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Abstract—Even as most of today’s computer systems have
turned to parallelism to improve performance, their documenta-
tion often remains informal, incomplete or even incorrect regard-
ing their memory consistency models. This leads to programmer
and designer confusion and to buggy concurrent systems. Existing
tools for empirical memory consistency testing rely on large
numbers of iterations of simple multi-threaded litmus tests to
perform conformance testing. The current approach typically
employs thread synchronization at every iteration, which imposes
a significant overhead and can reduce testing performance and
efficiency.

This paper proposes new litmus test variants called perpetual
litmus tests, which allow for consistency testing without per-
iteration synchronization. Perpetual litmus tests use arithmetic
sequences in store operations to reduce the required synchroniza-
tion points. We present PerpLE, a software suite that includes
tools for the generation, execution, and analysis of perpetual
litmus tests. We introduce an algorithm for determining the
outcomes of perpetual litmus tests as well as a scalable linear
heuristic algorithm. Evaluating the performance, scalability and
ability of our tool to find outcomes of interest on an x86 system,
we observe a wider variety of outcomes than litmus7 while
experiencing runtime speedups over all litmus7 synchronization
modes (8.89x over the default user mode). Compared to the
default litmus7 synchronization (user) mode, PerpLE offers over
four orders-of-magnitude improvement in the rate with which we
detect target outcomes.

I. INTRODUCTION

As traditional approaches to increasing system performance
have been constrained by the end of Moore’s Law/ Dennard
scaling, exploiting parallelism has become the primary way to
further improve performance across system types [3, 4, 23].
When working with these parallel systems, understanding their
memory consistency models is critically important for correct
design and programming. Otherwise, the resulting systems
and applications can contain correctness bugs that manifest as
subtle, non-deterministic errors [39].

As hardware complexity rises, it is becoming increasingly
challenging to ensure that a specific implementation conforms
to the memory model it claims to implement, generating
the need for thorough testing. Time spent in validation and
verification can be more than half of the hardware design
effort [19, 20], which highlights the need for approaches that
can accelerate these processes; faster methodologies can, in
turn, reduce cost and improve time-to-market. While some
comprehensive formal techniques exist for exploring litmus
test execution [30, 31], industry testing of real hardware relies
more on empirical and probabilistic testing [24], as it is likely

to provide results at a significantly shorter time scale. Most
current approaches to this type of testing leverage small parallel
programs called litmus tests, designed to expose different
orderings of memory operations. Orderings that manifest in the
empirical execution of litmus tests are called observable for
an implementation. Observing an ordering that the system’s
published memory model lists as forbidden indicates an
implementation bug; to maximize the probability of detecting
bugs, empirical testing tools aim to expose as large a variety
of outcomes as possible.

Currently, tools achieve outcome variety by executing litmus
tests iteratively, with different orderings arising probabilistically
during test execution due to factors like system load and
thread timing [24]. However, each litmus test might need
to be run thousands or even millions of times before the
desired testing outcomes are observed [39]. The frequency
with which a given test outcome, indicative of a particular
ordering, can be observed depends on (i) the extent to which
the implementation under test favors it (including whether it is
technically feasible) and (ii) the ability of the testing approach
to create the conditions that would reveal it. For less frequent
outcomes, some testing approaches may require executing
large numbers of iterations, taking significant amounts of
testing time, to observe a desired outcome. PerpLE is designed
to more efficiently expose and analyze a wide range of
orderings, improving the effectiveness of these empirical testing
approaches.

While tools like litmus7, provided by the diy suite [11,
24], are effective empirical testing frameworks, many rely
on synchronizing the participating threads before every test
iteration. Such synchronization is critical to ensure that different
threads execute their part of the test sufficiently close in time for
the testing tool to observe their interaction via shared memory,
but it can have negative implications. The synchronization
overhead dominates runtime, significantly slowing down testing
and reducing the total number of iterations executed. For
example, based on our experiments on litmus7 using the default
(user) synchronization mode and for different iteration counts
of the store buffering (sb) litmus test, synchronization overhead
never falls below 85% of total execution time. Furthermore,
the tight synchronization might reduce the number and type
of orderings that are ever experienced during the iterative test.
Lastly, iterative synchronization-based testing can be ineffective
for systems that incur long synchronization overheads compared
to CPUs, e.g. GPUs, as well as for systems not optimized



for performance, like many mobile processors [13]. In fact,
consistency testing approaches in these systems exhibit orders
of magnitude lower performance compared to microprocessors
[39]. Empirical testing of memory models in these systems
might also be hindered by multi-core memory interference that
can slow programs down by over 100x [25].

PerpLE is designed to increase the opportunities to observe
different outcomes per unit time. Our approach rethinks the
design of litmus tests to eliminate per-iteration synchronization,
thus reducing the overall testing time. At the same time,
letting threads run longer without synchronizing creates more
opportunities for interesting interactions, leading to a greater
variety of outcomes and, by extension, of orderings. While
other synchronization-free litmus testing tools exist, PerpLE
offers advantages over existing approaches. Specifically, this
work offers the following contributions:
• We propose an empirical memory consistency testing

approach without the requirement for per-iteration syn-
chronization. Our approach is based on what we call
perpetual litmus tests, which we define and analyze.

• We demonstrate a method for converting litmus tests
to their perpetual counterparts and generate a suite of
perpetual litmus tests.

• We provide a software suite capable of generating, running
and analyzing such tests from regular litmus tests, which
we call the Perpetual Litmus Engine (PerpLE).

• We present an algorithm for detecting outcomes of interest
in perpetual litmus tests. We also present a linear heuristic
that allows PerpLE to scale to millions of test iterations
while maintaining a rate of outcome discovery that is
orders of magnitude higher than existing approaches.

• We evaluate PerpLE on an x86 system, showing increased
outcome variety and target outcome occurrence rate
compared to a variety of litmus7 modes, including its
synchronization-free mode.

• We find PerpLE achieves a runtime speedup over all
litmus7 synchronization modes (8.89x over user mode
and 2.52x over the synchronization-free, none mode).

• Finally, we also observe an increase of over four orders
of magnitude over the default synchronization mode of
litmus7 (user mode) in our chosen metric of outcomes
of interest observed per unit time, which makes testing
practical across parallel hardware systems.

