
core functionality. The local monitors do, however, provide
periodic per-core power-performance data to the global man-
ager. The global management layer provides per-core mode-
setting directives, in coordination with higher-level scheduling
and load-balancing directives provided by system software, as
indicated in Figure 1.

Chip power budget
Thread-core affinities

Global power/performance

information

Per-core power modes

GLOBAL MANAGEMENT

Operating System

Application / Virtual Machine

Local Monitoring and Control

Per-core power/performance

information

Independent, open-loop
core-wide management actions

Closed-loop core power mode
assignments dependent upon

chip power budget constraints

Thread scheduling

Load balancing

Coarser time
granularity

Finer time

granularity

Figure 1. Global and local monitoring and con­
trol.

For per-core power information, we assume the pres-
ence of on-core current sensors, similar to those available in
the Foxton controller of the Montecito chip [30, 36]. For
performance-related information, we rely upon on-core per-
formance monitoring counter hardware, which are readily
available in most microprocessors. Local current sensors pro-
vide the core power consumption information, and the lo-
cal performance counters provide the core performance in-
formation (i.e. retired instructions per sampling period) to
the global controller. As indicated in Figure 1, such a hier-
archical controller is able to provide fast-loop hardware re-

Dispatch Rate 5 instructions per cycle

Instruction Queue 256 entries

Reservation Stations Mem: 2x18, FIX: 2x20, FP: 2x5

Functional Units 2LSU, 2 FXU, 2 FPU, 1BRU

Physical Registers 80 GPR, 72FPR

Branch Predictor 16K entry bimodal

 16K entry gshare

 16K entry selector

L1 Dcache 32KB, 2 way, 128B blocks, 1 cycle latency

L1 Icache 64KB, 2 way, 128B blocks, 1 cycle latency

L2 Ucache 2MB, 4 way LRU, 128B blocks, 9 cycle latency

Memory 77 cycle latency

Core Configuration

Memory Hierarchy

Table 1. Design parameters for processor
model.

sponses to exploit fine-grain workload phase changes, as well
as slower-loop software-managed responses, to coarser-grain
phase changes. The work described in this paper is limited to
a controller that has a single level of hierarchy: local, per-core
(built-in) management, working in coordination with a single
global manager. In this work, the global power manager peri-
odically monitors the power and IPC of each core and sets the
operating modes of the cores for the next monitored interval.

This global manager can be implemented as a separate on-
die microcontroller with the underlying monitoring and re-
sponse structure similar to the Foxton controller, it can be a
separate helper daemon running on a dedicated core, or it can
be a low level, hypervisor-like application interface running
on dedicated address space. The choice of implementation de-
pends on implementation feasibility and overhead-granularity
trade-offs. As it is beyond the scope of this work, we do not
make any explicit assumptions on the implementation choice.
The remainder of this paper focuses on defining the functions
of global, multi-core power management, as well as presenting
the comparative benefits of such an approach.

3 Experimental Methodology

3.1 Simulation Framework and Microarchitectural
Model

For our core-level power and performance explorations, we
use a detailed cycle-accurate simulator based on IBM’s Tu-
randot simulator [33] as part of the Microarchitectural Explo-
ration Toolset (MET). The power statistics are acquired from
IBM’s PowerTimer power modeling methodology, integrated
with Turandot [4]. Baseline Turandot models a detailed, out-
of-order, IBM POWER4 like processor architecture with more
aggressive clock gating models. In our experiments, we model
each core and shared L2 cache with the list of parameters in
Table 1. The details of Turandot’s POWER4 based architec-
ture can be found in [12].

To evaluate global CMP power management techniques, we
also developed a static, trace-based CMP analysis tool inte-
grated with Turandot. This tool provides a fast, scalable inter-
face to develop and evaluate different policies for global power
management, as well as providing benchmark statistics for sin-
gle threaded and static power mode definitions.

This simulation environment uses single threaded Turandot
results for each evaluated power mode and performs CMP sim-

ulation by simultaneously progressing over Turandot traces for
different benchmarks assigned to different cores. We discuss
these power modes in detail in the next section. The mode
switches are performed simultaneously at all cores, at execu-
tion points we refer to as explore times (500 µs in our eval-
uations). After an explore time, all mode switches are per-
formed and we continue CMP simulation until the next ex-
plore time. During this period, the simulator simply evaluates
the power/performance statistics based on the current mode
settings. Our simulation tool updates its simulation statistics
every delta sim time (50 µs in our evaluations). That is, at
each delta sim time, it reevaluates the per-core and overall chip
statistics. With this approach, we can explore a large number
of cores from 2 to 64, with different power budgets, simulation
termination conditions and policy descriptions.

Inevitably, our trace based tool is not cycle-accurate and
cannot accurately incorporate shared L2 bus and address con-
flicts. Therefore, we also validate our power/performance
characterizations with respect to a cycle-accurate full-CMP
implementation of Turandot. This implementation is similar to
previous work by Li et al. [25, 26], where we add time driven
L2 and thread synchronization to manage multiple clock do-
main modes. We also include global dynamic management
policies and support for per-core dynamic DVFS to assist in-
dividual power mode assignments to each core during execu-
tion.

Our experiments show that power variations with full-CMP
simulations are relatively small (within 5% of single threaded
powers) and the CMP power values are consistently lower.
This guarantees that our trace-based assumptions persistently
meet slightly lower actual power envelopes. Performance vari-
ations with multicore effects are comparatively more signif-
icant (on average 9% and up to 30% with highly memory
bound applications) leading to lower IPC values due to in-
creased shared cache and bus conflicts. However, more im-
portantly, the variations for each benchmark under different
CMP configurations are generally much smaller than the inter-
benchmark performance differences. Thus, our derived global
management policies still achieve close to optimal power
mode choices for different workload combinations with our
trace-based simulator. Overall, the policy behaviors for each
workload combination as well as the differences across differ-
ent combinations are consistent between the two approaches.
These show that our trace-based evaluations effectively cap-
ture the power/performance trade-offs of global power man-
agement policies.

3.2 Benchmark Combinations

We analyze 12 workloads from SPEC CPU2000 suite in
our experiments. The benchmarks are compiled with the XLC
and XLF90 compilers. For two-way and four-way CMP ex-
amples, we consider various combinations with different CPU
intensities. We group the combinations such that there is some
benchmark variability among the groups. We show the se-
lected group configurations and the corresponding CPU inten-
sities in Table 2.

