Phase Characterization for Power:
Evaluating Control-Flow-Based and Event-Counter-Based Techniques

Canturk Isci and Margaret Martonosi
Department of Electrical Engineering
Princeton University
{canturk,mrm}@princeton.edu

Abstract tion behavior with representative execution regions vaite
ing the prohibitively high computational costs of largexsc
Computer systems increasingly rely on dynamic, phasesimulations [32, 36].

based system management technigques, in which system hard- Various prior studies demonstrated that phase behavior can
ware and software parameters may be altered or tuned at runbe observed via different features of applications. Most of
time for different program phases. Prior research has consi these approaches fall into two main categories: In the fatst ¢
ered a range of possible phase analysis techniques, but haggory application phases are determined from the contrl flo
focused almost exclusively on performance-oriented hase of the applications or the program counter (PC) signatufes o
the notion of power-oriented phases has not been exploredhe executed instructions [9, 18, 24, 27, 32, 35, 36, 37]hén t
Moreover, the bulk of phase-analysis studies have focused osecond category, phases are determined based on the perfor-
simulation evaluation. There is need for real-system exper mance characteristics of the applications [3, 7, 12, 20438,

iments that provide direct comparison of different praatic Although there have been some previous efforts to com-
techniques (such as control flow sampling, event countars, a pare or evaluate phase characterization techniques [&]8, 2
power measurements) for gauging phase behavior. they do not perform a direct comparison of the two main ap-

In this paper, we propose and evaluate a live, real-systenproaches. Moreover, there is generally a missing link betwe
measurement framework for collecting and analyzing powerphase characterizations and their ability to represenepbe-
phases in running applications. Our experimental framdwor havior, especially with real-system experiments. Suchgwow
simultaneously collects control flow, performance couatet characterization is very important for real systems, asia pr
live power measurement information. Using this framework,mary goal of phase characterization is dynamic power man-
we directly compare between code-oriented technique$ (sucagement of running systems.
as “basic block vectors”) and performance counter techi@gu Following from these motivations, in this work, we com-
for characterizing power phases. Across a collection ohbot pare phase characterizations based on PC signatures and per
SPEC2000 benchmarks as well as mainstream desktop appliermance behavior of applications. Our study primarilyleva
cations, our results indicate that both techniques are psam uates these techniques for accurate power behavior charact
ing, but that performance counters consistently provide be zation on a real-system. We compare these with respect to the
ter representation of power behavior. For many of the exper-actual, measured runtime power dissipation behavior df-app
imented cases, basic block vectors demonstrate a stroag rel cations. Specifically, we look at phase analysis based dn bas
tionship between the execution path and power consumptiorblock vector (BBV) features of an application [36] to deter-
However, there are instances where power behavior cannot benine regions of similar power behavior. We compare this to
captured from control flow, for example due to differences inphases determined by a particular set of performance moni-
memory hierarchy performance. We demonstrate these witloring counter (PMC) events that are chosen to reflect power
examples from real applications. Overall, counter-bassaht dissipation [21]. We test the power characterization amoyr
niques offer average classification errors of 1.9% for SPECof these methods on 21 benchmarks from SPEC2000 suite
and 7.1% for other benchmarks, while basic block vectorsand 9 other benchmarks derived from commonly used desktop
achieve 2.9% average errors for SPEC and 11.7% for otherand multimedia applications. We show that, in generalktrac
benchmarks respectively. ing performance metrics performs better than trackingrobnt
flow in identifying power phase behavior of applications.-Ad
1 1 ducti ditionally, we present specific examples from real appilices

ntroduction demonstrating cases where power phase behavior cannot be

In recent years, phase behavior of applications has drawdleduced from code signatures.

a growing research interest for two main reasons. First, the There are three primary contributions of this work. First,
increasing complexity and power demand of processor archiwe have designed an accurate, real-system method for syn-
tectures mandate workload dependent dynamic managemenhronizing BBV signatures, performance events, and power
techniques. These techniques extensively benefit fromi-trac measurements on running machines. This method allows us
ing application phases to optimize power/performanceetrad to study large-scale application behavior on running syste
offs and to identify critical execution regions for managgin rather than being limited to simulation approaches. Second
actions [1, 3, 9]. Second, in parallel with increasing psace utilizing this experimental framework, we evaluate how BBV
sor complexities, architectural simulation studies hageosv- and PMC based approaches perform from a real power char-
ing need to research long execution timescales to captare thacterization point of view. Compared to an uninformed phase
increasingly variable behavior of applications. Theselistsl characterization, both phase based techniques achievié sig
benefit from phase characterizations that summarize applic icantly higher accuracies in identifying power phasesdlea

ing to 2-6X less errors for benchmarks with significant power runtime based on diversity and duration of different phases
variations. Last, we compare control flow (BBV) and perfor- Specifically in this study, our focus is how well differ-
mance (PMC) based approaches against each other for theént phase characterizations—based on different features—
power phase classification abilities. Overall trackingf@er represent workload power characteristics. We look at h@w pr
mance behavior leads to 30-40% fewer errors than trackingious control-flow based approaches perform for power char-
control flow in representing real power phase behavior. acterization and compare this to our—power oriented—PMC
The rest of the paper is organized as follows. Section 2 debased approach.
scribes the goals of our phase analysis research and c&scus_?_z What Control Flow Information Does Not Show
the reasons why control flow and performance phases can dif- S) i)
fer. Section 3 describes our experimentation platformtiGec Before delving into the details of our experimentation and
4 explains the collection of BBV and PMC information with Phase characterization methodology, here we discuss #he re
our experimental setup. Section 5 describes our phase cla§ons why control flow and power/performance behavior of an
sification methods. Section 6 describes our quantitatieé-ev application may disagree. o _
uation and presents the power phase characterizatiortgesul ~ There are multiple aspects of application behavior that can
Section 7 provides detailed observations from performed excause the control flow and performance based approaches to
periments. Section 8 provides a final discussion of BBV andreach different phase characterization conclusidbgnamic
PMC based approaches and presents recommendations for fehange in data localityluring an application’s execution can
ture research. Section 9 summarizes related work and Becticcause the power behavior to significantly change. While this

10 offers our conclusions. change can be easily recovered from memory performance
) metrics, code signatures cannot reflect this as executmn fo
2 Goals and Challenges of Phase Analysis prints are not altered Effectively same executioepresents

. the converse of the above effect. In various applications,
2.1 Phase Overview multiple procedures or code segments perform similar pro-
Regardless of whether the phase characterization of€sses, leading to practically identical power behavibese
an application is geared towards summarizing its execuare considered as fairly different phases in terms of contro
tion behavior or towards identifying periods with diffeten flow, which may result in many different phase clusters that
power/performance implications, the underlying goal is-fu do not reflect actual changes in program power. Typical ex-
damentally the same. The principle purpose of phase char@mples for these are scientific or other iterative processin
acterization is to accurately classify execution behaiitw ~ plications performing different tasks on an input with dami
self-similar operation regions based on the observedriemtu power/performance implication®©perand dependent behav-
However, the choice of tracked features can be different forior may result in similar effects as the first case, where power
different endgoals. It might be desirable to have architec-and latency of a unit depends on the input operands, despite
turally independent metrics to summarize execution foniarc the same control flow. Typical cases for these are overflow
tectural exploration studies. In other cases, it is préflerso ~ handling and scaling of execution based on the input operand
have metrics that reflect the different behavior under diffe values or widths [4].