II. BACKGROUND

A. Memory Consistency Models

1) Sequential Consistency: In a multi-core context, memory
consistency models define the rules that determine the ordering
of concurrent loads and stores, and therefore determine which
values can be legally returned to program loads. In Lamport’s
sequential consistency (SC) [28], all threads see loads and
stores to memory in the same globally agreed-upon order.
The concurrent execution of shared memory operations by
different threads can be viewed as a single thread executing
some interleaving of these operations without violating the

Fig. 1: Possible memory operation orderings under SC and TSO.
S0 and S1 are stores, while L0 and L1 are loads. Under SC, the
possible orderings are interleavings of the memory operations
of each thread in program order. TSO relaxes the program order
requirement by allowing store buffering, so stores can appear
to take effect later, yielding additional allowed orderings.

program order of each thread, as shown in the bottom left of
Figure 1.

Even though sequential consistency is very intuitive, it
is rarely found in real systems, because it limits memory
system concurrency [14] [29]. Modern processors usually relax
the guarantee that the per-thread program order is preserved
globally and turn to other weaker memory models instead.

2) TSO: Total Store Ordering (TSO) can be informally
understood as the memory model that is obtained from SC
by introducing store buffering to reduce the latency of store
operations. Each thread can load its own stored values early,
directly out of its store buffer, but all threads share the same
view of the global order in which stores appear to have occurred.
This can provide additional allowed orderings in some cases,
as shown in the right column of Figure 1.

Owens et al. have shown that a version of TSO is consistent
with the behavior of x86 processors across a number of test
cases [37, 38]. As such, TSO is one of the predominant memory
consistency models one encounters when analyzing the memory
behavior of CPUs. Our work focuses on TSO here, but is
applicable to weaker models as well.

B. Uncovering Instruction Orderings

1) Litmus tests: In order to test that software and hardware
systems adhere to their specified memory models, small
stressmark tests known as litmus tests are used. Litmus tests
consist of simple combinations of shared memory loads and
stores. Figure 2 shows three example litmus tests: store
buffering (sb), load buffering (lb) and podwr001. For each
litmus test, we use T to denote the total number of test threads
and TL ≤ T to denote the number of test threads that perform
loads.
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Fig. 2: Store buffering (sb), load buffering (lb) and podwr001
litmus tests. Note: podwr001 extends sb to 3 threads. (itn)
is the nth test instruction of thread t, [x] and [y] are shared
memory locations and regt r is register r of thread t. For sb
and lb, T = TL = 2. For podwr001, T = TL = 3.

Running a litmus test can produce one of a set of possible
outcomes, depending on the values loaded from shared memory
during test execution. Each outcome consists of a number of
conditions involving register values. For example, the sb test as
presented in Figure 2 has 4 possible outcomes, each consisting
of 2 conditions: reg0 0 = 0 && reg1 0 = 0; reg0 0 = 0 &&
reg1 0 = 1; reg0 0 = 1 && reg1 0 = 0; and reg0 0 = 1 &&
reg1 0 = 1. In each test run, we can select a subset of these
outcomes and measure how often each of them occurred; we
call this subset the outcomes of interest.

Note that the first of these outcomes requires the hardware to
implement store buffering in order to occur, i.e. it cannot occur
under SC by simply interleaving the instructions from each
thread. For this reason, it is the most informative outcome in
terms of hardware capabilities, letting us distinguish between
different possible consistency models. Each litmus test has at
least one such outcome, the target outcome.

The outcomes of many iterative executions of a litmus
test indicate which interleavings occurred. These observed
interleavings can then be checked against the model that the
system claims to implement to ensure they are allowed. Since
there is a non-deterministic element in individual runs of a
litmus test, such approaches typically cannot guarantee that all
possible interleavings have been exercised.

In practice, widely available tools for litmus testing use a
combination of two approaches to address this non-determinism
[9, 11]. First, they run large numbers of iterations of the
litmus test to give a statistically more accurate picture of how
frequently each outcome is expected to appear. For models not
yet formally specified, this can aid attempts at formulating a
formal description. Second, testing suites might apply further
stress on the system, like frequent memory operations to
addresses not used by the test, to check whether the distribution
of outcomes is affected. Especially in GPUs, recent work has
shown that such methods can be very effective [39].

2) Happens-Before Graphs: Each litmus test outcome offers
information on the memory operation ordering that gave rise
to it, which can be revealed using a happens-before graph.

Constructing a happens-before graph starts by considering
the different shared memory operations in a litmus test as
vertices in a graph. Edges are then added to represent temporal
relationships between individual operations, based on the
outcome of a specific execution of the test. Happens-before
edges are meant to represent temporal relationships and as
such are transitive. Alglave [8] provides formal descriptions
of four types of such edges between two memory operations
m1 and m2, summarized informally below:
• Program order (po) edges: a po edge from m1 to m2

means a sequential processor executes m1 before m2.
• Read-from (r f ) edges: an r f edge from a store m1 to a

load m2 means that m2 loads the value stored by m1.
• Write serialization (ws) edges: assuming m1 and m2 are

both stores to the same memory location x, a ws edge
from m1 to m2 means that m1 updates x before m2.

• From-read ( f r) edges: an f r edge from a load m1 to
a store m2 means that m1 loads a value stored by an
instruction earlier than m2 in ws order.

III. TEST CONVERSION TO REMOVE
SYNCHRONIZATION

As Figure 3 illustrates, our proposed approach consists of two
steps, each performed by a separate tool. First, the Converter
converts an input litmus test to a format capable of exposing
the same interleavings as the original test, but without requiring
per-iteration thread synchronization, which we call a perpetual
litmus test. This test is then executed by the Harness, which
keeps the test run results in memory.

Meanwhile, the Converter also produces the exhaustive
outcome counter for this particular litmus test and set of
outcomes of interest. The exhaustive outcome counter is a
function that the Harness can apply to the in-memory test
results, once all iterations of the test have been executed, to
determine how many times each outcome of interest occurred.
Alongside the exhaustive outcome counter, the Converter
produces the heuristic outcome counter, a function with the
same inputs and outputs, but which only searches part of the
results space and can be dramatically faster.

The rest of this Section presents the methodology for
test conversion, while Section IV deals with generating the
exhaustive and heuristic outcome counter functions.