4 Core Power Modes

As we have described, we envision future CMP systems,
with multiple power/performance modes for each core. In

Benchmarks Suites Aggregate Effect

ammp|art FP|FP Low CPU utilization, high memory utilization

gcc|mesa INT|FP High CPU utilization, low memory utilization

crafty|facerec INT|FP Very high CPU utilization, very low memory utilization

art|mcf FP|INT Very low CPU utilization, very high memory utilization

ammp|mcf|crafty|art FP|INT|INT|FP Low CPU utilization, high memory utilization

facerec|gcc|mesa|vortex FP|INT|FP|INT High CPU utilization, low memory utilization

sixtrack|gap|perlbmk|wupwise FP|INT|INT|FP Very high CPU utilization, very low memory utilization

mcf|mcf|art|art INT|INT|FP|FP Very low CPU utilization, very high memory utilization

2
-W

a
y

 C
M

P
4

-W
a

y
 C

M
P

Table 2. Benchmark combinations for CMP ex­
periments.

such a system, global power management optimizes chip
power/performance by assigning power modes for each core,
based on application behavior. Therefore, a first step in global
management is the definition of these power modes.

In our work, we explore various power mode choices for
a final implementation decision. We evaluate the quality of
different modes with a power savings per performance degra-
dation criterion. Specifically, we define three power modes:
Turbo, Efficient1(Eff1) and Efficient2(Eff2). Our target in
each power saving mode is to achieve a ∆PowerSavings :
∆Per f ormanceDegradation ratio of 3 : 1. Under this tar-
get, Turbo represents full-throttle execution, Eff1 represents
a medium power savings mode with minimal performance
degradation. Eff2 represents high power saving with relatively
significant performance degradation. We limit ourselves to
only three distinct modes, because defining large number of
modes has significant overhead and complexity impacts for
the global manager. As we discuss in more detail in Section
5.5, the required state space for global control is linearly de-
pendent on the number of modes. In addition, for a predictive
or exploratory mode selection method, the number of required
prediction or exploration steps has a superlinear dependence
on the number of modes. In Table 3, we summarize the design
targets for these modes.

Mode Power Savings Performance Degradation

Turbo None None

Eff1 15% 5%

Eff2 45% 15%

General Target 3X 1X

Table 3. Target ∆Power : ∆Per f ormance ratios for
different power modes.

We consider DVFS as the underlying mechanism for defin-
ing the three global management modes, Turbo, Eff1 and Eff2.
Although many of the prior mobile or embedded platforms
support much more than three DVFS levels, this assumption
matches well with the current CMP server platforms. For ex-
ample two of Intel’s recently released CMP server platforms,
Sossaman and Woodcrest both support four global (V,f) levels.

In our CMP scenario, application of DVFS means being
able to switch different cores to different voltage and fre-
quency domains. This is a major design consideration. With
such an implementation, the CMP system becomes a multiple
clock and voltage domain processor. Nonetheless, these types
of globally asynchronous locally synchronous (GALS) archi-
tectures are not uncommon in current research [14, 28, 43].
Considering granularities, DVFS overheads are on the order
of microseconds. Therefore, applying DVFS is only feasible

with periods of roughly 100K cycles—approximately 100µs
for a 1GHz system.

In our exploration, we choose a linear DVFS scenario,
where both voltage and frequency are scaled linearly. This
choice falls within the scope of some of the previous prod-
uct datasheets [13] for our small range of considered fre-
quency reductions [10]. However, this should be considered
as an optimistic bound since the supply voltages are shrinked
more aggressively in emerging processor generations [38].
For linear DVFS, we define our modes as follows: Turbo:
No DVFS (V dd, f), Eff1: (95% V dd, 95% f), and Eff2:
(85% V dd, 85% f).

A useful property of DVFS is that power and performance
behavior can be approximately estimated with simple calcu-
lations. Power has a cubic relation to DVFS scaling [5] and
performance has a somewhat linear dependency on frequency.
Based on these trends, the upper bounds for power and per-
formance for our mode choices are shown in Table 4. Note
that the actual performance behavior is expected to be better,
as asynchronous memory latencies are not scaled with DVFS.��� � � � �� �	
 �� �� � �� � 	
� ��
 �� � � � �� 	� � ��� ��� � �� �� � � ��� ��� � �� ��� � ��� � � � � ! " #�� ! �$ #$�

Table 4. Estimated power savings and perfor­
mance degradation with DVFS.

These initial estimates show promising figures to achieve
our target 3:1 power/performance trade-off. To validate these,
we incorporate DVFS into Turandot. We consider the de-
scribed Turbo, Eff1 and Eff2 modes for the chosen (V,f) do-
mains and scale memory and L2 access cycle latencies for
each mode. We quantify performance degradation with the
elapsed execution time for benchmark execution. In Figure 2,
we show two corner case benchmarks, sixtrack and mcf, and
the overall behavior. To compute overall power/performance
relations, we consider normalized execution times—to Turbo
case—for each application, and average over the whole suite.

In Figure 2, the power dissipations follow closely with
our estimates, while our initial performance degradation es-
timates prove to be the upper bound that is observed with a
highly CPU bound benchmark such as sixtrack. The actual
performance degradation ranges among applications depend-
ing on their memory boundedness, with mcf drawing the lower
bounds in our experiments. Over our whole application pool,
both Eff1 and Eff2 power management modes achieve approx-
imately the 3:1 ∆PowerSavings : ∆Per f ormanceDegradation
ratio. Computations for power estimates at different modes
track very closely with actual behavior. We make use of this
fact later in our global power management policy designs to
predict different mode behaviors proactively.

5 Global Power Management Policies

In this section we discuss different Global CMP power
management policies under a common constraint. We devise
policies that are subject to meeting a specific global power
budget by adjusting power modes of individual cores. Besides
this common constraint, different policies can target at differ-
ent objectives such as prioritization of cores/benchmarks, bal-

ancing power among cores and optimizing system throughput.
We describe our evaluation method and focus on optimizing
throughput. We also discuss the position of our methods with
respect to upper and lower bounds for power management op-
tions.

5.1 Evaluation Methodology

We have previously described our experimentation strategy
in Section 3. In our analyses we use this framework with the
following parameters that reflect the large time granularity of
DVFS. We use delta sim times of 50 µs and explore times at
500 µs. The termination condition is after one of the bench-
marks reaches completion. Thus, all cores are utilized for the
experimented regions. We consider a nominal V dd of 1.300 V
for Turbo mode. For our selected frequency scaling scenario,
Eff1 and Eff2 modes operate at 1.235 V and 1.105 V . Based on
specifications from previous products and research, we choose
a realistic DVFS transition rate of 10mV/µs. Thus, the tran-
sition overheads for our three power modes are computed as
shown in Table 5.

