Characterizing the TLB Behavior of Emerging Parallel Wor kloads on
Chip Multiprocessors

Abhishek Bhattacharjee and Margaret Martonosi
Department of Electrical Engineering
Princeton University
{abhattac, mrm} @princeton.edu

Abstract

Translation Lookaside Buffers (TLBs) are a staple in
modern computer systems and have a significant impact
on overall system performance. Numerous prior studies
have addressed TLB designs to lower access times and miss
rates; these, however, have been targeted towards unipro-
cessor architectures. As the computer industry embraces
chip multiprocessor (CMP) architectures, it is important to
study the TLB behavior of emerging parallel workloads.

This work presents the first full-system characterization
of the TLB behavior of emerging parallel applications on
real-system CMPs. Using the PARSEC benchmarks, repre-
sentative of emerging RMS workloads, we show that TLB
misses can hinder system performance significantly. We
also evaluate TLB miss stream patterns and show that mul-
tiple threads of a parallel execution experience a large num-
ber of redundant and predictable misses. For our evalu-
ated benchmarks, 30% to 95% of the total misses fall under
this category. Our results point to the need for novel TLB
designs encouraging inter-core cooperation, either through
hierarchically shared TLBs or through inter-core TLB pre-
diction mechanisms.

1. Introduction

Microprocessors supporting paged virtual memory em-
ploy a Memory Management Unit (MMU) for virtual to
physical address translation and memory reference valida-
tion. To avoid high-latency accesses to operating system
page tables, MMUs store translations in instruction and
data Translation Lookaside Buffers (TLBs). While there
are a number of options for TLB placement and lookup
[13], most systems place them in parallel with the first-level
cache, effectively inserting them in the critical path of pro-
cessor pipelines. As a result, TLBs play a crucial role in
processor performance [4, 11, 12, 14].

Several solutions have been proposed to improve TLB
performance, both in software and in hardware. In partic-
ular, solutions addressing TLB characteristics such as size,
associativity, and multilevel hierarchies have a significant
impact on miss latencies and access times [3, 16]. Other
strategies involve the use of superpages [17] and prefetching
techniques to hide the cost of TLB misses [11, 15]. While
effective, these strategies all target uniprocessor designs.

The advent of chip multiprocessors (CMPs) necessitates a
shift from the traditional uniprocessor focus to understand-
ing how parallelism affects the virtual memory system, as
well as TLB latencies and miss rates.

In this paper, we present the first full-system character-
ization of TLB behavior for emerging parallel workloads
on CMPs. Our evaluations use the PARSEC benchmarks
[2], representative of emerging parallel applications. These
benchmarks come from a variety of application domains,
ranging from financial analysis to media processing, and
use both data-parallel and pipeline-parallel schemes. Not
only is TLB behavior crucial to the performance of these
workloads, but we also find substantial correlation in the
TLB misses experienced across multiple cores of a CMP.
Our work therefore makes the case for TLB designs to ex-
ploit inter-core correlation either through shared and hier-
archical architectures or through inter-core TLB prediction
schemes. Our specific contributions are as follows:

e We perform the first full-system characterization of
TLB misses for emerging parallel workloads. These
workloads suffer significantly from TLB misses, with
the benchmark Canneal spending as much as 0.7 cy-
cles per instruction (CPI) per core on D-TLB misses
on a 4-core AMD Opteron.

e Across a range of core counts and TLB sizes, we show
that multiple threads often TLB miss on the same vir-
tual to physical address translation. Because multiple
threads usually operate on similar sets of data and in-
structions, up to 95% of all TLB misses in our bench-
marks occur on translations already missed upon by
another thread.

e \We also investigate the presence of stride patterns in
TLB accesses across threads. We see that TLB misses
that are unique to a single thread are often a predictable
stride away from the TLB miss of another thread. For
example, for the benchmark Bl ackschol es, 90%
of all unique TLB misses are of the form where thread
N’s D-TLB miss is on a virtual address 4 pages away
from a previous TLB miss by thread N-1.

Overall, this work is an early characterization that lays
the foundation for future CMP TLB hardware designs, hard-
ware and software management policies, and prediction
schemes targeted at hiding TLB miss latencies in CMPs. In

Parallelization Data Usage Data Working Set Size
Benchmark Domain Model Granularity | Sharing | Exchange | Native | Simlarge
Bl ackschol es Financial Analysis | Data-parallel | Coarse Low Low 2MB 2MB
Canneal Engineering Unstructured | Fine High High 2GB 256MB
Facesi m Animation Data-parallel | Coarse Low Medium 256MB | 256MB
Ferret Similarity Search Pipeline Medium High High 128MB | 64MB
FI ui dani nat e Animation Data-parallel | Fine Low Medium 128MB | 64MB
Streantl ust er | Data Mining Data-parallel | Medium Low Medium 256MB | 16MB
Swapt i ons Financial Analysis | Data-parallel | Coarse Low Low 512KB | 512KB
VI PS Media Processing | Data-parallel | Coarse Low Medium 16MB 16MB
X264 Media Processing | Pipeline Coarse High High 16MB 16MB

Table 1. Summary of PARSEC benchmarks used in our TLB studies. Note the wide range of application domains, varying parallel
models, granularities and data sharing characteristics. Data working set sizes for input types Native and Smlarge are also provided.

particular, our results indicate that exploiting TLB miss in-
formation among cores can lead to significant performance
improvements by eliminating redundant TLB misses as well
as those predictable by stride patterns.

Our paper is structured as follows. Section 2 discusses
background and related work. In Section 3, we detail our
choice of benchmarks and experimental infrastructure. Sec-
tion 4 then presents real-system CMP TLB performance
studies, highlighting cases of severe I-TLB and D-TLB be-
havior. Then, in Section 5, we evaluate TLB miss redun-
dancy followed by a study of stride patterns in Section 6.
Finally, we conclude in Section 7.

2. Background and Related Work

Because TLBs are performance-critical and are accessed
on every instruction and data reference, CMPs typically
provide private per-core TLBs. Each TLB is therefore
largely oblivious (except for shootdowns) to the behavior
of the others. These TLBs are either hardware-managed or
software-managed. On a miss, a hardware-managed TLB
uses a hardware state machine to walk the page table, locate
the mapping, and insert it into the TLB. This design is effi-
cient as it perturbs the pipeline only slightly. When the state
machine handles a TLB miss, there is no need to take an ex-
pensive interrupt. Moreover, miss handling does not pollute
the instruction cache. In the worst case, a few lines of the
data cache may be polluted when scanning through the page
table. Typical hardware-managed TLB miss latencies range
from 10 to 50 cycles [9] and are commonly adopted by x86
architectures [8, 19].