ent architectures so that resulting phases closely tréfde-di We revisit these effects after presenting our power phase
ent power/performance behavior and correspond to differencharacterization study. In Section 7, we show the diffeesnc
dynamic management opportunities. that can arise between control flow and performance based

In our research perspective, phase analysis lies as a lay&hase tracking for power, with observations from real exper
between the architecture and the applications that make us&ented applications.
of phase information. Based on the target applicationether 3 g5fhware and Hardware Measurement Plat-
also exists a processing layer between phase analysis eand th form
application, which helps interpret the phase behavior for a
plication specific goals. An application can simply match ob ~ To collect synchronous PC, PMC and power information
served phases with appropriate adaptive responses or iean fuduring an application’s execution, we use dynamic instmsme
ther process phase information to engage different dynamic¢ation via Pin [29]. Pin provides several flexible methods to
management actions. For example, phase patterns can be usgyghamically instrument the binary at different granulast
to detect recurrent behavior [22, 37] or to predict duratifor This first step,instrumentation simply decides where in the
certain modes of operation to amortize mode transitionscost native code the additional procedures to analyze the applic
[23, 27]. Several system-level or architectural methods ca tion behavior should be inserted. Afterwards, wheneverafne
benefit from phase information to guide dynamic managementhese instrumentation checkpoints are reached, Pin gagns t
actions. Temperature aware scheduling [3] can benefit frontontrol of the application and injects corresponding asialy
detecting repetitive power phases to select among tasks witroutines. During execution, each time the instrumented-loc
different power/temperature behavior to reduce perfogaan tions are visited, their injected analysis routines alseceste,
degradation due to idling or throttling. Multicore power-ba providing the dynamic application information. This sedon
ancing and activity migration [16, 33] rely on applicatioe-b phase of operation is callexhalysis Pin utilizes a single ex-
havior to distribute or transfer activity among differemne- ecutable Pintool, to perform instrumentation and analysis on
ponents. Phases can provide both history and phase changa application.
information to decision policies of these techniques. Dyita Figure 1 presents an overview of our experimental setup for
voltage and frequency scaling approaches [6, 30, 41] cdn evapower phase analysis with Pin. In our Pintool, we use trace
uate costs and benefits of switching among operation modes #&vel instrumentation to keep track of executed code traces

fapsssesessuararasasasnarassasasnarssnasaaray
Collect performance Analysis Instrumentation| : Read] flush
event rates/ 1> = device file
reset counters :
= : detach / attach
ng;t';t;p : _ device file to
' R . : serial port device
Performance [| OS serial External Power
Counter : Sample T : device file Measurement via
Hardware : trace head fieae (haels : Current Probe
addresses 1 : p
| Application Binary |
Under Test
Figure 1. Experimental setup for power phase analysis with P in.

Our analysis routine consists of three levels of hierardiine Pintool. At Pintool initialization, we first configure the ews
first level simply provides an account of executed instordi to be monitored. This is the most heavyweight operation, and
This is implemented as an inlined conditional to improve per is applied only once, before application execution comrasnc
formance and to avoid overwhelming power behavior. TheWe selectively halt/start performance monitoring at imsten-
second level samples one PC address approximately every thtion and analysis routine entries/exits. This is used/tida
million instructions. The highest level analysis is invdkey- polluting the PMC information with Pin execution. Although
ery 100 million instructions. This routine generates oné/BB we provide the start/stop handles to all routines, afterimitir
from the 100 PC samples, reads performance statistics frortial experiments, we do not invoke them for instrumentation
PMCs and logs the measured power history from the seriabnd the second level analysis routines, as their costs ame co
device file. These three sources of data collection are showparable. Note that, this trade-off only affects PMC infotioa
with the three incoming arrows to the analysis routine of ourwithout any effect on control flow information and power mea-
Pintool. surements. During the highest level analysis routine wd rea
It is important to isolate application behavior from Pin op- the past PMC statistics and reset the counters for the foltpw
eration. Pin provides application exclusive control flow in Sampling period.))
formation, however, performance monitoring and power mea- With this experimental framework, we provide a valid
surements are out of Pin's control. Therefore, we provide ha matching between application execution flow, performance
dles to our Pin routines to disable the logging of data forgow Statistics and application specific power behavior. Irblit,
and performance at routine entries, and to reenable data loghere can be error due to measurements, and due to tran-
ging at routine exits. Under Pin execution, instrumentatiod ~ Sient operations that perform the control functions for se-
analysis are temporally intermixed. Therefore, we useethes lective logging and asynchronous operation of differertada
handles during both instrumentation and analysis. sources. However, in the experimented cases, our selec-
We provide real power behavior feedback to our poweriV€ POWer collection and PMC sampling process produces
phase characterizations via external, live power measurepower/ performance information with good fidelity. Acquire

ments. We perform power measurements by measuring th ower behavior and performance statistics are similam bot
current flow into the processor with a current probe. This-mea emporally and in terms of delta variations, to native execu

surement information is then fed back to the measurement sy§'0nS of appllcatlons. . . .
tem over the serial port interface. All of our experiments described in this paper are per-

. o . . formed on a 1.4GHz Pentium 4 processor with Linux oper-
To isolate the application power behavior from Pin anal- 54ing system, kernel 2.4.7-10. The experiments are caotied
ysis and instrumentation, we use certain controls with# th \\iy'the SPECCPU 2000 benchmarks using reference datasets
instrumentation and analysis routines of our Pintool. €hes 5.4 other benchmarks derived from well-known suites and

handles detach/attach serial device driver from the déi€e jegkiop applications. All benchmarks are compiled with gec
at routine entries/exits viger n os flags. This approach al- 54 g77 compilers with base compiler flags.

lows us to preserve previous application power historyevhi
preventing further logging while inside an instrumentat 4 Generating BBV and Performance Informa-
analysis routine. At the end of a 100 million instruction sam tion from Pin/Hardware Structure

pling period, the highest level analysis routine halts logg) i

and reads the logged power history for the past sampling pe4-1 Program Counter Sampling and BBV Generation

riod. This history is then averaged and is assigned as the ob- Tg track control flow based application phases, we use the
served power for the past sampling quantum. Afterwards, theyasic block vector (BBV) approach [36]. BBVs summarize
buffer is flushed and reenabled for logging at the start of thegpplication execution by tracking both which basic blocks o
next sampling interval. the application are touched and how many times each ba-
Similar to the power measurement method, we developedic block is visited during a sampling interval. BBVs repre-
several handles to control PMC monitoring from within our sent application execution behavior by providing both work

ing set information and execution frequencies for diffé izar

. . PMC Event Mask Description
SIC bIOCk.S [8] BBVs are constructed from ex_ecutlon flow 10Q_allocation OxOEFEL1 [I/O Queue and Bus Spequence Queue
by mapping executed PC addresses to the basic blocks of an allocations from all agents
application binary. Originally, each component of a BBV iS |BSQ cache ref |0x0507 |L2 cache read and write accesses
a specific basic block, and the magnitude of the component|FSB_data_activity [0x03F [Front Side Bus utilization for reading,
represents how often the corresponding basic block has beer driving or reserving the bus.
executed for a past sampling period. For practical purposes |ITLB reference [0x07 __ |ITLB translations performed
BBVs are generally mapped into smaller dimensional vectors [42P_dueue_writes [0x07 __ |All pops written to the pop queue

. AT TC_deliver_mode [0x038 Number of cycles the processor is
via random projection/hashing, component analysis orielim buiding traces from instruction decode
nating least significant dimensions [2, 13, 26, 36, 37]. Uop_queue_writes |0x04 L/ops written to the gop queue by

