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Abstract

Computer systems increasingly rely on dynamic, phase-
based system management techniques, in which system hard-
ware and software parameters may be altered or tuned at run-
time for different program phases. Prior research has consid-
ered a range of possible phase analysis techniques, but has
focused almost exclusively on performance-oriented phases;
the notion of power-oriented phases has not been explored.
Moreover, the bulk of phase-analysis studies have focused on
simulation evaluation. There is need for real-system exper-
iments that provide direct comparison of different practical
techniques (such as control flow sampling, event counters, and
power measurements) for gauging phase behavior.

In this paper, we propose and evaluate a live, real-system
measurement framework for collecting and analyzing power
phases in running applications. Our experimental framework
simultaneously collects control flow, performance counterand
live power measurement information. Using this framework,
we directly compare between code-oriented techniques (such
as “basic block vectors”) and performance counter techniques
for characterizing power phases. Across a collection of both
SPEC2000 benchmarks as well as mainstream desktop appli-
cations, our results indicate that both techniques are promis-
ing, but that performance counters consistently provide bet-
ter representation of power behavior. For many of the exper-
imented cases, basic block vectors demonstrate a strong rela-
tionship between the execution path and power consumption.
However, there are instances where power behavior cannot be
captured from control flow, for example due to differences in
memory hierarchy performance. We demonstrate these with
examples from real applications. Overall, counter-based tech-
niques offer average classification errors of 1.9% for SPEC
and 7.1% for other benchmarks, while basic block vectors
achieve 2.9% average errors for SPEC and 11.7% for other
benchmarks respectively.

1 Introduction
In recent years, phase behavior of applications has drawn

a growing research interest for two main reasons. First, the
increasing complexity and power demand of processor archi-
tectures mandate workload dependent dynamic management
techniques. These techniques extensively benefit from track-
ing application phases to optimize power/performance trade-
offs and to identify critical execution regions for management
actions [1, 3, 9]. Second, in parallel with increasing proces-
sor complexities, architectural simulation studies have agrow-
ing need to research long execution timescales to capture the
increasingly variable behavior of applications. These studies
benefit from phase characterizations that summarize applica-

tion behavior with representative execution regions, alleviat-
ing the prohibitively high computational costs of large-scale
simulations [32, 36].

Various prior studies demonstrated that phase behavior can
be observed via different features of applications. Most of
these approaches fall into two main categories: In the first cat-
egory application phases are determined from the control flow
of the applications or the program counter (PC) signatures of
the executed instructions [9, 18, 24, 27, 32, 35, 36, 37]. In the
second category, phases are determined based on the perfor-
mance characteristics of the applications [3, 7, 12, 20, 39,40].

Although there have been some previous efforts to com-
pare or evaluate phase characterization techniques [2, 8, 26],
they do not perform a direct comparison of the two main ap-
proaches. Moreover, there is generally a missing link between
phase characterizations and their ability to represent power be-
havior, especially with real-system experiments. Such power
characterization is very important for real systems, as a pri-
mary goal of phase characterization is dynamic power man-
agement of running systems.

Following from these motivations, in this work, we com-
pare phase characterizations based on PC signatures and per-
formance behavior of applications. Our study primarily eval-
uates these techniques for accurate power behavior characteri-
zation on a real-system. We compare these with respect to the
actual, measured runtime power dissipation behavior of appli-
cations. Specifically, we look at phase analysis based on basic
block vector (BBV) features of an application [36] to deter-
mine regions of similar power behavior. We compare this to
phases determined by a particular set of performance moni-
toring counter (PMC) events that are chosen to reflect power
dissipation [21]. We test the power characterization accuracy
of these methods on 21 benchmarks from SPEC2000 suite
and 9 other benchmarks derived from commonly used desktop
and multimedia applications. We show that, in general, track-
ing performance metrics performs better than tracking control
flow in identifying power phase behavior of applications. Ad-
ditionally, we present specific examples from real applications
demonstrating cases where power phase behavior cannot be
deduced from code signatures.

There are three primary contributions of this work. First,
we have designed an accurate, real-system method for syn-
chronizing BBV signatures, performance events, and power
measurements on running machines. This method allows us
to study large-scale application behavior on running systems
rather than being limited to simulation approaches. Second,
utilizing this experimental framework, we evaluate how BBV
and PMC based approaches perform from a real power char-
acterization point of view. Compared to an uninformed phase
characterization, both phase based techniques achieve signif-
icantly higher accuracies in identifying power phases, lead-



ing to 2-6X less errors for benchmarks with significant power
variations. Last, we compare control flow (BBV) and perfor-
mance (PMC) based approaches against each other for their
power phase classification abilities. Overall tracking perfor-
mance behavior leads to 30-40% fewer errors than tracking
control flow in representing real power phase behavior.

The rest of the paper is organized as follows. Section 2 de-
scribes the goals of our phase analysis research and discusses
the reasons why control flow and performance phases can dif-
fer. Section 3 describes our experimentation platform. Section
4 explains the collection of BBV and PMC information with
our experimental setup. Section 5 describes our phase clas-
sification methods. Section 6 describes our quantitative eval-
uation and presents the power phase characterization results.
Section 7 provides detailed observations from performed ex-
periments. Section 8 provides a final discussion of BBV and
PMC based approaches and presents recommendations for fu-
ture research. Section 9 summarizes related work and Section
10 offers our conclusions.

2 Goals and Challenges of Phase Analysis

2.1 Phase Overview

Regardless of whether the phase characterization of
an application is geared towards summarizing its execu-
tion behavior or towards identifying periods with different
power/performance implications, the underlying goal is fun-
damentally the same. The principle purpose of phase char-
acterization is to accurately classify execution behaviorinto
self-similar operation regions based on the observed features.
However, the choice of tracked features can be different for
different endgoals. It might be desirable to have architec-
turally independent metrics to summarize execution for archi-
tectural exploration studies. In other cases, it is preferable to
have metrics that reflect the different behavior under differ-
ent architectures so that resulting phases closely track differ-
ent power/performance behavior and correspond to different
dynamic management opportunities.