The primary disadvantage of hardware-managed TLBs
is that they require the page table organization to be fixed,;
the operating system (OS) has no flexibility in choosing or
modifying designs. In contrast, RISC architectures such as
MIPS or SPARC often use software-managed TLBs [7, 12].
In these schemes, the operating system receives an inter-
rupt on a TLB miss and vectors into a specific miss handler,
which walks the page table and refills the TLB. Since the
OS has full control of page table handling, the data struc-
ture is flexible. However, there can be an associated per-
formance cost. First, the use of precise interrupts means
that the pipeline must be flushed, removing a possibly large
number of instructions from the reorder buffer. Second, the

miss handler itself is usually 10 to 100 instructions long [9]
and may miss in the instruction cache, adding to the miss la-
tency. Finally, the data cache may also be polluted through
the course of handling the miss.

Numerous prior works have studied the behavior of
benchmarks and operating systems on these TLB designs
for uniprocessor architectures. Typical TLB studies in the
1980s and 1990s placed TLB handling at 5-10% of sys-
tem runtime [4, 12, 14]. However, Huck and Hays showed
that in extreme cases, overheads can be as high as 40% of
the total runtime [5]. Furthermore, Anderson showed that
software-managed TLB miss handlers are among the most
commonly executed primitives [1] while Rosenblum et al.
[14] demonstrated that these handlers can account for 80%
of the kernel’s computation time. More recently, Kandi-
raju and Sivasubramaniam showed that D-TLB handling
can amount to 10% of the runtime of SPEC CPU2000 work-
loads [10]. Although most of these studies address data
from the 1990s, their insights on the importance of TLB
miss handling still apply to contemporary systems.

Unlike these previous studies, our work focuses on the
TLB miss behavior of emerging parallel workloads on novel
CMP architectures. We wish to study not only the impact of
these workloads on CMP system performance, but also op-
portunities for improving TLB performance by exploiting
cooperation among multiple cores on chip.

3. Methodology

Our goal is to study the impact of parallel workloads on
real-system TLBs. We also wish to analyze potential pat-
terns in TLB misses across cores. To meet these goals, we
need to accomplish three objectives. First, we must choose
a set of benchmarks representative of emerging parallel ap-
plications on CMPs along with appropriate input data sets.
Second, to quantify real-system TLB performance issues,
we need to choose an appropriate system to run our work-
loads. Third, since a real system does not provide easy ac-
cess to the actual virtual/physical address pairs causing TLB
misses, we also need to choose a software simulator to study
inter-core patterns in TLB misses. The following sections
present our methodology choices and setups.

System 1.8GHz 4-core AMD Opteron (K8)
Pipeline 3-way superscalar, 72-entry ROB
L1 Caches 64KB | and D Cache (dual-ported)

(virtually indexed, physically tagged)
MMU HW-managed, per-core, 2-level TLB

L1I-TLBs 40-entry, fully assocative
L1D-TLBs 40-entry, fully associative

2 D-TLBs, one per L1 D-Cache port
L2TLBs 512-entry, 4-way

TLB Latencies | Avg. L1 Miss, L2 Hit: 5 cycles
Avg. L1 Miss, L2 Miss: 25 cycles

Table 2. Architecture of AMD Opteron sytem used to
study the severity of TLB misses on parallel workloads.

3.1 Benchmarks and Input Sets

Our studies use benchmarks from PARSEC, a novel
benchmark suite focused on emerging multithreaded work-
loads representative of next-generation shared-memory pro-
grams for CMPs [2]. Table 1 lists the nine PARSEC work-
loads used in this study®. To ensure that our observations are
indeed general across a range of parallelization schemes and
workloads, we choose benchmarks from a variety of appli-
cation domains using multiple parallelization schemes (un-
structured, pipeline, and data-parallel), parallelization gran-
ularities, and inter-core communication characteristics.

Table 1 shows working set sizes for the PARSEC Na-
tive and Simlarge input data sets. The Native inputs are in-
tended to study application performance on real machines;
we therefore use these for our real-system characterization
to realistically stress the TLBs. Unfortunately, these input
sets exceed computational demands considered feasible for
simulation by several orders of magnitude. Therefore, our
simulator-based studies of inter-core TLB miss patterns use
the Simlarge data sets. These input sets use the largest pos-
sible working sets and amounts of parallelism manageable
by software simulations.

3.2 Real-System CMP TLB Performance

To assess the real-system impact of TLB misses, we run
our workloads on a CMP with high-performance, hardware-
managed TLBs. As detailed in Table 2, our target ma-
chine uses a 2-level TLB hierarchy. Since the L1 caches
are virtually-indexed and physically-tagged, TLB transla-
tions are required for every L1 reference. In addition, the
L1 D-Cache is dual ported, with one L1 D-TLB per port.
Table 2 also gives miss latencies for each TLB level [6, 19].

The 4-core AMD Opteron chip includes hardware per-
formance monitoring counters (PMCs), which can be con-
figured to monitor system events without disrupting execu-
tion flow. We configure the PMCs to track L1 and L2 TLB
miss events as well as the total number of instructions re-
tired in the parallel section of our workloads. The PMC
system monitors up to four event classes at a given time.

1These are the PARSEC workloads that run on both our real-system
and simulation infrastructures . We plan to study the other benchmarksin
the future.

System Ultrasparc 111 Cu CMPs (4, 8, 16 core)

(0N} Sun Solaris 10

MMU SW-managed, per-core TLBs

Simulated MM U Architectures

SF 280R | 64-entry, 2-way I-TLB and D-TLB

SF 3800 | 16-entry, fully assoc. I-TLB (locked/unlocked pages)
128-entry, 2-way I-TLB (unlocked pages)
16-entry, fully assoc. D-TLB (locked/unlocked pages)

2 x 512-entry, 2-way D-TLBs (unlocked pages)

Table 3. Simulated Sun Fire server MMUSs in Simics.
We therefore collect our results over two benchmark runs,
one for I-TLB and one for D-TLB events.

3.3 Simulation Infrastructure

We use Virtutech Simics [18] to study in more detail the
particular virtual/physical address requests resulting in TLB
misses. Table 3 shows how our Simics CMP models Sun’s
Ultrasparc I11 Cu processors with a variety of core counts.
We focus on two primary MMU architectures, the Sun Fire
280R (representative of Sun’s entry-level servers with typ-
ical TLB sizes), and the Sun Fire 3800 (containing one of
the largest TLB organizations to date). The SF 3800 has
a complex MMU architecture with separate 16-entry fully-
associative L1 I and D-TLBs used primarily by the OS for
locking pages. Moreover, the SF 3800 uses two L1 512-
entry D-TLBs for unlocked translations. These are accessed
in parallel for each data reference and can be configured by
the OS to hold translations for different page sizes. In our
simulations, the OS configures both TLBs to the same page
size, making the two D-TLBs equivalent to a single 1024-
entry D-TLB.

Since both MMUs are software-managed, the OS re-
ceives an interrupt on a TLB miss. We instrument the Sim-
ics source code to track these interrupts, thereby detect-
ing requested virtual/physical address pairs prompting TLB
misses. We then study these pairs for common miss ad-
dresses across cores.

3.4 Details of our Approach

To gauge opportunities for improving TLB performance
by exploiting inter-core cooperation, we do the following:

1. First, we characterize TLB performance for our
benchmarks on the real-system AMD Opteron from Table
2 using the Native inputs. Since we will subsequently be
using software simulation with the smaller Simlarge input
sets, it is imperative to relate performance with these in-
puts to real-system performance using the Native inputs.
Therefore, we also study real-system TLB performance us-
ing Simlarge on the AMD Opteron.