In our implementation, we use Pin to sample the PC ad- microcode ROM
dresses at trace heads. As each trace head is also a bakic blogx87_FP_uop 0x08000_|All x87 floating point pops executed
start address, each sampled PC actually corresponds te a spgD_port replay |0x02 |Number of replays at the load port
cific basic block. Consequently, different sampled PCsarepr ~ [*87-SIMD_moves 0x018 Executed x87, MIIX, SSE and SSE2
sent different elements of the BBV and number of samples for r— oad, Store and Iegister move Hops
e . _port_replay 0x02 Number of replays at the store port

a specm_c PC represents the execution frequency of th_e COI[branch_refired OXOF Al branches retired
responding block. For sampling periods, we use previously [uops_retired 0x03 Number of gops retired
published granularities [2]. We sample one PC every 1 mil- [front_end event [0x03 Number of loads and stores retired
lion instructions and construct a BBV at every 100 million [uop_type 0x06 Tags load and stores (Does not count)

instructions. Thus, each BBV has afi-norm—sum of vec-
tor components—of 100. We perform static instrumentation
of our experimented applications with gcc compiler to deter
mine the dimensions of basic block profiles. Even after elim-
inating untouched basic blocks and libraries, applicatiex-
hibit large BBV dimensions ranging from 3300§c¢) to 100
(swi m). These lead to highly sparse and impraqtical to imple—5 Phase Classification
ment BBVs. Therefore, we also apply dimension reduction.
For the reduced dimensions, we choose 32 buckets based on We cluster BBV and PMC vector samples into phases with
previous work [37]. We use a variation of Jenkins’ 32 bit in- multiple clustering algorithms. First, we develop a fastt b
teger hash function [25] to reduce the large and variable BBViess accurate method based on the descriptions of previous
dimensions into common 32 dimensional vectors. work [20]. This method is more suitable for runtime analy-

As has been discussed in previous studies [26], samplingis as it assigns samples to phases as they are observed. We
always incurs some amount of information loss. However, forcall this methodFirst Pivot Clustering To corroborate the
any practical implementation of runtime control flow track- observed characterization results are not due to the clobice
ing, sampling is inevitable. Our observations show that ourclustering, we also experiment with a very computationaXy
sampled PC information offers good similarity information pensive methodigglomerative Clusterinfl1]. We use two
for large scale control flow behavior. We compare full-blown variations of this methodcomplete linkag@ndaverage link-
BBVs, constructed from complete PC information, to our sam-age Patil et al. [32] show that SPECint and SPECfp lead to on
pled BBVs with similarity matrices [36]. Both methods retiec average 4 and 5 phases respectively. Therefore, in thig,stud
the major phase content in terms of execution flow similarity to provide consistent results and error metrics acrosppll-a

and lead to similar phases for small numbers of target phaséations, we target towards 5 final phases for all benchmarks.
clusters. Afterwards, we show that observed results are consistent as

_ the target number of phases changes.
4.2 Using Performance Counters to Generate PMC Vec- g P g

tors

Table 1. The set of chosen performance counter
events and mask configurations.

vector, which gauges the similarity of execution samples in a
similar manner as BBVSs.

5.1 First Pivot Clustering

In order to track power phases, we use a set of 15 per- First Pivot Clustering usegivot samples to represent dif-
formance counters that are good proxies for power estimaferent phases. In the original description of this method, a
tion. The chosen counters track metrics such as CPU instrucrew gathered sample is compared to all previous pivots, i.e.
tion counts, L1 and L2 access rates and and bus utilizationstarters of different phases. If the current sample is withi
for memory behavior. The complete list of chosen perfor- specified threshold distance of a pivot, it is assigned tb tha
mance counters are shown in Table 1 together with the applie@hase. If it is not within the similarity distance of any okth
mask configurations that define the particular event sulsets pivots, it starts a new phase and is added to the list of pasts
choose to track. The performance monitoring method is sim+the representative sample for the new phase. By this way, The
ilar to prior research [21], but streamlined to avoid counte original description can assign samples to phases at rantim
rotations. The final set of 15 PMC events can be monitoredThis approach provides an upper bound to the distance within
simultaneously without conflicts. Therefore, no PMC config- each phase, but it does not guarantee a fixed number of phases.
uration is required except at the initial Pintool startup. We change this to an iterative process, where the threshold

Every 100 million instructions, we collect the performance is changed dynamically based on both the acquired and target
event counts and cycle count for the past sampling period. Waumber of phases. With this modification, we classify both
then convert these event counts into per-cycle rates. Ttiese BBVs and PMC vectors into 5 final phases after a few itera-
event rates are then used to construct a 15 dimenskivial tions.

5.2 Agglomerative Clustering 6.1 Evaluating the Error of Power Phase Characteriza-

tion
Agglomerative clustering is a tedious bottom-up approach]
to clustering samples into phases. In this approach, cingte We evaluate the quality of generated phase clusters by com-
algorithm starts with an initial clustering solution Nfclus- ~ Paring the measured power at each sample to the aggregate

ters, whereN is the number of samples. At each iteration, the power for the whole cluster the sample belongs to. For a
algorithm compares all pairwise combinations of the curren benchmark withN samples, each sampigi = 1,...,N) is

set of clusters and finds the best candidate pair of clusters tan element of one of the final phase sBls(j = 1.....5).
combine into a single cluster. The pairs are compared baseBach sample has a corresponding set of {tata, pmg, pwri],

on alinkage criterion, which determines the best candidates.Wherebby and pmg are the corresponding BBV and PMC
This iterative process continues until a final target nuntfer ~vectors used during phase clusterings, and; is the mea-
clusters are reached or a distance threshold among clissters Sured power value during sampieexecution. For each phase
exceeded. For agglomerative clustering, we experimefit wit Pj, we compute a “representative poweR;, as the arithmetic
two types of linkages, complete and average linkage. We deaverage of the power values for the tdtglsamples belonging

scribe these below. to that phase. Then, for each samiplwe compute the squared
difference between the sample’s actual power vgdwg and
5.2.1 Average Linkage the representative pow®; for its owner phas#;. We de-

)) noteR; values corresponding to each sampleith Rji. Af-
Average linkage compares the average distance between albrwards, we compute the rooted average of these squared dif
sample pairs belonging to two different clusters. For twsel ferences over all samples for our final RMS error figHggs

ters withi and j samples respectively, it computes the dis- We summarize this error computation in Equation 1.
tance between all thie j pairs and finds the average distance

between the clusters. Performing this operation for alsclu

ter combinations, it chooses to combine two clusters wigh th pWr;
minimum average distance. This leads to clusters with aimil i&P; .
ranges in all dimensions, but can result in significantlyedif Rj = TN (j=1....5
ent ranges for different clusters.
N

5.2.2 Complete Linkage .Z(PWfi ~Rj)?

. . . . ERMS: IZ—Ni (1)
Complete linkage does similar comparisons as average link-

age. However, it compares the maximum pairwise sample-
distance among clusters. It combines the clusters withest | This error value represents the quality of power phase char-
maximum distance among all their pairs. Consequently, theacterization for a given phase classification method on the
final set of clusters have similar ranges among most of theievaluated benchmark. The methods are the combinations of
samples, although the range across each dimension can be difacked feature (BBVs or PMCs) and clustering algorithm
ferent. (first pivot, agglomerative with average or complete linkag