Transition %V [mV] % t [&s]

Turbo ' Eff1 65 6.5

Eff1 ' Eff2 130 13

Turbo ' Eff2 195 19.5

Table 5. DVFS transition overheads for the three
power mode transitions.

Table 5 shows the transition overheads for the three modes
are on the order of 10 µs. Therefore, compared to our 500 µs
explore times, these have relatively low overheads ranging
from 1 to 4 %. For our evaluation of CMP power manage-
ment, we choose the following assumptions. We assume there
is no benchmark execution during mode transitions. On the
other hand, we assume CPU power is still consumed. This
is a conservative approach, exploring the worst case corner
in terms of power/performance efficiency, as some implemen-
tations [3, 5] can continue execution during mode transitions
or can reduce power dissipation during stalled execution [8].
Our multiple clock domain implementation imposes additional
overheads for synchronization. At each explore time, if there
is a mode transition, we find the longest transition cost among
all cores and assume all cores are stalled during this period.
Penalizing all cores with the largest penalty is not the most
efficient approach, but is much more beneficial to keep cores
synchronized for following explorations.

5.2 Policy Choices

We have experimented with different policies that can be
invoked under different conditions. Here, we first introduce
three of the experimented policies for different objectives.

5.2.1 Priority

Our first policy, priority, assigns different priorities to different
tasks. In our implementation, for a four-core CMP, core4 has
the highest priority and core1 has the lowest priority. There-
fore, in policy implementation, it tries to run the fourth core

38.6%

14.2%

0.0%

17.3%

5.1%
0%

10%

20%

30%

40%

Turbo Eff1 Eff2

Power Mode

Power Savings

Perf Degradation

(a) Sixtrack

14.1%

38.3%

0.0%

5.0%
1.2%

0%

10%

20%

30%

40%

Turbo Eff1 Eff2

Power Mode

Power Savings

Perf Degradation

(b) Mcf

38.3%

14.1%

0.0%

12.8%

3.7%

0%

10%

20%

30%

40%

Turbo Eff1 Eff2

Power Mode

Power Savings

Perf Degradation

(c) Overall SPEC

Figure 2. ∆PowerSavings : ∆Per f ormanceDegradation for DVFS.

as fast as possible, while preferring to slow down the first core
first in case of a budget overshoot. In priority execution, as
budget is increased, first core4 then cores 3 to 1 are released
from Eff2 to Turbo, until the budget exceeding condition is
met. In small budget changes, priority can operate out of or-
der, as the core with the highest priority might not satisfy the
budget in its next available mode. In such cases, the first core
in priority order that satisfies the budget is moved to the next
mode.

5.2.2 PullhiPushLo

The second policy, pullHipushLo, tries to balance the power
consumption of each core, by slowing down the core that has
the highest power in case of a budget overshoot, and by speed-
ing up the lowest power core when there is available power
slack. To have fair power distribution, pullHipushLo actu-
ally employs a sort of prioritization as well: benchmarks are
preferred in their memory boundedness order. Moreover, this
policy can also exhibit non-monotonic behavior with differ-
ent budgets, as different amounts of slack can enable different
mode choices that satisfy better power balancing.

5.2.3 MaxBIPS

Our last policy, MaxBIPS, targets at optimizing the system
throughput, by predicting and choosing the power mode com-
bination that maximizes the throughput at each explore time.
MaxBIPS policy predicts the corresponding power and BIPS
values for each possible mode combination. Afterwards, it
chooses the combination with the highest throughput that sat-
isfies the current power budget. The details of this predictive
strategy are discussed in Section 5.5. The MaxBIPS policy ex-
hibits a relatively regular behavior, but once again, this policy
inherently assumes a priority. It actually prefers the bench-
marks in the order of their CPU-boundedness. Therefore, it
performs in a somewhat inverse way of pullHipushLo.

5.3 Chip-Wide DVFS

A simpler alternative to independent per-core power man-
agement is applying chip-wide DVFS. Chip-wide DVFS has
very appealing features for implementation. As there is no
synchronization across cores, it simplifies both OS and hard-
ware implementation. In this case, all cores transition together
into Turbo, Eff1 or Eff2 modes at each explore time based on
budget constraints.

In Figure 3(a), we show the application of chip-wide DVFS
for an 83% budget on a 4-core CMP running ammp, mcf,
crafty and art. In Figure 3(c), we show the same experiment
with ammp, crafty, art and sixtrack, replacing one memory
bound benchmark (mcf) with a CPU bound one (sixtrack). In

Figures 3(b) and (d), we show the operation of the same bench-
mark combinations under the MaxBIPS policy.

As seen in Figure 3, chip-wide DVFS has completely dif-
ferent implications for different set of benchmarks. In Figure
3(a), it fits the power envelope well, as the total chip power
meets around the budget for the first set of benchmarks in Eff1
mode. In Figure 3(c), the same budget results in drastically
reduced power/performance behavior due to one change in the
benchmark set. In this case, as chip power is usually slightly
higher than the target budget, all cores are penalized tremen-
dously to run in Eff2. In comparison, the MaxBIPS policy fits
the power budget efficiently regardless of the running bench-
mark combinations.

In Figure 3, the downside of chip-wide DVFS is clearly
conveyed. With CMP systems, you can pay a huge penalty for
small budget overshoots. Obviously this kind of monolithic
global management has linearly growing negative impact with
more aggressive scale-out scenarios. Also a comparison of the
two chip-wide DVFS figures shows that global DVFS cannot
guarantee generic good performance for a budget with varying
workload combinations. This effect is also emphasized with
scale-out due to more combinations of variations.

Note that, despite the unpromising results for the presented
cases, chip-wide DVFS has certain advantages in terms of im-
plementation simplicity. Especially for small scale-out cases
such as a 2-way CMP chip, it might be possible to get compa-
rable results with this approach, probably by introducing more
power modes. One drawback of this argument is that the num-
ber of modes also need to scale with increasing number of
cores on a chip.