2. Second, we run the workloads with Simlarge inputs on
the simulator to study how often multiple cores TLB miss
on the same virtual/physical address translation. We study
how this is affected by parallelization characteristics and as-
sess the OS contribution to this redundancy. These studies
indicate the potential for inter-core TLB cooperation.

__ 09 _15
s s
s 06 s 10
o 0.3 @ 5
S IT = il
0 0 Iian
O m O =M O =M O =M O =M O N
555> 5555 552> 555> 555> 5> >2>
aaaa aaaa o aaa aaaa aaaa aaaa
(SHEHEHE) (SHUHUNE) (SHEHEHE] VOO0 OO0 OO0 0O
Stream Swapt. Fluida Facesim Canneal | Blacksc.
= 90 —~ 1000
= =
S 60 2
s S s00
g ¥ =
Eomulln E
O = N ™ Ol N ™M O = N m
> > o> S>> > > > > > >
a a o a oo a a a o a o
(SRR CRRURRS] [SERURRUERS) [SEARCRRURRE]

Ferret

Figure 1. I-TLB weighted misses per million instructions
(WMMI) on 4-core Opteron with Native inputs.

3. Third, we run the workloads with Simlarge inputs to
study inter-core strides in TLB misses; for example, if a
core misses on virtual page N+1 if another core misses on
virtual page N. These patterns may also be exploited by pre-
diction schemes for increased TLB performance.

4. Real-System TLB Miss Characterizations
4.1 Weighted TLB Misses

To characterize real-system CMP TLB performance on
the AMD Opteron chip from Table 2, we must first devise a
uniform metric of comparison. For this purpose, we choose
Weighted Misses per Million Instructions (WMMI). In one
level of TLB, this would simply be TLB misses per million
instructions. However, to aggregate the impact of two levels
of TLB misses, we weight by respective miss penalties. For
our architecture, this is:

WMMI = MMI(LlyissL2pit) +

(L1L2penaity) X MMI(L1L2p,;s

S)

Llpenatty

Here MMI(L1,,;5s L2p;¢) represents the number of TLB
L1 misses per million instructions that result in L2 hits and
MMI(L1L2,,;ss) is the number of TLB L1 misses per mil-
lion instructions that also result in L2 misses. With the la-
tencies from Table 2, this equation becomes:

WMMI = MMI(LlmissL2nit) +5 X MMI(L1L2pms5)

4.2 Instruction TLB Performance

We begin our real-system characterization of TLBs by
showing WMMI for emerging parallel workloads on I-
TLBs. We first present our studies for the Native inputs and
then analyze how they compare with the Simlarge results.

ITLB (WMMI)
ey
o

I |||| 1111

Blacksc.

ITLB (WMMI)
w
CPU 2 s

120

ITLB (WMMI)

S 0

o © o
CPU1 s
ITLB (WMMI)

%

=}

o S
CPUO |

CPU2 |
CPU3 |

Figure 2. I-TLB weighted misses per million instructions
(WMMI) on 4-core AMD Opteron with Smlarge inputs.

4.21 Native Data Inputs

Figure 1 demonstrates the I1-TLB WMMI contributions for
the PARSEC workloads using Native inputs across the 4
cores of the AMD Opteron. We arrange the benchmarks
into 4 sub-graphs (note y-axes) in ascending order of the
I-TLB WMMI. For each application, we plot each core’s
TLB misses separately to show the variability that is (or is
not) present.

Overall, Figure 1 shows that most benchmarks miss in
the I-TLB infrequently. The most severe I-TLB behavior
is for x264 with a WMMI of roughly 960, but even this
amounts to a CPI contribution under 0.005.

Second, Figure 1 indicates that substantial variation ex-
ists in I-TLB WMMI across benchmarks. In particular,
X264’ s WMMI is orders of magnitude higher than the
other benchmarks. This is because x264 uses a pipeline
parallel model with one stage per input video frame. There-
fore, the benchmark is executed with a number of threads
greater than cores. For the Native input set on the 4-core
AMD Opteron, 512 threads are produced. The benchmark
does ensure that only one thread runs on a CPU at a time;
however, the greater thread count implies that when a new
thread context switches in, there is a burst of misses, in-
creasing WMMI by orders of magnitude.

Third, Figure 1 demonstrates that I-TLB WMMI is sim-
ilar across cores for each benchmark. This is particularly
true for data-parallel applications because multiple threads
collaborate by performing similar instructions on different
data in the form of a single thread body function.

The bottom line is that there is significant similarity in
I-TLB miss contribution across cores because of the collab-
orative nature of threads. This in turn hints at opportunities
for inter-core TLB cooperation to boost performance.

4.2.2 Simlarge Data Inputs

We now study the TLB performance of the benchmarks us-
ing Simlarge inputs. These are the input sets typically used

in simulation studies. Although one might expect only D-
TLB impact from data-set scaling, we find that I-TLBs are
affected as well. Figure 2 shows that Simlarge inputs can
yield I-TLB performance numbers substantially different
from Native input results. Specifically we note:

First, the WMMI counts increase for Simlarge in-
puts. The increase can be by orders of magnitude
(eg. Streanctl uster, Swapti ons) or by 1.2-2x (eg.
VI PS, x264). In fact, Fl ui dani mat e’ s WMMI in-
creases two orders of magnitude so that it is grouped into
a higher sub-graph. This increase can be attributed to the
fact that the number of instructions is lowered for Simlarge,
but I-TLB misses do not scale down commensurately. This
is because Simlarge inputs are scaled from Native in a way
that is guaranteed to preserve the code path and typically
just reduces the amount of data that the program operates
on. Therefore, the number of I-TLB misses are amortized
over significantly fewer instructions.

Second, some benchmarks like x264 see a smaller in-
crease in WMMI with Simlarge. This is because I-TLB
misses are heavily influenced by thread count. For x264,
the input set spawns a number of threads much larger than
the number of available cores. Therefore, a huge instruc-
tion count reduction from 84 billion (Native) to 2.1 billion
(Simlarge) is matched by a thread count reduction from 512
threads to 128 threads. This commensurately decreases I-
TLB misses and keeps WMMI roughly similar.

From these observations, we conclude that when using
results from microarchitectural studies with Simlarge, I-
TLB misses are typically more frequent than they would
be on a real system with Native workloads.

Finally, as with Native, Simlarge also shows similar
inter-core WMMI for a given benchmark, raising the possi-
bility of using inter-core cooperation to boost performance.

4.3 Data TLB Performance

We now assess the D-TLB behavior of the PARSEC
workloads with the Native and Simlarge inputs.