A. Synchronization in litmus tests

Since litmus tests tend to only be a few instructions long,
the execution time of a single iteration is very short. Unless
we synchronize before each iteration, it is most likely that
the participating threads will execute their corresponding parts
of the test at different points in time, so interactions among
individual memory operations executed by different threads
will be unlikely. Perpetual litmus tests account for this effect.

Moreover, determining the outcome of a litmus test requires
comparing register values from different threads at the end
of each iteration. Each thread t that performs loads has a
designated array bu ft where it stores the values that were
loaded into its registers in each iteration for later analysis.
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Fig. 3: PerpLE control flow diagram for generation, execution and analysis of perpetual litmus tests.

Testing tools do not launch the next iteration of the test on
any thread until this information has been collected, to avoid
overwriting the registers of interest.

For these reasons, a synchronization barrier is enforced
across test threads, as seen on the left side of Figure 4 for the
sb test from Figure 2. The barrier is a blocking call which
guarantees that the litmus test threads start executing each
iteration of the test simultaneously.

B. Removing barriers using arithmetic sequences

To address the overhead created by the barrier described
above, we introduce perpetual litmus tests, which maintain the
core approach of litmus tests, but remove per-iteration thread
synchronization. Perpetual litmus tests synchronize test threads
upon launch, but then do not synchronize them again until all
iterations are complete. Since synchronization no longer keeps
the test threads in lockstep across iterations, each test thread
can run behind or ahead of the others. However, as long as we
execute a large number of test iterations consecutively, each
iteration of a given test thread has the chance to interact with
some iteration of another test thread. In this setting, storing
the same integer value to memory in each test iteration would
be ambiguous, since multiple different store operations (from
different iterations) might have stored the same value. As such,
we cannot reason about the ordering of specific instructions
based on loading that value. To address this challenge, we need
to guarantee the uniqueness of each stored value across the
entire run of a perpetual test. We achieve this using arithmetic
sequences.

With perpetual litmus tests, each integer value that appears
in a store operation of the original litmus test is mapped to a
monotonically increasing arithmetic sequence of values. This
lets us distinguish between stores from different iterations and
eliminate ambiguity. In particular, storing a positive integer
value a to a shared memory location [mem] is replaced by
storing an element of the arithmetic sequence kmem · nt + a.
Here, kmem is the number of different integer values that appear
in store operations to mem across all threads of the original
litmus test. The iteration index nt , which starts at 0, specifies
which element of the arithmetic sequence should be written at
each iteration of thread t.

For example, Figure 4 shows this conversion for the sb test,
where n,m are the iteration indices of threads 0, 1 respectively.
Since only the value 1 is stored to [x] by an instruction of the

Fig. 4: Store buffering (sb) litmus test and its perpetual version.
n and m are iteration indices for threads 0 and 1.

Line of litmus test Line of perpetual litmus test
[mem]← a,a ∈ Z+ [mem]← kmem ·nt +a
regt ← [mem] regt ← [mem]
any fence the same fence
(iteration end) (iteration end)
bu ft ← regt ,∀regt bu ft ← regt ,∀regt

TABLE I: Perpetual litmus test conversion paradigm.

original test, in particular (i00), kx is 1 and so the corresponding
instruction (i00) of the perpetual test now stores the value
n+1. Similarly, storing 1 to [y] in (i10) has been replaced by
storing m+1, since ky is also 1. Thus, by leveraging arithmetic
sequences, we can express each stored value as a function of
the iteration that stored it. This means we also do not need to
reset shared memory locations to 0 at the end of each iteration,
since we can distinguish previously existing from newly stored
values.

Note that load operations or fences appearing in the original
litmus tests can remain unchanged. In particular, loads can
proceed as usual because we still use the shared memory
locations and thread registers used by the original litmus test,
while fences within the test itself will have the same effect
they had in the original litmus test.

Additionally, perpetual litmus tests still need access to all
values loaded into registers during testing, in order to determine
test outcomes at the end of the run. To achieve that, we keep
the bu f arrays of the original approach, maintaining the same
storage complexity of N · TL. The size of each bu ft varies
depending on the number of loads per iteration executed by
thread t. For example, for a run of N iterations indexed by n, if
thread t performs rt load operations per iteration into registers
reg0

t through regrt−1
t respectively, bu ft will need to be of size

rtN and we will save the value of each regi
t into bu ft [rtn+ i].
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IV. OUTCOME CONVERSION AND ANALYSIS OF PERPETUAL
LITMUS TESTS

A. Exhaustive Outcome Counter

After removing per-iteration synchronization, we cannot
determine test outcomes from the contents of the bu f arrays
in the same way as existing approaches do, since the relative
timing of threads can now vary across iterations. As Figure 5
shows, for iteration n of thread 0, we can no longer simply
consider its interaction with the same iteration n in other
threads, since those iterations might have happened temporally
far from each other. Instead, we must examine the interaction
of each iteration of each thread with every iteration of every
other thread, since they could happen concurrently. We define
the term frame to refer to such a tuple of TL iterations, one per
load-performing thread, where iteration indices need not be the
same. We use only load-performing threads, since their bu f
arrays hold all the information needed to determine the test
outcome. Examining all frames therefore has time complexity
NTL for a run of N iterations.

1) Detecting outcomes without per-iteration synchronization:
To examine the way that threads interacted for a given frame,
we need to express the outcomes of the original litmus test as
perpetual outcomes, a format that takes the use of arithmetic
sequences and the independent running of each thread into
account. The Converter performs this using the following steps,
which Figure 6 shows for each distinct outcome of the sb test:

1) Determine the happens-before edges [8] for the original
litmus test outcome.

2) Replace all registers with accesses into the appropriate
locations within the bu f arrays, using a different iteration
index for each thread in order to cover all frames.

3) Replace all integer values to account for the use of
arithmetic sequences. Any integer value in the original
outcome is loaded from shared memory, so it must
have originated in some store operation (including the
initializing store of 0). Thus, select a generic member of
the arithmetic sequence now used by that store operation.

4) Different iterations of the same store instruction are
connected with ws edges in iteration order. Since happens-
before edges are transitive as temporal relations, we have:
• fr edges: Some load L must have happened before

some store S. But, L might also have happened before
an even earlier store to the same location. So, L can
load any term of the appropriate sequence smaller
than that stored by S.