5.4 Evaluation of Policies

A straightforward way of representing the effectiveness of
a policy is in terms of policy and budget curves. In a pol-
icy curve, for each policy we draw the overall system perfor-
mance degradation—with respect to all Turbo execution—for
several target power budgets (shown as percentage of maxi-
mum chip power budget for a given configuration). Therefore,
the policy which leads to least degradation for a given budget
works better in that budget scenario. A budget curve plots the
percentage of power consumed under a specific policy with re-
spect to the original target budget to fit. This serves as a ‘san-
ity check’ to confirm the policies actually fit into the given
power budget target. In Figure 4 we show the correspond-
ing policy and budget curves for our three discussed policies
and chip-wide DVFS, for the (ammp,mcf,crafty,art) workload
combination. As Figure 4(a) shows, for all the given budgets,
MaxBIPS performs significantly superior for performance as
expected. For each power budget, it achieves the least over-

60%

70%

80%

90%

0 10000 20000 30000 40000 50000 60000

Time [Us]

P
O

W
E

R

TOT_PWR Budget

(a) Chip-wide DVFS (ammp, mcf, crafty, art)

60%

70%

80%

90%

0 10000 20000 30000 40000 50000 60000

Time [Us]

P
O

W
E

R
 TOT_PWR Budget

(b) MaxBIPS (ammp, mcf, crafty, art)

60%

70%

80%

90%

0 10000 20000 30000 40000 50000 60000

Time [Us]

P
O

W
E

R
 TOT_PWR Budget

(c) Chip-wide DVFS (ammp, crafty, art, sixtrack)

60%

70%

80%

90%

0 10000 20000 30000 40000 50000 60000

Time [Us]

P
O

W
E

R
 TOT_PWR Budget

(d) MaxBIPS (ammp, crafty, art, sixtrack)

Figure 3. Chip­wide DVFS and MaxBIPS for a fixed target chip budget for two benchmark combinations.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

O
R

M
A

N
C

E
 D

E
G

R
A

D
A

T
IO

N

pullHi_pushLo

Priority

MaxBIPS

ChipWideDVFS

(a) Policy curves

57%

67%

77%

87%

97%

60% 70% 80% 90% 100%

POWER BUDGET

P
O

W
E

R
pullHi_pushLo

Priority

MaxBIPS

ChipWideDVFS

BUDGET

(b) Budget curves

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

60% 70% 80% 90% 100%

POWER BUDGET

W
E

IG
H

T
E

D
 S

L
O

W
D

O
W

N

pullHi_pushLo

Priority

MaxBIPS

ChipWideDVFS

(c) Weighted slowdowns

Figure 4. Policy and budget curves for the experimented policies.

all performance degradation in comparison to other policies.
The policy curves clearly show the significantly larger perfor-
mance degradation with chip-wide DVFS due to the impact
of uniform global action. We show the target budget in the
budget curves of Figure 4(b) with the dashed line. All policies
successfully meet the target power budget for all experimented
budgets. While our distributed, per-core management policies
achieve chip power consumptions close to the available bud-
get, chip-wide DVFS shows large power slacks under several
budgets. This is because, moving all cores together to the next
higher power/performance mode exceeds the budget. There-
fore, all cores operate at a lower setting, not fully exploiting
the available power cap. The two upward steps in the chip-
wide DVFS budget curve essentially show the transition of all
cores from Eff2 to Eff1, and from Eff1 to Turbo respectively.

Note that the raw performance degradations of Figure 4(a)
do not account for any fairness considerations among different
applications. Various studies have proposed unified quantita-
tive metrics to incorporate “fairness” into performance gains
such as weighted speedup [42] and harmonic mean of thread
speedups [27]. To verify that the policy results are consis-
tent under fairness considerations we show the Weighted slow-
downs in Figure 4(c) for the three policies and chip-wide
DVFS. We compute these from the harmonic mean of individ-
ual thread speedups—with respect to all turbo executions—at
each power budget and subtracting this from 100% to report
the experienced slowdowns. Similar results are obtained with
the weighted speedup—using arithmetic mean—method with
negligible differences. These weighted slowdown curves also
show that MaxBIPS performs better than the other policies for

all power budgets. However, the difference is less emphasized
as MaxBIPS targets system throughput rather than individual
task latencies. On the other hand, priority performs relatively
worse than pullHipushLo under this condition as the latter tries
to balance power dissipation among cores, thus applying some
fairness criterion to mode selections.

Here we also revisit our previously discussed 3:1
∆PowerSavings : ∆Per f ormanceDegradation target ratio. In
Figure 5, we show the achieved power savings and perfor-
mance degradations by the described policies at each tar-
get budget. In each plot, we also show the target 3:1 ratio
curve as the dashed straight line. Our per-core DVFS based
power modes and experimented policies all show very good
∆PowerSavings : ∆Per f ormanceDegradation ratios, matching
the 3:1 ratio. In the case of MaxBIPS, we achieve significantly
better than the 3:1 ratio with effective dynamic assignment of
power modes.

Finally, we also present an example of how MaxBIPS pol-
icy dynamically adjusts core operation modes to manage chip
power in Figure 6. In this example, we start with a power
budget that is 90% of maximum chip power envelope, which
later drops to 70% during execution. This represents a sce-
nario where part of the cooling solution fails or the ambient
environment changes during system operation. In Figure 6
(a), we show how each application contributes to the total chip
power. MaxBIPS successfully manages the cores to maintain
a total power consumption near power budget. In Figure 6
(b), we show the corresponding performance characteristics
as percentages of the total chip BIPS for all turbo execution.
At certain points, total BIPS exceeds 100% as overall instan-

0% 20% 40%

Power Saving

0%

2%

4%

6%

8%

10%

12%

14%

0% 20% 40%

Power Saving

P
e

rf
.

D
e
g

ra
d

a
ti

o
n

0% 20% 40%

Power Saving

0%

2%

4%

6%

8%

10%

12%

14%

0% 20% 40%

Power Saving

P
e

rf
.

D
e

g
ra

d
a

ti
o

n

- Priority - PullHipushLo

- MaxBIPS - ChipWideDVFS

Figure 5. Power saving : performance degrada­
tion ratios for the three policies and chip­wide
DVFS for the whole range of power budgets.

taneous chip performance for a lower power operating mode
at some delta sim times can exceed the average BIPS at full
power execution. The small performance degradation due to
power budget drop is not immediately observable, but the av-
erage BIPS is reduced by 1% and 5% in the two power regions,
which coincides with the policy curve values of Figure 4(a) for
MaxBIPS.

At each explore time, MaxBIPS computes the best mode
combination that meets the budget. However, there can be re-
gions that exceed the budget at short periods due to unprece-
dented application behavior changes. These are corrected at
the next explore time by detecting the budget overshoot. In the
following sections, we consider optimizing system through-
put for a highly utilized system with fixed power budget con-
straints and therefore focus mainly on MaxBIPS. We first
compare MaxBIPS operation to achievable upper and lower
bounds and later on present our generalized results.