In all our analyses we usel—Manhattan—distance, as We use this error measure to gauge the effectiveness of BBV

our measure of distance between two samples. For BBV base@dnd PMC based features in representing power phase behavior
responding 32 dimensional BBVs. For PMC based clusteringg o Error Boundaries
we use the two 15 dimensional PMC vectors to gauge the sim- N -)
ilarity between points. We apply the above three clustering To gauge the ability of the phase classification techniques
methods and evaluate clustering criteria based on these di#n discerning application power behavior, we also proviue t
tances. error boundaries that can be achieved with perfect knoveledg
of power information—lower bound—as well as without any
6 Power Phase Characterization: Evaluation knowledge of application behavior—upper bound.
of Techniques and Results To compute lower error bounds, we look directly at the
measured power, which is the independent target experiment
We apply our described power phase classification methodparameter in all other analyses. We apply all three cluster-
to several benchmarks. Using both control flow and perfor-ing algorithms to each benchmark’s power information amd fo
mance features, we cluster each benchmark into 5 phases wittach case choose the smallest error value achieved. Weaefer
multiple clustering methods. Here, we discuss first how wethis “gold standard” measure haseline erroiin our results.
evaluate the fidelity of these phases in terms of power behavi For the upper error bounds, we design a separate cluster-
characterization. Afterwards, we provide the completeo$et ing method, which assigns each sample to any of the final
results based on these evaluations. With the demonstreted rtarget phases randomly, without using any application beha
sults, we show how code signatures and PMC phases perforior information. We refer to the results of this “uninfornied
in identifying power behavior characteristics with reqgeca ~ phase characterization emndom error We show the results
“gold standard” phase classification as our lower bound andachieved with these approaches for each benchmark. These
an “uninformed” classification as the upper bound. We alsodemonstrate opportunities for improvement that remain and
present a direct comparison between BBV phases and PMGow much improvement each tested phase analysis feature
phases for power characterization. brings to power characterization.

6.3 Experimented Benchmarks two applicationsst r eamalso exhibits a stable power behav-

For our power phase analysis experiments, we obtain conl—Or Ql_mng normal operation. However, it has a_loop carngd

trol flow, performance and power characte}istics for Sev_posmve feedback that eventually overflows the inputs for i
» P P tasks, resulting in a drastic change in power behavior. Eor o

eral benchmarks on our test machine. We look at 11 : ; ;
: : st r eamexperiments, we use an iteration count of 275 and data
SPECint benchmarks—all exceper | bnk due to compila- size of 2 million entry arrays.

tion problems—and 10 SPECfp benchmarks—excluded are o
F90 benchmarks. We experiment with all reference dataset§.4 Power Phase Characterization Results
for the 21 SPEC benchmarks leading to a total of 37 different \\ia show the overall results for our experiments in Fig-

experiments. ures 2-4. Three figures show phase characterization errors
In addition to SPEC, we also use 9 other benchmarks fronfoy the three clustering algorithms. In each figure, we show
These benchmarks aghostscript, dvips, ginp, lame, each application and the achieved error with BBV and PMC

cj peg, dj peg, mesh, streamandndbnch. For some cases, pased approaches. We also show the average accuracies for
we alter the dataset or iterations for the benchmarks tesehi specint, SPECfp and other experimented benchmarks.

longer execution times. We describe these benchmarks and First, obtained characterization results are consisiieaé-

any modifications here. _ _ pendent of the applied clustering algorithm. In general Fig
~In the first categoryghost scri pt anddvi ps are conver- yre 2 shows relatively higher errors due to the cheaperestust
sion utilities commonly used in document creation. Thek be ing method. However, the general accuracy relation between
havior depends on the nature and layout of the input docuBBVs and PMCs are preserved.
ment. Nextgi np, | ane, cj peg anddj peg are media process- Comparing among the three sets of applications, SPECfp
ing tools used to convert among formats or manipulate medigpplications lead to relatively low errors even with random
files. Lastesh, st r eamandndbnch are iterative applications phase clustering for some cases. This is due to the generic fla
with mUltl.ple Sequentlal functions similar to many scifinti power behavior of these benchmarkpm u,art, Sixtr ack,
computation tools. wupwi se). In some other cases, benchmarks go through spe-
For ghost scri pt anddvi ps we use a large document of cific initialization (i.e. equake) or periodic (i.e.anmp) phases
190 pages, with different size images in the middle of the doc with significant changes in all control flow, performance and
ument. ghost scri pt converts a postscript input to pdf, and power features. In these cases, both BBVs and PMCs achieve
dvi ps converts dvi input to postscript. very good power characterizations approaching baseline er
G np is an image manipulation tool [15]. We ugenp in rors.
batch mode to perform several image processing operations SPECint shows significantly higher errors for all ap-
such as blurring, filtering and applying digital effects. -De proaches due to higher variations in behavior. In many of the
pending on the computation and memory intensity of the apshown cases, BBVs and PMCs are seen to have significant im-
plied functions, they can lead to different power behawte provement over random clustering. This shows the benefits of
use thel ame MP3 encoder [38] to encode a wave file under phase tracking for power behavior characterization.
varying quality settings. Both power levels and the tota-ex Most of the other experimented benchmarks show signifi-
cution increase with the quality setting$.peg anddj peg are cantly higher error ranges due to their high power varigbili
image compression and decompression programs from Mediased on input data characteristics and functional behdwio
aBench [28]. We usej peg to encode a very large (110 MB) these cases, applying phase analysis, especially with PMCs
ppm image file into jpeg andj peg to decode the jpeg file into proves to be very useful in identifying similar power beluayi
ppm. Their power behavior also changes during execution and Overall, for the three benchmark sets, BBVs achieve errors
with input data. that are on average 48% less than random clustering erars , f
Mesh is a well-known program used in dynamic program benchmarks with non-flat power behavior. PMC phases lead
optimization studies [10, 34]. It performs various computa to 66% less errors than random clustering. For PMC based ap-
tions over the input mesh edges and faces, with sequentiallproach, power characterization accuracies vary betwegx 2-
executed repetitive functions. Our mesh input consistO&f 1 improvements over random clusterings for these benchmarks
nodes and 60K edges, leading to very quick iterations. ToPerforming same comparisons with respect to baselineserror
emphasize the execution of separate functions, we alter thehow, BBVs on average achieve 2.9X higher errors compared
original mesh code to repeat each function 100-200 times.to baseline, while PMC errors are 1.8X of baseline figures.
Mibnch is a relatively older, scalar molecular dynamics bench-These comparisons show, BBV and PMC phase analyses have
mark [14]. It performs seven different molecular dynamics significant benefit in characterizing power behavior. Hogvev
tasks with different sizes or complexities. To extend ite-ex there still exist opportunities to improve power phase baira
cution, we increase the number of time steps for each task bgharacterization of applications.
4-50x. Bothmesh andndbnch have similar iterative properties As above measures also indicate, in almost all experi-
of scientific computation. Although they iterate withinfdit mented cases, PMC based phase analysis performs better than
ent control paths, each task usually has similar computatio BBV based approach for representing power behavior. PMCs
properties—except for changes in memory intensity. Thesdead to 2.2% and 1.4% errors for SPECint and SPECfp, while
lead to fairly flat behavior with small data footprintst.r eam BBVs achieve 3.4% and 1.5% errors. For the other experi-
is actually a synthetic benchmark, commonly used to meamented benchmarks, PMCs and BBVs have 7.1% and 14.7%
sure sustainable memory bandwidth [31]. It iterates over fo average errors respectively. For most of the benchmarks
small tasks doing different computations. Similar to thexab PMCs achieve 30-40% less errors than BBVs with an average