In our research perspective, phase analysis lies as a layer
between the architecture and the applications that make use
of phase information. Based on the target application, there
also exists a processing layer between phase analysis and the
application, which helps interpret the phase behavior for ap-
plication specific goals. An application can simply match ob-
served phases with appropriate adaptive responses or can fur-
ther process phase information to engage different dynamic
management actions. For example, phase patterns can be used
to detect recurrent behavior [22, 37] or to predict durations for
certain modes of operation to amortize mode transition costs
[23, 27]. Several system-level or architectural methods can
benefit from phase information to guide dynamic management
actions. Temperature aware scheduling [3] can benefit from
detecting repetitive power phases to select among tasks with
different power/temperature behavior to reduce performance
degradation due to idling or throttling. Multicore power bal-
ancing and activity migration [16, 33] rely on application be-
havior to distribute or transfer activity among different com-
ponents. Phases can provide both history and phase change
information to decision policies of these techniques. Dynamic
voltage and frequency scaling approaches [6, 30, 41] can eval-
uate costs and benefits of switching among operation modes at

runtime based on diversity and duration of different phases.
Specifically in this study, our focus is how well differ-

ent phase characterizations—based on different features—
represent workload power characteristics. We look at how pre-
vious control-flow based approaches perform for power char-
acterization and compare this to our—power oriented—PMC
based approach.

2.2 What Control Flow Information Does Not Show

Before delving into the details of our experimentation and
phase characterization methodology, here we discuss the rea-
sons why control flow and power/performance behavior of an
application may disagree.

There are multiple aspects of application behavior that can
cause the control flow and performance based approaches to
reach different phase characterization conclusions.Dynamic
change in data localityduring an application’s execution can
cause the power behavior to significantly change. While this
change can be easily recovered from memory performance
metrics, code signatures cannot reflect this as execution foot-
prints are not altered.Effectively same executionrepresents
the converse of the above effect. In various applications,
multiple procedures or code segments perform similar pro-
cesses, leading to practically identical power behavior. These
are considered as fairly different phases in terms of control
flow, which may result in many different phase clusters that
do not reflect actual changes in program power. Typical ex-
amples for these are scientific or other iterative processing ap-
plications performing different tasks on an input with similar
power/performance implications.Operand dependent behav-
ior may result in similar effects as the first case, where power
and latency of a unit depends on the input operands, despite
the same control flow. Typical cases for these are overflow
handling and scaling of execution based on the input operand
values or widths [4].

We revisit these effects after presenting our power phase
characterization study. In Section 7, we show the differences
that can arise between control flow and performance based
phase tracking for power, with observations from real experi-
mented applications.

3 Software and Hardware Measurement Plat-
form

To collect synchronous PC, PMC and power information
during an application’s execution, we use dynamic instrumen-
tation via Pin [29]. Pin provides several flexible methods to
dynamically instrument the binary at different granularities.
This first step,instrumentation, simply decides where in the
native code the additional procedures to analyze the applica-
tion behavior should be inserted. Afterwards, whenever oneof
these instrumentation checkpoints are reached, Pin gains the
control of the application and injects corresponding analysis
routines. During execution, each time the instrumented loca-
tions are visited, their injected analysis routines also execute,
providing the dynamic application information. This second
phase of operation is calledanalysis. Pin utilizes a single ex-
ecutable,Pintool, to perform instrumentation and analysis on
an application.

Figure 1 presents an overview of our experimental setup for
power phase analysis with Pin. In our Pintool, we use trace
level instrumentation to keep track of executed code traces.
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Figure 1. Experimental setup for power phase analysis with P in.

Our analysis routine consists of three levels of hierarchy.The
first level simply provides an account of executed instructions.
This is implemented as an inlined conditional to improve per-
formance and to avoid overwhelming power behavior. The
second level samples one PC address approximately every 1
million instructions. The highest level analysis is invoked ev-
ery 100 million instructions. This routine generates one BBV
from the 100 PC samples, reads performance statistics from
PMCs and logs the measured power history from the serial
device file. These three sources of data collection are shown
with the three incoming arrows to the analysis routine of our
Pintool.

It is important to isolate application behavior from Pin op-
eration. Pin provides application exclusive control flow in-
formation, however, performance monitoring and power mea-
surements are out of Pin’s control. Therefore, we provide han-
dles to our Pin routines to disable the logging of data for power
and performance at routine entries, and to reenable data log-
ging at routine exits. Under Pin execution, instrumentation and
analysis are temporally intermixed. Therefore, we use these
handles during both instrumentation and analysis.

We provide real power behavior feedback to our power
phase characterizations via external, live power measure-
ments. We perform power measurements by measuring the
current flow into the processor with a current probe. This mea-
surement information is then fed back to the measurement sys-
tem over the serial port interface.

To isolate the application power behavior from Pin anal-
ysis and instrumentation, we use certain controls within the
instrumentation and analysis routines of our Pintool. These
handles detach/attach serial device driver from the devicefile
at routine entries/exits viatermios flags. This approach al-
lows us to preserve previous application power history, while
preventing further logging while inside an instrumentation or
analysis routine. At the end of a 100 million instruction sam-
pling period, the highest level analysis routine halts logging
and reads the logged power history for the past sampling pe-
riod. This history is then averaged and is assigned as the ob-
served power for the past sampling quantum. Afterwards, the
buffer is flushed and reenabled for logging at the start of the
next sampling interval.