4.3.1 Native Input Sets

Figure 3 indicates that D-TLB misses are particularly severe
for the workloads with Native inputs. Once again, WMMI
contributions from the D-TLB are graphed in ascending or-
der with sub-graphs grouping benchmarks with similar D-
TLB miss counts (the application groups are different than
in the I-TLB data of Figures 1 and 2). We note the following
from Figure 3:

First, D-TLB WMMIs are orders of magnitude higher
than their I-TLB counterparts and can be particularly detri-
mental to system performance. For example, Canneal
suffers from a WMMI of 123K per core, corresponding to a
CPI of 0.7 spent on D-TLB misses.

Second, the relative D-TLB WMMI suffered by the
workloads tracks the working set sizes provided in Table 1
for data-parallel workloads. Therefore Swapt i ons, which
has the lowest working set of 256KB also has the lowest
WMML. In contrast, Canneal (2GB working set) sees the
highest WMMI per core.

N

o
o]
o
o

S s
2 s
S 20 3 400
g 2
E, 1lll 5 o
O = N o O «- N o
> o o > >/ o o >
o o o o o o o o
56 3 0 56 6 O
Swapt. Blacksc.
— 5000 - —_ — 140000
s g 10000 s
] H]
£ 2500 | | | | $ so00 S 70000
o @ o
-) 0 -
i iy Py Soo> DooD 35155
2222 zaaa 5585 §5555 2aaa
3333 TS To i e I A [sj{s}te}ts]
Facesim | Ferret Stream. | x264 Canneal

Figure 3. D-TLB weighted misses per million instruc-
tions (WMMI) on 4-core Opteron with Native inputs.

Third, pipeline-parallel workloads (Fer r et and x264)
have WMMI numbers higher than their working sets indi-
cate. For example, while Ferret and Fl ui dani nat e
both have 128MB working sets, the former’s WMMI is 5x
the latter’s WMMI. This is because Fer r et uses dedicated
thread pools per pipe stage. Each pool has enough threads
to occupy the entire CMP and therefore, a 4 core system
actually runs 16 threads. Furthermore, Ferret’ s work-
ing set is made up of an image database that is linearly
scanned in its entirety by most of the threads. This high
thread count, coupled with memory-intensive linear scans,
results in many more D-TLB misses.

Fourth, the exact WMMI numbers and working set sizes
are highly dependent on benchmark characteristics. For
example, Canneal ' s D-TLB performance is particularly
poor because it uses pseudo-random accesses to a huge
amount of data that does not fit into the cache or D-TLB.
Therefore, the accesses exhibit low spatial and temporal lo-
cality [2], increasing D-TLB misses. Moreover, Canneal
is classified by Bienia et al. as unbounded. A workload
is “unbounded” if it becomes more useful to users with in-
creased amounts of data. This means that their working sets
are expected to grow aggressively in the future, further ex-
acerbating D-TLB performance.

Figure 3 shows that while Facesi m Fl ui dani mat e
and St r eancl ust er have relatively high WMMIs, they
still outperform Canneal significantly. This is partly due
to smaller working sets. In addition, unlike Canneal , they
are also streaming benchmarks meaning that they exhibit
spatial locality in data references. This also contributes to
their superior D-TLB WMMI.

Fifth, the D-TLBs also show marked similarity in
WMMI across cores for individual benchmarks. Intuitively,
this is reasonable considering that multiple threads cooper-
ate on the same data-set and so are likely to have similar
TLB misses. Therefore, we again see scope for inter-core
TLB cooperation for improved performance.

1000

o]
o

DTLB (WMMI)
N B O
o O O
‘
CPUO M

o

CPU 1
CPU 2 s
CPU 3 s
CPUO s
CPU 1 s
CPU 2 s

CPU 3 mam
DTLB (WMMI)

w1

o

o o

CPUO
CPU 1
CPU 2
CPU 3
CPUO
CPU1
CPU 2
CPU 3

Swapt. Blacksc. VIPS Fluida.

140000

70000 ||||
0

10000 10000

5000 I|I|

Facesim | Ferret

DTLB (WMMI)

DTLB (WMMI)
w
o
o
o o
—
DTLB (WMMI)

Stream. = x264

Figure 4. D-TLB weighted misses per million instruc-
tions (WMMI) on 4-core Opteron with Smlarge inputs.

4.3.2 Simlarge Data I nputs

Figure 4 shows D-TLB WMMI values for the benchmarks
using Simlarge inputs. The graphs show that:

First, most benchmarks see a 1-2x rise in WMMI when
using Simlarge over Native inputs. For example, the WMMI
for VI PSrises from 570 to 950. One might expect that the
significant downscaling in data-set size (see Table 1) would
reduce WMMI. On the contrary, the trend varies with the
application. Overall, however, Simlarge typically sees a
greater reduction in instruction counts than in TLB misses.

The pipeline-parallel x264 does have a much lower
WMMI with the Simlarge input. This is because the work-
ing set remains the same as for the Native input while the
number of spawned threads decreases from 512 to 128. This
decreases the number of D-TLB misses.

Third, Canneal ' s WMMI for Simlarge also drops to
roughly 85% of the value from Native. Here, we do expect
a drop in WMMI due to the large drop in the working set
size to 256MB. However, Facesi m which has also has
a 256MB working set, has a much smaller WMMI. There
are two reasons for this. First, Canneal accesses the same
working set size in half as many instructions as Facesi m
Second, Facesi mis a streaming application employing an
iterative Newton-Raphson algorithm over a sparse matrix
stored in two arrays. It therefore has much better spatial
and temporal locality than Canneal .

Finally, we again observe the similarity in D-TLB
WMMI across cores per benchmark. As with the I-TLBs
this is due to the collaborative nature of both data-parallel
and pipeline-parallel threads.

Based on these observations, Simlarge sees D-TLB be-
havior similar to real-system Native workloads. While D-
TLB WMMI values are typically higher than for the Na-
tive results, this difference is much less pronounced than
for I-TLBs. Therefore, one should remember that results
with Simlarge will typically show a slightly greater impact
of TLB behavior than on a real system with Native inputs.

4.4 Summary of Observations

Based on this real-system characterization, we draw a
few conclusions. First, emerging parallel workloads can
stress current TLB designs, even for MMUs with relatively
high-performance TLBs (eg. AMD Opteron). This is par-
ticularly true for D-TLBs, which are susceptible to stress-
marks like Canneal . Therefore, it is imperative to re-
search designs to handle this TLB pressure.

Second, inputs for typical microarchitecural simulators
such as Simlarge usually show poorer TLB performance
than the Native inputs, particularly for I-TLBs. While this
implies that proposed mechanisms to improve TLB per-
formance on Simlarge inputs should also be applicable to
real-system applications using Native inputs, Simlarge may
overpredict improvements likely on real systems.

Finally, we have noted the similarity of inter-core I-TLB
and D-TLB misses. To further investigate the potential for
using this behavior for inter-core cooperation, we devote the
following sections to studying the virtual/physical address
pairs causing TLB misses.

5. Studying Inter-Core Shared TLB Misses

5.1 Definitions, Nomenclature,
and Approach

We begin our study of TLB miss redundancy by defining
nomenclature used in this section. A TLB miss results in
a new TLB entry consisting of the requested virtual page
number (VP), the corresponding physical page (PP), the
process context ID (CID) for which this translation is valid,
protection information (Prot), replacement policy and status
bits (Status), and for TLBs supporting multiple page sizes,
the particular page size for this translation (PS). Based on
this information, we define a TLB miss tuple as the 5-tuple,
(CID, VP, PP, Prot, PS).