(43H10) 3NV

weans

il g
Yougpw

Badlp

Badlo

awe|

y dwib

wduosisoyb

sdinp

[

g (d403dS) IAV

Jo1 Isde
uisjoeNXIS
urdwwe

B uieyenbs
= zZjar e

;, eI e

., Jaiesaw

y unidde
g U I~ pubw
\§§w Ui wims

Jor asimdnm

= (LNID3dS) IV

o1 jjom
- 9oInos” zdizq
,,,,,, weiboidzdizq
,,,,,,, oydelbzdizq

vrrsres)
SUBIPUS| XSUOA

ZUBIPUS| XSUOA
8 Tuelpus XaloA

jo1-deb

- Jal|wysni uoa
u eAifexy uoa
s 10007 U0®
Ja1 1asred
= uAyen

duijow

qe|1os 296

T
1dxe™ 006
00z 296
997 996
anos uda

g eoedTuda
= 90inos dizb
s

wopues dizb
wesboiddizb

27777772077 mO_\Q 26

y oydesb dizb

Random
EBBV
@mPMC
= Baseline

Q@@r~ oY MmN O

[m] 103 sy

and PMC phases with first pivot clustering.

Figure 2. Power characterization errors (absolute) for BBV

srss700002

[

"
m L
o']
Sms 2 2
X oo o s |
ZEOMm ‘_»

Qo@@r~oO1T®mA o

[m] 1013 SWY

(43H10) IAY

weans
ysow
Yougpw
badlp
Badlo

aure|

y dwib

1duosisoyb

o sdinp

(d493dS) 3IAv

d Joiisde
upenxs

y udwuwe

u—axenba

| zZJar e
;, eI e
| 1o esow
Y unidde

ur pubw
urwims

Jor asmdnm

(LNID3dS) 3NV

Jar jomy
90Inos” zdizq
wesboud zdizq
oydeib zdizq
gURIPUS| XaUOA
ZUBIPUS| XSLOA
TUBIPUS| XSUOA
jo1 deb
Ja1BWwysni_uos
eAifey uoa

%009 U0d

Jo1 1asred

U fyelo

durjow

qe|ios 296

y olesBajui 096

s 1dxo 006

00Z 296

997 996

anos uda
aoe(duda
oinos dizb
wopues dizb
weiboiddiz6
Bo|~diz6

y oydes6 dizb

and PMC phases with agglomerative

Figure 3. Power characterization errors (absolute) for BBV

clustering-average linkage.

rsssssrs.

B e e

o (e

vrssrrs
o

Vrrsrrrrrssssss

2.

Random
EBBV
@mPMC
B Baseline

Q@®@~OWLT MmN

[m] 103 sy

(43H10) 3NV

weans

ysaw
yougpw

Badlp

Badlo

awe|

dwib
wduosisoyb

sdinp

2 (d403dS) IAV

Jo1 Isde
uisoRIXIS
ur dwuwre
ur—axenba
FACTISY)-]
T4 Ue

JaI esaw

y unidde

ul"pubw
urwims

JoI asimdnm

(INI1D3dS) 3NV

a1 jomy
9oInos” zdizq
wesboid zdizq
oydeib zdizq
SURIPUS| XSUOA
ZUBIPUS| XSUOA
TURIPUS| XBUOA
jo1-deb
Ja1BWwysnI_uoa

ehllex uos

s 0007 U0®

Ja1 1asred
urAyelo
durjow
qe1os~ 296
areibaiu 006
1dxe™ 006

00z 296

997 996
anos uda

d ooeididA
y 20inos dizb

wopues dizb
wesboiddizb
Bo|—dizb

y oydesb dizb

and PMC phases with agglomerative

Figure 4. Power characterization errors (absolute) for BBV

clustering-complete linkage.

Intuitively, for a single final phase, both BBVs and PMCs

This direct comparison between BBVs and PMCs

of 33%.

shows, although both techniques provide useful features tavill reach the same error, equivalent to the standard dewiat
identify power phase behavior, in general PMCs features aref all the power samples of the benchmark. Afterwards, as the

better candidates for identifying power phases.

number of phases increase, errors for both methods will de-
crease with different slopes. As number of target final phase

grows towards infinity, both error curves will converge to 0O,

6.5 Sensitivity to Different Target Number of Phases

We have presented our complete analysis for a fixed targete. where each phase is a singleton sample.
number of 5 phases for consistency. However, we have also In Figure 5, we show the behavior up to 100 phases for

experimented with different numbers of target phases tiyver demonstration purposes. As phase counts grow beyond 100,

both curves approach 0. For all practical purposes, PMGbase

Here, we show the effect of target phases with agglomeraphases perform consistently better, independent of théseum

the reliability of our results. We show these in Figure 5.

of final phase clusters.

tive clustering/complete linkage. For all the benchmavks,

7 Observations from Experimented Applica-

perform clusterings for final phase numbers varying from 1 to
5000. We show the achieved errors as both RMS and maxi-

tions
Initially we discussed some of the possible reasons that can

mum observed values. For each benchmark, we compute the
RMS and maximum error figure for each target phase count.

Afterwards, we average these values over all benchmarks toause control flow information and performance statistics t

reach a single error figure for each target phase count.

arrive at different conclusions about application powérawe

=0=AVE RMS Error (BBV)
—o— AVE RMS Error (PMC)

=0=AVE MAX Error (BBV)
—o—AVE MAX Error (PMC)

o b v v ol v vy
0 20 40 60 80 100 0 20 40 60 80 100
(a) Average error. (b) Max error.
Figure 5. Variation of errors with respect to number of final p hases.

ior. Here, we show our observations from actual application identifying phase changes in program behavior. Secong, the

that we experimented on. We demonstrate the effects for twalassify applications into similar regions of executiorhee

of the sources of disagreemenperand dependent behavior two aspects have an inverse relation, which can be considere

andeffectively same execution in terms ofsimilarity andgranularity [17]. Dictating more re-

. strictive similarity features within each phase resultkigher

7.1 Operand Dependent Behavior number of phases with smaller granularity. These may, then,
Here, we show an example of operand dependent behavidead to numerous false alarms for spurious phase transjtion

with the st r eam benchmark. St r eam performs four repeti- ~as many of the small variations in tracked features do not re-

tive operations with simple vector kernels. It operatestwag flect in application (power) behavior. Thus, a desired priype

vectorsa, b andc. The four operations amopy(c|j] = alj]), for phase characterization is to lead to high granularigsgis

scale(b]j] = scalar«c|]), add (c[j] = aj] + b|j]) andtriad that capture major application behavior; balancing siritjla

(a[j] = b[j] + scalarxc[j]). It targets at measuring sustainable and granularity.

memory bandwidth with vectors larger than cache sizes and by Effectively same execution represents a characteristic be

avoiding data reuse. We use this application to show operanélavior when PMC and BBV approaches perform differently

dependent behavior and its implications on power. There exin achieving this balance. In many occurrences, applinatio

ists a positive feedback between each iteration of the feur d walk through different code paths, while performing simila

scribed operations. This causes the the FP operations to ovecomputational tasks. These lead to different code sigeatur

flow at iteration 261, where first vectaroverflows attriad. indicating different phases, while actual power phase ieha

This is then propagated to vectdrsaandc in the next itera- s similar.