• rf edges: Some load L must have happened after
some store S. But, L might also have happened after
an even later store to the same location. So, L can
load any term of the appropriate sequence larger
than or equal to that stored by S.

As Figure 6 shows, after all 4 steps have been performed
on an outcome o of the original litmus test, we arrive at the
corresponding perpetual outcome, which forms the body of
a function p outo that the Converter defines. Provided with
each load-performing test thread’s iteration index and bu f

Fig. 5: To determine the outcomes in a run of perpetual tests,
we examine all frames, each made up of one iteration from
each thread.

Fig. 6: Mappings of all the outcomes of the sb test to the
corresponding perpetual outcomes, based on Figure 4.

array, p outo returns true if and only if the conditions for the
corresponding perpetual outcome are satisfied. The Converter
repeats this process for each of the O outcomes of interest,
creating the functions p out0 through p outO−1, each capable
of detecting if the corresponding perpetual outcome occurred
in a given frame.

2) Counting perpetual outcome occurrences: Now that the
outcomes are in a format capable of being applied to any
frame, the Converter generates the exhaustive outcome counter
function following the general format of Algorithm 1. The
Converter replaces each reference to a p out function in this
generic algorithm with a specific function generated through
the process above for some outcome of interest. At a high
level, COUNT is given the number of iterations N and the
bu f arrays, which include the in-memory results of a test run.
It goes through all the frames and, for each frame, evaluates
each of the p out functions. When one of the p out functions
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Fig. 7: Example outcome conversion and generation of the
exhaustive outcome counter and heuristic outcome counter for
the target outcome of the sb test.

evaluates to true, COUNT increments the corresponding entry
in counts, with one entry for each perpetual outcome of interest.
Note that up to one entry of counts is incremented for every
frame.

The left part of Figure 7 shows the generation of the
exhaustive outcome counter function for the target outcome of
the sb test. After p out0 is defined for sb (top left of Figure
6), the Converter generates a version of the COUNT function
where the reference to p out0 is replaced by this definition.

Algorithm 1 Exhaustive Outcome Counter
1: function COUNT(N, bu f0[], ..., bu fTL−1[])
2:
3: // Initialize array of occurrences of outcomes of interest
4: counts[O] = {0, ..., 0}
5:
6: // Loop through all frames, ni is the index of thread i
7: for (n0 = 0; n0 < N; n0++) do
8: for ... do
9: for (nTL−1 = 0; nTL−1 < N; nTL−1++) do

10:
11: // If an outcome of interest occurred, count it
12: if p out0(n0, ..., nTL−1, bu f0, ..., bu fTL−1) then
13: counts[0]++
14: else if ... then
15: ...
16: else if p outO−1(n0, ..., nTL−1, bu f0, ..., bu fTL−1)

then
17: counts[O−1]++
18:
19: return counts

B. Heuristic Outcome Counter

The COUNT function can detect all occurrences of each
outcome of interest in a given test run. However, given that
COUNT ’s complexity is NTL , it can be slow when the number
of iterations or test threads is large. To address this, we have

developed a heuristic version of COUNT called COUNT H
that has linear complexity. This function does not examine all
frames, so we miss some opportunities to observe outcomes of
interest. Still, we experimentally find that outcomes of interest
continue to be detected more frequently than when using the
traditional litmus testing approach, while the sharp decrease
in runtime ultimately provides an attractive target outcome
detection rate, as presented in Section VII.

The intuition behind this heuristic is as follows: because of
the use of arithmetic sequences, any value loaded from shared
memory indicates the iteration in which it was stored. For
example, assume thread t loads the value val from the shared
location [x] in iteration n. This value must have been written to
[x] by a store in some iteration m of some thread s. We can use
our knowledge of the arithmetic sequences used by stores of
thread s to determine m from val. Then, m is the most recent
iteration of thread s, from the point of view of iteration n of
thread t. Because of this proximity in time between iteration
n of thread t and iteration m of thread s, examining the frame
containing n and m can be more insightful than the frame
containing e.g. n+ 100 and m− 100, two iterations which
happened farther away in time and are therefore less likely to
have interleaved memory operations.

In order to generate the heuristic condition for each outcome,
the Converter repeats steps 1-3 of the outcome mapping
procedure from Section IV-A, but it then only performs step 4
for one of the outcome conditions. A new step is then added,
step 5, in which we use the remaining conditions to substitute
terms of the condition we have turned into an inequality. For
example, in the top left of Figure 8, which considers the sb test
outcomes, we use bu f0[n] = m to replace m in the inequality
bu f1[m]<= n with bu f0[n], yielding bu f1[bu f 0[n]]<= n. By
repeating this process for each outcome of interest, we obtain
the functions p out h0 through p out hO−1. Each of these
functions only depends on a single iteration index, since we
eliminated the rest by the substitutions in step 5.

The Converter then generates the heuristic outcome counter
function in a way similar to the exhaustive outcome counter
function. Specifically, Algorithm 2 shows the general format of
the heuristic outcome counter function. The Converter replaces
each reference to a p out h function in this generic algorithm
with a specific function generated through the modified 5-step
process described above for some perpetual outcome of interest.
COUNT H loops through the values of the remaining iteration
index and, for each of them, evaluates each of the p out h
functions. When one of the p out h functions evaluates to
true, COUNT H increments the corresponding entry in counts,
which has one entry for each perpetual outcome of interest.

V. PERPLE TOOL SUITE

We have developed a suite of tools called the Perpetual
Litmus Engine (PerpLE), capable of converting a large family
of litmus tests and their outcomes to their perpetual counter-
parts, as well as of executing them on x86 processors. Since
test conversion only needs to happen once per litmus test
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Fig. 8: Heuristic condition generation for the perpetual outcome
corresponding to each outcome of the sb test. By comparing to
Figure 4, we see that Step 4 is not performed for the conditions
in red, which are then used for substitutions.