To assess correlation and redundancy in TLB misses, we
classify some TLB misses as Inter-Core Shared (ICS). In an
N-core CMP, a TLB miss on core N is ICS if it corresponds
to a TLB miss tuple matching the TLB miss tuple of a pre-
vious miss on any of the other N-1 cores within a fixed anal-
ysis window of M instructions. Furthermore, the number of
sharers corresponds to the number of distinct cores whose
TLB miss tuples match in this M-instruction window.

The choice of analysis window, M, will affect the degree
to which ICS TLB misses are close enough temporally to
exploit sharing or prediction schemes. Since TLB misses
occur at a relatively coarse temporal granularity, M is set to
1 million instructions for our experiments. For a 10 MMI
benchmark, this allows us to compare a typical TLB miss to
at least 10 prior misses.

We use the Simics parameters described in Table 3 to
guantify ICS across the PARSEC workloads with Simlarge
inputs. Our results classify all TLB misses by their degree
of inter-core sharing (eg. whether they are shared by 2, 3,
or all 4 cores on a 4-core CMP).

We note at this point that Simics is a functional simu-
lator. While timing models would provide more insight,

1 % 4 sharers 3 sharers M2 sharers

AN
AN\
AN\

A Y

ITLB ICS Misses
(Fraction of all ITLB Misses)
2
N
SF280R I
SF3800 NN N
AN
AN .aass

SF280R

SF3800 N N\ NN

AL
SF280R NN N
NEEEOEE BN\
SF280R N \
A\
SF3800 HAMMMMinnsag

SF3800 | N\
SF280R NN

SF280R N
SF3800 N
SF280R |
SF3800 M
SF3800 N
SF280R M
SF280R N
SF3800 W

Blacksc. CannealFacesim| Ferret | Fluida. Stream. Swapt. VIPS x264

Figure 5. Inter-Core Shared (ICS) I-TLB Misses are a
large fraction of total I-TLB misses for both low-end and
high-end MMUs on a 4-core CMP.

we aim to capture TLB behavior on large, realistic data-
sets, which would be too slow on timing simulators. More-
over, our chosen metric to analyze TLB behavior is that of
misses per million instructions, which would remain con-
sistent through timing models. Therefore, our work lays
the foundation for future TLB hardware proposals that are
carefully evaluated using timing simulators.

5.2 Inter-Core Shared I-TLB Misses

Figure 5 plots ICS I-TLB misses on a 4-core CMP run-
ning the PARSEC workloads with Simlarge inputs. The two
bars for each application represent the SF280R (low-end)
and SF3800 (high-end) MMUs. Each bar has components
corresponding to TLB misses with 2 sharers, 3 sharers and
4 sharers, normalized to total system I-TLB misses. From
these graphs, we note:

First, data-parallel benchmarks benchmarks experience a
large number of ICS I-TLB misses across both MMUs. This
is because data-parallel applications typically employ a sin-
gle thread body function for multiple threads. For example,
the master thread in Bl ackschol es initializes portfolio
data before it spawns worker threads that carry out similar
operations on separate parts of the data. This results in over
90% of all I-TLB misses shared by at least 2 cores.

Second, Figure 5 shows that the pipeline-parallel bench-
marks, Fer r et and x264 have ICS I-TLB misses above
70% and 93% of all I-TLB misses for both MMUSs. This
is because unlike the data-parallel workloads, which spawn
1 thread per core, the pipeline-parallel workloads are de-
signed to spawn many more threads than cores. How-
ever, like the data-parallel workloads, multiple threads in
these workloads can execute similar instructions on multi-
ple cores. Therefore, with more threads present and execut-
ing similar instructions, ICS sharing is high.

The data shows opportunities to eliminate I-TLB misses
through inter-core cooperation. As just one example, novel

1 7 4 sharers 3 sharers W2 sharers
%
7
w 0.8 Z
.S aw 7
83 i ’
2306 727 7 ,
8= % %% %
O%® // // 7
- 727 %7 7
oq 727 7% 7
ge i . y
Q_g éé ZZ % Z A %%
« 0.2 7 % % u
in I | |
0 - ||
o xo xO xO xXxO xOoO x99 O xO
R IR B B I I IR 28 =22
o~ N o~ N o~ ™M o~ ™M o~ N N ™M o~ ™M o~ ™M o~ N
[T oL wouw [T [Ty [Ty W [Ny [Ny
wv N wv n v wv wv n [R%] wvy N wv wv n

<

N
an
D

Blacksc.CanneaFacesim Ferret Fluida. Stream.Swapt.| VIPS

Figure 6. Inter-Core Shared (ICS) D-TLB Misses can be
as high as 94% for St r eant!| ust er on a 4-core CMP.

TLBs that either share entries among cores or use inter-core
TLB access prediction would ideally eliminate 50% of the
2-core misses, 66% of the 3-core misses, and 75% of the
4-core misses, improving system performance.

5.3 Inter-Core Shared D-TLB Misses

Figure 6 shows ICS D-TLB miss contributions on a 4-
core CMP with the SF280R and SF3800 MMUs. Again,
we run the PARSEC workloads with Simlarge inputs and
classify the ICS misses according to their sharing degree,
this time normalized to the total D-TLB miss count. From
these results, we observe the following:

First, Canneal and data-parallel benchmarks like
Facesi mand St reantl ust er exhibit high ICS miss
contributions, above 55%. Given that these benchmarks
particularly stress the D-TLB (Figure 3), this presents a
valuable opportunity to improve system performance.

Second, sharing is strongly determined by program char-
acteristics. For example, all of Canneal ’ s threads ac-
tively share the working set [2]; consequently, 70% of all
D-TLB misses are shared among 4 cores. In contrast,
VI PS mostly shares a modest amount of data between two
threads; this causes the high contribution of 2-core shared
misses to the ICS D-TLB misses.

Third, Figure 6 shows that 30-40% of the D-TLB misses
for the pipeline-parallel benchmarks Ferret and x264
are shared by at least 2 cores. However, larger analysis
windows significantly increase sharing. This is because in
pipeline-parallel workloads, different algorithmic stages or
threads operate on data in a pipeline—common data struc-
tures are passed through all the threads during the entire
benchmark run. Therefore, when using an analysis window
equivalent to the full benchmark runtime, the data sharing
increases substantially across cores. We have run experi-
ments to quantify this change and see that over 90% of the
TLB misses are ICS for both Fer r et and x264 when the
analysis window is set to the entire benchmark run (in con-

7% 4 sharers
3 sharers
M 2 sharers
Unshared

OS ITLB Misses
(Fraction of all ITLB Misses)
o
o
N

Figure 7. OS contributions to I-TLB misses on the
SF280R MMU for a 4-core CMP. The OS can prompt a
high number of ICS misses — for example, over 95% of all
OS I-TLB misses on VI PS are seen on all 4 cores.

trast, data-parallel benchmarks are much less dramatically
affected). TLB prediction schemes based on chains of past
D-TLB misses [15] may be able to exploit this behavior to
reduce D-TLB misses on pipeline-parallel applications.