tion. This overflow causes the three FP kernels to experience \ve gemonstrate the impact of this effect with tiesh

a slowdown larger than 10x, while tte®py operation is not penchmark. During its executiomgsh first reads an input
significantly effected. Consequently, power dissipatipee mesh configuration and performs various tasks on the input
riences a drastic phase change, while execution path lis stilhesh. Most of these tasks have computationally similar-prop
conserved. . o erties, leading to effectively same execution behavior—avhi

In Figure 6, we show the resulting behavior in terms of in different execution address spaces. In Figure 7, we show
power, BBV signatures and PMC signatures. Figure 6(a)part of the execution characteristics fash. In the figure, we
shows, the power (top) and BBV signatures (bottom) with re-first show the measured power behavior. We can easily sepa-
spect to executed instructions. We show BBV signatures agatemesh execution into three power phases by observing the
stacked vector sample bars, where magnitude of each vect@ower trace. We label these “actual” power phasds,dsand
component adds on top of the stack. Here, we see the repetiti\i on the power trace, representing phases with high, low and
BBV vector patterns throughout the execution, correspundi - medium power consumption. Underneath the power trace, we
to the 4 different operations repeated 275 times. As theebnt show the corresponding BBV vector patterns for each sample.
flow is repetitive, the sudden power drop goes undetectéd wit Again, we present the 32 dimensional BBVs as stacked bars,
BBVs. In Figure 6(b), we show the same execution with poweryhere each vector component adds up to the stack based on its
(top) and few of the PMC vector samples (bottom). Shownmagnitude. Several distinct control flow phases are obbkrva
PMC metrics represent instructions per cycle (IPC), L2 each from the BBV patterns. We separate each of these regions with
access rates (L2) and memory access rates (MEM). Here, Wgertical dotted lines. These correlate well withsh tasks.
show the execution with respect to cycles, to emphasize thehe first high power phase corresponds to the sorting task aft
actual effect of overflow on elapsed time in different power reading nodes and initialization. This task sorts nodesdas
phases. While, the lower power phase occupies less than 6%n their types. It operates mainly in L1 cache and performs
of executed instructions, the time spent in this phase i®mor several arithmetics. The following low power phase, result
than half of the total execution. Tracking PMCs easily itlent from SetBoundaryDat#ask which sets the values for bound-
fies this power phase change resulting from operand dependegry nodes. This task mostly accesses L2, and has low overlap-
behavior ofst r eam ping computation, which leads to less power. After this task
mesh repetitively operates on three computation tasks, namely,
ComputeForces()ComputeVelocityChangegnd Smoothen-

Phase characterizations of applications have two related/elocity() These constitute the medium power phaseesh.
outcomes. First, phase characterizations provide fe&dioac All these tasks also make significant L2 accesses. However,

7.2 Effectively Same Execution

ESO
240 Overflow at iteration 261
)
o 30
|
)
L
A
|
2.5 13.7 24.8 36.0 47.1 58.2 69.4 80.5 91.7
Instructions (Billions)
(a) Stream power behavior and BBV patterns.
60 pr—r—r—r—r—— r—r—r—r—r—r—r— —r—r—r—r——r— —r—r—r—r——r— r—r—r—r—r—r—r— v 1
s] —PWR
50 f . . h
— 3 Overflow at iteration 261 1
) —]
S 40 F)
o o
o —]
30k] o
PC 31 &
—MEM e
—L 1.8
12
c
S S 0 g
w
120 160 200

Cycles (Billions)
(b) Stream power behavior and PMC patterns.

Figure 6. Power phase change at overflow condition for st reambenchmark. (a) shows BBV signatures,
unable to detect the phase change, (b) shows PMCs detecting t he change. (b) is drawn with respect to
elapsed cycles to show the actual time behavior.

their overlapping FP computations lead to relatively highe indicate several false alarms of spurious phase changes. Fo
power. N = 3, BBV phases still show more sensitivity to the three
In the lower two plots of Figure 7, we show the phase clas-'epetitive tasks of medium power phase and assign them to
sifications performed by BBVs and PMCs. We apply agg|om_three d!fferent phases. In this case, all high, low and parts
erative clustering with complete linkage and use targespha ©f medium power phases are assigned to same phase (“1")
numbersN, of 5—our base choice—and 3 for a more restric- by BBVs. In contrast, PMCs show very good fidelity. They
tive case. In these plots, y axis shows different phasesigng Successfully identify three power regions and assign them t
from 1 to 5 for the first case and 1 to 3 for the second. For eacilifferent phases.
sample, we add a tick mark above the horizontal line corre- This example demonstrates the clear impact of effectively
sponding to its phase assigned by BBV classification. We als@ame execution on control-flow-based phase charactenizati
add a tick mark below the horizontal line that corresponds tolt is important to note that, this effect has implications fiot
each sample’s PMC phase. These marks then form the bandmly phase characterizations, but also runtime phasetagtec
of phases seen in these plots. For example, for the case witliarious control-flow phases with similar power behavior can
5 phases, low power phasemafsh is classified into phase “1” cause a detection framework to produce several false alarms
by BBVs and phase “3” by PMCs. for phase transitions.

These plots show the significant impact of effectively same There are also other cases where differences between PMC
execution in phase classification. FNr= 5, PMCs cor- and BBV approaches arise including some SPEC benchmarks
rectly identify the three actual power phases. BBVs on thesuch asntf. We do not present these here for brevity.
other hand, collapse the high and low power phases into &onetheless, overall both BBV and PMC phases provide a
single phase, leading to a false characterization. Thi®is b good account of application power phase behavior; in many
cause, BBVs identify several different large-scale cdritoav cases showing good correlation between power and both con-
phases. Clustering starts to overlap these based onltheir trol flow and performance measures. PMCs usually show a
distances, and these result in combining the high and lowbetter mapping to power behavior due to both their proximity
phases of power. The three repetitive control flow phasds wit to the actual flow of power in the processor, as well as due to
effectively same power behavior are seen as the more differe these discussed sources of disagreement between power and
phases by BBVs, and are assigned to different clusters.eThescode signatures.

6
5 — — _—_—
(@]
z4] (O S —
;:é 3 -
o 2
1 BBV Phases (N=5)
L = PMQ Phases (N=5)
0
4
3 —-——-m
(@]
z,] I]
b [—
S1 (-
o 0 BBV 'Phases (N=3)
Bl PMC'Phases (N=3)
4 12 30 51 73 94 115

Instructions (Billions)

Figure 7. Mesh power and BBV signatures (top) and generated PMC and BBV phas es with target cluster
numbers of 5 (middle) and 3 (bottom). Multiple control flow ph ases with effectively same power charac-
teristics disguise actual power phases in BBV based classifi cation. Actual power phases are labeled as
H, L and M, for high, low and medium power dissipation regions.

8 Summary and Recommendations for Future still requires mapping PC samples into control flow blocks.
Research Another related issue is the high dimensionality of BBV4 tha
)]) requires processing for dimension reduction. In addition t

Here, we first make a final comparison of BBVs and PMCsthese, false alarms due to changes only in control flow are an
for power phase characterization. We summarize differenimportant consideration for a runtime detection systeny. Fi
pros and cons of the two approaches. Afterwards, we discusga|ly, the indifference of BBVs to varying data locality and
how the strengths of these two features can be conceptuallyperand dependent behavior can be a significant impediment
combined for application to dynamic management techniquesiy power/performance phase characterizations for sorle rea
Finally, we present the directions for future researchofeihg applications [2].
from these discussions.