Algorithm 2 Heuristic Outcome Counter
1: function COUNTH(N, bu f0[], ..., bu fTL−1[])
2:
3: // Initialize empty array of perpetual outcome counts
4: counts[O] = {0, ..., 0}
5:
6: for (n = 0; n < N; n++) do
7:
8: // If an outcome of interest occured, count it
9: if p out h0(n,bu f0[], ..., bu fTL−1[]) then

10: counts[0]++
11: else if ... then
12: ...
13: else if p out hO−1(n,bu f0[], ..., bu fTL−1[]) then
14: counts[O−1]++
15:
16: return counts

and outcome conversion only once for each set of outcomes
of interest, we have organized PerpLE into 2 distinct tools,
as shown in Figure 3. The Converter deals with test and
outcome conversion, while the Harness can use the outputs
of the Converter to run tests and count the occurrences of the
perpetual outcomes of interest.

A. Test Conversion

The Converter, implemented in Python, receives as inputs a
litmus test and a set of outcomes of interest in the format used
by the litmus7 suite [11]. It then generates the corresponding
perpetual test by following the strategy outlined in Section
III, as well as the exhaustive and heuristic outcome counters
for the outcomes of interest through the process described in
Section IV. The Converter outputs the following:
• One assembly file per test thread, including that thread’s

instructions for the perpetual test enclosed in a loop
construct, together with additional set-up and clean-up
instructions as needed to handle arithmetic sequences.

• Two C files, with the exhaustive and heuristic outcome
counters for this test, respectively. As per Section IV, the
exhaustive outcome counter file includes COUNT after
replacing the functions p out0 through p outO−1 with
their definitions for the outcomes of interest. The heuristic
outcome counter file includes COUNT H after replacing
the functions p out h0 through p out hO−1 with their
definitions for the outcomes of interest.

• An additional file with the parameters t0 reads through
tT−1 reads, corresponding to the number of loads that
each of the T test threads performs per iteration. This is
required by the Harness to allocate appropriately sized
bu f arrays for each test thread, as per Section III.

For this work we had the Converter generate the perpetual
tests in x86 assembly language, since that was the ISA of
the system we used for our evaluation. However, one could
easily adapt the process to different ISAs by providing the
Converter with the instructions for loads, stores and fences in
the corresponding assembly language.

B. Test Execution and Perpetual Outcome Counting

The Harness is a C program that runs N iterations of a
perpetual test and outputs the number of occurrences of each
outcome of interest. In particular, the Harness allocates a bu f
array for each of the TL load-performing test threads based on
the values of t0 reads through tT−1 reads. It then launches
the test threads and passes N and the appropriate bu f array to
each. After synchronizing once at the very beginning of the
run, threads run synchronization-free for N iterations.

After the end of the run, the Harness calls the exhaustive
and/or the heuristic outcome counter and provides them with
the bu f arrays. The counts arrays returned by the exhaustive
and/or the heuristic outcome counter are then returned to the
user, alongside runtime information both for test execution and
for the outcome counting.

C. Perpetual Litmus Suite

To evaluate PerpLE, we use the PerpLE Converter to convert
a comprehensive set of TSO litmus tests from the literature [37]
into perpetual litmus tests, generating the perpetual litmus suite.
Each of these tests involves between two and four threads. For
each test, the PerpLE Converter generates the corresponding
perpetual test, as well as exhaustive and heuristic outcome
counters for the target outcome.

Not all litmus test outcomes can be converted to their
perpetual equivalents. Perpetual litmus tests lack per-iteration
synchronization and shared memory locations are therefore
altered in an unpredictable pattern during test execution until
the run of perpetual tests terminates. PerpLE can only stop to
inspect the values in these shared locations after the end of
the entire run; inspecting them earlier gives no information,
since we do not know the current iteration of each thread.

However, a class of litmus tests has target outcomes that
require inspection of a value stored in shared memory at
the end of every iteration. Due to the mechanics of PerpLE
as described above, such outcomes cannot be converted into
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Perpetual Litmus suite
Target outcome allowed by x86-TSO
amd3 [2,2] iwp23b [2,2] iwp24 [2,2]

n1 [3,2] podwr000 [2,2] podwr001 [3,3]
rfi009 [2,2] rfi013 [2,2] rfi015 [3,2]
rfi017 [2,2] rwc-unfenced [3,2] sb [2,2]
Target outcome forbidden by x86-TSO
amd10 [2,2] amd5 [2,2] amd5+staleld [2,2]
co-iriw [4,2] iriw [4,2] lb [2,2]

mp [2,1] mp+staleld [2,1] mp+fences [2,1]
n4 [2,2] n5 [2,2] rwc-fenced [3,2]

safe006 [2,2] safe007 [3,3] safe012 [3,2]
safe018 [3,2] safe022 [2,1] safe024 [3,2]
safe027 [4,2] safe028 [3,2] safe036 [2,2]

wrc [3,2]

TABLE II: Perpetual litmus test suite for x86-TSO. The litmus
tests are split into two groups based on whether their target
outcome is allowed or forbidden by the x86-TSO specification.
For each test we report the values of [T,TL]

.

perpetual outcomes and therefore their occurrences cannot be
counted using the exhaustive or the heuristic outcome counter.
We have therefore refrained from including tests with target
outcomes of this nature into the perpetual litmus suite.

Table II presents the perpetual litmus test suite. The suite
includes 34 litmus tests generated for the x86-TSO memory
model out of the 88 tests found in the original test suite. The
table splits the test suite into two groups of tests, based on
whether their target outcomes are allowed or forbidden by the
specification of the x86-TSO memory model.

VI. EVALUATION METHODOLOGY

A. Testing Environment & Tools

To evaluate PerpLE, we use an x86 computing cluster and
the suite of tests presented in Table II. Experiments are run on
a CentOS 7.6 Linux cluster with 32 Intel Xeon E5-2667 CPUs
with two threads per core. As explained in Section II-A2, the
memory consistency model of CPUs in this cluster is a TSO
variant [37], so we expect to only observe target outcomes
from the ”Allowed” group of tests in Table II.

We evaluate PerpLE against litmus7 on this system. For lit-
mus7, we experiment with all available thread synchronization
modes [11]: the default user, with polling synchronization;
userfence, which also uses memory fences to accelerate
write propagation; pthread, which uses a pthread-based
barrier; timebase, which relies on the architecture’s timebase
counter for synchronization; and none, where no thread
synchronization is used [24]. Timebase counters are not
available in some architectures (e.g. ARM).