Hence, there is considerable scope to develop shared
TLB architectures and prediction hardware to exploit cor-
related D-TLB misses. Moreover, since D-TLB misses can
severely affect system performance (eg. Canneal), we
anticipate great gains in performance from these efforts.
Note that certain workloads, particularly Bl ackschol es,
show few ICS D-TLB misses. Section 6 offers alternatives
to cope with these cases.

5.4 Inter-Core Shared OS TLB Misses

We now study the impact of the OS on ICS misses. A
number of prior works have established that OS TLB behav-
ior can critically impact system performance [1, 14]. There-
fore, we identify TLB misses from Solaris 10 in our simula-
tions by tracking context ID. While this does capture kernel
scheduler and system daemon activities, it also implicitly
includes operations requested from user-space, eg., system
calls to common library routines.

5.4.1 Inter-CoreShared OSI-TLB Misses

Figure 7 presents the Solaris kernel’s contribution to I-TLB
misses on the 4-core SF280R MMU organization (while we
have also studied OS misses on the SF3800, these are sim-
ilar to the SF280R and are therefore not presented here).
The kernel’s I-TLB misses are plotted as a fraction of the
benchmark’s total I-TLB miss count. As before, the OS
TLB misses are split into those that are unshared and those
that are ICS (with the degree of sharing specified).

Figure 7 indicates that I-TLB contributions from the OS
are minimal, with most benchmarks seeing under 2% of
their misses from this source. Fer r et is an exception with
above 10% of its I-TLB misses from the OS. Figure 7 also
shows that notable ICS I-TLB contributions may exist, as
with VI PS. Therefore, novel TLB prediction schemes and
organizations that exploit application ICS can also exploit
ICS in OS I-TLB activity.

0.7 % 4sharers
0.65 3sharers

0.6
0.55 M 2sharers I
0.5 Unshared I

0.45

0S DTLB Misses
(Fraction of all DTLB Misses)

Figure 8. OS contributions to D-TLB misses on the
SF280R MMU for a 4-core CMP. The OS can prompt many
ICS misses — for example, over 40% of all OS D-TLB
misses on Fl ui dani mat e are seen on all 4 cores.

5.4.2 Inter-Core Shared OSD-TLB Misses

Figure 8 illustrates D-TLB ICS contributions from the OS.
These results are again based on the 4-core SF280R sim-
ulations (again, the SF3800 results are similar to this) and
show that the OS D-TLB behavior can have a much higher
impact on system performance than I-TLBs. In particu-
lar, Fl ui dani mat e, Swapt i ons, and x264 experience
more than 45% of their D-TLB misses from the OS. For
Swapt i ons, this is because its small working set implies
a low number of D-TLB misses, increasing the OS contri-
bution to the total. In contrast, the high OS D-TLB count
for x264 arises from its high thread spawn count, caus-
ing heavy access to the threading library and kernel process
control structures. Figure 8 also shows that many of the OS
D-TLB misses are ICS. For example, more than 20% of the
OS D-TLB misses of Fl ui dani mat e, VI PS and x264
are shared by at least 2 cores.

5.5 Thread Count Versus ICS TLB Misses

While substantial inter-core redundancy exists in TLB
misses for a 4-node CMP, it is essential to study how this
behavior scales to future CMPs with larger core counts.
Therefore, we vary the core counts on our modeled CMP
in Simics and study levels of ICS in TLB misses.

Figure 9 shows our observed results for I-TLB misses.
For each benchmark, we plot the average number of sharers
for I-TLB misses through the entire benchmark execution.
Our results indicate that the degree of ICS in I-TLB misses
increases dramatically in a number of cases, most notably
for Bl ackschol es, VI PS, and x264.

Figure 10 indicates that greater core counts also in-
crease ICS sharing for D-TLBs. This is particularly true
for two unbounded benchmarks with severe D-TLB behav-
ior: Canneal and Facesi m Therefore, not only will the
scope for novel TLB architectures and prediction schemes
be more pronounced for future CMPs, their potential per-
formance improvements would be substantial.

M 8 cores 16 cores

[N
=}

M 4 cores

B e
[SERNEES

Avg. Num Sharers

-
e
e
h
h
.
.

F

Figure 9. The average number of sharers per I-TLB
miss increases with higher core counts, particularly for
Bl ackschol es, VI PS, and x264.

16 m4cores W 8cores 16 cores
14

12

Avg. Num Sharers
[}

Figure 10. The average number of sharers per D-TLB
miss increases with higher core counts, particularly for
Canneal , Facesi mand St r eant! ust er.

6 StudyingInter-Core Stride TLB Misses

The previous sections of the paper have detailed the pres-
ence of significant redundancy in inter-core I-TLB and D-
TLB miss patterns. However, there remains a set of bench-
marks which see only trivial levels of inter-core sharing.
The most notable workload is Bl ackschol es in which
multiple cores share just under 10% of all D-TLB misses.
For these cases, TLB optimizations exploiting inter-core
shared misses will provide only modest performance gains.
Therefore, we devote this section to exploring alternate pat-
terns in TLB misses. As we will show, benchmarks with
low ICS levels can still exhibit predictable stride accesses.
For example, if core 0 accesses page N, core 1 accesses page
N+ 1.

While our studies in this section are pertinent to both
I-TLBs and D-TLBs, we focus on D-TLB misses because
they are particularly detrimental to performance.

The particular steps in this study are as follows:

1. We begin by examining the runtime TLB behav-
ior of benchmarks with low inter-core sharing, such as
Bl ackschol es. This gives us insight into application
characteristics influencing ICS.

2. We define Inter-Core Predictable Stride TLB Misses,
our metric to evaluate predictable stride TLB accesses.

3. We study predictable stride accesses across all work-

)

Instantaneous Runtime DTLB Misses

500
Instructions [millions]

10000

g 10000 DTLB Misses (CPU 0) E B DTLB Misses (CPU 1)
2 B s (CRU0) 2 f
= = B000] !l bttty ot ot bl = — 8000
8% 8%
g o coo0 (R $ o 6000
%g 4000 §§ 4000
o m
2 2000 2@ 2000
o 0 of 0
S 0 500 g 0 500
< Instructions [millions] < Instructions [millions]
‘g’ 10000r DTLB Misses (CPU 2) ‘g‘ 10000; DTLB Misses (CPU 3)
3= 8000 3= 8000
o o
23 23
2= 6000 2= 6000
83 8
SE 4 = £ y
2 < 4000 2 < a000
E2 2000 22 2000
oz o2
[©
0 0
< 0 Z 0

500
Instructions [millions]

Figure 11. Runtime D-TLB misses per million instruc-
tions for Bl ackschol es on a 4-core CMP with SF280R
MMUs. Note that all cores experience similar miss counts.