5.5 Predicting Different Mode Behavior

In our policy discussions we have inherently assumed that
we have the knowledge of power/performance behavior of ap-
plications in different modes. Based on this information, poli-
cies can choose among different mode combinations based on
their merits. However, this knowledge is not directly available.
The general approach in many dynamic management schemes
is to perform small-scale “explorations” of each mode to de-
duce the application behavior in these modes, or to somehow
predict this behavior from past history. For a heavy-handed
adaptation like DVFS, this exploration approach is essentially
prohibitive. Overheads lead to diminishing returns. The alter-
native approach is to assume that a previously seen behavior in
a specific mode is the persistent behavior in that mode. How-
ever, this has unreliable outcomes, since relying on past his-
tory can be misleading with temporally changing application
behavior.

As we have previously shown, DVFS has a useful property:

an application’s behavior at another DVFS setting can be esti-
mated analytically with reasonable accuracy. Therefore, in all
our analyses, we actually use this computational approach to
estimate behavior in different modes.

We represent the characteristics of each mode in terms of
Power and BIPS Matrices. For an N core CMP system with
three power modes, two Nx3 matrices can completely char-
acterize all mode behaviors. For the Power Matrix, different
power behaviors of modes can be characterized by applying
the cubic scaling relation. For the BIPS Matrix, BIPS values
can be computed with a linear scaling.

For our original mode definitions, power and BIPS values
of different modes can be estimated by scaling with 0.95 and
0.85. For example, if core1 is in Eff1 mode with power P1E1

and BIPS B1E1, corresponding Turbo and Eff2 power (P1T

and P1E2) and BIPS (B1T and B1E2) values can be approxi-
mated as:

P1T = P1E1/0.953

P1E2 = P1T ·0.853

B1T = B1E1/0.95

B1E2 = B1T ·0.85

Note that above BIPS predictions do not account for transi-
tion overheads. However, at design time, the cost of switching
among modes is well known as well as the BIPS and Power
Matrix scalings. Therefore, same parallel BIPS matrix com-
putations can be performed, only with additional scaling fac-
tors for BIPS values to incorporate transition costs. For our
choice of parameters (with 500 µs explore times, and transi-
tion overheads of approximately 7 µs, 13 µs and 20 µs as de-
picted in Table 5), these scaling factors are 500/507, 500/513
and 500/520. For example, the BIPS after transitioning from
Turbo mode to Eff2 mode can now be estimated as:

B1E2 = B1T ·0.85 · (500/520)

As the power modes and number of cores are known in
design time, all these relations can be hardwired. Thus, the
matrix computation can be done in parallel by the global
power management controller choosing which mode defines
the properties for the other modes for each core.

Inevitably, these estimations are prone to errors. Over the
SPEC suite, this is acceptable with 0.1-0.3% estimation er-
rors for power. For BIPS values, the errors are 2-4%. The
higher errors for BIPS are due to the differences in memory-
boundedness of applications at different explore periods. For
powers, the errors stem from slightly changing utilizations at
delta sim cycles in different modes. As the more important es-
timate is for power—to assure we meet target power budgets,
this approach works well in our DVFS scenario. In our ex-
periments we use this approach to choose appropriate power
modes for each core dynamically during execution.

5.6 Upper Bounds in Policy Efficiency with Oracle Mode
Selection

To assess the efficiency of the policies from an optimal
throughput perspective, here we describe the upper bounds for
achievable efficiency with oracle knowledge. For the oracle
based mode selection, at each explore period, we look at the
future execution until the next explore time, i.e., 500 µs for-
ward. We generate our oracle BIPS and Power matrices based

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2500 5000 7500 10000 12500

Time [µs]

P
o

w
e

r

ammp

mcf

crafty

art

(a) Power contribution of each application (top to bottom: art, crafty, mcf, ammp).

0%

20%

40%

60%

80%

100%

120%

140%

0 2500 5000 7500 10000 12500

Time [µs]

P
e

rf
o

rm
a

n
c

e

ammp

mcf

crafty

art

(b) Performance contribution of each application (top to bottom: art, crafty, mcf, ammp).

Figure 6. Execution timeline of (ammp, mcf, crafty, art) with MaxBIPS policy, where power budget drops
from 90% to 70% during execution.

on this future knowledge, and then choose the maximum-
performance mode combination that satisfies the power bud-
get.

In Figure 7(a), we show the policy curves for the oracle,
chip-wide DVFS and MaxBIPS. Priority and pullHipushLo
are omitted for brevity, but can be referenced from Figure
4(a). Although oracle performs slightly better than MaxBIPS
at all budgets, it is easily seen that MaxBIPS lies within 1%
of the oracle. This shows, our MaxBIPS policy, with predic-
tive Power and BIPS matrices performs comparably to a strict
oracle for dynamic CMP power management.

5.7 Lower Bounds with Static Mode Assignments

At the opposite corner of global power management lies
static mode assignments for each core. That is, for each tar-
get budget, we choose a static mode configuration for each
core and we do not further alter the core configurations dur-
ing application execution. This represents a heterogeneous
CMP configuration similar to Ghiasi [9]. In our analyses,
we consider these separate static mode assignments for each
core based on “oracle” knowledge for optimal core-mode-
benchmark assignments. We call this optimistic static man-
agement. For this optimistic case, we look at the overall native
executions of each benchmark at each power mode. Then, for
each budget, we choose the mode combinations that maximize
throughput, while satisfying budget requirements. For exam-
ple, for one budget, we assume we have 3 Eff2 and 1 Turbo
cores, while for another budget, we assume we have 3 Turbo
and 1 Eff1 cores. Therefore, the results for static manage-
ment at each power budget correspond to the highest achiev-
able performance among all possibilities for that budget via
static management.

In Figure 7(a), we also show the policy curves for this
static case, Static. Even under such optimistic assumptions,
the static case performs significantly worse than oracle and
MaxBIPS, since static core configurations cannot respond to
the temporal variations in workload behavior. This shows the
potential impact of dynamic management. In addition to the
policy curves, we again include the corresponding weighted
slowdown curves in Figure 7(b) for the same set of policies,
which demonstrate similar outcomes under fairness consider-
ations.

In a static assignment, rescheduling can be done at OS
switching granularities. Without oracle knowledge, the OS
can realize a bad core-benchmark assignment at the end of a
context interval and can switch tasks at the expense of cache
affinity. In comparison, a dynamic management approach like
MaxBIPS is indifferent to benchmark-core pairings, and ini-
tial scheduling decisions have little impact on the management
outcomes.