BBVs are known to have several benefits for summariz-
ing application performance or tracking application plsase
The most important advantage of BBVs is the repeatability
of the observed phase behavior. Tracked code signatures : T2

ates for dynamic applications on real systems. Several$MC

not change due to system effects or with the application of d) , !
g y bp y show good correlations with processor power behavior,&sp th

namic management actions that affect system power and per e
formance. 9 y P P don’t suffer significantly from false alarms. Also as the rum

The biggest disadvantage of BBVs lies in runtime applica-bﬁirrgfrférg?gae?qi?gsl?’e:jnlfcq:gor:%%E':Acsh'zslzscsh?gétze?i;ggg re
bility. It is impractical to collect full blown BBV informaon 9 gp

during application runtime. Sampling methods, as applied i The most important issue with PMCs is repeatability. As
this study, provide acceptable resolution, but BBV genenat PMC data comes from several event counts over the proces-

The important advantages of PMCs are their straightfor-
ward runtime applicability and their proximity to processo
power consumption. PMCs are easily accessible at runtime

ith lightweight interfaces, which makes them good candi-

sor, the values are not identical among repetitions of ghase sider power behavior of applications. Our earlier work [20]
phase detection method that utilizes PMCs is required te conemployed runtime power measurements and power estimation
sider event count ranges or has to track deltas together witlwith performance counters to identify phases of applicetio
events to detect phases or phase changes. Our previoussstudiChang et al. [5] apply process power profiling to determine
show quantization can be unreliable, while tracking change software power breakdowns. While these studies also look
produces higher fidelity [22]. The PMC based approach alsat power behavior, they do not investigate control flow ap-
requires range considerations. Different dimensions oCPM proaches. Hu et al. [18] describe a compile time methodology
vectors are not of similar strength. For example, memory ac+o find basic block phases at runtime for power studies. This
cess counts and instructions issued have different orders cstudy looks at control flow information from a compiler per-
magnitude. Therefore, scaling of vector components or norspective, while we investigate runtime power phase behsvio
malizations may be necessary to match the impact of certaif both control flow and performance statistics.
events. There are also previous studies that compare or evaluate
Our quantitative results show that PMCs have relativelyphase characterization techniques. Dhodapkar and Snjjth [8
higher fidelity in characterizing power phase behavior. How perform a comparison between different control flow tech-
ever, we believe a better solution can be achieved by comniques, working set signatures and BBVs. Annavaram et al.
bining the strengths of BBVs with the PMC approach. For[2] sample executed program counters as a proxy to control
a general phase tracking method, we envision a hierarchiflow and show the correlations between code signatures and
cal approach between BBVs and PMCs. We consider usingpplication performance. They show that, control flow does
PMC based phase tracking as the global mechanism to idemot always correlate well with application performanceulLa
tify phase changes and using BBVs to track the repetitive exeet al. [26] also look at control flow and performance of ap-
cution progress. In terms of decision hierarchy, PMCs glevi plications to show a strong correlation can be establislyed b
confidence to phase changes detected from control flow antinking program counter to procedures and loops of applica-
provide the final decision whether this is an actual or spusio tions via profiling. In comparison, our work looks at the di-
phase change. On the other hand, BBVs enhance the repeatact comparison of two phase characterization feature¥sBB
bility of observed PMC phases, by informing the PMC method and PMCs with runtime measurement feedback for real power
when a repetitive control flow is detected. evaluation on a real-system.
As future research, we consider application of control- .
flow feedback to PMC-based phase trapcpking for runtime dy—]'O Conclusion
namic management. For example, we plan to use a DVFS Phase analysis is increasingly important for computer sys-
enabled system and process phase information to detett repaems first because simulation-based techniques rely orephas
itive behavior under different DVFS settings. Using both directed sampling to reduce simulation time, and second, be
PMC and control flow features, we expect to achieve bettercause real-life adaptive hardware and software mechanisms
power/performance trade-offs than a simple reactive respo rely on dynamic phase-directed readjustments.
In addition to this, other future research avenues inclygle a With power being such a pressing constraint in current pro-
plying these power phase analysis methods to global CMRessors, it becomes important to understand not just theegha
power management and to dynamic thermal management asf performance metrics, but also of their related power eoun
mentioned in Section 2. terparts. Observing power phase behavior on real systems is
particularly important because the real-system phases sho
9 Related Work the impact of a comprehensive range of systems effects typ-
Several previous studies investigate phase behavior of ageally excluded from simulations.
plications for adaptation and characterization purpobsst This work has explored methods for real-system power
of these research studies focus on either control flow or perphase generation. Drawing on prior work, we have developed
formance characteristics of applications. lyer and Mascll an experimental framework for comparing both control-flow-
[24], Dhodapkar and Smith [9], Sherwood et al. [36, 37], based and performance-monitoring-based phase techpiques
Huang et al. [19] and Lau et al. [27] analyze control flow be- and for comparing against live power measurements. Our
havior of applications via different features such as subro results show that both control-flow and performance statis-
tines, working sets and basic block profiles. These studies u tics provide useful hints to power phase behavior. In gen-
simulation based methods to identify application phases foeral, performance-based phase tracking leads to apprteiima
summarizing performance and architectural studies. Batil 33% less power characterization errors than code sigrsature
al. [32] also look at control flow phases with real-system ex- In some cases where power behavior depends on aspects
periments. They use similar dynamic instrumentation taide other than control flow (e.g. data locality, operand values,
tify BBV phases of applications. Their work uses basic block other characteristics), phases based on control flow cags™mi
profiles of applications to find representative executioingsp ~ some transitions. In other cases, control flow phase cleasifi
while we look at power characterizations with BBV and PMC tion can result in “extra” phases, where applications perfo
phases. different tasks with effectively the same execution chimas-
Cook et al. [7] show the repetitive performance phase chartics. These effects lead to both false alarms for phase @sang
acteristics of different applications using simulationgodi and incorrect power phase classifications.
[39], Weissel and Bellosa [40] and Duesterwald et al. [12] Overall, the results presented here show a roadmap to ef-
utilize performance counters to identify performance Hase fective power phase analysis in real systems. Control-flow
phases. They use performance statistics to guide dynamic opechniques offer a good base, but may well be best applied
timizations and metric predictions. These works do not con-as hybrid techniques together with performance countats th

can more closely track the details of program behavior, @ed [19] M. Huang, J. Renau, and J. Torrellas. Positional Adégiaof Proces-

i i i ideli sors: Application to Energy Reduction. Rroceedings of the Interna-
for detection of power phases with high fidelity. fonal Symp. on Computer Architectu@o03.
Acknowledgments [20] C.lIsci and M. Martonosi. Identifying Program Power Ba&ehavior

. . using Power Vectors. Ifroceedings of the IEEE International Work-
We would like to thank Gilberto Contreras, Belma Dogdas, James shop on Workload Characterization (WWG-BD03.

Donald, Qiang Wu and the members of the Pin mailing group for their[21] c. Isci and M. Martonosi. Runtime Power Monitoring in Hignd Pro-
help during the development of this work and for several useful dis- cessors: Methodology and Empirical Data. Rroceedings of the 36th
cussions. We also thank Chen Ding for his help with the benchmarks, Interational Symp. on Microarchitecturec. 2003. _
and the anonymous reviewers for their useful suggestions. This ref22] Sééﬁcé?ggnﬁﬂvxgéﬂws;ﬁngﬁ:?]gsRo?iﬁg?EtEETﬁtS;ﬁ?; nuaf}dse;m
gii[)cgls\;va?\ﬂsu?portg’d by ’T‘(SF glrants CCRt'OC?SG(Blt gTT)tanlé:'\TS' posium on Workload CharacterizatipBct. 2005.