Instantaneous Runtime Shared DTLB Misses

e = e
£ @ »® n

Avg. Num. DTLB Sharers
=
)

&) 200 400 600 _ 800
Instructions [millions]

Figure 12. Average number of sharers per D-TLB Miss
for Bl ackschol es. Note the low inter-core sharing.

loads and show that although the ICS may be low in certain
benchmarks, there are many inter-core stride TLB misses.

6.1 TLB Misses in Low-ICS Workloads

Figure 11 shows the runtime D-TLB behavior of
Bl ackschol es on a 4-core CMP with SF280R MMUs.
Each plot represents the progress of a single core. Figure
12 shows the corresponding plot for the average number of
cores sharing each D-TLB miss through execution. Based
on these graphs, we can see that:

First, Figure 12 shows that sharing is low through the
entire benchmark run. On average TLB misses are shared
by roughly 1.1 cores. There are instances where this aver-
age can rise beyond 1.5, but generally, sharing is very mod-
est. Second, despite the low sharing, Figure 11 shows that
all the cores see equivalent D-TLB miss plots through run-
time. This indicates that although cores operate on distinct
data, they operate similarly on this data and stress the D-
TLB equally. As Bienia et al. note [2], the main thread of
Bl ackschol es spawns off worker threads that process
parts of the portfolio of options independently, operating

Servicing CPU
CPUO CPU1 CPU2 CPU3
RequestingCPU O 0.03% 0.67% 0.21% 20.56%
RequestingCPU1 20.73% 0.01% 1.12% 1.04%
RequestingCPU 2 2.21% 21.04% 0.01% 0.99%
RequestingCPU 3 1.23% 0.23% 21.52% 0.02%

Table 4. Percentage of Bl ackschol es’ unshared D-
TLB misses covered by strides of +4 pages in analysis win-
dow of 1 million instructions on a 4-core CMP with SF280R
MMUs. Roughly 84% of all misses fall in this stride.

similarly but without communication.

In fact, this behavior is true of a number of bench-
marks, particularly data-parallel ones which assign different
threads to operate similarly on different parts of the data.
Therefore, one might expect that some benchmarks employ
stride accesses—for example if thread O operates on page N
of a data structure, thread 1 operates on page N+1. If suffi-
ciently predictable, these strides could be exploited by novel
TLB prediction schemes. We define this concept more pre-
cisely in the next section.

6.2 Defining Inter-Core
Stride TLB Misses

Similar to the TLB miss tuple from Section 5.1, we need
an information tuple to compare TLB miss addresses for
stride patterns. For this purpose, we define a Stride TLB
Miss Tuple as the 3-tuple (CID, VP, PS).

In this context, we define an Inter-Core Predictable
Stride TLB Miss (ICPS) in the following way. Suppose that
at instruction I;, core 0 has a TLB miss with the stride TLB
miss tuple (CI1D;, VP;, PS;). Now suppose that at a later
instruction I;, core 1 has a TLB miss with stride TLB miss
tuple (CID;, VP;, PS;). These misses are considered
ICPS with a stride of S if the following hold:

1. I; — I; < M instructions (analysis window)

2.(CID;,VP;, PS;) =(CID;, VP, + S, PS;)

In this terminology, we call core 1 the Requesting CPU
(since it sees the TLB miss a stride S away) and core 0 the
Servicing CPU (since it is the CPU relative to which the
stride is made).

Based on this metric, we sweep through a number of dif-
ferent potential stride values for all the workloads. Again,
we use 1 million instructions for the value M. Our results
are presented in the next section.

6.3 ICPS TLB Miss Results

We again use the example of Bl ackschol es to show
ICPS results. By analyzing miss patterns for a number of
stride values, we find that Bl ackschol es heavily em-
ploys inter-core strides of -4 and +4 pages.

Table 4 shows the percentage of Bl ackschol es’ un-
shared D-TLB misses now covered by a stride of +4 pages.
Each row index represents the requesting CPU while the
column index represents servicing CPU. Each table entry
provides the percentage of unshared D-TLB misses pre-
dictable in strides of +4 pages for the requesting and ser-
vicing CPU pair.

Predictable

Instantaneous Runtime Stride Coverage

[
1)
S

©
o

-
S

~
=]

PN
S o

Stride per Analysis Window (1 Mill. Inst.)
w @
o (=]

% Unshared D-TLB Misses Covered by +/- 4

N
=

260 Inst?ggtions [mGilblioons] 860 1600

Figure 13. Runtime percentage of unshared D-TLB
misses with +4 or -4 page strides in Bl ackschol es ona
4-core CMP with SF280R MMUSs. Note that 85% to 98% of
all D-TLB misses are consistently covered by these strides.

Overall, Table 4 shows that roughly 84% of unshared
D-TLB misses in Bl ackschol es are covered by +4 page
strides. For example, 20.73% of all unshared D-TLB misses
fall in this +4 page stride when CPU 1 is requesting and
CPU 0 is servicing. Similarly, another 21% of all unshared
D-TLB misses are covered by +4 page strides when CPU 2
is requesting and CPU 1 is servicing. The two remaining
major contributions from +4 page strides occur when CPU
3 requests and CPU 2 services, and when CPU 0 requests
and CPU 3 services.

Figure 13 shows a runtime plot of the percentage of un-
shared D-TLB misses covered by strides of +4 or -4 pages
for Bl ackschol es. As shown, the inclusion of -4 page
strides in addition to +4 pages raises the stride coverage
to values consistently higher than 90%. Therefore, while
Bl ackschol es may have little ICS to exploit, the marked
presence of strides in access hints at TLB inter-core stride-
based prediction schemes for performance improvements.
Moreover, we expect the benefits of these approaches to in-
crease at higher core counts.

While we have focused on Bl ackschol es in this
example, a number of benchmarks show stride patterns
in TLB misses. Table 5 shows the prominent D-TLB
strides experienced by all the tested workloads on a 4-core
CMP with SF280R MMUs. The second column of the ta-
ble shows the percentage of total D-TLB misses that are
inter-core shared by at least two cores for each workload.
The third and fourth columns represent the dominant D-
TLB stride patterns and the percentage of unshared D-TLB
misses that can be captured by these strides. Finally, the
fourth column combines the D-TLB misses that are shared
and captured by strides to provide the percentage of total
misses that would be predictable by novel hardware exploit-
ing inter-core TLB cooperation. Furthermore, the bench-
marks are arranged in descending order in terms of these
total predicable TLB misses.

Overall, Table 5 shows that most benchmarks have sig-
nificant stride patterns that raise the predictable D-TLB
miss numbers over 50% in most cases. Moreover, while
stride patterns can help with benchmarks with low shared
D-TLB misses (eg. VI PS), they can also improve applica-
tions like Facesi m which already has high sharing.