6 General Power Management Results

In the previous section, we have described different ap-
proaches to CMP power management and demonstrated the
power/performance trade-offs for various policies. We dis-
cussed some of the practical implementation and overhead is-
sues and evaluated these with respect to optimal and other al-
ternative power management methods. In this section we gen-
eralize our results for a range of workload compositions as
well as for different CMP configurations.

6.1 Overall Results

Here we present the outcomes of our CMP power man-
agement techniques under different chip power envelopes, for
several benchmark combinations with different characteristics.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(a) Policy curves

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

W
E

IG
H

T
E

D
 S

L
O

W
D

O
W

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(b) Weighted slowdowns

Figure 7. Policy curves and weighted slow­
downs for MaxBIPS, oracle, optimistic static
mode selection and chip­wide DVFS.

Specifically, we look at the four benchmark sets described in
Table 2, representing the different corners of workload com-
binations. We consider three CMP scales for 2, 4 and 8 core
processors, all with shared 2MB L2 caches.

In Figures 8 and 9, we show the results for the previ-
ously described benchmark combinations, for two and four
core CMP configurations respectively. We again show the at-
tained system performance degradation for MaxBIPS policy,
Static and ChipWideDVFS methods together with the oracle,
in terms of policy curves. In Figure 10, we show two exam-
ples for an eight core CMP configuration by combining the
two pairs of the four-core workload combinations.

In these plots, for each power management approach, we
draw the overall system performance degradation—with re-
spect to all Turbo execution— for several target power bud-
gets. Therefore, the method which leads to the least degra-
dation for a given budget can be considered superior in that
budget scenario.

The results support our prior conclusions for the MaxBIPS
policy, showing the effectiveness of CMP power management
with adaptive global policies. In particular, MaxBIPS, which
can tailor each core’s power mode dynamically with respect to
local workload variations under the global power budget con-

straints, achieves close to optimal power/performance trade
offs. MaxBIPS performs significantly better than both static
and chip-wide power management approaches under varying
chip power budget constraints. For several chip power bud-
gets, the latter two approaches experience 2X or higher perfor-
mance degradations than the MaxBIPS policy. This difference
in power/performance efficiency is emphasized with increased
core counts.

Different benchmark combinations show the impact of
workload variations on the performance of a CMP power man-
agement scheme. Consider high amount of variability across
different benchmarks within a given combination, such as Fig-
ures 8(a), 9(a), 10(a) and 10(b). These offer better trade-
offs with dynamic management, with less overall performance
degradations for a given power budget. On the other hand,
workloads with small inter-workload variations experience an
almost linear degradation in performance with reduced power
budgets. Among these, memory bound combinations expe-
rience less slowdown as expected, since their performance is
mainly determined by memory.

Comparing our MaxBIPS policy to the oracle power man-
agement shows the overall effectiveness of our approach. The
MaxBIPS global dynamic management policy lies, on aver-
age, within 1% performance degradation of the oracle for all
benchmark combinations. The performance difference be-
tween the oracle and MaxBIPS becomes trivial as we move to-
wards higher CMP scales of 4 and 8 cores per chip. This shows
that our described global CMP power management policy—
with simple predictive power mode selection techniques—
performs comparably to the optimal response for dynamic
CMP power management. Effectively, it attains close to op-
timal power/performance trade-offs.

6.1.1 Trends under CMP Scaling

Comparing our policy results across different CMP scales
shows important trends. As we scale out from 2 cores (Figure
8) to 8 cores (Figure 10), we observe three trends. First, the
difference between MaxBIPS and the oracle decreases with
increasing cores. In the eight core case, our MaxBIPS pol-
icy achieves practically the same policy curve as the oracle,
while for two cores, the difference is significant. The reason
for this is that for fewer cores, MaxBIPS tries to fit into the
power envelope with fewer mode combination alternatives to
select from. Therefore, at many points, the policy must con-
servatively underfit the power budget, thus sacrificing some of
the attainable performance.

Second, the relative performance degradation achieved by
static and chip-wide methods with respect to MaxBIPS in-
creases with the number of cores. As previously mentioned,
this is due to the increased inefficiency of chip-wide or static
techniques to capture widening inter- and intra-workload vari-
ations. Both these trends mean that as the future implemen-
tations move to more aggressively scaled CMPs, the benefits
and the necessity of our adaptive global power management
policies will be similarly emphasized.

Third and last, the trade-offs between static and chip-wide
techniques follow different trends under CMP scaling. While,
for two core systems (Figure 8) both approaches are com-
parable, further CMP scales (Figures 9 and 10) favor static
per-core power management over chip-wide dynamic manage-

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS
Static
MaxBIPS
Oracle

(a) (ammp, art)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(b) (gcc, mesa)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(c) (crafty, facerec)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(d) (art, mcf)

Figure 8. 2­way CMP power management results for different benchmark combinations.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(a) (ammp, mcf, cra., art)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(b) (fac., gcc, mesa, vor.)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(c) (six., gap, per., wup.)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS

Static

MaxBIPS

Oracle

(d) (mcf, mcf, art, art)

Figure 9. 4­way CMP power management results for different benchmark combinations.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS
Static
MaxBIPS
Oracle

(a) (ammp, mcf, cra., art, fac., gcc, mesa, vor.)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

60% 70% 80% 90% 100%

POWER BUDGET

P
E

R
F

.
D

E
G

R
A

D
A

T
IO

N

ChipWideDVFS
Static
MaxBIPS
Oracle

(b) (six., gap, per., wup., mcf, mcf, art, art)

Figure 10. 8­way CMP power management results for different benchmark combinations.

ment. The static approach addresses inter-workload (spatial)
variation, which provides more opportunities over higher CMP
scales. Dynamic DVFS addresses intra-workload (temporal)
variation over the whole chip. However, it cannot efficiently
exploit available power budget slack with the few available
power modes, as we have also previously discussed in Section
5.3.

We summarize our observations in Figure 11. In this fig-
ure, we show the difference between the achieved performance
degradations of the three policies. The degradations are aver-
aged over the active range of power budgets and over all exper-
imented benchmarks. In Figure 11, we also show the results
for a single core processor for reference. In the single-core
case, MaxBIPS policy becomes identical to chip-wide DVFS.
The performance degradation of MaxBIPS converges to oracle
as we increase the number of cores. Performance degradation
with static power management also decreases with increasing
cores. However, it saturates around 2% higher than the ora-
cle and MaxBIPS. Conversely, performance degradation with
chip-wide management increases monotonically with increas-
ing cores. The benefits of static and chip-wide approaches
are comparable in the 2-4 cores range, but static approach be-
comes dominant for further scales. Finally, the relative per-
formance efficiency of MaxBIPS is increasingly emphasized
over the other two approaches with higher scales, showing the

necessity of such per-core adaptive policies for global power
management in the next generation CMP configurations.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

1 Core 2 Cores 4 Cores 8 Cores

P
e
rf

.
D

e
g

ra
d

a
ti

o
n

O
v
e
r

O
ra

c
le

MaxBIPS Static ChipWideDVFS

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

1 Core 2 Cores 4 Cores 8 Cores

P
e
rf

.
D

e
g

ra
d

a
ti

o
n

O
v
e
r

O
ra

c
le

MaxBIPS Static ChipWideDVFS

Figure 11. Policy trends with respect to CMP
scaling.