Similar to the power measurement method, we developed
several handles to control PMC monitoring from within our

Pintool. At Pintool initialization, we first configure the events
to be monitored. This is the most heavyweight operation, and
is applied only once, before application execution commences.
We selectively halt/start performance monitoring at instrumen-
tation and analysis routine entries/exits. This is used to avoid
polluting the PMC information with Pin execution. Although
we provide the start/stop handles to all routines, after ourini-
tial experiments, we do not invoke them for instrumentation
and the second level analysis routines, as their costs are com-
parable. Note that, this trade-off only affects PMC information
without any effect on control flow information and power mea-
surements. During the highest level analysis routine we read
the past PMC statistics and reset the counters for the following
sampling period.

With this experimental framework, we provide a valid
matching between application execution flow, performance
statistics and application specific power behavior. Inevitably,
there can be error due to measurements, and due to tran-
sient operations that perform the control functions for se-
lective logging and asynchronous operation of different data
sources. However, in the experimented cases, our selec-
tive power collection and PMC sampling process produces
power/performance information with good fidelity. Acquired
power behavior and performance statistics are similar, both
temporally and in terms of delta variations, to native execu-
tions of applications.

All of our experiments described in this paper are per-
formed on a 1.4GHz Pentium 4 processor with Linux oper-
ating system, kernel 2.4.7-10. The experiments are carriedout
with the SPECCPU 2000 benchmarks using reference datasets
and other benchmarks derived from well-known suites and
desktop applications. All benchmarks are compiled with gcc
and g77 compilers with base compiler flags.

4 Generating BBV and Performance Informa-
tion from Pin/Hardware Structure

4.1 Program Counter Sampling and BBV Generation

To track control flow based application phases, we use the
basic block vector (BBV) approach [36]. BBVs summarize
application execution by tracking both which basic blocks of
the application are touched and how many times each ba-
sic block is visited during a sampling interval. BBVs repre-
sent application execution behavior by providing both work-



ing set information and execution frequencies for different ba-
sic blocks [8]. BBVs are constructed from execution flow
by mapping executed PC addresses to the basic blocks of an
application binary. Originally, each component of a BBV is
a specific basic block, and the magnitude of the component
represents how often the corresponding basic block has been
executed for a past sampling period. For practical purposes,
BBVs are generally mapped into smaller dimensional vectors
via random projection/hashing, component analysis or elimi-
nating least significant dimensions [2, 13, 26, 36, 37].

In our implementation, we use Pin to sample the PC ad-
dresses at trace heads. As each trace head is also a basic block
start address, each sampled PC actually corresponds to a spe-
cific basic block. Consequently, different sampled PCs repre-
sent different elements of the BBV and number of samples for
a specific PC represents the execution frequency of the cor-
responding block. For sampling periods, we use previously
published granularities [2]. We sample one PC every 1 mil-
lion instructions and construct a BBV at every 100 million
instructions. Thus, each BBV has anL1-norm—sum of vec-
tor components—of 100. We perform static instrumentation
of our experimented applications with gcc compiler to deter-
mine the dimensions of basic block profiles. Even after elim-
inating untouched basic blocks and libraries, applications ex-
hibit large BBV dimensions ranging from 33000 (gcc) to 100
(swim). These lead to highly sparse and impractical to imple-
ment BBVs. Therefore, we also apply dimension reduction.
For the reduced dimensions, we choose 32 buckets based on
previous work [37]. We use a variation of Jenkins’ 32 bit in-
teger hash function [25] to reduce the large and variable BBV
dimensions into common 32 dimensional vectors.

As has been discussed in previous studies [26], sampling
always incurs some amount of information loss. However, for
any practical implementation of runtime control flow track-
ing, sampling is inevitable. Our observations show that our
sampled PC information offers good similarity information
for large scale control flow behavior. We compare full-blown
BBVs, constructed from complete PC information, to our sam-
pled BBVs with similarity matrices [36]. Both methods reflect
the major phase content in terms of execution flow similarity
and lead to similar phases for small numbers of target phase
clusters.

4.2 Using Performance Counters to Generate PMC Vec-
tors

In order to track power phases, we use a set of 15 per-
formance counters that are good proxies for power estima-
tion. The chosen counters track metrics such as CPU instruc-
tion counts, L1 and L2 access rates and and bus utilizations
for memory behavior. The complete list of chosen perfor-
mance counters are shown in Table 1 together with the applied
mask configurations that define the particular event subsetswe
choose to track. The performance monitoring method is sim-
ilar to prior research [21], but streamlined to avoid counter
rotations. The final set of 15 PMC events can be monitored
simultaneously without conflicts. Therefore, no PMC config-
uration is required except at the initial Pintool startup.

Every 100 million instructions, we collect the performance
event counts and cycle count for the past sampling period. We
then convert these event counts into per-cycle rates. These15
event rates are then used to construct a 15 dimensionalPMC

PMC Event Mask Description
IOQ_allocation 0x0EFE1 I/O Queue and Bus Sequence Queue 

allocations from all agents
BSQ_cache_ref 0x0507 L2 cache read and write accesses
FSB_data_activity 0x03F Front Side Bus utilization for reading, 

driving or reserving the bus.
ITLB_reference 0x07 ITLB translations performed
uop_queue_writes 0x07 All �ops written to the �op queue
TC_deliver_mode 0x038 Number of cycles the processor is 

buiding traces from instruction decode
uop_queue_writes 0x04 �ops written to the �op queue by 

microcode ROM
x87_FP_uop 0x08000 All x87 floating point �ops executed
LD_port_replay 0x02 Number of replays at the load port
x87_SIMD_moves 0x018 Executed x87, MMX, SSE and SSE2

load, store and register move �ops 
ST_port_replay 0x02 Number of replays at the store port
branch_retired 0x0F All branches retired
uops_retired 0x03 Number of �ops retired 
front_end_event 0x03 Number of loads and stores retired
uop_type 0x06 Tags load and stores (Does not count)

Table 1. The set of chosen performance counter
events and mask configurations.

vector, which gauges the similarity of execution samples in a
similar manner as BBVs.