- Martonost's work is also supported in part by Intel, ' [23] C. Isci, M. Martonosi, and A. Buyuktosunoglu. Long+teiVorkload
and SRC. Phases: Duration Predictions and Applications to DVREEE Micro:
Special Issue on Energy Efficient Desig@b(5):39-51, Sep/Oct 2005.

References [24] A. lyer and D. Marculescu. Power aware microarchiteztrgsource
[1] D. A|bonesi‘ R. Ba|asubramonian’ S. Dropsho‘ S. DwarkaEaFried_ SCaIlng. In PrOCeedlngS of DeSIgn Automation and Test in Europe,
man, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro,d3e3 DATE, Mar. 2001.
A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynamically-Tun [25] R. Jenkins. Hash function®r. Dobb’s Journa) 9709, Sept. 1997.
ing Pr(_)cessor Resources with Adaptive ProcessilitEE Computer [26] J.Lau, J. Sampson, E. Perelman, G. Hamerly, and B. CaltierSTrong
36(12):43-51, 2003. Correlation between Code Signatures and PerformanckBE Inter-
[2] M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. Hark and national Symposium on Performance Analysis of Systemsaftwiee
B. Davies. The Fuzzy Correlation between Code and PerforenBrne- Mar. 2005.
dictability. In Proceedings of the 37th annual International Symp. on [27] J.Lau, S. Schoenmackers, and B. Calder. TransitiondP@ssification
Microarchitecture 2004. and Prediction. Iri1th International Symposium on High Performance
[3] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Eventy@n En- Computer Architecture2005.
ergy Accounting for Dynamic Thermal Management. Aroceedings [28] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBenA
of the Workshop on Compilers and Operating Systems for LavefPo Tool for Evaluating and Synthesizing Multimedia and Commutoioa
(COLP’03), New OrleansSept. 2003. Systems. IrProceedings of the 30th annual International Symposium
[4] D. Brooks and M. Martonosi. Dynamically exploiting nawawidth on Microarchitecture 1997.
operands to improve processor power and performanderoceedings [29] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lown&, Wallace,
of the 5th International Symposium on High Performance QderpAr- V. Reddi, and K. Hazelwood. Pin: Building Customized Progvamal-
chitecture Jan. 1999. ysis Tools with Dynamic Instrumentation. Programming Language

[5] F.Chang, K. Farkas, and P. Ranganathan. Energy driegistital pro- Design and Implementation (PLDLune 2005. _
filing: Detecting software hotspots. Proceedings of the Proceedings [30] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and®opsho.

of the Workshop on Computer Syste@@02. Profile-based Dynamic Voltage and Frequency Scaling for atipel
61 K. Choi. R. S d M. Ped D ic Vol dE Clock Domain Processor. Proceedings of the 30th International Sym-
[6] K. Choi, R. Soma, and M. Pedram. Dynamic Voltage and Frequenc posium on Computer Architectyrdune 2003.

Scaling based on Workload Decomposition. Rroceedings of Inter-

national Symposium on Low Power Electronics and DesignRED), [31] J. McCalphin. STREAM: Sustainable Memory Bandwidth iar@nt
Aug. 2004¥ P 9nRESD) High Performance Computers. Technical report, Universityidginia,

1995.
[7] J. Cook, R. L. Oliver, and E. E. Johnson. Examining perfarogadif- . i
ferences in workload execution phasesPhoceedings of the IEEE In- [32] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and Artaanidhi.

: it Pinpointing Representative Portions of Large Intel ItamiBrograms
ternational Workshop on Workload Characterization (WWYC2001. with Dynamic Instrumentation. IRroceedings of the 37th annual In-

[8] A.Dhodapkar and J. Smith. Comparing Program Phase DeteTéch- ternational Symp. on Microarchitectur2004.
niques. In 36th International Symp. on Microarchitectu@)2 [33] M. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-rueveraging
[9] A.Dhodapkar and J. Smith. Managing multi-configurabledare via SMT and CMP to manage power density through the operatingrsyst
dynamic working set analysis. In 29th Annual InternationahBosium In Eleventh International Conference on Architectural Supfar Pro-
on Computer Architecture, 2002. gramming Languages and Operating Systems (ASPLOZOR4.

[10] C. Ding and K. Kennedy. Improving Cache Performance in @it [34] X.Shen, Y. Zhong, and C. Ding. Locality Phase Predittim Eleventh
Applications through Data and Computation ReorganizatipiRian International Conference on Architectural Support for gramming
Time. InProceedings of ACM SIGPLAN Conference on Programming Languages and Operating Systems (ASPLOSO4). 2004.

Language Design and Implementatidr999. [35] T. Sherwood, E. Perelman, and B. Calder. Basic blockibistion

[11] R.O.Duda, P. E. Hart, and D. G. StorRattern Classification. Second analysis to find periodic behavior and simulation points ipl@ations.

In International Conference on Parallel Architectures andn@lation
TechniquesSept. 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-

Edition. Wiley Interscience, New York, 2001.

[12] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Clarzicly and [36]
Predicting Program Behavior and its Variability. IEEE PACT pages

220-231. 2003 tomatically characterizing large scale program behaviof022
’ : In Tenth International Conference on Architectural Supptor
[13] L. Eeckhout, R. Sundareswara, J. Yi, D. Lilja, and P.ratér. Ac- Programming Languages and Operating Systems, October 2002.
curate Statistical Approaches for Generating Represeat@forkload http://www.cs.ucsd.edu/users/calder/simpoint/.
Compositions. IrProceedings of the IEEE International Symposium on [37] T. Sherwood, S. Sair, and B. Calder. Phase tracking aedigtion. In
Workload CharacterizatigrOct. 2005. Proceedings of the 28th International Symposium on CompArtzhi-
[14] F. Ercolessi. MDBNCH - A molecular dynamics benchmark.eing- tecture (ISCA-3Q)June 2003.

tional School for Advanced Studies in Trieste. www.fisicéudl.it/ er- [38] Sourceforge.net. The LAME Project. http://www.mp3aeg/.
colessi/mdbnch.html. [39] R. Todi. Speclite: using representative samples togedpec cpu2000

[15] GIMP. GNU Image Manipulation Program. http://iwww.gimmb workload. InProceedings of the IEEE International Workshop on Work-
[16] S. Heo, K. Barr, and K. Asanovic. Reducing Power Dentipugh load Characterization (WWC-42001. _
Activity Migration. In Proceedings of International Symposium on Low [40] A. Weissel and F. Bellosa. Process cruise control: Edeiven clock
Power Electronics and Design (ISLPED), Seoul, Koréag. 2003. scaling for dynamic power management.Froceedings of the Interna-

tional Conference on Compilers, Architecture and SynthfesiEmbed-

[17] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase Shife€&n: ded Systems (CASES 2002), Grenoble, Fraragg. 2002.

A Problem Classification. IBM Researh Report RC-22887, IBM.T

Watson, Aug. 2003. [41] Q.(}Nu, V. Relddki, Y. Wu, J. Lee, D. Clonnors, D. Brool|<(s],(M.IMH\O%,
; . and D. W. Clark. A Dynamic Compilation Framework for Controgjin
(18] C. Hu, D. Jimenez, and U. Kremer. Toward an Evaluationalsr Microprocessor Energy and Performance. Pioceedings of the 38th
tructure for Power and Energy Optimizations. Workshop on High- annual International Symp. on Microarchitectu005.

Performance, Power-Aware Computjr&p05.