The none mode is distinct from PerpLE’s approach since
the concept of frames is not utilized; iteration n of thread t0 is
only considered with respect to iteration n of thread t1, even
though they might be executed far in time from each other.
We expect this to make fine-grained thread interaction more
elusive in none compared to PerpLE.

B. Metrics of interest
1) Target Outcome Occurrences: Because perpetual out-

comes are determined per frame and the number of frames
is polynomial in the number of iterations (NTL ), we expect
to observe each particular perpetual outcome of interest in
PerpLE many more times than the corresponding outcome in
litmus7, simply by virtue of exploring a much larger space, as
shown in Figure 5. Moreover, since PerpLE allows different
types of thread interaction compared to litmus7, outcomes
which appear only rarely in litmus7 may be observed more
frequently. Since observing the target outcome of a test tends to
be both rarer than observing other outcomes and more helpful
in understanding the underlying hardware, we compare how
often the target outcome is observed in each system for a given
number of test iterations.

2) Testing Runtime: Since per-iteration thread synchro-
nization dominates runtime on litmus7 in user mode, its
removal should significantly reduce test runtime. However, the
exhaustive outcome counter must examine all NTL frames in
search of perpetual outcomes after a run of N iterations and
TL load-performing test threads, as opposed to the N frames
examined by litmus7. This more extensive search will likely
erode the speedup achieved by eliminating synchronization. In
contrast, using the heuristic outcome counter should preserve
a considerable speedup over litmus7, since it only examines N
frames.

3) Target Outcome Detection Rate: This composite metric
shows the number of times a target outcome is observed during
a test run over the time taken by the run. Since the number of
occurrences is expected to increase and runtime is projected to
decrease when using the heuristic outcome counter, we expect
a much higher target outcome detection rate for PerpLE.

4) Heuristic Outcome Counter Accuracy: To evaluate our
heuristic outcome counter, we determine its accuracy for the
target outcome of each of the tests in our suite. For the target
outcome of each test, we run the exhaustive and the heuristic
outcome counter on the in-memory test results from the same
run of perpetual tests. We then check whether, whenever the
target outcome was found by the exhaustive outcome counter, it
was also found by the heuristic outcome counter (not necessarily
the same number of times).

5) Thread Skew: Due to the lack of per-iteration thread
synchronization in PerpLE, threads can run ahead of each
other by a varying number of iterations. We call the difference
between the index of the iteration being executed by thread t
and the index of the iteration being executed by thread s the
thread skew between t and s. The width of the distribution of
thread skew values indicates the degree to which the perpetual
test run deviates from what is explored with per-iteration
synchronization. This deviation can enable the perpetual test
to observe system behavior that the original test misses.

To measure thread skew, we use the same insight that
guided the development of heuristic conditions in Section IV-B.
Namely, the value loaded by thread t through a load operation
in iteration n of the perpetual test run uniquely identifies a
store in some iteration m of some thread s. The difference
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Fig. 9: Target outcome occurrences for each test of the perpetual litmus suite for 10k iterations. Higher is better. PerpLE with
either outcome counter generally outperforms litmus7 in most synchronization modes. A red X symbol marks each test with a
target outcome that is forbidden under x86-TSO. Note that PerpLE does not generate “false positives” in these cases. Also note
that PerpLE exposes the target outcomes for all tests that are allowed under x86-TSO.

between n and m is exactly the skew between threads t and s
around the time of iteration n in thread t.

6) Outcome Variety: One goal of perpetual litmus tests is
to increase the effectiveness of memory consistency testing
by enabling more thread interaction and generating a greater
variety of test outcomes. To evaluate PerpLE with respect
to this goal, we compare how frequently each possible test
outcome occurs in PerpLE and in litmus7 for the same number
of iterations.

VII. EVALUATION

This section evaluates PerpLE using the metrics described
in Section VI. In particular, we find that PerpLE (i) detects
more occurrences of target outcomes, (ii) is generally superior
to litmus7 when using the heuristic outcome counter, in terms
of both test runtime and target outcome detection rate and (iii)
provides increased outcome variety.

A. Target Outcome Occurrences

Figure 9 compares the ability of PerpLE and litmus7 in
different synchronization modes to detect the target outcome
of tests in the perpetual litmus suite, across 10k iterations.
PerpLE with exhaustive counter performs strictly better than
litmus7 in all cases, observing many occurrences of each target
outcome. PerpLE with heuristic counter generally performs
better than litmus7 in most cases. For the iwp24 and rfi013 tests,
litmus7 in timebase and synchronization modes marginally
outperforms PerpLE heuristic. When we increase the number of
iterations beyond 10k, PerpLE is able to markedly outperform
litmus7 in all synchronization modes, even for these cases.

As shown in Table II, many of the tests in the perpetual test
suite have target outcomes that are forbidden under x86-TSO,
as determined using the herd memory model simulator [12];
this means that we expect neither tool to observe them. As
x86 CPUs have been extensively tested over the years, we can
be relatively confident that our system indeed follows x86-
TSO. Therefore, PerpLE’s failure to observe these forbidden
outcomes can be viewed as a reassurance that PerpLE does

not generate false positives. In addition, PerpLE exposes target
outcomes from all litmus tests that are allowed under x86-TSO,
whereas litmus7 for certain synchronization methods fails to
do so for most tests (see amd3, iwp24, n1, podwr001, rfi015,
rfi017, rwc-unfenced).

B. Testing Runtime

Figure 10 presents the runtime speedup over litmus7 in
user mode of PerpLE when using the exhaustive and
heuristic outcome counter, as well as of litmus7 in the other
synchronization modes. All tools execute every test in the
perpetual litmus suite for 10k iterations. All runtimes include
both test execution and outcome counting.

Figure 10 focuses on the comparison between PerpLE
exhaustive and heuristic Counters. As discussed previously,
the runtime of the PerpLE exhaustive outcome counter is
polynomial to the number of test threads that perform loads,
due to our examination of each frame. Most tests in our suite
have two threads that perform loads, so examining a quadratic
number of frames makes PerpLE with the exhaustive outcome
counter significantly slower than the heuristic counter in these
cases. The perpetual litmus tests that present the exhaustive
outcome counter’s performance comparable to the heuristic
counter, e.g. mp, only have a single test thread performing
loads, making the exhaustive outcome counter linear. Finally,
the podwr001 and safe007 tests have three threads performing
loads, so the exhaustive outcome counter needs to examine N3

frames for a run of N iterations, yielding a dramatic slowdown.
As a result the geometric average speedup of the heuristic
outcome counter over the exhaustive outcome counter is 305x.