5 Phase Classification
We cluster BBV and PMC vector samples into phases with

multiple clustering algorithms. First, we develop a fast, but
less accurate method based on the descriptions of previous
work [20]. This method is more suitable for runtime analy-
sis as it assigns samples to phases as they are observed. We
call this methodFirst Pivot Clustering. To corroborate the
observed characterization results are not due to the choiceof
clustering, we also experiment with a very computationallyex-
pensive method,Agglomerative Clustering[11]. We use two
variations of this method:complete linkageandaverage link-
age. Patil et al. [32] show that SPECint and SPECfp lead to on
average 4 and 5 phases respectively. Therefore, in this study,
to provide consistent results and error metrics across all appli-
cations, we target towards 5 final phases for all benchmarks.
Afterwards, we show that observed results are consistent as
the target number of phases changes.

5.1 First Pivot Clustering

First Pivot Clustering usespivot samples to represent dif-
ferent phases. In the original description of this method, a
new gathered sample is compared to all previous pivots, i.e.
starters of different phases. If the current sample is within a
specified threshold distance of a pivot, it is assigned to that
phase. If it is not within the similarity distance of any of the
pivots, it starts a new phase and is added to the list of pivotsas
the representative sample for the new phase. By this way, The
original description can assign samples to phases at runtime.
This approach provides an upper bound to the distance within
each phase, but it does not guarantee a fixed number of phases.

We change this to an iterative process, where the threshold
is changed dynamically based on both the acquired and target
number of phases. With this modification, we classify both
BBVs and PMC vectors into 5 final phases after a few itera-
tions.



5.2 Agglomerative Clustering

Agglomerative clustering is a tedious bottom-up approach
to clustering samples into phases. In this approach, clustering
algorithm starts with an initial clustering solution ofN clus-
ters, whereN is the number of samples. At each iteration, the
algorithm compares all pairwise combinations of the current
set of clusters and finds the best candidate pair of clusters to
combine into a single cluster. The pairs are compared based
on a linkagecriterion, which determines the best candidates.
This iterative process continues until a final target numberof
clusters are reached or a distance threshold among clustersis
exceeded. For agglomerative clustering, we experiment with
two types of linkages, complete and average linkage. We de-
scribe these below.

5.2.1 Average Linkage

Average linkage compares the average distance between all
sample pairs belonging to two different clusters. For two clus-
ters with i and j samples respectively, it computes the dis-
tance between all thei · j pairs and finds the average distance
between the clusters. Performing this operation for all clus-
ter combinations, it chooses to combine two clusters with the
minimum average distance. This leads to clusters with similar
ranges in all dimensions, but can result in significantly differ-
ent ranges for different clusters.

5.2.2 Complete Linkage

Complete linkage does similar comparisons as average link-
age. However, it compares the maximum pairwise sample-
distance among clusters. It combines the clusters with the least
maximum distance among all their pairs. Consequently, the
final set of clusters have similar ranges among most of their
samples, although the range across each dimension can be dif-
ferent.

In all our analyses we useL1—Manhattan—distance, as
our measure of distance between two samples. For BBV based
clustering, we compute theL1-distance between the two cor-
responding 32 dimensional BBVs. For PMC based clustering,
we use the two 15 dimensional PMC vectors to gauge the sim-
ilarity between points. We apply the above three clustering
methods and evaluate clustering criteria based on these dis-
tances.

6 Power Phase Characterization: Evaluation
of Techniques and Results

We apply our described power phase classification methods
to several benchmarks. Using both control flow and perfor-
mance features, we cluster each benchmark into 5 phases with
multiple clustering methods. Here, we discuss first how we
evaluate the fidelity of these phases in terms of power behavior
characterization. Afterwards, we provide the complete setof
results based on these evaluations. With the demonstrated re-
sults, we show how code signatures and PMC phases perform
in identifying power behavior characteristics with respect to a
“gold standard” phase classification as our lower bound and
an “uninformed” classification as the upper bound. We also
present a direct comparison between BBV phases and PMC
phases for power characterization.

6.1 Evaluating the Error of Power Phase Characteriza-
tion

We evaluate the quality of generated phase clusters by com-
paring the measured power at each sample to the aggregate
power for the whole cluster the sample belongs to. For a
benchmark withN samples, each samplei (i = 1, . . . ,N) is
an element of one of the final phase setsPj ( j = 1, . . . ,5).
Each sample has a corresponding set of data[bbvi , pmci , pwri ],
wherebbvi and pmci are the corresponding BBV and PMC
vectors used during phase clusterings, andpwri is the mea-
sured power value during samplei’s execution. For each phase
Pj , we compute a “representative power”,Rj , as the arithmetic
average of the power values for the totalNj samples belonging
to that phase. Then, for each samplei, we compute the squared
difference between the sample’s actual power valuepwri and
the representative powerRj for its owner phasePj . We de-
noteRj values corresponding to each samplei with R ji . Af-
terwards, we compute the rooted average of these squared dif-
ferences over all samples for our final RMS error figureERMS.
We summarize this error computation in Equation 1.

Rj =

∑
i∈Pj

pwri

Nj
( j = 1, . . . ,5)

ERMS=

√

√

√

√

√

N

∑
i=1

(pwri −R ji)
2

N (1)

This error value represents the quality of power phase char-
acterization for a given phase classification method on the
evaluated benchmark. The methods are the combinations of
tracked feature (BBVs or PMCs) and clustering algorithm
(first pivot, agglomerative with average or complete linkage).
We use this error measure to gauge the effectiveness of BBV
and PMC based features in representing power phase behavior
of applications in our experiments with various benchmarks.