Benchmark % of Total D-TLB Prominent Stride % of Total Unshared % of Total D-TLB
Misses Inter-Core Values D-TLB MissesInter-Core Misses Predictable by
Shared (by at least 2 cores) Predictable Stride Sharing or Strides

Streancl uster 94.2% No prominent strides None 94.2%

Bl ackschol es 8.7% +4, -4 pages 93.2% 93.8%

Facesi m 73.1% +2, -2, +3, -3 pages 76.1% 93.5%

Canneal 83.2% No prominent strides None 83.2%

VI PS 33.7% +1, -1, +2, -2 pages 55.1% 70.2%

FI ui dani nat e 44.1% +1, -1, +2, -2 pages 36.0% 64.2%

Swapt i ons 24.2% +1, -1, +2, -2 pages 42.2% 56.1%

X264 37.3% +1, -1, +2, -2 pages 16.2% 44.3%

Ferret 33.8% No prominent strides None 33.8%

Table 5. Stride coverage for PARSEC workloads in order of the fraction of total D-TLB misses predicted by either inter-core
shared misses or inter-core predictable stride misses. All these results are for a 4-core CMP with SF280R MMUSs. Note that above
50% of D-TLB misses for most benchmarks are predictable with a combination of the two approaches.

The particular stride patterns vary across benchmarks.
While we have shown that Bl ackschol es sees strides
in a regular pattern between core N and N+1, other bench-
marks can use strides more irregularly. For example, in
VI PS, a significant number of stride D-TLB misses are re-
quested by cores 0, 1, and 3 and serviced by core 2. Intel-
ligent TLB stride prediction hardware will need to be adap-
tive to these benchmark nuances.

Therefore, we have shown that ample opportunity ex-
ists to take advantage of inter-core predictable stride TLB
misses in the absence (or even presence) of inter-core shared
TLB misses. Inter-core TLB cooperation schemes and hard-
ware designed to exploit this behavior can be expected to
raise TLB performance considerably.

7. Conclusion

Our full-system exploration of the TLB behavior of
emerging parallel workloads on real-system CMPs has
shown the growing importance of TLBs in CMP design.
Specifically we have shown that D-TLB performance is par-
ticularly poor for certain benchmarks such as Canneal .
As workloads become more complex with larger data sets
(possibly unbounded), it will be imperative to overcome
these TLB performance problems. Moreover, we have
shown how the rates of I-TLB and D-TLB misses on CMPs
are strongly determined by application characteristics and
input data sets.

The results also indicate that many I-TLB and D-TLB
misses are inter-core shared. This is particularly crucial for
the D-TLB behavior of Canneal , St r eantl ust er, and
Facesi m all of which are in dire need of D-TLB perfor-
mance improvements. In addition, we have shown that for
benchmarks like Bl ackschol es which have low D-TLB
inter-core sharing, prominent inter-core predictable stride
patterns exist.

Future MMU organizations will need to exploit this be-
havior to counter the performance limitations of contempo-
rary TLBs in CMPs. Our results clearly advocate inter-core
cooperation. For example, TLB hardware that predicts fu-
ture accesses by analyzing other cores may substantially im-
prove performance. Another approach might be to explore

shared, hierarchical TLB organizations. While L1 TLBs
are typically too performance-critical to be shared among
cores, it may be practical to investigate shared or hierarchi-
cally shared L2 and L3 TLBs. We expect that these schemes
would be feasible for both HW and SW-managed TLBs.

Overall, our work presents the first detailed character-
ization study of the TLB behavior of CMPs. To parallel
programmers using PARSEC, this characterization provides
guidance on the expected performance of TLBs and consid-
ers how the application structure influences this behavior.
For OS designers, our work provides a foundation for study-
ing newer virtual memory organizations to mitigate poor
TLB behavior of parallel workloads. Finally, for hardware
research, we offer insights that may help computer architec-
turs select appropriate workloads for stressing TLB behav-
ior in their parallel studies.

8. Acknowledgments

We thank the anonymous reviewers for their feedback.
We also thank Joel Emer and Li-Shiuan Peh for their sug-
gestions on improving the quality of our submission. Fi-
nally, Chris Bienia’s help with the PARSEC workloads and
insights on their behavior were instrumental to our research.
We would also like to thank Virtutech for providing the
Simics source code for the SunFire MMUS.

This work was supported in part by the Gigascale Sys-
tems Research Center, funded under the Focus Center Re-
search Program, a Semiconductor Research Corporation
program. In addition, this work was supported by the Na-
tional Science Foundation under grant CNS-0627650.

References

[1] T. Anderson et al. The Interaction of Architecture and Op-
erating System Design. Intl. Symp. on Architecture Support
for Programming Languages and Operating Systems, 1991.

[2] C. Bieniaetal. The PARSEC Benchmark Suite: Characteri-
zation and Architectural Implications. Intl. Conf. on Parallel
Architectures and Compilation Techniques, 2008.

3]

[4]

[5]

[6]
[7]

(8]

9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

J. B. Chen, A. Borg, and N. Jouppi. A Simulation Based
Study of TLB Performance. Intl. Symp. on Comp. Arch.,
1992.

D. Clark and J. Emer. Performance of the VAX-11/780
Translation Buffers: Simulation and Measurement. ACM
Transactions on Computer Systems, 1985.

H. Huck and H. Hays. Architectural Support for Translation
Table Management in Large Address Space Machines. Intl.
Symp. on Computer Architecture, 1993.

ixbtlabs.com. Platform Benchmarking with RightMark
Memory Analyzer: AMD K7/K8 Platforms.

B. Jacob and T. Mudge. Software-Managed Address Trans-
lation. Intl. Symp. on High Performance Computer Archi-
tecture, 1997.

B. Jacob and T. Mudge. Virtual Memory in Contemporary
Microprocessors. |EEE Micro, 1998.

B. Jacob and T.Mudge. A Look at Several Memory Manage-
ment Units: TLB-Refill, and Page Table Organizations. Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, 1998.

G. Kandiraju and A. Sivasubramaniam. Characterizing the
d-TLB Behavior of SPEC CPU2000 Benchmarks. ACM
S GMETRICS Intl. Conf. on Measurement and Modeling of
Computer Systems, 2002.

G. Kandiraju and A. Sivasubramaniam. Going the Distance
for TLB Prefetching: An Application-Driven Study. Intl.
Symp. on Computer Architecture, 2002.

D. Nagle et al. Design Tradeoffs for Software Managed
TLBs. Intl. Symp. on Computer Architecture, 1993.

X. Qui and M. Dubois. Options for Dynamic Address Trans-
lations in COMAs. Intl. Symp. on Comp. Arch., 1998.

M. Rosenblum et al. The Impact of Architectural Trends
on Operating System Performance. ACM Transactions on
Modeling and Computer Smulation, 1995.

A. Saulsbury, F. Dahlgren, and P. Stenstrém. Recency-Based
TLB Preloading. Intl. Symp. on Comp. Arch., 2000.

M. Talluri. Use of Superpages and Subblocking in the Ad-
dress Translation Hierarchy. PhD Thesis, Dept. of CS, Univ.
of Wisc., 1995.

M. Talluri and M. Hill. Surpassing the TLB Performance of
Superpages with Less Operating System Support. Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems, 1994.

Virtutech. Simics for Multicore Software. 2007.
www.sandpile.org. AMD K8 details.