Therefore, if only focusing on runtime, using the PerpLE
exhaustive outcome counter scales poorly as the number of
iterations increases. The heuristic outcome counter scales much
better, always taking time linear in the number of test iterations.
As such, PerpLE exhaustive outcome counter performance
constraints make it impractical and the remaining evaluation
will therefore focus on the heuristic outcome counter. In
subsequent text, the term PerpLE refers to PerpLE-heuristic.
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As Figure 10 shows, when using the heuristic outcome counter,
PerpLE provides a (geometric) average speedup of 8.89x over
litmus7 in the default user mode and 17.56x, 8.85x, 2.52x
and 161.35x over the timebase, userfence, none and
pthread modes respectively. Note that the runtime of PerpLE
with the heuristic outcome counter is comparable to none,
since both use no synchronization and examine a linear number
of frames. However, PerpLE offers significantly better outcome
variety, as presented in Figure 13.

C. Target Outcome Detection Rate

To determine PerpLE’s overall efficiency, we compare the
target outcome detection rate between PerpLE using the heuris-
tic outcome counter and litmus7 in different synchronization
modes. For the comparison between methods we evaluated
different options for averaging target outcome detection rates.
Averaging outcome detection rates across different tests would
implicitly skew the average towards the tests that intrinsically
observe higher numbers of target outcomes. Therefore, we
determine PerpLE’s relative detection rate improvement by
dividing PerpLE’s detection rate for a given litmus test by the
detection rate of litmus7 in default user mode for the same
test; by using these ratios when averaging across all litmus
tests, we avoid the aforementioned skewing problem. As we
are reasoning about ratios of detection rates, we conservatively
omit test cases where the baseline testing method is zero (i.e.
no outcomes were detected) and provide additional details
about the number of outcomes PerpLE detects in these cases.

Figure 11 presents the average relative target outcome
detection rate improvement. We run experiments for 100
iterations (not shown) to 100M iterations. Each bar corresponds
to the arithmetic mean of the relative improvement across all
tests of the perpetual litmus suite that have target outcomes
allowed in x86. PerpLE detection rate is nonzero for all allowed
target outcomes for all test iteration numbers except n1 litmus
test for 100 iterations. The litmus7 user mode is zero (i.e. does
not detect any outcomes) for all litmus tests for 100 iterations
and becomes nonzero for all tests only after 1M iterations.
The remaining litmus7 synchronization modes either require a
similarly high number of iterations to become nonzero for all
tests or never achieve that. PerpLE demonstrates the ability to
discover target outcomes at low iteration counts, which litmus7
generally fails to do. More specifically, for 100 iterations (not
shown), PerpLE heuristic counter and litmus7 pthread mode
are the only tools with a non-zero detection rate.

Additionally, PerpLE is able to provide a target outcome
detection rate that is strictly higher than any of litmus7’s
synchronization modes. For 10k iterations, PerpLE’s average
relative outcome detection rate improvement is between 24x
(over timebase) and 31000x (over user). PerpLE is able
to scale gracefully, maintaining a high relative target outcome
detection rate improvement for high iteration counts: between
1800x-140000x for 10M and 1200x-44000x for 100M iterations.
Overall, the target outcome detection rate of PerpLE is at least
four orders of magnitude higher than that of litmus7 in the
user (default) synchronization mode for all iteration counts.

D. Heuristic Accuracy

Figure 9 also indirectly showcases the perfect accuracy
of PerpLE’s heuristic outcome counter, since it tracks the
exhaustive outcome counter in terms of whether the target
outcome was found or not.

E. Thread Skew

Figure 12 presents a probability density function of the
skew between the two threads participating in the perpetual sb
litmus test, as defined in Section VI. Thread skew is a result of
numerous system factors, like operating system scheduling and
small differences in the time when each thread starts executing.
The distribution is very wide, indicating threads can run far
behind or ahead of each other. Still, it is denser around 0, since
system factors might delay either test thread during execution
and these effects then cancel out.

A wide range of skew values contributes to the success of
perpetual litmus tests, since it is indicative of the potential for
interesting cross-iteration interleavings. In contrast, traditional
litmus tests are limited by synchronization and the only
interleavings possible across different threads are between
operations of the same iteration (no skew).

F. Outcome Variety

Figure 13 plots the number of occurrences of each outcome
for the sb, lb and powdr001 litmus tests over 1k iterations.
The three tests are shown in Figure 2. Litmus7 across different
synchronization modes and PerpLE using the heuristic outcome
counter are evaluated in terms of (i) ability to observe a large
variety of outcomes and (ii) high number of observations of
each individual outcome. All outcomes presented are observable
under x86-TSO except for reg0 0 = 1 && reg1 0 = 1 in the lb
litmus test (lb outcome 11 on Figure 13), which is forbidden.

Litmus7 only observes outcomes sb 11 in the timebase
mode and powdr001 111 in the timebase and userfence
modes for 1k iterations. When running 1M iterations instead,
these two outcomes are observed in other litmus7 synchro-
nization modes as well, which shows that PerpLE heuristic is
capable of observing outcomes of interest using a much smaller
number of test iterations. Moreover, compared to litmus7,
the number of the occurrences of each outcome observed
when using PerpLE heuristic is typically higher than litmus7
synchronization methods.

As per Table II, TL = 2 for sb and lb, while TL = 3 for
podwr001. Therefore, for podwr001 we examine N3 frames,
compared to N2 for the other two tests presented, which
explains why PerpLE is able to determine an increased total
number of perpetual outcomes. The heuristic for each outcome
evaluates N samples out of the N2 or N3 available frames.
It is important to note that for litmus7 the total number of
occurrences for each test equals the number of test iterations,
spread across the observable outcomes.