6.2 Error Boundaries

To gauge the ability of the phase classification techniques
in discerning application power behavior, we also provide the
error boundaries that can be achieved with perfect knowledge
of power information—lower bound—as well as without any
knowledge of application behavior—upper bound.

To compute lower error bounds, we look directly at the
measured power, which is the independent target experiment
parameter in all other analyses. We apply all three cluster-
ing algorithms to each benchmark’s power information and for
each case choose the smallest error value achieved. We referto
this “gold standard” measure asbaseline errorin our results.

For the upper error bounds, we design a separate cluster-
ing method, which assigns each sample to any of the final
target phases randomly, without using any application behav-
ior information. We refer to the results of this “uninformed”
phase characterization asrandom error. We show the results
achieved with these approaches for each benchmark. These
demonstrate opportunities for improvement that remain and
how much improvement each tested phase analysis feature
brings to power characterization.



6.3 Experimented Benchmarks

For our power phase analysis experiments, we obtain con-
trol flow, performance and power characteristics for sev-
eral benchmarks on our test machine. We look at 11
SPECint benchmarks—all exceptperlbmk due to compila-
tion problems—and 10 SPECfp benchmarks—excluded are
F90 benchmarks. We experiment with all reference datasets
for the 21 SPEC benchmarks leading to a total of 37 different
experiments.

In addition to SPEC, we also use 9 other benchmarks from
previous studies and derived from well-known applications.
These benchmarks areghostscript, dvips, gimp, lame,
cjpeg, djpeg, mesh, stream andmdbnch. For some cases,
we alter the dataset or iterations for the benchmarks to achieve
longer execution times. We describe these benchmarks and
any modifications here.

In the first category,ghostscript anddvips are conver-
sion utilities commonly used in document creation. Their be-
havior depends on the nature and layout of the input docu-
ment. Next,gimp, lame, cjpeg anddjpeg are media process-
ing tools used to convert among formats or manipulate media
files. Last,mesh, stream andmdbnch are iterative applications
with multiple sequential functions similar to many scientific
computation tools.

For ghostscript anddvips we use a large document of
190 pages, with different size images in the middle of the doc-
ument. ghostscript converts a postscript input to pdf, and
dvips converts dvi input to postscript.

Gimp is an image manipulation tool [15]. We usegimp in
batch mode to perform several image processing operations
such as blurring, filtering and applying digital effects. De-
pending on the computation and memory intensity of the ap-
plied functions, they can lead to different power behavior.We
use thelame MP3 encoder [38] to encode a wave file under
varying quality settings. Both power levels and the total exe-
cution increase with the quality settings.Cjpeg anddjpeg are
image compression and decompression programs from Medi-
aBench [28]. We usecjpeg to encode a very large (110 MB)
ppm image file into jpeg anddjpeg to decode the jpeg file into
ppm. Their power behavior also changes during execution and
with input data.

Mesh is a well-known program used in dynamic program
optimization studies [10, 34]. It performs various computa-
tions over the input mesh edges and faces, with sequentially
executed repetitive functions. Our mesh input consists of 10K
nodes and 60K edges, leading to very quick iterations. To
emphasize the execution of separate functions, we alter the
original mesh code to repeat each function 100-200 times.
Mdbnch is a relatively older, scalar molecular dynamics bench-
mark [14]. It performs seven different molecular dynamics
tasks with different sizes or complexities. To extend its exe-
cution, we increase the number of time steps for each task by
4-50x. Bothmesh andmdbnch have similar iterative properties
of scientific computation. Although they iterate within differ-
ent control paths, each task usually has similar computation
properties—except for changes in memory intensity. These
lead to fairly flat behavior with small data footprints.Stream
is actually a synthetic benchmark, commonly used to mea-
sure sustainable memory bandwidth [31]. It iterates over four
small tasks doing different computations. Similar to the above

two applications,stream also exhibits a stable power behav-
ior during normal operation. However, it has a loop carried
positive feedback that eventually overflows the inputs for its
tasks, resulting in a drastic change in power behavior. For our
stream experiments, we use an iteration count of 275 and data
size of 2 million entry arrays.

6.4 Power Phase Characterization Results

We show the overall results for our experiments in Fig-
ures 2-4. Three figures show phase characterization errors
for the three clustering algorithms. In each figure, we show
the upper—random—and lower—baseline—error bounds for
each application and the achieved error with BBV and PMC
based approaches. We also show the average accuracies for
SPECint, SPECfp and other experimented benchmarks.

First, obtained characterization results are consistent,inde-
pendent of the applied clustering algorithm. In general Fig-
ure 2 shows relatively higher errors due to the cheaper cluster-
ing method. However, the general accuracy relation between
BBVs and PMCs are preserved.

Comparing among the three sets of applications, SPECfp
applications lead to relatively low errors even with random
phase clustering for some cases. This is due to the generic flat
power behavior of these benchmarks (applu, art, sixtrack,
wupwise). In some other cases, benchmarks go through spe-
cific initialization (i.e.equake) or periodic (i.e.ammp) phases
with significant changes in all control flow, performance and
power features. In these cases, both BBVs and PMCs achieve
very good power characterizations approaching baseline er-
rors.

SPECint shows significantly higher errors for all ap-
proaches due to higher variations in behavior. In many of the
shown cases, BBVs and PMCs are seen to have significant im-
provement over random clustering. This shows the benefits of
phase tracking for power behavior characterization.

Most of the other experimented benchmarks show signifi-
cantly higher error ranges due to their high power variability
based on input data characteristics and functional behavior. In
these cases, applying phase analysis, especially with PMCs,
proves to be very useful in identifying similar power behavior.