7 Related Work

There are many prior studies that focus on the design and
control of CMP systems under power, thermal or area con-
straints [6, 7, 20, 25, 37]. Most of these studies also suggest
ways of adapting to workload behavior, under these different
constraints. However, most of these management techniques
guide independent local actions or OS level scheduling deci-
sions. In contrast, our work focuses on policies that perform
power/performance management by adjusting the behavior of
individual cores under global chip-wide power budgets with

the supervision of global monitoring and control.

One line of prior research considers CMP designs with dif-
ferent core configurations to more efficiently accommodate
different application requirements. Kumar et al. [19, 21]
propose heterogeneous CMPs in terms of different core com-
plexities. They show that such an approach improves power
consumption and can provide better performance-area trade-
offs. On the other hand, Ghiasi [9] explores heterogeneity with
cores operating at different frequencies. They show that such
heterogeneous systems offer improved management of ther-
mal emergencies. These works focus on heterogeneous CMP
designs and leverage OS support to assign applications to bet-
ter suited cores, while our work tries to adjust configurable
cores with finer-grained policies to meet chip-wide global bud-
gets.

Oliver et al. [34] describe a multiple clock domain, tile-
based architecture that assigns different tile columns to dif-
ferent voltage and frequency domains. This work targets par-
allelized signal processing applications that are decomposed
for execution on different tile columns. Each column can be
run at different speeds to meet preset target rates for the ap-
plications with the final goal of reducing power. Juang et al.
[14] also look at CMPs with dynamically configured voltage
and frequencies. However, their work adjusts individual core
executions to improve power-performance trade-offs by bal-
ancing inter-thread producer-consumer rates. Kotla et al. [17]
consider a CMP system with multiple effective frequency do-
mains by throttling cores at different rates. They demonstrate
that memory intensive applications can be run on a slower core
without significant performance loss. This work also employs
some predictive strategies to estimate program behavior at dif-
ferent power modes to help guide an energy-aware scheduler.
In comparison to these, our work develops policies that can
adapt each core’s behavior under fixed power budgets.

Another line of prior work also considers dynamic manage-
ment under power budget constraints. Merkel et al. [31, 32]
present system level methods that adjust processor execution
to fit target budgets. They develop an energy-aware schedul-
ing policy to meet uniform budgets for each core to eliminate
thermal emergencies. Grochowski et al. [10] discuss latency
and throughput trade-offs under chip power constraints. They
survey different adaptation techniques and suggest asymmet-
ric cores with DVFS as the most promising alternative. In a
related study, Annavaram et al. [2] consider a real implemen-
tation example with an asymmetric multiprocessor (AMP).
They consider both static and dynamic AMP configurations
and improve performance of multithreaded applications un-
der fixed power budgets. These works discuss adaptations in
response to the available thread parallelism in applications,
while our work investigates core power adaptation policies
for fully-utilized CMPs based on predictive power and per-
formance models at different power modes. Li and Martinez
[23, 24] investigate methods to identify the optimal operating
point on a CMP in terms of number of active cores and DVFS
settings for parallel applications. They consider dynamic con-
figurations under limited performance and power constraints
and develop analytical models for attainable speedups. They
consider application of chip-wide DVFS to manage parallel
regions of applications and perform few explorations guided

by heuristics to reach an optimal operating point. In contrast,
our work focuses on per-core DVFS actions guided by policies
that predict different power mode behaviors.

8 Conclusion

This paper proposes and evaluates a new perspective to
dynamic power management for CMP systems. This work
focuses on the chip-level global monitoring, control and dy-
namic management of power for the emerging multi-core sys-
tems. In our approach, global control is aware of the activity
of all the cores in a system. Therefore, it can decide upon good
per-core actions to meet global chip constraints.

In our experiments, we employ a fast and scalable static
trace-based CMP power/performance analysis methodology
to investigate global power management policies. Our anal-
yses show that global management provides a good balance
between power/performance under varying workload behav-
ior. Such dynamic global power management can avoid the
inefficiency of worst-case designs by reducing the power en-
velopes or by increasing on-chip core integration, with rea-
sonable single-threaded performance sacrifice. Our policy ex-
periments show the different trade-offs between fairness and
throughput. In the experimented policies, the predictability of
DVFS-based techniques alleviates any overheads related to the
mode explorations. Our mode prediction methodology via the
Power and BIPS Matrices can accurately estimate the applica-
tion behavior across different operating modes. Our best per-
forming policy, MaxBIPS, achieves performance degradations
within 1% of a conservative oracle. The discussed dynamic
management policies perform significantly better than static
power management or chip-wide DVFS, even if these are pro-
vided with the future knowledge of the workload behavior.

Our results show the potentials and the applicability of
CMP dynamic power management with global monitoring and
control, under chip-level power budget constraints. Although
there are other aspects and hierarchies of CMP power manage-
ment that need to be explored, the presented results show the
promising opportunities with global dynamic management.
We believe as more aggressive scale-out strategies are fol-
lowed, the benefits of global power management will corre-
spondingly increase, encouraging the incorporation of such
techniques in next generation systems.

References

[1] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. Fried-
man, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynamically Tun-
ing Processor Resources with Adaptive Processing. IEEE Computer,
36(12):43–51, 2003.

[2] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Amdahl’s Law
Through EPI Throttling. In Proceedings of the 32nd International Sym-
posium on Computer Architecture (ISCA-32), 2005.

[3] B. Brock and K. Rajamani. Dynamic Power Management for Embedded
Systems. In Proceedings of the IEEE International SOC Conference,
2003.

[4] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G.
Emma, and M. G. Rosenfield. New Methodology for Early-Stage,
Microarchitecture-Level Power-Performance Analysis of Microproces-
sors. IBM J. of Research and Development, 46(5/6):653–670, 2003.