With the exception of timebase mode, where the two
tools’ results are comparable, PerpLE provides a better outcome
variety than litmus7 for the same number of iterations with
higher numbers of outcome occurrences.
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Fig. 10: Relative speedups compared to litmus7 in user mode (=1). We compare PerpLE Exhaustive, PerpLE Heuristic, and
several litmus7 modes, for each test in the perpetual litmus suite. All runtimes include both test execution and outcome counting.
Higher is better. PerpLE heuristic is always fastest.

Fig. 11: Relative target outcome detection rate improvement
of PerpLE using the heuristic outcome counter and litmus7 in
different synchronization modes, for different numbers of test
iterations. litmus7 user mode is the baseline.
Bars represent the arithmetic mean of the relative target
outcome detection rate improvement across all perpetual litmus
tests with target outcomes allowed by x86-TSO. Higher is
better. PerpLE outperforms litmus7 in all modes by one to five
orders of magnitude. Unlike PerpLE, litmus7 in most modes
does not observe the target outcome for small iteration counts
(baseline litmus7 user is zero for fewer than 1000 iterations).

Fig. 12: Probability density of the thread execution skew (in
iterations) between the two threads for 100k iterations of the
store buffering (sb) perpetual litmus test. Store buffering (sb)
is used as an illustrative example; other tests exhibit similar
thread skew results based on our experiments.

Fig. 13: PerpLE using the heuristic outcome counter and
litmus7 in different synchronization modes compared in terms
of outcome variety for the sb, lb and podwr001 litmus tests, for
1k iterations. PerpLE heuristic samples 1k frames per outcome.
Higher outcome variety is better. The 11 outcome for lb is
forbidden in x86-TSO.

G. Overall Impact on Testing

PerpLE provides runtime acceleration and relative detection
rate improvement benefits for the overall consistency testing
process. PerpLE can accelerate some important tests and notify
the user about non-convertible tests, which can still be run using
litmus7. When running each of the 88 tests for 10k iterations,
it is 1.47x faster to use PerpLE instead of litmus7 for the 34
convertible tests (and litmus7 in user mode for the rest). For
tests with target outcomes allowed in x86-TSO, we achieve
an average relative target outcome detection rate improvement
of over 20000x by using PerpLE instead of litmus7 for the
convertible tests for 10k iterations.

VIII. RELATED WORK

Memory models range widely, from sequential consistency
(SC) [28] to weak memory consistency models in modern
architectures [1, 2, 7, 16, 21]. Several previous works have
focused on formalizing the memory consistency models of
different architectures, e.g. x86 [37], POWER or more generic
models [10, 12, 15], while others have focused on language
level formalization of memory models [26, 27, 42]. Frequently,
such efforts resort to running litmus tests on hardware and
comparing their empirical observations to the published mem-
ory model specifications [6, 36]. Other efforts use random
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testing instead, which can also be very effective for detecting
deviations from the published model, at the cost of having a
consistent test suite [18, 22, 40]. Using perpetual litmus tests
can accelerate such efforts on newly developed architectures
while also exposing a greater variety of outcomes, giving a
fuller picture of the capabilities of the underlying hardware.

Other work has focused on specifying and verifying mi-
croarchitectural implementations of consistency models using
happens-before graphs [30, 33, 34, 35, 41]. These tools focus
on design time verification whereas PerpLE performs runtime
evaluation of litmus tests against the hardware specification.

Based on formal memory consistency models, other efforts
have addressed litmus test generation, for the purposes of
comparing memory models or for the empirical conformance
testing of new implementations of an architecture in hardware
[18, 22, 32, 43]. The Converter tool in PerpLE extends such
tools by converting newly generated litmus tests to their
perpetual counterpart, providing automatic access to the benefits
of running tests without per-iteration synchronization.

Another existing line of research has been concerned
with developing tools for running non-deterministic tests,
including litmus tests [5, 9, 17]. Central among these is the
diy suite of tools, which includes the litmus7 tool used in
our evaluation [24]. PerpLE adds to such tool development
efforts, by providing a critical twist (removal of per-iteration
synchronization) on a familiar approach (litmus tests). A key
difference between PerpLE and litmus7 pertains to frames.
Namely, PerpLE not only allows longer-term cross-iteration
interleaving of events, which enriches the event orderings
considered, but it also implements the logging needed to
properly see these interactions from the results. Litmus7’s
different synchronization modes may allow for some of the
same orderings, but that tool does not have the logging to
see cross-iteration interleavings. Furthermore, litmus7 cannot
automatically generate perpetual litmus tests from original
tests, and its synchronization modes cannot enable analysis
methodologies that use frames similar to PerpLE. PerpLE
includes automatic test generation from original tests.

Finally, past work has been concerned with developing
techniques to increase the effectiveness of litmus tests by
creating different system environments for the test threads,
in the hopes of exposing otherwise rare outcomes. Such
approaches can have a dramatic impact: for example, Sorensen
et. al [39] shows that the use of stressing and fuzzing can
increase the occurrence rate of the target outcome in the lb,
sb and mp litmus tests in GPUs. PerpLE also creates unusual
(compared to traditional approaches) conditions for the test
threads by enabling longer stretches of synchronization-free
execution by each thread. The thread skew generated this way
can be valuable in exercising the system, as our results show.

IX. CONCLUSIONS

Given parallelism’s centrality in computing today, memory
consistency testing is critical to ensure that systems and
applications adhere to their formal specifications. However,
current empirical litmus testing approaches waste most of the

testing time waiting for threads to synchronize, a requirement
that also can hurt the variety and types of outcomes of the tests.
In response, we propose perpetual litmus tests, a litmus test
variant that allows for consistency testing without per-iteration
synchronization, by tracing happens-before edges between load
and store operations using unique arithmetic sequences. We
present PerpLE, a set of tools to generate, execute and analyze
perpetual litmus tests and their outcomes.

PerpLE is evaluated on an x86 system, showing both greater
outcome variety and more occurrences of the outcomes of
interest. PerpLE can use a polynomial algorithm or an efficient,
linear heuristic to identify outcomes of interest. The highly
accurate heuristic provides a significant speedup, leading to an
overall target outcome detection rate that is orders of magnitude
higher than prior state of the art. This paper focused on x86-
TSO, but our approach can also be applied to architectures
implementing weaker memory models. These improvements
can help expand the applicability and effectiveness of empirical
memory consistency testing.
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