Overall, for the three benchmark sets, BBVs achieve errors
that are on average 48% less than random clustering errors , for
benchmarks with non-flat power behavior. PMC phases lead
to 66% less errors than random clustering. For PMC based ap-
proach, power characterization accuracies vary between 2-6X
improvements over random clusterings for these benchmarks.
Performing same comparisons with respect to baseline errors
show, BBVs on average achieve 2.9X higher errors compared
to baseline, while PMC errors are 1.8X of baseline figures.
These comparisons show, BBV and PMC phase analyses have
significant benefit in characterizing power behavior. However,
there still exist opportunities to improve power phase behavior
characterization of applications.

As above measures also indicate, in almost all experi-
mented cases, PMC based phase analysis performs better than
BBV based approach for representing power behavior. PMCs
lead to 2.2% and 1.4% errors for SPECint and SPECfp, while
BBVs achieve 3.4% and 1.5% errors. For the other experi-
mented benchmarks, PMCs and BBVs have 7.1% and 14.7%
average errors respectively. For most of the benchmarks
PMCs achieve 30-40% less errors than BBVs with an average
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Figure 2. Power characterization errors (absolute) for BBV and PMC phases with first pivot clustering.
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Figure 3. Power characterization errors (absolute) for BBV and PMC phases with agglomerative
clustering-average linkage.
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Figure 4. Power characterization errors (absolute) for BBV and PMC phases with agglomerative
clustering-complete linkage.

of 33%. This direct comparison between BBVs and PMCs
shows, although both techniques provide useful features to
identify power phase behavior, in general PMCs features are
better candidates for identifying power phases.

6.5 Sensitivity to Different Target Number of Phases

We have presented our complete analysis for a fixed target
number of 5 phases for consistency. However, we have also
experimented with different numbers of target phases to verify
the reliability of our results. We show these in Figure 5.

Here, we show the effect of target phases with agglomera-
tive clustering/complete linkage. For all the benchmarks,we
perform clusterings for final phase numbers varying from 1 to
5000. We show the achieved errors as both RMS and maxi-
mum observed values. For each benchmark, we compute the
RMS and maximum error figure for each target phase count.
Afterwards, we average these values over all benchmarks to
reach a single error figure for each target phase count.

Intuitively, for a single final phase, both BBVs and PMCs
will reach the same error, equivalent to the standard deviation
of all the power samples of the benchmark. Afterwards, as the
number of phases increase, errors for both methods will de-
crease with different slopes. As number of target final phases
grows towards infinity, both error curves will converge to 0,
i.e. where each phase is a singleton sample.

In Figure 5, we show the behavior up to 100 phases for
demonstration purposes. As phase counts grow beyond 100,
both curves approach 0. For all practical purposes, PMC based
phases perform consistently better, independent of the number
of final phase clusters.

7 Observations from Experimented Applica-
tions

Initially we discussed some of the possible reasons that can
cause control flow information and performance statistics to
arrive at different conclusions about application power behav-
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ior. Here, we show our observations from actual applications
that we experimented on. We demonstrate the effects for two
of the sources of disagreement,operand dependent behavior
andeffectively same execution.

7.1 Operand Dependent Behavior

Here, we show an example of operand dependent behavior
with the stream benchmark. Stream performs four repeti-
tive operations with simple vector kernels. It operates on three
vectors,a, b andc. The four operations arecopy(c[ j] = a[ j]),
scale(b[ j] = scalar∗ c[ j]), add (c[ j] = a[ j] + b[ j]) and triad
(a[ j] = b[ j]+scalar∗c[ j]). It targets at measuring sustainable
memory bandwidth with vectors larger than cache sizes and by
avoiding data reuse. We use this application to show operand
dependent behavior and its implications on power. There ex-
ists a positive feedback between each iteration of the four de-
scribed operations. This causes the the FP operations to over-
flow at iteration 261, where first vectora overflows attriad.
This is then propagated to vectorsb andc in the next itera-
tion. This overflow causes the three FP kernels to experience
a slowdown larger than 10x, while thecopyoperation is not
significantly effected. Consequently, power dissipation expe-
riences a drastic phase change, while execution path is still
conserved.

In Figure 6, we show the resulting behavior in terms of
power, BBV signatures and PMC signatures. Figure 6(a)
shows, the power (top) and BBV signatures (bottom) with re-
spect to executed instructions. We show BBV signatures as
stacked vector sample bars, where magnitude of each vector
component adds on top of the stack. Here, we see the repetitive
BBV vector patterns throughout the execution, corresponding
to the 4 different operations repeated 275 times. As the control
flow is repetitive, the sudden power drop goes undetected with
BBVs. In Figure 6(b), we show the same execution with power
(top) and few of the PMC vector samples (bottom). Shown
PMC metrics represent instructions per cycle (IPC), L2 cache
access rates (L2) and memory access rates (MEM). Here, we
show the execution with respect to cycles, to emphasize the
actual effect of overflow on elapsed time in different power
phases. While, the lower power phase occupies less than 6%
of executed instructions, the time spent in this phase is more
than half of the total execution. Tracking PMCs easily identi-
fies this power phase change resulting from operand dependent
behavior ofstream.

7.2 Effectively Same Execution

Phase characterizations of applications have two related
outcomes. First, phase characterizations provide feedback for

identifying phase changes in program behavior. Second, they
classify applications into similar regions of execution. These
two aspects have an inverse relation, which can be considered
in terms ofsimilarity andgranularity [17]. Dictating more re-
strictive similarity features within each phase results inhigher
number of phases with smaller granularity. These may, then,
lead to numerous false alarms for spurious phase transitions,
as many of the small variations in tracked features do not re-
flect in application (power) behavior. Thus, a desired property
for phase characterization is to lead to high granularity phases
that capture major application behavior; balancing similarity
and granularity.