[5] L. Clark, E. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus, M. Mor-
row, K. Velarde, and M. Yarch. An embedded 32-bit Microprocessor
Core for Low-Power and High-Performance Applications. IEEE Jour-
nal of Solid-States Circuits, 36(11):1599–1608, 2001.

[6] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP Through-
put with Mediocre Cores. In 14th International Conference on Parallel
Architecture and Compilation Techniques (PACT’05), 2005.

[7] J. Donald and M. Martonosi. Techniques for Multicore Thermal Man-
agement: Classification and New Exploration. In Proceedings of the
33th International Symposium on Computer Architecture (ISCA-33),
2006.

[8] M. Fleischmann. LongRun Power Management. Whitepaper, Transmeta
Corp., 2001.

[9] S. Ghiasi. Aide de Camp - Asymmetric Multi-Core Design for Dynamic
Thermal Management. PhD thesis, 2004. Dept. of Computer Science,
University of Colorado, Boulder, Ph.D. Thesis.

[10] E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of Both Latency
and Throughput. In Proceedings of the International Conference on
Computer Design (ICCD), 2004.

[11] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through
Activity Migration. In Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED), Seoul, Korea, Aug. 2003.

[12] Z. Hu, D. Brooks, V. Zyuban, and P. Bose. Microarchitecture-level
power-performance simulators: Modeling, validation and impact on de-
sign. Tutorial. In 36th International Symp. on Microarchitecture, Dec.
2003.

[13] Intel Corporation. Intel 80200 Processor based on Intel XScale Microar-
chitecture Datasheet, Jan. 2003.

[14] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. Clark. Coordinated,
Distributed, Formal Energy Management of Chip Multiprocessors. In
Proceedings of International Symposium on Low Power Electronics and
Design (ISLPED’05), Aug. 2005.

[15] R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 Chip: A Dual-Core
Multithreaded Processor. IEEE Micro, 24(2):40–47, Mar/Apr 2004.

[16] P. Kongetira. A 32-way Multithreaded SPARC(R) Processor. Hot Chips
16, Aug 2004.

[17] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson. Characterizing
the Impact of Different Memory-Intensity Levels. In IEEE 7th Annual
Workshop on Workload Characterization (WWC-7), Oct. 2004.

[18] K. Krewell. UltraSPARC IV Mirrors Predecessor: Sun Builds Dual-
Core Chip in 130nm. Microprocessor Report, Nov 2003.

[19] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction. In Proceedings of the 36th International
Symp. on Microarchitecture, Dec. 2003.

[20] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-Core Chip Mul-
tiprocessing. In Proceedings of the 37th International Symposium on
Microarchitecture (MICRO-37), 2004.

[21] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.
Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded
Workload Performance. In Proceedings of the 31st International Sym-
posium on Computer Architecture, June 2004.

[22] E. Kursun, C. Y. Cher, A. Buyuktosunoglu, and P. Bose. Investigating
the Effects of Task Scheduling on Thermal Behavior. In Third Workshop
on Temperature-Aware Computer Systems (TACS’06), June 2006.

[23] J. Li and J. Martinez. Power-Performance Implications of Thread-Level
Parallelism on Chip Multiprocessors. In IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS’05), 2005.

[24] J. Li and J. Martinez. Dynamic Power-Performance Adaptation of Par-
allel Computation on Chip Multiprocessors. In Proceedings of the 12th
International Symposium on High-Performance Computer Architecture
(HPCA-12), 2006.

[25] Y. Li, D. Brooks, Z. Hu, and K. Skadron. Performance, Energy and
Temperature Considerations for SMT and CMP Architectures. In 11th
International Symposium on High Performance Computer Architecture
(HPCA-11), 2005.

[26] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP Design Space
Exploration Subject to Physical Constraints. In 12th International Sym-
posium on High Performance Computer Architecture (HPCA-12), 2006.

[27] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and
Fairness in SMT Processors. In IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS’01), Nov. 2001.

[28] G. Magklis, M. Scott, G. Semeraro, D. Albonesi, and S. Dropsho.
Profile-based Dynamic Voltage and Frequency Scaling for a Multiple
Clock Domain Microprocessor. In Proceedings of the 30th International
Symposium on Computer Architecture (ISCA-30), 2003.

[29] C. McNairy and R. Bhatia. Montecito - The Next Product in the Ita-
nium(R) Processor Family. Hot Chips 16, Aug 2004.

[30] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Ita-
nium Processor. IEEE Micro, 25(2):10–20, Mar/Apr 2005.

[31] A. Merkel. Balancing Power Consumption in Multiprocessor Systems.
PhD thesis, Sept. 2005. System Architecture Group, University of Karl-
sruhe, Diploma Thesis.

[32] A. Merkel, F. Bellosa, and A. Weissel. Event-Driven Thermal Man-
agement in SMP Systems. In Second Workshop on Temperature-Aware
Computer Systems (TACS’05), June 2005.

[33] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environment for
PowerPC Microarchitecture Exploration. IEEE Micro, 19(3):15–25,
May/Jun 1999.

[34] J. Oliver et al. Synchroscalar: A Multiple Clock Domain Power-Aware
Tile-Based Embedded Processor. In Proceedings of the 31st Interna-
tional Symposium on Computer Architecture (ISCA-31), 2004.

[35] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang.
The Case for a Single-Chip Multiprocessor. In Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS VII), Oct. 1996.

[36] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger. Power and Tem-
perature Control on a 90nm Itanium-Family Processor. In IEEE Inter-
national Solid-State Circuits Conference (ISSCC 2005), Feb. 2005.

[37] M. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-run: Leveraging
SMT and CMP to manage power density through the operating system.
In Eleventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XI, 2004.

[38] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott. Energy-Efficient Processor Design Us-
ing Multiple Clock Domains with Dynamic Voltage and Frequency
Scaling. In Proceedings of the 8th International Symposium on High-
Performance Computer Architecture (HPCA-8), 2002.

[39] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In Tenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, Oct 2002.

[40] L. Spracklen and S. G. Abraham. Chip Multithreading: Opportunities
and Challenges. In 11th International Symposium on High Performance
Computer Architecture (HPCA-11), 2005.

[41] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4
System Microarchitecture. IBM Journal of Research and Development,
46(1):5–26, 2002.

[42] D. Tullsen and J. Brown. Handling Long-latency Loads in a Simultane-
ous Multithreading Processor. In Proceedings of the 34th Annual Inter-
national Symposium on Microarchitecture (MICRO-34), Dec. 2001.

[43] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal Online Meth-
ods for Voltage/Frequency Control in Multiple Clock Domain Micropro-
cessors. In Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS-XI), 2004.