Effectively same execution represents a characteristic be-
havior when PMC and BBV approaches perform differently
in achieving this balance. In many occurrences, applications
walk through different code paths, while performing similar
computational tasks. These lead to different code signatures,
indicating different phases, while actual power phase behavior
is similar.

We demonstrate the impact of this effect with themesh
benchmark. During its execution,mesh first reads an input
mesh configuration and performs various tasks on the input
mesh. Most of these tasks have computationally similar prop-
erties, leading to effectively same execution behavior—while
in different execution address spaces. In Figure 7, we show
part of the execution characteristics formesh. In the figure, we
first show the measured power behavior. We can easily sepa-
ratemesh execution into three power phases by observing the
power trace. We label these “actual” power phases asH, L and
M on the power trace, representing phases with high, low and
medium power consumption. Underneath the power trace, we
show the corresponding BBV vector patterns for each sample.
Again, we present the 32 dimensional BBVs as stacked bars,
where each vector component adds up to the stack based on its
magnitude. Several distinct control flow phases are observable
from the BBV patterns. We separate each of these regions with
vertical dotted lines. These correlate well withmesh tasks.
The first high power phase corresponds to the sorting task after
reading nodes and initialization. This task sorts nodes based
on their types. It operates mainly in L1 cache and performs
several arithmetics. The following low power phase, results
from SetBoundaryDatatask which sets the values for bound-
ary nodes. This task mostly accesses L2, and has low overlap-
ping computation, which leads to less power. After this task,
mesh repetitively operates on three computation tasks, namely,
ComputeForces(), ComputeVelocityChange()and Smoothen-
Velocity(). These constitute the medium power phase ofmesh.
All these tasks also make significant L2 accesses. However,
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Figure 6. Power phase change at overflow condition for stream benchmark. (a) shows BBV signatures,
unable to detect the phase change, (b) shows PMCs detecting t he change. (b) is drawn with respect to
elapsed cycles to show the actual time behavior.

their overlapping FP computations lead to relatively higher
power.

In the lower two plots of Figure 7, we show the phase clas-
sifications performed by BBVs and PMCs. We apply agglom-
erative clustering with complete linkage and use target phase
numbers,N, of 5—our base choice—and 3 for a more restric-
tive case. In these plots, y axis shows different phases ranging
from 1 to 5 for the first case and 1 to 3 for the second. For each
sample, we add a tick mark above the horizontal line corre-
sponding to its phase assigned by BBV classification. We also
add a tick mark below the horizontal line that corresponds to
each sample’s PMC phase. These marks then form the bands
of phases seen in these plots. For example, for the case with
5 phases, low power phase ofmesh is classified into phase “1”
by BBVs and phase “3” by PMCs.

These plots show the significant impact of effectively same
execution in phase classification. ForN = 5, PMCs cor-
rectly identify the three actual power phases. BBVs on the
other hand, collapse the high and low power phases into a
single phase, leading to a false characterization. This is be-
cause, BBVs identify several different large-scale control flow
phases. Clustering starts to overlap these based on theirL1-
distances, and these result in combining the high and low
phases of power. The three repetitive control flow phases with
effectively same power behavior are seen as the more different
phases by BBVs, and are assigned to different clusters. These

indicate several false alarms of spurious phase changes. For
N = 3, BBV phases still show more sensitivity to the three
repetitive tasks of medium power phase and assign them to
three different phases. In this case, all high, low and parts
of medium power phases are assigned to same phase (“1”)
by BBVs. In contrast, PMCs show very good fidelity. They
successfully identify three power regions and assign them to
different phases.

This example demonstrates the clear impact of effectively
same execution on control-flow-based phase characterization.
It is important to note that, this effect has implications for not
only phase characterizations, but also runtime phase detection.
Various control-flow phases with similar power behavior can
cause a detection framework to produce several false alarms
for phase transitions.

There are also other cases where differences between PMC
and BBV approaches arise including some SPEC benchmarks
such asmcf. We do not present these here for brevity.
Nonetheless, overall both BBV and PMC phases provide a
good account of application power phase behavior; in many
cases showing good correlation between power and both con-
trol flow and performance measures. PMCs usually show a
better mapping to power behavior due to both their proximity
to the actual flow of power in the processor, as well as due to
these discussed sources of disagreement between power and
code signatures.
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8 Summary and Recommendations for Future
Research

Here, we first make a final comparison of BBVs and PMCs
for power phase characterization. We summarize different
pros and cons of the two approaches. Afterwards, we discuss
how the strengths of these two features can be conceptually
combined for application to dynamic management techniques.
Finally, we present the directions for future research following
from these discussions.

BBVs are known to have several benefits for summariz-
ing application performance or tracking application phases.
The most important advantage of BBVs is the repeatability
of the observed phase behavior. Tracked code signatures do
not change due to system effects or with the application of dy-
namic management actions that affect system power and per-
formance.

The biggest disadvantage of BBVs lies in runtime applica-
bility. It is impractical to collect full blown BBV information
during application runtime. Sampling methods, as applied in
this study, provide acceptable resolution, but BBV generation

still requires mapping PC samples into control flow blocks.
Another related issue is the high dimensionality of BBVs that
requires processing for dimension reduction. In addition to
these, false alarms due to changes only in control flow are an
important consideration for a runtime detection system. Fi-
nally, the indifference of BBVs to varying data locality and
operand dependent behavior can be a significant impediment
in power/performance phase characterizations for some real
applications [2].

The important advantages of PMCs are their straightfor-
ward runtime applicability and their proximity to processor
power consumption. PMCs are easily accessible at runtime
with lightweight interfaces, which makes them good candi-
dates for dynamic applications on real systems. Several PMCs
show good correlations with processor power behavior, so they
don’t suffer significantly from false alarms. Also as the num-
ber of simultaneously monitored PMCs is less than 20, they re-
quire no dimension reduction during phase characterizations.

The most important issue with PMCs is repeatability. As
PMC data comes from several event counts over the proces-



sor, the values are not identical among repetitions of phases. A
phase detection method that utilizes PMCs is required to con-
sider event count ranges or has to track deltas together with
events to detect phases or phase changes. Our previous studies
show quantization can be unreliable, while tracking changes
produces higher fidelity [22]. The PMC based approach also
requires range considerations. Different dimensions of PMC
vectors are not of similar strength. For example, memory ac-
cess counts and instructions issued have different orders of
magnitude. Therefore, scaling of vector components or nor-
malizations may be necessary to match the impact of certain
events.

Our quantitative results show that PMCs have relatively
higher fidelity in characterizing power phase behavior. How-
ever, we believe a better solution can be achieved by com-
bining the strengths of BBVs with the PMC approach. For
a general phase tracking method, we envision a hierarchi-
cal approach between BBVs and PMCs. We consider using
PMC based phase tracking as the global mechanism to iden-
tify phase changes and using BBVs to track the repetitive exe-
cution progress. In terms of decision hierarchy, PMCs provide
confidence to phase changes detected from control flow and
provide the final decision whether this is an actual or spurious
phase change. On the other hand, BBVs enhance the repeata-
bility of observed PMC phases, by informing the PMC method
when a repetitive control flow is detected.

As future research, we consider application of control-
flow feedback to PMC-based phase tracking for runtime dy-
namic management. For example, we plan to use a DVFS
enabled system and process phase information to detect repet-
itive behavior under different DVFS settings. Using both
PMC and control flow features, we expect to achieve better
power/performance trade-offs than a simple reactive response.
In addition to this, other future research avenues include ap-
plying these power phase analysis methods to global CMP
power management and to dynamic thermal management as
mentioned in Section 2.

9 Related Work
Several previous studies investigate phase behavior of ap-

plications for adaptation and characterization purposes.Most
of these research studies focus on either control flow or per-
formance characteristics of applications. Iyer and Marculescu
[24], Dhodapkar and Smith [9], Sherwood et al. [36, 37],
Huang et al. [19] and Lau et al. [27] analyze control flow be-
havior of applications via different features such as subrou-
tines, working sets and basic block profiles. These studies use
simulation based methods to identify application phases for
summarizing performance and architectural studies. Patilet
al. [32] also look at control flow phases with real-system ex-
periments. They use similar dynamic instrumentation to iden-
tify BBV phases of applications. Their work uses basic block
profiles of applications to find representative execution points,
while we look at power characterizations with BBV and PMC
phases.

Cook et al. [7] show the repetitive performance phase char-
acteristics of different applications using simulations.Todi
[39], Weissel and Bellosa [40] and Duesterwald et al. [12]
utilize performance counters to identify performance based
phases. They use performance statistics to guide dynamic op-
timizations and metric predictions. These works do not con-

sider power behavior of applications. Our earlier work [20]
employed runtime power measurements and power estimation
with performance counters to identify phases of applications.
Chang et al. [5] apply process power profiling to determine
software power breakdowns. While these studies also look
at power behavior, they do not investigate control flow ap-
proaches. Hu et al. [18] describe a compile time methodology
to find basic block phases at runtime for power studies. This
study looks at control flow information from a compiler per-
spective, while we investigate runtime power phase behaviors
of both control flow and performance statistics.

There are also previous studies that compare or evaluate
phase characterization techniques. Dhodapkar and Smith [8],
perform a comparison between different control flow tech-
niques, working set signatures and BBVs. Annavaram et al.
[2] sample executed program counters as a proxy to control
flow and show the correlations between code signatures and
application performance. They show that, control flow does
not always correlate well with application performance. Lau
et al. [26] also look at control flow and performance of ap-
plications to show a strong correlation can be established by
linking program counter to procedures and loops of applica-
tions via profiling. In comparison, our work looks at the di-
rect comparison of two phase characterization features, BBVs
and PMCs with runtime measurement feedback for real power
evaluation on a real-system.

10 Conclusion
Phase analysis is increasingly important for computer sys-

tems first because simulation-based techniques rely on phase-
directed sampling to reduce simulation time, and second, be-
cause real-life adaptive hardware and software mechanisms
rely on dynamic phase-directed readjustments.

With power being such a pressing constraint in current pro-
cessors, it becomes important to understand not just the phases
of performance metrics, but also of their related power coun-
terparts. Observing power phase behavior on real systems is
particularly important because the real-system phases show
the impact of a comprehensive range of systems effects typ-
ically excluded from simulations.

This work has explored methods for real-system power
phase generation. Drawing on prior work, we have developed
an experimental framework for comparing both control-flow-
based and performance-monitoring-based phase techniques,
and for comparing against live power measurements. Our
results show that both control-flow and performance statis-
tics provide useful hints to power phase behavior. In gen-
eral, performance-based phase tracking leads to approximately
33% less power characterization errors than code signatures.

In some cases where power behavior depends on aspects
other than control flow (e.g. data locality, operand values,or
other characteristics), phases based on control flow can “miss”
some transitions. In other cases, control flow phase classifica-
tion can result in “extra” phases, where applications perform
different tasks with effectively the same execution characteris-
tics. These effects lead to both false alarms for phase changes
and incorrect power phase classifications.

Overall, the results presented here show a roadmap to ef-
fective power phase analysis in real systems. Control-flow
techniques offer a good base, but may well be best applied
as hybrid techniques together with performance counters that



can more closely track the details of program behavior, needed
for detection of power phases with high fidelity.
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